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Introduction  

The main goal of the present study is to make a 
comprehensive assessment of the existing methods 
for the dynamic analysis of pile driving, identify the 
shortcomings and propose improvements. A review 
of existing shaft and base soil reaction models used 
in dynamic pile analyses is done to evaluate their 
effectiveness and identify points that require 
improvement. Subsequently, we develop improved 
shaft and base reaction models for use in 1-D 

dynamic pile analysis. The proposed models are 
validated using experimental data recorded during 
driving of field piles and model piles. The 
procedures currently used by INDOT for the 
design of axially loaded piles are also examined. 
For this purpose, interviews were conducted with 
INDOT engineers and private geotechnical 
consultants involved in INDOT projects. 

Findings  

The interviews with INDOT engineers and 
consultants focused on the methods and 
procedures presently followed in deep foundation 
design projects. The methods and the computer 
software used by private consultants involved in 
INDOT projects for the design of axially loaded 
piles are consistent with those used by INDOT’s 
geotechnical engineers. These methods and 
software follow FHWA guidelines and are in 
accordance with the standard practice in the U.S. 
Pile design is mostly based on Standard 
Penetration test (SPT) data and undrained shear 
strength measured in unconfined compression 
tests. Cone penetration tests are rarely performed, 
although both INDOT and private soil exploration 
companies have the necessary equipment. Pile 
drivability calculations and back-calculation of 
the pile capacity from dynamic test data are done 
using software that employs Smith-type soil 
reaction models. Pile driving monitoring and re-
strike tests are usually performed only in projects 
whose cost exceeds a certain limit. Static load 
tests are reserved mostly for research projects.  

The methods for estimating the unit shaft 
and base resistances currently used by 
geotechnical engineers (INDOT or private 
consultants) have been developed over twenty 

years ago and have a large empirical content. 
There has been significant progress regarding 
methods for the calculation of unit base and shaft 
resistances. Numerous improved methods that are 
grounded on the physics and mechanics governing 
the development of pile resistance have been 
developed by combining experimental data with 
analysis. In the case of clayey soils, the 
differences between the state-of-the-practice 
methods and the updated methods are not large. In 
contrast, the formulation of the new methods for 
piles in sands has important fundamental 
differences with respect to traditional methods.  
The new methods for the base resistance in sands 
use as input either the relative density or the cone 
resistance directly. The recently developed 
methods recognize the fact that the limit base 
resistance is almost equal to the cone penetration 
resistance and that the ultimate unit base 
resistance in sands is smaller than the limit unit 
base resistance. Notably, the equations for β 
adopted by FHWA guidelines yield substantially 
unconservative shaft resistance predictions.   

The key components for accurate 1-D 
simulation of pile driving are the shaft and base 
soil reaction models. The reaction models 
currently used in practice are overly simple and 
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rely on empirical constants. Significant effort has 
been made to develop improved soil reaction 
models that eliminate the empirical ‘quake’ 
parameter, have input parameters that are 
physically meaningful and attempt to adhere to 
the mechanics involved in pile driving.  

Based on the shortcomings identified in 
the course of the thorough literature review 
process done as part of this project, we developed 
improved shaft and base reaction models that are 
consistent with the physics and mechanics of pile 
driving. The proposed shaft reaction model 
consists of a soil disk representing the near field 
soil surrounding the pile shaft, a plastic slider-
viscous dashpot system representing the thin shear 
band forming at the soil-pile interface located at 
the inner boundary of the soil disk, and far-field-
consistent boundaries placed at the outer 
boundary of the soil disk. The soil in the disk is 
assumed to follow a nonlinear stress-strain law. 

The base reaction model consists of a nonlinear 
spring and a radiation dashpot connected in 
parallel. The initial spring stiffness and the 
radiation dashpot take into account the effect of 
the high base embedment. Radiation damping is 
applied only to the elastic component of the base 
displacement. Both shaft and base reaction models 
capture effectively soil nonlinearity, hysteretic 
damping, viscous damping and radiation damping.  
The input parameters are physically meaningful, 
thus reducing the level of empiricism to a 
minimum. The prediction using the proposed shaft 
and base reaction models compared favorably 
with measured pile driving data, unlike the 
predictions using Smith-type models. The pile 
driving simulations using the proposed models 
largely outperform those employing Smith-type 
models, especially in the case of hard driving 
conditions typically encountered as an end-
bearing pile approaches its final penetration depth. 

Implementation  

Since CPT-based methods are superior to methods 
that rely on SPT data, CPT should be performed 
more often in the field investigation of INDOT 
projects that involve deep foundations. CPT 
provides nearly direct estimate of the limit unit 
base resistance. Researchers have also found that 
the cone resistance correlates very well with unit 
shaft resistance. To take advantage of INDOT’s 
CPT rig, CPTs could be performed more often for 
INDOT’s deep foundation projects, and INDOT 
should continue to develop and refine CPT-based 
methods of design. Additionally, the new pile 
driving analysis methodology should be gradually 
used by INDOT in its deep foundation design 
projects. 

The implementation of the research will 
enable INDOT to take advantage of the updated 
and improved unit resistance calculation methods 
contained in the present report in the design of 
deep foundations.  These methods can then 
progressively replace the outdated methods that 
are currently used in INDOT projects.  It will also 
allow use of a method of pile driving analysis that 
should allow both superior planning and superior 
quality control of INDOT’s deep foundations 
work. 

The best way to accomplish this goal 
would be to select deep foundation demonstration 
projects in which the research team would work 
together with INDOT during all the phases of 
planning, design and construction, assisting in 
implementation of the new design and analysis 
tools.  This will allow further assessment of the 
accuracy and reliability of the equations proposed 
for the estimation of unit shaft and base resistances 

and improvement of methods using these design 
equations. Assessing the accuracy and the 
uncertainty of these methods is a prerequisite for 
the successful development of LRFD 
methodologies for axially loaded piles. The 
proposed implementation approach would allow 
development of LRFD methods in a way that 
would fulfill the ideals behind the LRFD 
philosophy.  Workshops and seminars will also be 
organized in order to disseminate knowledge of 
the modern methods to consultants and INDOT 
engineers as well as show where the current 
methods fall short and can lead to potential cost 
overruns or other serious problems.  INDOT has 
an opportunity to take leadership in the country in 
implementation of state-of-art knowledge and 
design technology in deep foundations projects. 

We further suggest that the pile driving 
research done under this project should be 
continued and amplified. The solution scheme 
used in this project for the pile driving simulation 
can calculate the pile motion given unit soil 
resistance values along the shaft and at the base 
and the rated energy of the hammer. A more 
important practical application is the back-
calculation of the pile base and shaft capacities 
based on the force and velocity time histories 
measured at the pile head during driving or during 
a re-strike test. Adding this capability to the 
present analysis framework requires the 
development of an efficient signal-matching 
algorithm. The developed pile driving analysis 
methodology can be of a value to both INDOT and 
geotechnical engineers and should be funded by 
JTRP. 
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CHAPTER 1. INTRODUCTION 
 

1.1 Background 

 

Pile foundations are often used to transfer large superstructure loads to the ground at sites 

where shallow foundations cannot be used due to the presence of soft clay or loose sand 

layers.  Pile foundations are also capable of resisting large tensile or lateral loads.  Pile 

reaction to compressive axial loads comes from two sources:  shaft resistance and base 

resistance. The mobilization of limit shaft resistance requires small pile head displacements, 

whereas much larger head displacements are required for full mobilization of base 

resistance. Depending on the installation method, most piles fall into one of two main 

categories: nondisplacement piles or displacement piles. Nondisplacement piles are cast-in-

place piles installed by first excavating the soil and then pouring concrete or grout in the 

created space. This installation process causes only small disturbance to the surrounding 

soil, largely preserving the initial stress state and soil density.  Nondisplacement piles are 

practically synonymous to drilled shafts (bored piles). Displacement piles are inserted into 

the ground by driving or jacking without prior removal of the soil from the ground. 

Displacement piles are made out of steel (e.g. steel pipe piles, H-piles), concrete 

(prestressed or not), or wood. From the pile design perspective, there are large differences 

in the response to axial loading between nondisplacement and displacement piles. 

Generally, displacement piles have larger capacity than nondisplacement piles. In addition, 

pile settlement required for full mobilization of the base resistance is smaller in displacement 

piles than in nondisplacement piles.  

 The methods used for the determination of pile capacity prior to installation belong to 

two main categories: 1) methods based on soil properties and 2) methods based on in situ 

tests such as SPT and CPT. These design methods constitute the so-called static methods. 

Although pile foundations are very common today and are used often for supporting heavy 

and important structures, the most popular and well established methods for the 

determination of the shaft and base resistances in practice still contain a significant degree 

of uncertainty. The majority of the existing methods contain also a large degree of 

empiricism, which limits their effectiveness and the broadness of their applicability. As a 

consequence, foundation engineers often rely on dynamic or static pile testing for verifying 
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the pile capacity and reassessing the foundation design prior to or at intermediate stages of 

construction. Pile load testing in the field adds a significant amount to the overall cost of the 

project. The most common pile tests are static load tests, pile monitoring during driving (for 

driven piles), and re-strike tests. Although simpler in concept, static load tests are very costly 

and are reserved only for large-budget and important projects. The less expensive 

alternative, suitable for more routine projects, is the use of dynamic pile tests, either in the 

form of pile driving monitoring or in the form of re-strike tests. Pile monitoring consists of 

recording the pile acceleration and axial strain at the pile head during driving. The pile head 

velocity and displacement histories can be extracted from the recorded acceleration history 

through numerical integration. The recorded strain is used for calculating the axial force 

history at the pile head. This information can be used to deduce the static pile capacity. In 

pile re-strike tests, the pile head is struck by a hammer after it has been fully driven to the 

ground. A similar type of test can also be performed on drilled shafts (e.g., Newton’s 

APPLE™ load testing by GRL). Determination of the pile capacity from static pile tests is 

simple, direct and straightforward. Pile capacity estimation from dynamic tests has always 

been more challenging, requiring sophisticated dynamic analysis. 

 

1.2  Problem Statement 

 

The difficulties of the commonly used static design methods in accurately predicting the pile 

capacity often require the use of field pile load tests, resulting in a significant increase of the 

project cost. Due to practical and economic reasons, dynamic pile testing is performed much 

more frequently than static pile load tests. Early efforts in interpreting dynamic pile test data 

relied on empirical formulas.  These formulas are based on a simple energy concept: the net 

energy transmitted to the pile head should be equal to the work done by the total pile 

resistance on the measured vertical pile displacement (pile set). Such formulas were 

adopted by various design codes throughout the United States and abroad.  The most well-

known among these formulas are the Engineering News Record (ENR) formula and Gates’ 

formula.  Researchers noticed early on the limitations of the empirical formulas. It became 

obvious that proper analysis requires pile driving to be treated as a wave transmission 

problem and analyzed considering the wave equation.  Significant effort has been put in 

finding different ways to analyze the problem by taking into account the actual physics and 

mechanics of the pile driving problem and the effects of pile-soil interaction.  
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The major advancement in pile dynamics was the consideration of the one-dimensional 

dynamic analysis (Smith 1960). In this approach, the pile is modeled as a series of lumped 

masses interconnected by springs and the problem is solved using numerical integration. In 

the course of the following decades, several improvements were made to the original work 

by Smith (e.g. Lowery et al. 1969; Hirsch et al. 1976; Goble and Rausche 1976, 1986; 

Simons and Randolph 1985; Lee et al. 1988; Rausche et al. 1994; Hussein et al. 1995).  

Alternative techniques were also proposed for analyzing pile driving, such as finite element 

analysis (e.g. Coutinho et al. 1988; Borja 1988; Nath 1990; Deeks 1992; Mabsout and 

Tassoulas 1994; Mabsout et al. 1995; Liyanapathirana et al. 2000; Masouleh and Fakharian 

2007) or closed-form solutions (e.g. Glanville et al. 1938; Hejazi 1963; Parola 1970; Wang 

1988; Zhou and Liang 1996; Warrington 1997).   

Goble et al. developed a method based on the wave equation that allows the 

calculation of pile capacity using force and velocity measurements at the pile head.  A 

number of simple closed-form solutions were developed based on this concept: the Case 

Method (Goble et al. 1975, 1980), the Impedance Method (Beringen et al. 1980) and the 

TNO Method (Foeken et al. 1996).  Following similar lines, Rausche (1970) proposed the 

signal matching technique and developed the computer program CAPWAP (Rausche et al. 

1985).  CAPWAP performs 1-dimensional dynamic analysis (Smith’s lumped mass 

approach) aiming to obtain good match between the measured and predicted force and 

velocity time histories at the pile head by changing the static soil resistance values along the 

pile shaft and at the pile tip. CAPWAP distinguishes between the static and dynamic 

resistances and thus allows the prediction of the static bearing capacity from the dynamic 

measurements. Currently, CAPWAP constitutes the state-of-practice method/software for 

the interpretation of dynamic pile load tests. The program GRLWEAP, developed by the 

same researchers, employs similar numerical methodology and is used before pile 

installation for determining pile drivability and producing bearing graphs.   

Although CAPWAP is considered more reliable than other dynamic methods, it 

utilizes soil reaction models that are simplistic and empirical (Randolph 2003).  Kim et al. 

2002, Lee et al. 2003, and Paik et al. 2003 found that it underpredicts significantly the load 

capacity of both closed- and open-ended piles for the conditions investigated by these 

authors.  Regarding drivability, INDOT engineers have reported that predictions of the final 

driving depths and, thus, of the pile capacity made by design engineers are often 

unsatisfactory. These difficulties may potentially arise from the inadequate soil reaction 

modeling. Given the large cost associated with dynamic testing and its importance in the 
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final foundation design of important projects, dynamic pile analysis needs to be as reliable 

as possible. The knowledge of dynamic soil behavior and of the mobilization of soil 

resistance around the pile has advanced significantly, allowing the development of more 

rigorous and realistic soil reaction models that will help in improving the reliability of dynamic 

pile analysis.  

 

 

1.3  Objectives and scope  

 

The present research effort aims to identify shortcomings in the current axially-loaded pile 

design procedure used in INDOT’s projects and examine the possibility of implementing new 

advances and knowledge in dynamic pile analysis. To achieve this goal, the present 

research project consists of the following tasks: 

 (1) Review of the axially-loaded pile design process followed by INDOT and identification of 

the main problems and areas of improvement that would lead to more economical and safer 

projects in the future. 

(2) Comprehensive assessment of the static design methods currently available for the 

design of axially loaded piles and identification of the most accurate methods and 

procedures. 

(3) Evaluation of current dynamic pile analysis methods. 

(4) Development improved dynamic analysis method based on soil reaction models that 

obey the true physics and mechanics of pile driving. 
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CHAPTER 2. REVIEW OF INDOT’s DESIGN PROCEDURES 
 

 

A series of interviews were conducted by Geoffrey Henggeler during the summer of 2004. 

The interviewees were two INDOT engineers and two private geotechnical consultants 

involved in INDOT projects. The focus of the interviews was to develop an overview of the 

procedures and practices followed in the design of axially loaded piles.  The information 

collected focuses on the decision process in selecting foundation type, the 

methods/software used in pile design, and the data collection and exchange during and after 

the construction phase. The following sections present a compilation of the information 

collected during the interviews. 

 

2.1 Foundation design process: tasks and responsibilities  

 

There are four different parties that are involved in the foundation design and construction. 

These are INDOT, the project’s design consultant (Architect/Engineer or A/E), the 

geotechnical consultant, and the contractor. INDOT is the state agency responsible for 

providing and maintaining public roads for transportation within the state, and thus acts as 

the project owner. It determines the project specifications and requirements and controls the 

bid process. The design consultant produces the design of the superstructure.  

The geotechnical consultant is responsible for the field investigation, the in situ and 

laboratory testing, the foundations design, and the production of the geotechnical report. 

INDOT can act also as design consultant and/or as geotechnical consultant. The INDOT 

geotechnical department undertakes the geotechnical consulting for the majority of the 

projects, in which case INDOT geotechnical engineers prepare and submit the geotechnical 

engineering report directly to the project designer (A/E).  INDOT hires private geotechnical 

consultants when the INDOT geotechnical lab is too busy to perform additional work. 

Geotechnical consulting is also outsourced to private consultants when a project is being 

performed under Fast-Track procedure and the INDOT geotechnical department is not able 

to keep up with the rapid pace of the project schedule. Fast-Track is an accelerated design 

and construction schedule for important projects. INDOT selects the private geotechnical 

consultant from a list of preapproved companies.  
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The geotechnical engineer (INDOT or private) receives preliminary design 

information from the design consultant.  The design consultant provides basic design 

information to be used as input for the production of the geotechnical report and the 

foundation design, such as bridge type, location of bents or piers, superstructure loading to 

the foundation system, and whether a project utilizes open bents or a pile cap. A typical 

geotechnical report includes field investigation and laboratory test results, the inferred 

subsurface profile, design calculations, pile foundation design (pile type, number of piles and 

layout, pile cross-section, and installation depth), driving recommendations, and sometimes 

the recommended pile spacing.  Once the geotechnical consultant completes the 

geotechnical engineering report, it is subsequently reviewed by INDOT’s senior geotechnical 

engineers who may occasionally suggest amendments. Private consultants may contact 

INDOT before completion of the geotechnical report if problems arise during foundation 

design. The foundation elements in the approved geotechnical engineering report are 

considered complete and are implemented in the project’s design by the Architect/Engineer 

without additional changes. The geotechnical report does not include final drawings. The 

design consultant (A/E) finalizes the design of the deep foundation system based on the 

contents of the geotechnical engineering report and incorporates deep foundation plans into 

the final engineering drawings.  

Contractors are not allowed to propose design alternatives unless they present a 

Cost Reduction Incentive (CRI) proposal. The proposed CRI must include a complete 

analysis, additional testing results, and cost saving documentation to a sufficient level of 

detail. The CRI alternatives need to be approved by the designer (A/E). The CRI proposal is 

reviewed by INDOT engineers and often by the geotechnical consultant. INDOT 

geotechnical engineers must always be consulted in case modifications need to be made to 

the foundation system during construction. 

 

2.2 Pile design methods and software  

 

The vast majority (around 90%) of INDOT bridge projects utilize deep foundation elements. 

Pile foundations are also used in certain retaining wall projects. Driven piles are used much 

more frequently (roughly 80% of the time) than drilled shafts; this is mainly due to local 

contractor capabilities. Drilled shafts are usually considered, at the request of the design 

consultant, when it is desired to have a single pile or column load supported by a single 
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foundation element (pile). Drilled shafts are particularly suitable for such cases because they 

are available in much larger cross-sectional sizes than typical driven piles, thus being able 

to provide the large design capacities that are required.  

The practice followed by private consultants in terms of design methods, software 

and factor of safety values is consistent with that followed by INDOT geotechnical 

engineers. The pile design has been based on the Working Stress Design (WSD) approach 

but that is changing new with the new LRFD requirements. In the absence of pile load 

testing, the value of the factor of safety is equal to 2.5. The factor of safety is applied to the 

total axial load capacity (i.e., no separate factors of safety are considered for shaft 

resistance and tip resistance).  The safety factor may be reduced to 2.0 in projects involving 

pile load tests. In general, INDOT will not use a safety factor less than 2.  

Decision on the final foundation system configuration is controlled by two main 

factors: cost and constructability. Additional considerations include structure type, prior 

experience, local practice, and capabilities of local contractors. The later is an important 

consideration, as contractors able of installing certain types of foundation systems may not 

be available in all parts of Indiana. Hiring a pile installation sub-contractor from elsewhere 

may significantly increase the project cost. Optimization of the pile design (pile type and 

geometry) is accomplished by the geotechnical consultant (private firm or INDOT) during the 

preparation of the geotechnical engineering report. The pile group arrangement or 

orientation is rarely considered as a variable during the optimization process.  

 

2.2.1 In situ and laboratory testing 

In the vast majority of projects, the only in situ test performed is the Standard Penetration 

Test (SPT). SPT testing is an integral part of the soil borings performed in the context of the 

field investigation. Shelby tube samples are taken in the case of cohesive soils. Unconfined 

compression tests (UC) or UU tests are performed on the collected specimens for 

determining the undrained shear strength of the cohesive soil. INDOT engineers usually rely 

on the SPT blow counts and UC (or UU) test data for determining the pile capacity in sandy 

soils and clayey soils, respectively. More advanced laboratory tests are available in INDOT 

laboratories or private geotechnical laboratories, but these tests are rarely used for projects 

involving deep foundation design. The private geotechnical consultants interviewed, as well 

as INDOT’s geotechnical office, have the capability of performing Cone Penetration Test 

(CPT). However, CPT is used infrequently because of the perceived difficulties in performing 
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this test in coarse-grained soils present in Indiana. Reaching large depth has also been 

stated as one of the limitations of the CPT. CPT testing is being used by INDOT more 

frequently than in the past, but it still represents only a small fraction of the in situ tests 

performed. Pressuremeter testing and dilatometer testing are rarely performed and, when 

performed exclusively by private firms. The in situ and laboratory tests undertaken by the 

INDOT geotechnical division are performed and monitored by technicians. Geotechnical 

engineers are present during testing only in projects involving complex issues, such as soils 

with large amounts of organic material, or when conducting complicated testing.  

 

2.2.2   Static pile design methods 

Both INDOT and private consultants calculate the capacity of axially loaded piles using 

specialized software. In the absence of subsequent pile load testing, the entire foundation 

system design relies on the output of these computer programs. The programs S-PILE and 

DRIVEN are used for the design of driven piles. The development of these two programs 

was sponsored by FHWA. Currently, INDOT is phasing out the use of S-PILE in favor of 

DRIVEN, although both programs are still used. The program SHAFT (Ensoft, Inc.) is used 

for the design of drilled shafts. The interviewees are generally satisfied with the performance 

of these programs. Moreover, the geotechnical consultants feel very familiar with the 

programs and appreciate their user-friendliness (setting aside S-PILE, all of them are 

Windows based). Pile setup is considered only if conditions warrant it.   

 

2.2.3   Dynamic analysis  

The programs WEAP and GRLWEAP are used for dynamic pile analysis to assess the 

drivability of a given pile type (when drivability is of concern). These programs have been 

praised for their excellent support and training provided by the software developer. The 

bearing graph made available to the contractor, the supervising engineer and field personnel 

during construction is usually produced using these programs.  Alternatively, a formula-

based method may be used for producing the bearing graph. The bearing graph is 

necessary for directing and monitoring the pile driving process. A bearing graph allows 

assessment of pile drivability and estimation of pile capacity with depth in the field. The pile 

driving records are collected by the project engineer and transmitted to INDOT. These are 
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used for assessing the effectiveness of the driving system rather than evaluating the quality 

of construction. 

INDOT considers performing pile load tests when the total foundation cost exceeds 

$100,000 or in projects involving a large number of piles, large pile loads, and difficult 

driving conditions. The availability of pile load test data allows the use of lower factor of 

safety, which may result in a reduction of the foundation system cost. The vast majority of 

pile load testing consists of dynamic tests (PDA); static pile load tests are mostly performed 

in research projects. The responsibility of PDA testing lies exclusively to INDOT.  In the past, 

INDOT used to contract specialized consulting firms to perform PDA tests. INDOT acquired 

the PDA equipment approximately five years ago and trained its geotechnical engineers on 

the use of the equipment. Pile integrity and crosshole testing for verifying the quality of 

installed drilled shafts are rarely performed. 

 It has been pointed out that there is little interaction between INDOT and the private 

geotechnical consultants who design the foundation system.  The results of the PDA are not 

directly communicated to the private geotechnical consultant by INDOT; PDA data is 

occasionally received from the design consultant instead. After submitting a geotechnical 

engineering report to INDOT or to the design consultant, private geotechnical consultants 

receive only limited feedback.   

 

2.3   Advancements in pile design and their implementation 

 

Private geotechnical consultants acquire knowledge about advancements in pile 

engineering from journals, publications, conferences, seminars, short courses, and 

interaction with other firms. Private consultants also try maintaining their own databases and 

developing their own pile capacity correlations applicable to soil conditions encountered in 

the state of Indiana. Continuing education activities, such as seminars, lectures, and short 

courses, are usually hosted and/or sponsored by academic research institutions, the FHWA, 

and the pile foundation industry. The Indiana ASCE Geotechnical Committee meets several 

times per year to share information related to the design and construction of deep 

foundations. INDOT is actively engaged in advancing the state of knowledge and practice in 

the field of geotechnical engineering through research programs run in collaboration with 

academic institutions and FHWA.   
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The interviewees indicated a number of aspects of pile engineering in which 

advancements are needed.   It is recognized that future research needs to shed light on the 

physics and mechanics involved in pile driving and in pile setup. Studying the pile-soil 

interaction in pile groups and its effect to the capacity of axially-loaded piles would also be 

beneficial. Improvements in pile design could be made by developing more reliable 

correlations between in situ test data and pile resistances.  It will be of value to develop a 

unified pile analysis and design process based on a well defined set of suitable and updated 

set of design equations. INDOT geotechnical engineers indicate that, despite certain comfort 

and familiarization with the current state-of-practice, continuous improvement of the pile 

design practice is important and very beneficial. It is estimated that INDOT implements new 

advancements in deep foundation engineering every year or two. It has been pointed out 

that dissemination of software sprung from recent research efforts is practically possible only 

if the software is made to be Windows-based. 

Particular mention was made regarding the limitations of the Fast-Track procedure.  

The primary limitation is that the parties involved in foundation design do not have the time 

to interact with each other. Interaction between the geotechnical consultant and design 

consultant is necessary for producing good engineering designs. Good interaction between 

these two parties will greatly improve the quality of the final design and minimize occurrence 

of problems arising during construction and the service life of the project. 

 

 

2.4. Conclusions and recommendations 

 

The main points extracted from the content of the interviews can be summarized as follows: 

1) The design procedures followed by INDOT’s geotechnical engineers and private 

geotechnical consultants are consistent (e.g., methods, software).  

2) Most of the time, the design recommended in the geotechnical report is not modified 

by the contractor. A cost reduction incentive (CRI) program allows contractors to 

propose modifications. 

3) Pile design is mostly based on SPT data and su determined from unconfined 

compression tests.  CPT is performed only occasionally. 

4) The computer programs DRIVEN and S-PILE are used for the design of driven piles. 

The program SHAFT is used in the case of nondisplacement piles (drilled shafts). 



11 

 

 

5) Pile design has been based on the Working Stress Design method. A factor of safety 

equal to 2.5 is used, unless pile load tests are performed, in which case the factor of 

safety may be reduced to 2.0. 

6) The program WEAP (or GRLWEAP) is used for analyzing pile drivability. The bearing 

charts used during construction are generated using GRLWEAP or empirical 

formulas. 

7) PDA tests may be performed depending on the cost of the project, the pile capacity, 

and the driving conditions.  Static load tests are rarely performed.  

 

It can be concluded that deep foundation design procedures followed by INDOT and private 

firms are in accordance with standard and acceptable practices followed in the United 

States and abroad. There are though certain aspects of the design procedures and 

practices in which improvements can be made. Based on the information collected from the 

interviews and the experience gathered from previous JTRP projects, we can make the 

following comments and recommendations: 

a) The pile design software used for the static calculations follows the methods adopted 

in FHWA reports and guidelines and implemented in pile design software (DRIVEN, 

S-PILE, SHAFT). These are strongly empirical property-based methods developed in 

the 1960’s, 70’s and 80’s. There is the need to implement in pile analysis software 

the recent advancements regarding unit resistance calculation. These more modern 

methods are also often based on the physics and mechanics involved in the 

mobilization of the pile capacity. 

b) The soil reaction models used currently in the dynamic analysis of piles are overly 

simple and rely on empirical constants. There is the need to develop and implement 

soil reaction models that are consistent with the mechanics involved in pile driving 

and have input parameters that are physically meaningful. Advancement in this field 

will improve the reliability of pile driving analysis.    

c) There is a worldwide trend of shifting geotechnical design from WSD towards LRFD.  

Establishing and promoting Load and Resistance Factor Design (LRFD) into pile 

engineering will lead to more reliable designs. The adoption of modern unit 

resistance equations is a prerequisite for the successful development of LRFD 

methodologies for piles.  

d) The CPT should be performed more frequently in projects involving deep 

foundations. CPT-based methodologies are more reliable than SPT-based ones. In 
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the case of pile design, CPT is the method of choice because the mechanics 

involved in the problem of pile installation and subsequent axial loading are very 

similar to those in cone penetration. CPT is used with great success abroad in 

coarse grained soils and at depths typically reached by pile tips. If a boulder or 

cobble is encountered during penetration, relocation of the rig just a few feet away 

often solves the problem. 

e) When determining the undrained shear strength of clay samples in the laboratory, 

UU tests should be preferred over UC tests, especially in the case of soft clays.  

f) INDOT usually designs piles to have the required capacity by varying the pile length. 

It is recommended to design the pile by varying the pile cross-section and targeting 

pile termination in the same bearing layer whenever possible.  This practice helps in 

limiting differential settlements. In the field, the bearing layer elevation may vary; in 

that case, the driving resistance can serve as a guide in reaching consistently the 

same layer.   

g) Future geotechnical research efforts should focus on studying the effect of pile setup 

and the effect of pile-soil interaction in pile groups on pile capacity. Establishing 

correlations between CPT measurements and pile resistances for local soils will also 

be beneficial. 

h) Deep foundation projects should more often include static pile load testing. Besides 

allowing for the use of a lower factor of safety, more frequent performance of static 

load tests will help improve the knowledge of pile resistance in local soil types.    

i) Pile load test data should be shared with the private geotechnical consultants who 

prepare the geotechnical report. Their involvement should continue also after the 

submission of the geotechnical report for the purpose of validating the analysis 

methods they used. This will assist in developing pile design knowledge that is 

suitable for local soils types. The creation of a public access database of pile load 

test results will be beneficial for private firms, INDOT engineers, and academic 

researchers.    

j) There is the need to establish the framework and procedures that will allow effective 

interaction between the geotechnical consultant and the design consultant who are 

involved in Fast Track projects. 
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CHAPTER 3. STATIC METHODS FOR THE DETERMINATION OF PILE 
CAPACITY 

 

This chapter presents and compares methods proposed in the technical literature for the 

determination of the static unit resistances. The interviews presented in Chapter 2 revealed 

that there exists a lag between the methods currently used in pile design and more accurate 

methods that are the outcome of research efforts during the last decade. INDOT and private 

engineers currently use the methods recommended by the FHWA guidelines. The 

Geotechnical Manual of INDOT (INDOT 2005) recommends the use of Nordlund’s and 

Tomlinson’s methods for the calculation of unit resistances of displacement piles in 

“cohesionless” (sandy) and “cohesive” (clayey) soils, respectively. These methods are 

available in the popular pile design software DRIVEN. The methods recommended by the 

FHWA guidelines constitute the core of the computer programs used in design practice. 

Salgado et al. (2002) compared two new unit resistance calculation methods for open- and 

closed- ended pile piles with those commonly used by INDOT. It was suggested that the 

existing methods are excessively conservative and that significant savings can be achieved 

by using the new methods. The introduction of updated and improved equations for the 

calculation of pile resistances will lead to reduction in the cost of deep foundation work and 

enhance the reliability of the foundation design. The unit shaft and base resistances are the 

most important input parameters in dynamic analyses of pile driving since they play an 

important role in controlling the pile settlement per hammer blow. In addition, accurate and 

reliable equations are a prerequisite for the development of Load and Resistance Factor 

Design (LRFD) for pile foundations.  

 

3.1 Pile Design Process 

 

According to Salgado (2008), the design process includes the following steps: 

a) Selection of piles over other types of foundation structures. 

b) Selection of pile type based on local practice, constructability, economics, magnitude 

of structural loads, and other factors. 

c) Examination of soil profile and decision on pile length.  If there exists a soil layer with 

high strength/stiffness (e.g., stiff clay, dense sand, or rock) within reach, the pile 

length is chosen such that the pile tip is embedded in the competent layer at least 
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two times the pile width; this is what would be commonly referred to as an end-

bearing pile. If a competent layer is not present at reachable depths (30-40m), the 

pile is designed as a floating pile. 

d) Decision on the pile cross-section based on static pile capacity calculations. 

e) Selection of driving system in case of driven piles. 

f) Specification of minimum pile length/minimum driving resistance to be reached 

during construction.   

g) Specification of installation method for a drilled shaft based on soil profile and 

groundwater presence.   

 

The goal of the static pile capacity calculations is the determination of the ultimate total 

resistance Qult of a single pile. Qult is expressed as the sum of the limit shaft resistance QsL 

and the ultimate base resistance Qb,ult: 

 

ult b,ult sLQ = Q +Q       (3.1) 

 

The base resistance is expressed as  

 

b,ult b,ult bQ = q A        (3.2) 

 

where qb,ult is the ultimate unit base resistance and Ab is the area of the pile base. For the 

calculation of QsL, the part of the soil profile penetrated by the shaft is divided in N 

sublayers: 

 

sL sL,i s,i

N

i=1
Q = q A∑        (3.3) 

  

where qsL,i is the limit unit shaft resistance along the part of the shaft intersecting the ith   

sublayer and As,i is the corresponding shaft wall area. The division in sublayers generally 

follows the stratification as established through the field investigation, with individual soil 

layers being further subdivided into thinner sublayers to increase the accuracy of the 

computations. This is because the many variables used for the estimation of the unit shaft 

resistance, such as the effective stresses or the undrained shear strength, vary with depth.  
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From previous paragraphs, it can be seen that there is a distinction between ‘limit’ 

and ‘ultimate’ resistance. The resistance (either for shaft or base) increases with increasing 

pile settlement but at a decreasing rate. Beyond a certain level of pile settlement, the 

resistance reaches a maximum value and remains constant. This maximum value 

constitutes the limit resistance. The pile settlement required for reaching the limit shaft 

resistance is relatively small (of the order of 1% of the pile width B). Hence, it is expected 

that QsL will be fully mobilized at the design limit state, except for a pile relying in an 

overwhelming way on shaft resistance. In contrast to the shaft resistance, the limit base 

resistance QbL is mobilized only at large pile settlements, which can be in excess of 0.2B in 

the case of sands (Fig. 3.2).  
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= =

= Δ =∑ ∑

, 1s iq + i+1i ih +Δ

 
 
Figure 3.1.  Division into sublayers for the calculation of the limit shaft capacity.  
 

 

Common structures will have surpassed their ultimate limit state (there will have been 

structural damage) before the pile settlement levels required to reach QbL develop. Thus, 

pile design needs to be based on the ultimate base resistance Qb,ult, which is the base 

resistance value associated with the ultimate limit state. The pile settlement corresponding 

to the ultimate limit state is usually assumed to be equal to 10% of the pile width (Fig. 3.2).  

The unit base resistance is usually expressed as a net resistance (gross resistance less the 

weight of the pile), so that pile design is done by comparing the total pile capacity (eq. 3.1) 

with the pile head load (structural load). 
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Figure 3.2.  Mobilization of shaft and base resistances with pile settlement.  
 
 
 

The static methods used for pile design are generally categorized into two types:  a) 

methods based on soil properties and b) methods based on in situ tests.  In soil-property-

based methods, the unit resistances are calculated using soil parameters readily available in 

typical geotechnical reports, such as the shear strength parameters (φ, su), relative density 

DR, overconsolidation ratio OCR, and the plasticity index PI. In situ test data is not used 

directly into the property-based formulas, although some of the aforementioned parameters 

may be estimated based on in situ test data. In the methods based on in situ testing, the unit 

resistance is directly correlated to the SPT or CPT measurements.  

The choice of the unit resistance formulas depends on the soil type (sandy vs. 

clayey) and the pile type (displacement vs. nondisplacement pile). The distinction between 

different pile types is necessary because displacement piles (driven or jacked piles) induce 

large changes in density and stress state in the surrounding soil during their installation. As 

a result, displacement piles generally exhibit larger unit shaft resistance than 

nondisplacement piles (drilled shafts). In addition, the ultimate base resistance of a 

displacement pile is expected to be greater than that of a nondisplacement pile installed in 

the same profile because the base resistance of displacement piles mobilizes with pile 

settlement at a higher rate than that of nondisplacement piles.  
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3.2 Property-based methods for unit base resistance in sand  

3.2.1 Unit base resistance based on bearing capacity equation 

The unit limit base resistance of piles in sands has often been expressed in the same form 

as the bearing capacity equation for shallow foundations in sand (with the ‘gamma’ term 

neglected): 

 

bL q 0 q qq N q s d=      (3.4) 

 

where Nq is the bearing capacity factor, q0 is the overburden stress, and sq and dq are the 

shape and depth factors. Since the embedment of the base is several times the pile width 

and pile cross sections are typically approximately equidimensional, the shape and depth 

factors can be lumped into the bearing capacity factor:  

 

bL qL vq N σ ′=       (3.5) 

 

Similarly, the ultimate base resistance is expressed as:  

 

b,ult q,ult vq N σ ′=       (3.6) 

 

Unity is usually subtracted from Nq,ult in order to take into account that the unit base 

resistance is a ‘net’ resistance (pile weight deducted from pile capacity). However, this may 

not be necessary because of the large values that Nq,ult takes in the case of sands.  

Salgado (1995) showed that the qb,ult increases nonlinearly and at a decreasing rate 

with increasing depth and, consequently, with increasing σ′v. Thus, Nq,ult decreases with 

increasing σ′v.  According to Fleming et al. (1992), Nq,ult for driven piles varies in a way that 

can be approximated by  

 

( )q,ult p0.136exp 0.182N φ=         (3.7) 

 

where φp is the peak friction angle of the soil. Eq. (3.7) is based on the solution by 

Berezantsev et al. (1961). Bolton’s (1986) equation is used to calculate φp using an iterative 
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procedure. Using a guess value for φp, an initial Nq,ult estimate is obtained from eq. (3.7).  

Then, the representative mean effective stress inside the bearing capacity mechanism is 

calculated using  

 

mp v q,ultσ = Nσ′ ′          (3.8) 

 

Subsequently, σ′mp is used in the Bolton (1986) correlation to obtain a new estimate on φp: 

 

( )R
p c mp Q3 - ln -

100%
D Q Rφ φ σ⎡ ⎤′= + ⎢ ⎥⎣ ⎦

        (3.9) 

 

If no other information is available for the parameters Q and RQ, the values 10 and 1 can be 

used, respectively. Using the new φp estimate, Nq,ult is recalculated using eq. (3.7). If the old 

and new Nq,ult estimates are not sufficiently close, additional iterations are performed until 

satisfactory convergence is reached. The computer program DRIVEN uses the approach of 

eq. (3.6) but does not calculate Nq using Eqs. (3.7) through (3.9). The Nq,ult values in 

DRIVEN (including the correction factor of Thurman 1964) are 40% to 50% smaller than 

those yielded by eq. (3.7) for the same φp value.  

 

3.2.2 Unit base resistance based on cone resistance estimate 

The limit and ultimate base resistance are related to each other through the factor cb: 

 

b,ult b bLq c q=       (3.10) 

 

As stated in a previous section, the most widely used criterion for the selection of the 

ultimate base resistance is the 0.1B settlement criterion.  Table 3.1 presents the values of cb 

recommended by Salgado (2008) and established by considering the 10% of B criterion. We 

can see that, in the most recently proposed methods, cb is a decreasing function of the 

relative density. In addition, cb for displacement piles is substantially larger than that for 

drilled shafts and CFA piles, reflecting the fact that base resistance is mobilized at a much 

higher rate in the case of displacement piles. 
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Experimental results and analytical solutions have shown that the limit base 

resistance qbL is approximately equal to the cone penetration resistance qc (Lee and 

Salgado 1999, Salgado 2008). Therefore, the ultimate base resistance qb,ult may be 

calculated in the absence of CPT data if we are able to obtain an estimate of the cone 

penetration resistance, and thus of the qbL, using soil properties as input. The cone 

penetration resistance is a function of the relative density DR and lateral effective stress σ′h.  

According to Salgado and Prezzi (2007), qbL may be calculated using  

 

( )
R0.841-0.0047

h
bL A c c R

A

1.64 exp 0.1041 0.0264 - 0.0002
D

q p D
p
σφ φ

⎛ ⎞′
⎡ ⎤= + ⎜ ⎟⎣ ⎦

⎝ ⎠
  (3.11) 

 

where φc is the critical friction angle expressed in degrees, DR is the relative density in 

percentage, and pA is a reference stress (100kPa=0.1MPa~1tsf).   

 

 

Table 3.1. Summary of recommended cb values for calculating unit base resistance of 
different pile types (Salgado, 2008) 

Pile Type cb Reference 

Displacement Piles and H-
Piles 

0.35-0.5 

0.4 

R1.02-0.0051D (%)  

Chow (1997)* 

Randolph (2003) 

Foye et al. (2006)* 

Nondisplacement Piles 
(drilled shafts) and CFA 

Piles  
[ ]R0.23-exp -0.0066D (%)  Salgado (2004,2006)  

* Pile load tests 
 Finite Element Analysis 
Conservatively assumed to have the same resistance as drilled shafts 

 

 

Finally, it is customary to limit the ultimate unit base resistance of drilled shafts to a 

value of 5MPa. This is done in order to account for any limitations that the design method 

may have (this does not apply to the equation in Table 3.1) and to provide additional safety 

margin against insufficient base clean up before pouring of the concrete.  DRIVEN caps also 

the base capacity of displacement piles using the limit values suggested by Meyerhof 

(1976). This limiting values varies from 0.6MPa for φp=30o to 35MPa for φp=44o.  
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Figure 3.3 compares the qb,ult values obtained from the methods by Fleming et al. 

(1992), Randolph (2003), Salgado (2006a), and the FHWA recommended method used in 

DRIVEN. The qbL used in the calculations was calculated using eq. (3.11). The peak friction 

angle used in the FHWA method was calculated for triaxial compression conditions using 

the Bolton (1986) correlation with mean effective stress obtained based on the in situ (pre-

installation) lateral effective stress. We see that, for the given example, the Fleming et al. 

(1992) method produces the largest qb,ult values. The FHWA approach yields values that lie 

between the Randolph (2003) and Salgado (2006a) predictions. It should be noted that the 

qb,ult values of the FHWA approach were controlled by the limiting values of Meyerhof 

(1976).  
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Figure 3.3. Comparison of ultimate base resistance values for displacement piles in sand 

from different soil-property-based methods.  
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3.3 Property-based methods for unit shaft resistance of nondisplacement piles in 
sand  

 

In frictional soils, the unit limit shaft resistance is the shear strength at the pile-soil interface 

due to friction. This shear stress is expressed as  

 

sL h tanq = σ δ′         (3.12) 

 

where σ′h is the effective normal stress acting on the shaft wall and δ  is the friction angle 

mobilized along the pile soil interface. The stress σ′h is, for convenience, expressed as the 

product of the initial (geostatic) vertical stress σ′v0 and a coefficient K (the operative value of 

the lateral effective stress coefficient). Consequently, Eq. (3.12) is further expanded to  

 

sL v0 tanq = Kσ δ′         (3.13) 

 

This method is often called the β-method because the product Ktanδ  is usually replaced in 

eq. (3.13) by the Greek letter β. Several researchers have proposed values or formulas for 

the parameters K and δ, based mostly on back-calculation from pile load test data. Recent 

numerical studies (Loukidis, 2006; Loukidis and Salgado, 2008) showed that K depends on 

the relative density of the sand and the level of initial effect stresses. These two variables 

control the sand dilatancy. The more dilative the sand is (i.e., the lower the confining 

stresses and higher the relative density), the more the sand around the pile shaft tends to 

dilate. This dilation is partly constrained by the soil lying further away from the pile shaft, 

leading to the buildup of lateral effective stress and large K values. The opposite is true for 

low relative density and high confining stresses, in which case there is little to no dilatancy.  
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3.3.1 Shaft resistance in sands according to Reese et al. (1976)  

Reese et al. (1976) performed a series of load test on instrumented drilled shafts installed 

predominantly in sandy soils. Because the surface of a drilled shaft is very rough, they 

proposed that δ  should be set equal to the internal soil friction angle of the soil φ . This is the 

peak soil friction angle as measured in direct shear or triaxial compression tests, or 

estimated from SPT data. The coefficient K takes the value of 0.7 for drilled shaft 

penetration Lp in sand less than 8m, 0.6 for Lp between 8m and 12m, and 0.5 for Lp greater 

than 12m. The Reese et al. (1976) recommendations indirectly recognize the fact that, as 

the penetration depth and, consequently, the confining stresses increases, the lateral 

effective pressure coefficient K decreases.   

 

3.3.2 Shaft resistance in sands according to Stas and Kulhawy (1984)  

Stas and Kulhawy (1984) examined the data from a large number of pile load tests and 

observed that K decreases with depth z.  Stas and Kulhawy (1984) attribute any variation of 

the value of K with depth to a presumed variance of the overconsolidation ratio OCR with 

depth. They proposed that K can be taken equal to the coefficient of lateral earth pressure at 

rest K0. The K0 is meant to be estimated from OCR and φ  using the equation 

 
sin

0 (1 sin )K = OCR φφ−        (3.14) 

 

In the method, the OCR is estimated from SPT data and δ  is assumed equal to the internal 

(peak) soil friction angle of the soil φ  as estimated from SPT data with an upper limit of 40o.  

 

3.3.3 Shaft resistance in sands according to O’Neill and Reese (1999)  

This method is recommended by FHWA and is used in the commercial software SHAFT. 

O’Neill and Reese (1999) generally adopt the work of Stas and Kulhawy (1984), with the 

difference that φ is recommended to be taken as the critical state friction angle φc because of 

the large shear strain developing inside the shear band surrounding the pile shaft at limit 

resistance conditions. O’Neill and Reese (1999) suggest the use of the Stas and Kulhawy 

(1984) method if knowledge of K0 is available. If K0 cannot be estimated reliably, they 

recommend using the equations for β established by O’Neill and Hassan (1994):  
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0.51.5 - 0.245zβ =         (3.15) 

for sands with NSPT≥15, 

 

( )0.5SPT 1.5 - 0.245
15

N zβ =        (3.16) 

for sands with NSPT<15 and 

 
0.752.0 - 0.15zβ =         (3.17) 

 

for gravelly sands or gravels. The depth z from the ground surface to the point on the shaft 

where qsL is to be calculated must be in meters; β is not allowed to take values smaller than 

0.25. In addition, β is not allowed to take values larger than 1.2 in the case of sands. For 

gravelly sands or gravels, the upper limit is increased to 1.8.  

For normally consolidated (NC) sands, eqs. (3.15) and (3.16) predict β  values that 

are substantially higher than those predicted using the methods by Reese et al. (1976) and 

Stas and Kulhawy (1984). The K value back-calculated using eqs. (3.15) and (3.16) 

(K=β /tanδ) is much larger than the K0 of an NC sand (which is usually in the 0.4 to 0.5 

range) and even larger than K values that are suitable for displacement piles. Eqs. (3.15) 

and (3.16) are valid mostly for overconsolidated sands with K0 roughly equal to 0.8. As 

stated by O’Neill and Hassan (1994), the data used for developing eqs. (3.15) and (3.16) 

comes from pile load tests in the overconsolidated sand deposits of the Gulf Coast region.   

 

3.3.4 Shaft resistance in sands according to Loukidis and Salgado (2008)  

Loukidis and Salgado (2008) used finite element analysis coupled with advanced 

constitutive modeling in order to investigate the mechanics involved in the development of 

limit shaft resistance of nondisplacement piles in sand. The results of the finite element 

simulations showed that δ is in the 0.95φc to 1.0φc range (φc is the critical state friction angle 

under triaxial compression conditions). Based on the finite element analysis results, they 

proposed the following equation for the lateral pressure coefficient: 

 

0 v0R
1

A0

exp 1.3 0.2 ln
100%exp 0.2 - 0.4

K DK C
pK

σ⎡ ⎤⎛ ⎞′⎛ ⎞
= − ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎡ ⎤ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎣ ⎦

       (3.18) 
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where DR is the sand relative density (in percentage), pA is a reference stress (100kPa). Eq. 

(3.18) captures effectively the dependence of shaft resistance on relative density and 

effective overburden stress. The coefficient C1 takes the values 0.71 and 0.63 for angular 

and rounded sands, respectively. The finite element methodology used was validated 

against centrifuge data (Fioravante 2002, Colombi 2005). In the case of a normally 

consolidated sand (the most usual case), eq. (3.18) predicts K to be equal to or slightly less 

than K0 for a loose sand (DR≤45%) and in the 1.5K0 to 2.7K0 range for very dense sand 

(DR=90%). The predictions of (eq. 3.18) are in general agreement with the range obtained 

using Reese et al. (1976). 

Figure 3.4 compares β  values yielded by the methods of Stas and Kulhawy (1984), 

O’Neill and Reese (1999), and Loukidis and Salgado (2008). The interface friction angle δ  is 

assumed to be equal φc for the Loukidis and Salgado (2008) method and to φp for the Stas 

and Kulhawy (1984) method. The peak friction angle φp is calculated for triaxial compression 

conditions using the correlation by Bolton (1986) using mean effective confining stress 

obtained based on the in situ (pre-installation) lateral effective stress. Eq. (3.18) yields K 

values that lie between the two extremes: the conservative predictions of the Stas and 

Kulhawy (1984) method (K=K0) and the unconservative predictions by eqs. (3.15) and 

(3.16). 
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Figure 3.4. Comparison of values of β  from different soil-property-based methods for sands. 
  

3.4 Property-based methods for unit shaft resistance of displacement and partial-
displacement piles in sand  

 

The unit shaft resistance of displacement piles (steel pipe piles, precast concrete piles) and 

partial displacement piles (H-piles, CFA) is calculated using the same basic formula (eq. 

3.13) used for nondisplacement piles (i.e., the β-method). Displacement and partial 

displacement piles (with the exception of CFA) have generally smoother finished surfaces 

than drilled shafts, so δ  is slightly smaller (especially for steel piles) than that used for drilled 

shafts. The recommended values of δ (Salgado, 2008) are shown in Table 3.2.   
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Table 3.2.  Values of δ for different pile types 
 

Pile Type δ 

Steel 0.85φc 

Precast concrete 0.95φc 

 CFA φc 

 

 

The values of K vary depending on the pile installation method. Based on Fleming et al. 

(1992), K can be calculated using 

 

q,ult0.02K N=          (3.19) 

 

where Nq,ult is calculated using eq. (3.14) at the corresponding point along the pile shaft.  

Foye et al. (2006) established a correlation between qb,ult and qsL: 

 

[ ]sL b,ult R bL0.02 tan 0.02 tan 1.02 - 0.0051q q D qδ δ= =       (3.20) 

 

where qbL can be calculated from eq. (3.11) and DR is in percent. Eq. (3.20) results in K 

values that range from K0 for very loose sand at high confining stresses to 5K0 for dense 

sand at low confining stresses. These values are generally 1.5 to 2.5 times greater than the 

corresponding K values for drilled shafts predicted by eq. (3.18).  

 The program DRIVEN uses the method proposed by Nordlund (1979). Nordlund 

(1979) provides charts for the determination of the ratio δ /φ  as a function of the pile type 

and the volume of displaced soil, with φ  presumably being the peak friction angle estimated 

from SPT data (Peck, Hanson and Thornburn, 1974).  In addition, sinδ is used instead of 

tanδ  in eq. (3.13), δ decreasing with decreasing volume of displaced soil. The K values 

proposed by Nordlund (1979) range from 0.7 to 4.3 (roughly 1.6K0  to 9.6K0  for NC sand) 

depending on the φ and the volume of displaced soil. Recommended K values for CFA piles 

lie in the 0.9 to 1.0 range (Salgado 2008). Finally, for H-piles, K can be taken as 75% of the 

value of K corresponding to a full displacement pile.  
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3.5 Property-based methods for unit base resistance of piles in clay  

 

The limit base resistance can be expressed using the bearing capacity equation for shallow 

foundations in clay:  

bL u c c5.14q s d s=          (3.21) 

  

where su is the undrained shear strength, dc is the depth factor and sc is the shape factor. 

Because the embedment ratio (penetration depth over pile width) in the case of piles is very 

high and because the cross section of the piles is symmetric with respect to both axis, the 

depth and shape factors take constant values and thus can be lumped inside a combined 

bearing capacity factor Nc: 

 

bL c uq N s=           (3.22) 

 

The most common value used for Nc is 9. This is the Nc value for displacement piles 

considered in the program DRIVEN. Recent research employing advanced analysis 

methods (large strain finite element analysis, limit analysis, rigorous method of 

characteristics) reveals that the exact Nc value lies in the 10 to 12.5 range (Hu et al., 1999; 

Yu et al., 2000; Martin, 2001; Salgado et al., 2004).  For piles in clayey soil, the ultimate 

base resistance based on the 10% of B criterion is only slightly smaller than the limit base 

resistance for both displacement and nondisplacement piles (Table 3.3). In some cases, a 

pile in clay could reach qbL in less than 0.1B settlement. This is because the base resistance 

in clays increases with pile settlement at a higher rate than in sands. 

 

 
Table 3.3. Summary of recommended design equations for calculating unit base resistance 

of different pile types (Salgado, 2008) 
 

Pile Type qb,ult Reference 

Nondisplacement piles (drilled 
shafts) and 
CFA piles 

9.6su 
Hu and Randolph (2002) 

Salgado (2006a) 

Displacement piles 
(pipe piles and H-piles)* 

10su Salgado (2006a) 

* Use the gross cross-sectional area of the base in the calculation of the total base resistance for soft and stiff 
clays 
 



28 

 

 

 

O’Neill and Reese (1999) also consider Nc=9 for drilled shafts, but only if su≥96kPa, which 

usually implies overconsolidated clays. For smaller undrained shear strength values, they 

specify Nc=8 and 6 for su roughly equal to 50kPa and 25kPa, respectively. The departure 

from Nc=9 for normally consolidated (NC) clays is most likely due to the use of an ultimate 

base resistance criterion that is based on a settlement less than 10% of B and closer to 5% 

of B (Salgado, 2008).  

 

3.6 Property-based methods for unit shaft resistance of piles in clay  

 

The shaft capacity in clays is more important than in sands because the ratio of base 

resistance to shaft resistance is less for clays than for sands. The unit limit shaft resistance 

in clays is expressed as the product of the undrained shear strength su and a multiplication 

factor α (for this reason, this method is known as the α-method): 

 

sL uq sα=           (3.23) 

 

Research discovered early on that the parameter α is also a decreasing function of the su. In 

essence, qsL is a nonlinear function of su. O’Neill and Reese (1999) proposed the following 

set of equations: 

 

( )
u A

u A u A

u A

0.55                                     for           / 1.5
0.55 0.1 / 1.5         for  1.5 / 2.5
0.45                                      for  2.5 /

s p
s p s p

s p

α
α
α

= ≤

= − − < <

= ≤

      (3.24) 

 

Eq. (3.24) constitute the FHWA recommendations for drilled shafts. For displacement piles, 

FHWA recommendations adopt the method proposed by Tomlinson (1980). According to 

Tomlinson (1980), α depends on su, the ratio of the pile penetration depth to the pile width, 

and the morphology of the soil profile (e.g., whether the main clay layer is overlain or not by 

a superficial layer of sand or soft clay). The method is given in the forms of charts or tables.    
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Table 3.4. Summary of recommended α values for calculating limit shaft resistance of 
different pile types (Salgado, 2008) 

 
Pile Type α Reference 

Nondisplacement 
piles (drilled shafts) 

and 
CFA piles 

0.4 1 0.12ln u

A

s
p

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦ * 

used for 3 5OCR≤ ≤  

Salgado (2006a) 

Displacement piles 
(pipe piles and H-

piles)  

0.5 0.5

0.5 0.25

, 1
' ' '

, 1
' ' '

u u u

v v vNC

u u u

v v vNC

s s sfor

s s sfor

σ σ σ
α

σ σ σ

−

−

⎧⎛ ⎞ ⎛ ⎞
⎪ ≤⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠

= ⎨
⎛ ⎞ ⎛ ⎞⎪

>⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎩  

Randolph and Murphy 

(1985), 

API (1993) 

 

* pA = 100kPa=0.1MPa~1tsf 
 Conservative for over-consolidation ratio OCR<3 
In soft clays, the outside perimeter of an H-pile is used to calculate the total shaft capacity.  In stiff clays, plug 

detachment could occur (Tomlinson 1987) so the external surface area associated with the flanges is only used 
to calculate the total shaft capacity. 
 

 

Values for α recommended by Salgado (2008) are shown in Table 3.4. The equation 

for drilled shafts in Table 3.4 (Salgado, 2006a) yields values that are always conservative 

compared to those yielded by the method of O’Neill and Reese (1999). This is because the 

equation by Salgado (2006a) was developed based on analytical consideration of a slightly 

to moderately overconsolidated clay. According to the equation by Randolph and Murphy 

(1985), which is also adopted by the American Petroleum Institute (API, 1993), α  is a 

decreasing function of the overconsolidation ratio (OCR). The parameter α  is equal to 1.0 

as long as the clay is normally consolidated (NC). This is in contrast with predictions of the 

Tomlinson (1980) method, in which case α  decreases with increasing su independently of 

the OCR. The Tomlinson (1980) method generally yields smaller values for α  than the 

Randolph and Murphy (1985) equation, especially in the case of large effective confinement 

(large depths). 
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3.7 Methods based on in situ testing  

3.7.1 CPT-based methods 

Methods based on in situ testing (CPT or SPT) rely on direct correlations between in situ 

test data performed prior to pile installation and pile capacity measured in pile load tests. 

There are strong similarities between the mechanics of the CPT and that of axial pile 

loading. Hence, CPT data can be effectively used to directly estimate qb,ult and qsL. Cone 

penetration resistance qc can be considered to be roughly equal to the limit base resistance 

of displacement piles (Salgado 2008). The cone penetrometer can be seen as a small-scale 

model of a jacked pile. The main difference between the cone penetrometer and a pile with 

a larger base diameter is the size of the zone of soil influencing the base capacity.  The 

general forms of the equations for the estimation of qb,ult and qsL using CPT results are: 

 

b,ult b cq c q=          (3.25) 

and 

  sL s cq c q=                      (3.26) 

 

where cb and cs are constants that depend on the soil type and pile type. The qc values used 

in eqs. (3.25) and (3.26) correspond to the depths for which calculations are done. For the 

base resistance, qc is calculated by averaging the representative cone resistance values 

over a distance of 1.5B below the pile base and 1B above the pile base, as shown in Figure 

3.5. The soil profiles needs to be divided into subayers with similar soil properties and CPT 

values. For the calculation of the unit resistances, it is preferable to use the worst applicable 

CPT log as a conservative way to account for the spatial variability exhibited by sands. 
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Figure 3.5. Typical layering scheme based on qc values along the pile shaft and 

recommended averaging of qc values in the bearing layer to find qbL. 
 

 

The multiplier cb can be calculated using the same equations used in the property-

based methods (e.g. Table 3.1). It generally depends on the pile type and the soil 

properties, particularly the relative density. Table 3.1 shows the most up-to-date values of cb 

for sand.  The simplest approach is to use the constant vale of 0.4 proposed by Randolph 

(2003), although Salgado (2006a,b) found that cb decreases with increasing relative density.   

CPT correlations for the shaft resistance are relatively scarce, especially for drilled 

shafts.  The methods shown in Table 3.5 are based on research done by Aoki and Velloso 

(1975), Lopes and Laprovitera (1988), and Lee et al. (2003) for displacement piles.  Aoki et 

al. (1978) also present numbers that can be used for the design of drilled shafts.  There are 

no results in the literature for CFA piles yet. 

Table 3.6 shows the cb values for clayey soils for the calculation of ultimate base 

resistance based on the 10% of B criterion. The values proposed by Price and Wardle 

(1982), which are established based on pile load tests in stiff London clay, are considerably 

smaller than the state-of-the art range of 0.9-1.0.  This is most likely because of the very 

small residual strength of London clay (Maksimovic, 1989). Table 3.6 illustrates the fact that, 

although state-of-art values are the most reliable, there are exceptions that can render them 

unconservative.   Finally, the cs values proposed for piles in clay are shown in Table 3.7.  
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Table 3.5. Summary of cs values for calculating limit shaft resistance of different pile types 
Pile Type cs Reference 

Displacement piles 

0.004 for clean sand
0.0057 for silty sand
0.0069 for silty sand with clay
0.0080 for clayey sand with silt
0.0086 for clayey sand

sc

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩  

Aoki and Velloso (1975) 

* 

Nondisplacement 

piles 

0.0027 for clean sand
0.0037 for silty sand
0.0046 for silty sand with clay
0.0054 for clayey sand with silt
0.0058 for clayey sand

sc

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩  

Lopes and Laprovitera 

(1988) 

Open-ended pipe 

piles 

0.0015 0.003  for IFR 0.60
0.0015 0.004  for 0.6<IFR 1sc

− ≤⎧
= ⎨ − ≤⎩  

Lee et al. (2003) 

Closed-ended pipe 

pile 

R

R

R

0.004 0.006  for D 50%
0.004 0.007  for 50<D 70%
0.004 0.009  for 50<D 90%

sc
− ≤⎧

⎪= − ≤⎨
⎪ − ≤⎩  

Lee et al. (2003) 

*Aoki et al. (1978) recommend that the cs-values be multiplied by 0.7 for Franki piles and by 0.5 for drilled shafts 
 

 

 

Table 3.3.6. Summary of cb values for calculating ultimate base resistance of different pile 
types 
Pile Type cb Reference 

Displacement piles 0.9 – 1.0* State of the art 

Driven piles 0.35† Price and Wardle (1982) 

Jacked piles 0.3† Price and Wardle (1982) 

*Applicable to soft and lightly OC clays 
† Applicable to stiff OC clays 
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Table 3.7. Summary of cs values for calculating limit shaft resistance of different pile types 
Pile Type cs Reference 

Displacement piles 

0.017 for pure clay
0.011 for silty clay
0.0086 for silty clay with sand
0.0080 for sandy clay with silt
0.0069 for sandy clay

sc

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩  

Aoki and Velloso (1975) 

* 

Nondisplacement piles 

0.012 for pure clay
0.011 for silty clay
0.010 for silty clay with sand
0.0087 for sandy clay with silt
0.0077 for sandy clay

sc

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩  

Lopes and Laprovitera 

(1988) 

*Aoki et al. (1978) recommend that the cs-values be multiplied by 0.7 for Franki piles and by 0.5 for drilled shafts 

 

3.7.2 Limit shaft resistance method of displacement piles in sand by Jardine et al. (1998) 

Jardine et al. (1998) developed a method for the calculation of qsL for displacement 

piles in sand based on data from an extensive experimental program of instrumented field 

pile load tests. This method is called the Imperial College (IC) method and is CPT-based. 

The unit limit shaft resistance is given by   

 
0.12 0.38

c v0
sL hd

A

tan
45
q Bq

p L z
σ σ δ

⎡ ⎤⎛ ⎞′ ⎛ ⎞ ′⎢ ⎥= + Δ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
      (3.27) 

 

where L is the pile length below the ground surface, and z is the depth from the ground 

surface. The first term inside the brackets represents the horizontal effective stress acting on 

the shaft at the end of the installation of the pile. The post-installation horizontal effective 

stress change Δσ′hd is calculated using the following equation: 

 

hd
4G t

B
σ Δ′Δ =         (3.28) 

where Δt is the change in shear band thickness during pile loading (taken equal to 0.02mm) 

and G is the operational value of the shear modulus of the soil around the pile shaft. G is 

given by 
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c
2

6c c

A v0A v0

0.0203 0.00125 1.216 10

qG
q q

pp σσ
−

=
⎡ ⎤

+ − ⋅⎢ ⎥′′⎢ ⎥⎣ ⎦

     (3.29) 

 

The friction angle δ  is the constant-volume (critical-state) friction angle mobilized along the 

shaft and can be estimated using Table 3.2. Eq. (3.27) is based on the mechanics involved 

in the installation of displacement piles. 

 

3.7.3 Limit shaft resistance method of displacement piles in sand by Randolph (2003) 

Randolph (2003) proposed a correlation between the lateral pressure coefficient K to 

be used in eq. (3.13) and the cone penetration resistance qc for displacement piles in sand: 

 

( )min max min exp 0.05 L zK K K K
B
−⎡ ⎤= + − −⎢ ⎥⎣ ⎦

      (3.30) 

 

where Kmax  is taken as 1% to 2% of qc/σ′v0 (1.5% for practical purposes), L is the pile length 

below the ground surface, and z is the depth from the ground surface. Kmin is the minimum 

possible K, which is encountered near the ground surface. Kmin takes values between 0.2 

and 0.4 (0.3 for practical purposes). Kmax is the K value encountered close to the pile. Eq. 

(3.30) is in accordance with the mechanics involved in the installation of displacement piles. 

Driven and jacked piles are installed under action of multiple strokes, which cause several 

cycles of soil unloading and reloading. These cycles lead to the loss of effective confinement 

around the pile and consequently a reduction of limit shaft resistance. This phenomenon is 

called ‘friction fatigue’. The upper part of the soil (close to the ground surface) experiences 

the most unloading-reloading cycles; accordingly, Kmin is observed at shallow depths. 

  

3.7.4 Limit shaft resistance method of displacement piles in sand by Lehane et al. (2005) 

Lehane et al. (2005) combined experimental results from pile load tests in the field and in 

the centrifuge in order to develop a CPT-based method for the calculation of qsL for 

displacement piles in sand. This method is called the University of Western Australia (UWA) 

method and is similar to the IC method. The unit limit shaft resistance is given by   
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( )
c

sL hd
0.03 tan

max / , 2

qq
L z B

σ δ
⎡ ⎤
⎢ ⎥′= + Δ
⎢ ⎥⎡ ⎤−⎣ ⎦⎣ ⎦

      (3.31) 

 

where L is the pile length below the ground surface, and z is the depth from the ground 

surface. As in the IC method, the first term inside the brackets represents the horizontal 

effective stress acting on the shaft at the end of the installation of the pile. The post-

installation change Δσ′hd in the horizontal effective stress is again calculated using eq. 

(3.28). The change in shear band thickness change Δt is taken to be equal to 0.02mm. The 

operational value of the shear modulus of the soil around the pile shaft is given by 

 

c
0.75

c

A v0

185 qG
q

p σ

=
⎛ ⎞
⎜ ⎟⎜ ⎟′⎝ ⎠

       (3.32) 

 

The friction angle δ  is the constant-volume (critical-state) friction angle mobilized along the 

shaft, and can be estimated using Table 3.2. 
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Figure 3.6. Comparison of average β data from tests on jacked piles at the Labenne test site 
(Lehane et al. 1993) with predictions from several methods.  

 
 
 

Basu et al. (2008) found that the IC method, the UWA method, the method by Randolph 

(2003), and the method by Salgado (2006a) yield predictions that are very close to each 

other and in close agreement with observed experimental data for both driven and jacked 

piles (Figure 3.6). This increases the confidence in the newly developed methods that 

attempt to be in accordance with the physics and mechanics of the pile resistance 

development.  

 

3.7.5 SPT-based methods 

While the SPT has no resemblance to pile loading, the SPT blow counts are affected by the 

same factors as cone penetration resistance qc. A relatively small number of SPT-based 

methods have been developed (e.g. Aoki and Velloso, 1975; Meyerhof, 1976,1983; Lopes 

and Laprovitera, 1988; Reese and O’Neill 1989). Similarly to the equations of the CPT-
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based methods, the unit base and shaft resistances are expressed as linear functions of the 

SPT blow count NSPT: 

 

b,ult b SPT Aq n N p=          (3.33) 

and 

sL s SPT Aq n N p=                        (3.34) 

 

where nb and ns are parameters that depend on the soil type and pile type. O’Neill and 

Reese (1999) propose an SPT-based method for the determination of the unit ultimate base 

resistance of drilled shafts. According to O’Neill and Reese (1999), nb is equal to 0.58.  

SPT-based methods are less reliable than CPT-based methods and soil-property-

based methods, especially for clayey soils. Therefore, the use of SPT-based methods is not 

recommended. In the absence of CPT data and in case the designer does not want to use a 

property-based method, it may be more reliable to convert SPT blow counts to cone 

penetration resistance and use a CPT-based method. This is possible because qc is well 

correlated to N60 as both tests measure the resistance to penetration in the soil. The 

difference lies in that cone penetration is quasi-static, while the penetration of the SPT split-

spoon occurs under dynamic conditions. Although such correlation should be used with 

caution, the combined error of the CPT-based method and that introduced by the SPT to 

CPT transformation may still be smaller than the error of SPT-based methods.  The 

correlation by Robertson et al. (1983) gives the ratio qc/(pAN60) as a function of the mean 

particle size D50. According to the Robertson et al. (1983) correlation, the ratio qc/(pAN60) 

varies from approximately 1 for clays to as high as 6 for coarse sands.  

 

3.8 Concluding remarks 

 

The methods recommended by the FHWA guidelines and used in pile design software 

generally yield conservative predictions compared to those by more recent and improved 

methods. A notable exception is the shaft resistance of drilled shafts, in which case the unit 

shaft resistance produced by the O’Neill and Reese (1999) equations is excessively large. In 

all other cases, the major benefit of using more recently proposed equations is not only the 

potential cost savings but also the enhanced reliability of the pile capacity prediction. This is 
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because the recently proposed methods were developed based on the underlying physics, 

combining results from field tests, model tests, and analysis. The FHWA-recommended 

methods have focused almost exclusively on matching the prediction with the observed pile 

load test data, with little attention to the true physics and mechanics involved in the 

development of the pile resistances. In the case of piles in sands, most of the methods 

currently used in practice and implemented in pile design software fail to recognize two 

important facts: 1) the friction angle δ  used in shaft resistance calculations is closely related 

to the critical-state friction angle φc and not to the peak friction angle φp and 2) the peak 

friction angle considered in the base resistance calculations is not the φp corresponding to 

the in situ soil state (i.e., that prior to pile installation) estimated from in situ tests but is a 

function of the soil state operative in the base failure mechanism at limit state conditions. 

Finally, although the superiority of methods that are based on CPT data over those based 

on SPT data has been recognized in the last two decades, CPT-based methods are absent 

from design software. CPTs should be performed in the field investigation of projects 

involving deep foundations whenever possible. 
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CHAPTER 4. ASSESSMENT OF DYNAMIC PILE ANALYSIS METHODS 
 

4.1 Background 

 

The idea of using the observed pile response during driving for estimating the static pile 

capacity has been in existence for several decades. Given the cost and effort required for 

static pile load testing, the use of dynamic pile analysis is often attractive for verifying pile 

capacity. The observed pile response during driving can be interpreted using either 

empirical closed-form equations or wave equation analysis.   

The empirical equations are based on a simple energy concept: the energy 

transmitted to the pile head by the hammer is equal to the work done by the total pile 

capacity for the observed pile head displacement (pile set) plus the energy dissipated inside 

the soil and the pile after a single blow. This can be written mathematically as: 

 

       ( )h tot CW h R s sη = +        (4.1) 

 

where Wh is the hammer weight, h is the hammer drop height, η is the efficiency of the 

driving system, Rtot is the total pile capacity, s is the observed pile set, and sc is an empirical 

constant (called the ‘lost’ set) expressing the energy dissipated in the pile and the soil. Eq. 

(4.1) has been the basis of many empirical dynamic equations. The equation is solved for 

Rtot with the basic variable being the pile set s. The Engineering News (ENR) formula, which 

has been in use for more than a century, assumes a constant sc equal to 0.1in. Another 

popular equation in the United States is Gates’ formula: 

 

      ( )tot h27 1 logR W h s= +        

(4.2) 

 

where Wh and Rtot are in kips, h in feet, and s in inches.  

The widely used dynamic formulas have been criticized in many publications. 

Unsatisfactory performance predicting the pile capacity was documented in the Manual for 

Design and Construction of Driven Pile Foundations (Hannigan et al. 1996). Although 
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empirical dynamic formulas are very easy to use, their predictions are characterized by 

considerable scatter and, in some case, bias (McVay et al. 2000). Consideration of empirical 

formulas nowadays offer little benefit to deep foundation design since the safety factor 

recommended when they are used exceeds the values of F.S. typically used when 

designing based on static methods (Salgado 2008). New attempts to improve the pile driving 

formulas (Paikowsky and Chernauskas 1992, Paikowsky et al. 1994) were shown to still 

suffer from drawbacks. This results from the complexities of the problem, which is in 

essence a highly nonlinear wave propagation problem involving complex physics and 

mechanics. Therefore, any potential advancements in the field of pile driving analysis lie in 

the use of the wave equation. 

The first method employed in wave equation analysis for pile dynamics was the 

method of characteristics (De Josselin De Jong 1956). The method of characteristics is a 

semi-analytical method, in which the pile is treated as an undiscretized continuum. Early 

application of the method of characteristics in pile driving analysis assumed that all soil 

reactions are concentrated at the pile tip. Reaction along the shaft was later introduced as a 

fixed analytical function independent of displacement or velocity. These rather rough 

approximations were necessary in order to allow solution of the problem by integral 

transforms and derivation of the solution in the form of Fourier series. The software 

TNOWAVE developed by the research organization TNO in Netherlands uses the method of 

characteristics. The limitation of the method of characteristics in accounting for the 

continuous variation of shaft resistance with velocity and displacement is circumvented in 

this program by assuming that the shaft resistance is concentrated at given points along the 

pile shaft. These points are considered as internal boundaries to the problem. The method 

of characteristics provides the solution of the wave equation inside each pile segment 

defined by consecutive internal boundaries.  

There are also a number of methods for pile dynamic analysis that are based on 

semi-analytical approaches other than the method of characteristics:  (1) solutions for piles 

of semi-infinite length (Parola 1970, Van Koten et al. 1980, Warrington 1987, Deeks 1992, 

Parker et al. 1996), (2) solutions using the method of images (Glanville et al. 1938, Hansen 

and Denver 1980, Uto et al. 1985), (3) solutions by Fourier series (Wang 1988, Espinoza 

1991), (4) solutions by Laplace transforms (Zhou and Liang 1996). The main disadvantage 

of the semi-analytical methods, including the method of characteristics, is that they involve 

complex mathematics that hinder the implementation of realistic soil reaction models.   
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  A major breakthrough in pile driving analysis was the work done by Smith in the late 

1950s. Smith (1960) developed an entirely numerical method to analyze pile driving without 

the use of complex mathematics. The pile is discretized into a series of lumped masses 

connected with linear springs (Figure 4.1). The global system of equations of motion 

(dynamic equilibrium equations) was solved in the time domain by dividing the analysis time 

into small time increments. The numerical solution schemes most often used are the central 

difference methods and the Newmark β-method. Smith’s approach is often called the 1-

dimensional approach since the effect of the surrounding soil mass is accounted for through 

reaction models consisting of springs, dashpots and sliders connected to each other in 

various combinations. Originally, the soil resistance at any point along the pile and at the 

pile tip was modeled by a linear-perfectly plastic spring-slider and a dashpot connected in 

parallel. Various researchers (Forehand and Reese, 1964, Lowery et al., 1969, Holloway et 

al. 1978, Briaud and Tucker, 1984) who studied Smith’s 1-D analysis approach concluded 

that the method has the potential to become accurate and reliable method provided that 

limitations are addressed. The popularity of the method grew considerably, and in the 

course of the following years a number of improved soil reaction models were proposed. 

The finite element method (FEM) has also been used in recent years for the 

simulation of the pile driving problem (e.g. Borja 1988, Mabsout and Tassoulas 1994, 

Mabsout et al. 1995).  FEM has the advantage that, in contrast with the 1-D approach, the 

soil around the pile is treated as a continuum instead of being represented by spring-

dashpot-slider reaction models. Among the available methods for pile driving analysis, the 

finite element method can produce the most accurate results provided that realistic and 

advanced constitutive models are used for modeling the soil and the analysis domain is 

properly discretized. In the case of large pile sets, a large strain formulation is also needed 

for the correct prediction of the development of limit base resistance. All these requirements 

result in very computationally expensive simulations, with runtimes of the order of several 

hours or days, even in the fastest computers. Therefore it is currently impossible to use FEM 

in routine pile dynamic analysis in design practice.  

This chapter presents the soil reaction models used in 1-D dynamic analysis for pile 

driving that have been proposed so far. The purpose of this chapter is to indicate the 

advantages and disadvantages of this approach and identify potential points of 

improvement. Any advancements in terms of soil reaction modeling will be achieved through 

synthesis and modification of existing models.    

 



42 

 

 

 

                    

ram vo

Lumped pile 
masses

mi

Soil reaction 
model at pile 
base

Soil reaction model 
along pile shaft

Hammer mass

Interconnecting 
pile springs

 
 

Figure 4.1. Smith’s numerical model for dynamic pile analysis: lumped mass discretization 
and soil reaction models 

 

 

4.2 Mechanisms of soil reaction mobilization along pile shaft and base 

 

Pile driving is a highly nonlinear dynamic problem. Stress waves are transmitted from the 

pile to the soil, and there are also regions where the soil “fails”. Driven piles (excluding those 

installed using vibratory hammers) penetrate the soil due to the hammer impact on the pile 

head. As a result, the motion of the pile and the cyclic loading in the soils is transient in 

nature. The soil in the immediate vicinity of the pile can store energy (elastic deformation) 

and absorb energy because of plastic and hysteretic dissipation. Plastic dissipation occurs 

in the highly strained zones adjacent to the pile in which soil undergoes post-failure plastic 

deformation. Hysteretic dissipation (hysteretic damping) originates from the nonlinear 

response of the soil even at the small or intermediate (pre-failure) strain range. The 
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hysteretic damping of soils has been extensively studied in the context of earthquake 

geotechnical engineering. It is usually expressed in the form of the damping ratio, which 

represents the percentage of the input energy that is absorbed in the soils during a full 

stress cycle. The damping ratio increases with the magnitude of the cyclic shear strain, 

ranging from 0.005% to 30%. Energy is also radiated in the far field (radiation damping). 

Research studies in the field of machine foundations have produced closed-form solutions 

for the radiation damping around pile shafts and under footings that may be used in pile 

driving analysis. 

 Figure 4.2a shows a schematic representation of the deformation and energy 

absorption around the pile shaft.  As the pile moves downward, it induces shear stress in the 

soil along its shaft. Limit shaft resistance qsL is reached with relatively small pile 

displacement. Under static conditions, the pile displacement wp required to mobilize qsL is of 

the order of 1% of the pile width B. Under dynamic conditions, wp is smaller because of the 

short wave length of the shear waves radiating outwards from the pile shaft. A thin shear 

band is formed around the pile at the moment the limit shaft resistance is reached. All plastic 

deformation happens inside that shear band. The thickness of the shear band is proportional 

to the mean particle size of the soil. If the pile roughness is high, as in the case of precast 

concrete piles and drilled shafts, then slippage occurs entirely inside the sand, while for 

smoother pile surfaces (such as those of steel piles) slippage develops also between soil 

and pile shaft wall. In the rough interface case, the shear band thickness is approximately 5-

20D50 (Uesugi et al. 1988; Oda et. al 2004) for sands and of the order of 200D50 for clays 

(Vardoulakis 2002). For the smoother pile surfaces, the shear band thickness in sands can 

be as low as 3D50 (Uesugi et al. 1990). The soil outside the shear band remains in a “pre-

failure” state and undergoes predominantly cyclic vertical shearing. The magnitude of the 

cyclic shear stress reduces hyperbolically with radial distance from the shaft.  The soil region 

closer to the pile (near field) absorbs most of the energy, with the remaining energy 

propagating to the far field (radiation damping). If the pile were perfectly rigid, only vertical 

shear waves (SV) would radiate from the pile shaft (at elevations not close to the ground 

surface or the pile base). In reality, compressive waves are also generated because the pile 

is deformable and the upper sections of the pile are set in motion earlier than the lower 

sections as the hammer pulse travels downwards. However, the effect of compressive 

waves is much less significant, and the vertical shear wave dominates the mode of 

deformation around the pile shaft. Because of the high velocity of pile motions and the large 

induced strain rates in the soil, the strength of the soil inside the plasticity zones is likely to 
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be higher than under static conditions. Therefore, the limit shaft and base capacities are 

expected to be dependent on the pile velocity (rate effect). This means that, in addition to 

hysteretic damping and radiation damping, there will be energy absorption due to viscous 

damping inside the plastic zones. 
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Figure 4.2. Energy transmission and absorption and deformation mechanism in the soil 
during pile driving: a) around the pile shaft, b) at the pile base.  
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 In the case of the pile tip, the plastic deformation is diffused in a region (Figure 4.2b) 

that extends from the pile base to roughly 1 to 2 times the pile width. The plastic mechanism 

resembles strongly the bearing capacity mechanism of footings. Assuming that the pile is 

not fabricated or fitted with a conical tip, a ‘trapped’ or ’rigid’ conical area is formed under the 

pile base. This area remains elastic and can be considered as an extension of the pile. The 

plastic deformation takes place in the fan zone that surrounds the ‘rigid’ conical area. The 

soil outside the plastic mechanism provides lateral reaction to the expansion and rotation of 

the fan zone. As shear and compressive waves propagate through the outer soil region, 

energy is lost due to hysteretic and radiation damping.  Most of the energy radiated from the 

pile base travels downwards, but a certain nonnegligible amount of energy is also 

transmitted towards the ground surface.  

  

 

4.3 Soil reaction models 

4.3.1 Smith (1960) shaft and base reaction models 

The soil reaction in Smith’s model depends on both pile displacement wpile and pile velocity 

dwpile/dt. It consists of a dashpot that is connected in parallel with a system of a linear spring 

and a plastic slider connected in series (Figure 4.3). The soil reaction in terms of stress on 

the pile shaft can be written as  

 

( )s pile sL s pilemin ,s k w q c wτ = +        (4.3) 

 

where ks is the spring stiffness coefficient, cs is the dashpot coefficient, and qsL is the unit 

limit shaft resistance. The spring stiffness is given by the following equation 

 

     sL
s

s

qk
Q

=                                    (4.4) 

 

where Qs is an input parameter called the soil ‘quake’, which has units of length. The quake 

represents the displacement at which perfect plasticity starts. If the pile displacement wpile 

exceeds the quake, then slider motion is activated and spring deformation stops. The 

dashpot coefficient is given by equation 
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s s sLc J q=          (4.5) 

 

where Js is a damping input parameter. Similarly for the base, we have soil reaction in terms 

of force expressed as   

 

( )b b pile bL b pilemin ,R K w R C w= +        (4.6) 

 

where RbL is the limit base resistance. The spring and dashpot coefficients are given by the 

following equations, respectively:   

 

bL
b

b

RK
Q

=           (4.7) 

 

b b bLC J R=           (4.8) 

 

The soil quake and damping constants proposed are not standard soil parameters. 

They are empirical constants determined from back-analyses of pile driving records and pile 

load tests.  Smith (1960) proposed the values Qs=Qb=2.5mm (0.1in), Js=0.16s/m (0.05s/ft), 

and Jb=0.492s/m (0.15s/ft). Updated empirical damping coefficients were later proposed for 

sands and clays based on laboratory impact tests (e.g., Forehand and Reese, 1964; Coyle 

and Gibson, 1970; Litkouhi and Poskitt, 1980; Liang and Sheng, 1992), and correlations with 

soil type (e.g. Likins et al., 1992; Paikowsky et al., 1994) or SPT data (e.g. Liang 2000) were 

established. Generally, the J values for clays and silts are higher than those for sands. This 

is apparently due to the higher-viscosity cohesive soils. However, the proposed J and Q 

values exhibit a large scatter, making it difficult to develop reliable correlations. Aoki and de 

Mello (1992) found that J and Q also vary not only with the soil properties and type but also 

with the level of the hammer energy.  

There are some inconsistencies of the Smith (1960) models with the mechanics of 

pile driving (described in the previous section). Due to the connectivity of the model 

components (Fig. 4.3), the dashpot is always active, providing the same amount of damping 

before and after sliding. The model does not distinguish between hysteretic, radiation and 
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viscous damping, lumping all of them into a universal viscous damping that is proportional to 

the static limit resistance. It is known that radiation damping is a function of the soil stiffness, 

not its strength. Moreover, laboratory testing has shown that the actual viscous damping in 

the plastic zone is not proportional to the static soil strength but a power function of it. These 

limitations of the original Smith (1960) model have been identified early on by researchers, 

and efforts were subsequently made to propose models that reflect reality more closely.   
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Figure 4.3. Smith’s reaction models: (a) for pile shaft and (b) for pile base.  
 

 

4.3.2 Base reaction model based on Lysmer’s analog 

Lysmer and Richart (1966) derived a closed-form solution for the motion of a circular rigid 

footing on the surface of an elastic half-space subjected to vertical transient load. Their 

solution gives the total reaction of the soil acting at the footing base as the sum of two 

components: a spring reaction (displacement-dependent) and a dashpot reaction (velocity-

dependent). The spring stiffness is the same as that of the static solution: 

 

b
4
1
GRK

ν
=

−
                              (4.9) 

 

where R is the radius of the circular area, G is the elastic soil shear modulus, and ν is the 

Poisson’s ratio of the soil. If the base area has an arbitrary shape (but is not very 

elongated), a circular area can be used to approximate the base area (the radius of the 

equivalent circular area is then used in calculations).  The dashpot coefficient is given as  
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b

3.4 3.4
1 1s

R RC V Gρ ρ
ν ν

= =
− −

      (4.10)  

 

where ρ  is the soil density and Vs is the shear wave velocity of the soil. The dashpot in 

Lysmer’s model represents the radiation damping, i.e., the energy loss due to propagation of 

shear, compressive and Rayleigh waves in the elastic half-space. Lysmer’s solution does 

not depend on the frequency of vibration. Lysmer’s analog is adequately accurate for a 

linear elastic soil and impact type loading (highly transient response). It is also accurate for 

steady-state vibration as long as the footing motion frequency is not very high.  
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Figure 4.4. Base models following Lysmer’s analogue: a) radiation dashpot always active 

and b) radiation dashpot ceases to act after onset of slippage. 
 

 

Lysmer’s analogue has been used extensively in the field of machine foundations. Because 

soils are elastic only in the small-strain range, the appropriate value for the shear modulus is 

Gmax (maximum or small-strain shear modulus) although researchers often suggest using 

degraded secant (equivalent) shear modulus values corresponding to shear stress 

amplitudes representative of the given problem in order to account for soil nonlinearity. 

However, equivalent G values are hard to determine since the shear strain amplitude varies 

with distance from the source and with time (transient loading). Moreover, the equation for 

the dashpot coefficient representing radiation damping is rigorous only when Gmax is used as 

the shear modulus (predominantly elastic deformation). 
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 Lysmer’s analog coefficients can replace Smith’s spring and dashpot coefficients (eq. 

4.7 and 4.8), as shown in figure Fig. 4.4a (Option 1), thus allowing direct association of the 

base stiffness and damping with actual soil properties (elastic parameters and soil density). 

The model shown in Fig. 4.4a was used by Simons and Randolph (1985). Researchers 

have argued that no waves are transmitted to the soil after the base plastic mechanism has 

been fully formed, and thus the plastic zone is decoupled from the rest of the soil medium. 

Based on this consideration, some have proposed placing the slider outside the spring-

dashpot system, as shown in Fig. 4.4b (Option 2). In that case, the dashpot does not 

contribute to the soil reaction after base capacity is reached. Since no tension can be 

transferred from the soil to the pile in reality, the soil reaction at the pile tip is not allowed to 

take negative values. Instead of tensile force developing at the base, a gap is formed 

between the pile and soil and the reaction there is zero (with the possible exception of a 

small tensile strength due to suction in the case of saturated clays). Positive (compressive) 

forces start developing again only when the gap closes in the course of the analysis. 

 Such models reduce significantly the empiricism of Smith’s model but still miss 

certain aspects of the response mechanisms of the soil. These are the soil nonlinearity and 

the corresponding hysteresis damping and the rate dependence of the soil strength inside 

the failure mechanism on the strain rate (viscous damping).  As a result, the models shown 

in Fig. 4.4 highly overestimate the base stiffness. Deeks and Randolph (1995) have also 

shown that the model in Fig. 4.4a overestimates the peak dynamic reaction, while that in 

Fig. 4.4b underestimates it.     

 

4.3.3 Shaft reaction model by Simons and Randolph (1985)/Randolph and Simons (1986) 

Randolph and Simons (1986) proposed a soil reaction model for the pile shaft that has input 

parameters with clear physical meaning. The model consists of two parts (Fig 4.5): 1) a 

spring and a dashpot (representing radiation damping) connected in parallel and 2) a plastic 

slider and a second dashpot (soil viscosity) connected in parallel. The two parts are in turn 

connected in series. The second part represents the shear band surrounding the pile shaft 

and the first part represents the rest of the soil, which has not reached a fully plastic state.  

The spring and dashpot constants of the first part are based on the solution by 

Novak et al. (1978). Novak et al. (1978) derived a close-form analytical solution for the soil 

reaction acting on the shaft of a vertically vibrating, rigid, infinitely long pile by assuming a 

thin soil disk. The solution is rigorous for an elastic soil and steady-state pile motion. 
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According to the Novak et al. (1978) analytical solution, the complex reaction of an elastic 

soil disk acting on the harmonically oscillating pile shaft is  

 

  ( ) [ ]s s s pile ω1 ω2 pile
o2

Gk ic w S iS w
r

τ
π

= + = +      (4.11) 

 

The terms Sω1 and Sω2 are functions of the dimensionless frequency ao=ωro/Vs, where ω is 

the angular frequency of the pile motion (Fig. 4.6).  
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Figure 4.5. Shaft reaction model according to Randolph and Simons (1986). 
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Figure 4.6. The variation of Sω1 and Sω2 with dimensionless frequency ao.  
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Simons and Randolph (1985) observed that, at high frequencies, Sω1 and Sω2 can be well 

approximated by 2.75 and 2πao, respectively. Thus, they proposed that the spring and 

radiation dashpot constants of the shaft reaction model be expressed as 

 

s
o

1.375 Gk
rπ

=         (4.12) 

s
s

Gc
V

=          (4.13) 

 

As discussed for Lysmer’s model, the correct use of equation 4.13 requires G=Gmax. The 

model part representing the shear band takes into account the rate effect by setting the 

shear strength as the sum of two terms: the static resistance and the strength gain due to 

rate effects (viscosity): 

 

( )sf sf,stat visc sL sL pile soil
n

q q m w wτ τ τ= + = + −      (4.14) 

 

where m and n are input parameters that control the viscous term. According to Randolph 

(2003), n is generally in the 0.2 to 0.5 range, while m takes values from 0.3 to 0.5 for sands 

and 2.0 to 3.0 for clays (provided that velocity is in units of m/s). As long as the sum of the 

stresses due to the linear spring and radiation dashpot do not exceed τsf,stat, the soil and pile 

move together. If τsf,stat gets exceeded, then slippage occurs and the soil on the outer 

boundary of the shear band moves differently from the pile. The strength gain due to 

viscosity is a function of the relative velocity between soil and pile. During slippage, the 

behavior is controlled by the slider and the viscosity dashpot. This is consistent with the 

mechanics of shaft resistance described in Section 4.2. The shaft reaction model by 

Randolph and Simons (1986) has gained recognition in recent years because it uses input 

parameters that have physical meaning and adheres to the true mechanics of the problem. 

One of the limitations of the model is that it does not take into account soil nonlinearity and 

hysteretic damping.  Additionally, the spring and radiation dashpot coefficients are valid for 

steady state, constant-amplitude motion. 

 Lee et al. (1988) proposed a model that is virtually identical to that by Randolph and 

Simons (1986) with the only difference being that slippage happens when the spring 
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reaction becomes larger than τsf,stat, at which point the radiation dashpot is deactivated. This 

approach is not as consistent with the mechanics of the problem and results in a 

discontinuity in the time history of the total reaction when the radiation dashpot is 

deactivated.  

 

4.3.4 Shaft reaction model of Holeyman (1985) 

Holeyman (1985) proposed the reaction model shown in Fig. 4.7. In consists of a spring, a 

viscosity dashpot and a radiation dashpot, all connected in parallel. Slippage initiates once 

the sum of reactions provided by these elements exceed the slider strength τsf. The reaction 

component due to the spring and viscosity is expressed as follows: 

 

( ) ( )pilemax
spring+visc pile

m
1

ln /
NwG J w

R R R
τ ⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

       (4.15a) 

 

assuming linear stress-strain relation and 

 

( )pilemax
s pile

m s sf

s sf

1
/ /ln

1 /

NwG J w
R R R

τ
τ τ

τ τ

⎡ ⎤= ⋅ +⎢ ⎥⎛ ⎞ ⎣ ⎦−
⎜ ⎟−⎝ ⎠

       (4.15b) 

 

assuming the nonlinear stress-strain relation of Kondner (1963). 
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Figure 4.7. Shaft reaction model by Holeyman (1985). 
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J and N are input parameters similar to the m and n used in Randolph and Simons (1986), 

and Rm is the ‘magical’ radius proposed by Randolph and Wroth (1978).  In the nonlinear 

case, the stiffness of the spring maintains its initial (maximum value) during unloading, 

introducing hysteretic damping into the formulation.   

Eq. (4.15a) is based on a closed-form solution for a soil disk loaded statically. The 

solution is singular for a disk with an infinite lateral extent. To remove the singularity, 

Randolph and Wroth (1978) considered a soil disk with a finite radius Rm, which is given by 

the following equation: 

 

m 2 (1 )R L ν= −        (4.16) 

 

where L is the pile length. Eq. (4.16) was established by matching the disk solution with 

results from 2-D axisymmetric finite element analysis. The reaction component due to 

radiation damping is expressed as 

 

rad pile
s

G w
V

τ =         (4.17) 

 

which is the same as the radiation damping used by Simons and Randolph (1985). The 

slider strength depends on the rate of loading, as in Randolph and Simons (1986): 

 

( )sf sL pile soil1
N

q J w wτ ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

        (4.18) 

 

The value of 0.2 was proposed for the parameter N. The Holeyman (1985) model differs 

from that by Randolph and Simons (1986) in two points: 1) the soil viscosity is considered 

active also before sliding, 2) the spring constant is valid only for static conditions, which 

leads to values of system’s stiffness that are too small. The reason a static solution was 

used for the stiffness was that it can easily take into account the soil nonlinearity by the 

implementation of a hyperbolic stress-strain law. Having the spring stiffness equal to the 

small-strain stiffness during unloading constitutes a rough representation of the soil 

nonlinearity and hysteresis.  
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4.3.5 Shaft and base reaction models by Nguyen et al. (1988) 

Nguyen et al. (1988) proposed the model shown in Fig. 4.8. The connectivity is the same for 

both shaft and base. It resembles that of the Holeyman (1985) model, with the difference 

that the slider is not connected in series with the spring and dashpot system; it is connected 

in series only to the spring.  

For the shaft, the spring coefficient ks and the radiation damping coefficient cs,rad are 

given by the same equations as those in the Randolph and Simons (1986) model (eqs. 4.12 

and 4.13, respectively). The other dashpot represents mainly hysteretic damping, with 

coefficient calculated using   

 

 sH s,rad
s

Gc c
V

ξ ξ= =        (4.19) 

 

where ξ is the damping ratio and τsf is equal to the static limit shaft resistance. According to 

Nguyen et al. (1988), the effect of soil viscosity can be added to the model by increasing the 

value of ξ. 
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Figure 4.8. Nguyen et al. (1988) reaction models: (a) for pile shaft and (b) for pile base.  
 

 The spring radiation dashpot coefficients for the base model are the same as in 

Lysmer’s analog (eq. 4.9 and 4.10). The coefficient for the dashpot representing hysteretic 

damping is 
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where ρp is the density of the pile material. Rbf is equal to the static limit base capacity.  

According to Nguyen et al. (1988), once the spring reaction component exceeds the 

slider strength and slippage is initiated, the radiation dashpot needs to disjoin. However, the 

disjoining of that dashpot results in abrupt decrease (discontinuity) in the reaction time 

history. Consistency with the physics of the shaft problem dictates that the slider should be 

placed in series with and outside the spring-radiation dashpot system (as in Holeyman 1985  

and Randolph and Simons 1986), not in series only with the spring. Nguyen et al. (1988) 

suggested that soil nonlinearity can be accounted for by considering a degraded (secant) 

shear modulus based on the level of strain involved in the problem instead of Gmax.  

 

4.3.6 Base model by Deeks and Randolph (1995) 

Deeks and Randolph (1995) performed finite element analysis in order to validate the base 

reaction model based on Lysmer’s analog. By matching the finite element results with 

several rheological model configurations, they found that the most accurate reaction model 

is the one shown in Fig. 4.9 (denoted as Revised A in their paper). The component 

connectivity of parts 1 and 2 resembles that of the Randolph and Simons (1986) shaft 

model. The Deeks and Randolph (1995) model contains also two masses, mo and m1, which 

can be seen a representative of the inertia of the soil mass in the failure mechanism. Mass 

m1 is connected to the system through a dashpot (part 3). The spring and dashpot 

coefficients are given by: 
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        (4.25) 

 

where α0, α1, β0, and β1 are model input parameters whose values depend on the soil’s 

Poisson’s ratio. The spring stiffness is the same as in the Lysmer’s analog (eq. 4.9)). The 

parameter β0  takes values in the 0.75 to 0.87 range, rendering C0 smaller (by no more than 

12%) than the radiation damping coefficient of Lysmer’s analog (eq. 4.10). Unlike β0, the 

parameter β1 shows a strong dependence on Poisson’s ratio, ranging from 0.3 for ν=0 to 

0.83 for ν=0.45. The finite element results showed that the masses m0 and m1 need never 

coexist. In the case of ν = 0.5 (incompressible soil, such as saturated clay), the mass m1 

vanishes while m0>0; the opposite is true for ν < 0.5. The values of α0 and α1 range from 

0.16 to 0.25.  

 Once perfectly plastic action starts, radiation damping (C0) ceases to contribute to 

the soil reaction. In contrast, the dashpot connecting mass m1 remains active even after limit 

base capacity is reached. The base capacity depends on the rate of loading. The viscous 

term of the base capacity can be expressed as  

 

( )bf,visc bf,st pile soil
n

R R m w w= −        (4.26) 

 

where Rbf,st is the static base capacity, and m and n are the soil viscosity related parameters 

used in the shaft model by Randolph and Simons (1986).  
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Figure 4.9. Base reaction model developed by Deeks and Randolph (1995).  
 

 

Deeks and Randolph (1995) found that Lysmer’s analog performs adequately in the 

case of mass impacting an elastic half-space, especially when ν<1/3. The work of Deeks 

and Randolph (1995) targeted improving the commonly used Lysmer’s analog so that it 

performs well in the case of the formation of a plastic mechanism but soil nonlinearity, 

hysteresis and embedment effects on stiffness and radiation damping (resulting from the 

fact that the tip of pile is usually at a depth many times its width, and not on the surface of a 

half-space) remained unaddressed.  

 

4.3.7 Shaft model by El Naggar and Novak (1994) 

El Naggar and Novak (1994) improved the Randolph and Simons (1986) model by 

introducing the effects of soil nonlinearity and hysteresis. They considered three distinct 

zones around the pile shaft: 1) thin shear band in contact with the shaft wall, 2) an inner 

zone where soil nonlinearity and hysteretic damping dominates, and 3) an outer zone where 

the soil behaves linearly (Fig. 4.10a). The model part corresponding to the shear band and 

the outer field (Fig. 4.10b) are the same as in the shaft resistance model of Randolph and 

Simons (1986).  

The shear stress in the inner zone follows the nonlinear stress-strain relationship of 

Kondner (1963): 
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       (4.27) 

 

where ro=R  (the pile radius), r1 is the outer radius of the inner zone. The radius r1 can be 

taken as 1.1ro. During unloading, the spring of the inner zone model part is assumed to 

behave elastically, having a constant value equal to  

 

( )
max

nl,max
o 1 o

1
ln /

Gk
r r r

=           (4.28) 

 

Unloading with the maximum spring modulus introduces some degree of hysteretic 

damping; cm is an extra damping factor which may express additional hysteretic damping 

and/or soil viscosity (no guidelines are given in El Naggar and Novak (1994) regarding its 

values). The mass of the inner zone is lumped into two point masses located at the 

boundaries of the inner zone (Fig. 4.10b).  

 The model shares all the advantages of the Randolph and Simons (1986) model and 

enhances it with soil nonlinearity and hysteretic damping. The derivation of the equations for 

the inner zone are based on the static solution of Randolph and Wroth (1978); for these 

equations to be valid for the dynamic problem of pile driving, the wavelength of the waves 

traveling radially in the soil must be much larger (more than 4 times) than the extent of the 

inner zone. As in the Randolph and Simons (1986) model, the spring and dashpot 

coefficients for the outer field are valid for a harmonic steady-state pile response. The spring 

and dashpot coefficients are set to be functions of the pile radius r0 instead of the radius r1 of 

the boundary between inner and outer fields. Since the outer-field springs and dashpots are 

acting on that boundary and not directly on the pile shaft, representation in terms of r1 would 

probably be more appropriate.  

 

 

 



59 

 

 

(Plan View)

tm

Gm

G

r0

b

(Section View)

Elasto-Plastic 
Slip Zone Weak Zone

Outer Zone

(Plan View)

tm

Gm

G

r0

b

(Plan View)

tm

Gm

G

r0

b tm

Gm

G

r0

b

(Section View)

Elasto-Plastic 
Slip Zone Weak Zone

Outer Zone

(Section View)

Elasto-Plastic 
Slip Zone Weak Zone

Outer Zone

 
(a) 

 

 

 

shear band

non-linear inner zone

linear outer field

sf ,st sLqτ =
( )N

visc sL pile 1q J w wτ = −

1m

2m

max o
nl

1 o pile sf

pile sf

G / rk
r / r /

ln
1 /

=
⎛ ⎞− τ τ
⎜ ⎟⎜ ⎟− τ τ⎝ ⎠

mc

max
l v1

o

Gk S
2 r

=
π

max
l v2

s

Gc S
2 V

=
π

 
(b) 

 

Figure 4.10. Shaft reaction model proposed by El Naggar and Novak (1994). 
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4.3.8 Shaft model by Michaelides et al. (1998) 

Michaelides et al. (1997, 1998) proposed a shaft reaction model that accounts for soil 

nonlinearity and hysteretic damping for use in the field of foundation vibrations. Their 

solution is an extension of the Novak et al. (1978) solution, which is derived by solving the 

wave equation of vertical shear waves propagating inside a thin soil disk (1-D axisymmetric 

conditions) with the pile in its center: 

 
2 2 2

2 2 2  w d w dG G dw d wG
r r t dr dr r dr dt
τ τ ρ ρ

⎛ ⎞∂ ∂ ⎛ ⎞+ = ⇒ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠
      (4.29) 

 

If the shear modulus is assumed to be constant, the solution of eq. (4.29) produces the 

spring and dashpot coefficients of Novak et al. (1978) given by eq. (4.11). Michaelides et al. 

(1998) solved eq. (4.29) assuming that the secant shear modulus degrades and the 

hysteretic damping ratio increases with cyclic shear strain following Ishibashi and Zang 

(1993). Since the cyclic shear strain decreases with radial distance from the pile wall, the 

secant shear modulus and hysteretic damping become functions of the radial distance (Fig. 

4.11).  

   The solution of the differential equation (4.29) results in the following spring 

stiffness and radiation dashpot coefficients: 

 

( )1.5
smax

s
s

0.61 / V1.8 11 0.5
2 V 1 1.2

RG Rk
R

ωω
π

Λ
−⎧ ⎫⎛ ⎞⎪ ⎪ − Λ= +⎜ ⎟⎨ ⎬⎜ ⎟ − Λ⎪ ⎪⎝ ⎠⎩ ⎭

    (4.30) 
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     (4.31) 
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Figure 4.11. Shaft reaction model proposed by Michaelides et al. (1997,1998). 
 

 

The parameter Λ expresses the effect of shear stress amplitude on soil stiffness and 

damping and is given by  

 

s,max

max

600 exp -1.39
125
PI

G
τ ⎡ ⎤Λ = ⎢ ⎥⎣ ⎦

        (4.32) 

 

where τs,max is the maximum shear strength observed at the pile-soil interface, and PI is the 

soil plasticity index. The first term inside the brackets in eq. (4.31) represents the radiation 

damping, while the second term represents the hysteretic damping. The minimum (small-

strain) damping ratio ξmin is usually found to be in the 0.5% to 1% range. The shear stress 

amplitude τs,max needed for the calculation of the nonlinearity parameter and the angular 
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frequency ω are not known a priori. Therefore, use of the Michaelides et al. (1998) model 

requires the pile analysis to be performed twice. The first (trial) analysis will use initial 

guesses for the values of τs,max and ω. The second (final) analysis will use the τs,max and 

ω produced by the trial analysis. Further iterations are not needed since the frequency of 

motion and the shear stress amplitude are not sensitive to the parameters of the shaft 

reaction model in the case of the pile driving problem. The angular frequency is mainly 

controlled by the mechanical properties of the pile, and the shear stress amplitude often 

equals the limit shaft resistance because of pile sliding. 

Although Michaelides et al. (1998) considered that the slider strength τsf is 

independent of the velocity of the pile motion, it can be made a function of the velocity 

following eq. (4.14). The Michaelides et al. (1997,1998) model constitutes a rigorous 

approach (subject to 1-D limitations) satisfying the physics and mechanics involved in the 

development of soil reaction on the pile shaft provided that the pile oscillates harmonically 

with constant amplitude (steady-state). This constitutes a limitation of the model when 

considering the highly transient nature of the pile motion during driving (impact pulse).   

 

4.3.9 Continuum shaft and base models by Holeyman 

Holeyman developed shaft and base models that are based on a continuum approach. This 

means that part of the soil mass surrounding the pile is included in the pile driving analysis 

as a continuum instead of a system of springs, dashpots and sliders. The main advantage of 

this approach are: 1) any stress-strain relationship can be considered in the solution of the 

problem, thus allowing capturing soil nonlinearity and hysteretic damping realistically and 2) 

a solution valid for the highly transient problem of pile driving can be achieved without 

relying on equations derived for harmonic steady-state oscillations. Their main disadvantage 

is that they increase significantly the computational cost. Nonetheless, the computational 

cost is still much less than that of finite element simulations. 

Holeyman (1988) proposed the base reaction shown in Fig. 4.12a. It assumes the 

soil reaction at the pile base is controlled by the region under the pile base with the shape of 

a truncated cone. The increase of the cone radius with depth is described by the following 

equation  

 

1-νr(z)=R+ z
0.85

         (4.33) 
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Figure 4.12. Reaction models based on a continuum approach: a) base model by Holeyman 
(1988), b) shaft model by Holeyman et al. (1996).  
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The truncated cone is discretized into lumped masses that are connected to each other 

through nonlinear springs. The spring coefficient is calculated from the shear modulus 

based on the following equation  

 

( )
2

20.85 1-
GK rπ

ν
=         (4.34) 

 

The degradation of G follows the hyperbolic law by Kondner (1963), similarly to eq. 4.15b. 

The elastic half space lying below the base of the truncated cone is represented by a spring. 

In essence, Holeyman (1988) extended the 1-D lumped mass formulation to the region 

below the pile. 

 For the shaft case, the soil surrounding the pile shaft is discretized into a series of 

concentric cylinders (Fig 4.12b) with horizontal thickness Δr. The height of the innermost 

cylinder is equal to the pile length. The height of the cylinders increases linearly with radial 

distance from the shaft according to 

 

( )(r)h L r R α= + −           (4.35) 

 

in order to consider the dispersion of waves in the vertical direction. The parameter 

α expresses the rate of increase, L is the pile length and R is the pile radius (actual or 

equivalent). The mass Mi of each cylinder is lumped at its center. The only mode of 

deformation taken into account is  vertical shearing. The solution considers the dynamic 

equilibrium of each cylinder:    

 

i i i i 1 i i i i i i i i 1M w T T 2 r h 2 r h− − − −= − = π τ − π τ        (4.36) 

 

where τi and τi-1 are shear stresses acting on the outer and inner boundaries of the cylinder, 

respectively. The system of equations of motion for the soil is solved for the soil vertical 

displacement wi using explicit integration methods. A hyperbolic stress-strain relationship 

(such as Duncan and Chang 1970) can be used for calculating the shear stress as a 

function shear strain. More advanced constitutive models can also be considered without 
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need to change the formulation (Vanden Berghen 2001). The soil shear strength is taken as 

a function of the rate of strain:  

 

max,i max

0.2
dyn st i i 1w w1 J

r
−

⎡ ⎤−⎛ ⎞⎢ ⎥τ = τ × + ⎜ ⎟Δ⎝ ⎠⎢ ⎥⎣ ⎦
         (4.37) 

 

The model is completed by assigning far-field (absorbing) boundary at the outer cylinder 

consisting of a spring (KFF) and a radiation dashpot (CFF). The equations for the spring and 

dashpot coefficients are based on the Novak et al. (1978) solution: 

 

max
FF

o
1.375 Gk

rπ
=         (4.38) 

max
FF

s

Gc
V

=          (4.39) 

 

Holeyman et al. (1996) use the pile radius R for ro, although the radius of the outer boundary 

is much larger than that of the pile, resulting in a conceptual inconsistency. 

 One limitation of the proposed continuum models is that they do not distinguish 

between the internal soil shear strength and the resistance on the foundation element (limit 

shaft resistance and pile base bearing capacity). In reality, the shaft resistance is expected 

to be smaller than τmax. A major drawback of the shaft model is that the pile is assumed to 

be rigid and that the soil is homogenous. There is only one set of concentric cylinders 

extending through the full pile height.  In order to be used in problems where the soil profile 

consists of more than one layer, average soil properties need to be assigned. Assuming a 

homogenous soil profile, the base model is less rigorous than the shaft model because of 

the complexities involved in the dynamic response of the base, although both base and 

shaft models follow the same concept. The response of the base is a 2-dimensional 

axisymmetric problem due to the limited lateral extent of the base compared to the soil 

medium. A more rigorous solution would need to address the base problem as a 2-D 

problem. In contrast, the shaft resistance problem can be well approximated by a 1-D 

approach. 
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4.4 Final remarks 

 
A comparison between the models presented in this Chapter is summarized in Tables 4.1 

and 4.2. The original Smith (1960) model with the set of subsequently updated quake and 

damping parameters is today the state-of-practice in the field of pile driving analysis. It is in 

use in the most popular pile driving analysis software, such as CAPWAP and GRLWEAP. 

The previous sections demonstrated that significant efforts have been made to develop 

improved reaction models. The improved models demonstrate clearly that the spring and 

dashpot coefficients are not proportional to the limit resistance, as in Smith’s model, but 

depend on the soil stiffness, soil density and the pile radius. 

Significant improvements have been made in the case of shaft reaction models. The 

most notable among them with respect to analytical rigor are those by Randolph and 

Simons (1986) and Michaelides et al. (1998). The model by Michaelides et al. (1998) is 

probably the most advanced and complete rheological model for the shaft resistance. 

However, these models are based on steady-state harmonic solutions, which are in contrast 

with the highly transient nature of the pile response during driving. Continuum models, 

especially in the case of shaft reaction, are advantageous because they allow the use of any 

nonlinear (or plasticity) models without the complications of 1-D analysis formulations and 

are applicable to any type of dynamic loading. 

Nearly all the improved base reaction models employ the Lysmer’s analog in some 

form or another. Compared to the shaft models, little progress has been made for base 

models in terms of analytical rigor because of the complex mechanics involved in the 2-D 

problem of pile base response. Lysmer’s analogue model assumes that the impacting mass 

is on the surface of a half-space. Any embedment effects on stiffness and radiation damping 

are ignored. Given the very high embedment ratio (penetration depth/pile width) of piles, it is 

expected that Lysmer’s analog’s stiffness and radiation damping will be smaller than those 

observed in the pile driving problem.   
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Table 4.1. Summary of shaft reaction model 
 

Model Type 
consistency 
with actual 
mechanics 

Input parameters 
based on soil 

properties 

radiation 
damping 

soil 
nonlineartiy 

hysteretic 
damping 

rate effect 
on strength 

highly 
transient 
(impact) 
motion 

Comments/Limitations 

Smith (1960) shaft              
All damping effects (radiation, 

hysteresis, viscosity) are merged 
into one term with fully empirical 

constants 

Randolph and 
Simons (1985,1986) shaft             

Holeyman (1985) shaft          
Approximate treatment of soil 

nonlinearity and hysteretic 
damping. Nonlinear formulation 

based on static solution 

Nguyen et al. (1988) shaft              

El Naggar and 
Novak (1994) shaft         

Approximate treatment of soil 
nonlinearity and hysteretic 

damping. Nonlinear formulation 
based on static solution 

Michaelides et al. 
(1998) shaft           

Holeyman et al.  
(1996) shaft        

No distinction between soil shear 
strength and limit shaft resistance. 

Far-field boundary condition 
depends on the pile radius instead 

of the boundary radius. Only a 
single soil layer around the pile. 
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Table 4.2. Summary of base reaction model 
 

Model Type 
consistency 
with actual 
mechanics 

Input 
parameters 

based on soil 
properties 

radiation 
damping 

soil 
nonlineartiy 

hysteretic 
damping 

rate effect 
on strength 

highly 
transient 
(impact) 
motion 

effect of 
embedment 
on stiffness 

and damping 

Comments/Limitations 

Smith (1960) base                
All damping effects 

(radiaton, hysteresis, 
viscosity) are merged 
into one term with fully 

empirical constants 

Based on 
Lysmer's analogue base                

Nguyen et al. 
(1988) base                

Holeyman (1988) base            

Deeks and 
Randolph (1995) base              
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CHAPTER 5.  PROPOSED SOIL REACTION MODEL FOR PILE DRIVING 
ANALYSIS 

 

5.1 Introduction 

 

In the previous chapters, we saw that significant research has been done on methods for 

the dynamics analysis of pile driving. These can be grouped into numerical methods, such 

as the 1-dimensional lumped-mass approach (i.e., Smith’s approach) and the finite element 

method, and semi-analytical methods, such as the method of characteristics. Finite element 

analysis is most effective in producing realistic and accurate solutions, but is too expensive 

computationally to use in pile engineering practice. Semi-analytical methods are 

mathematically elaborate but not as versatile. In contrast, the 1-D lumped-mass approach is 

comparatively simple, is computationally economical, and allows the implementation of 

virtually any soil reaction model. It is currently used in most pile driving analysis software. 

The type of discretization (lumped mass vs. continuous) of the pile and the algorithms used 

for the integration of the equation of motion (or of the wave equation) is not as critical as the 

soil reaction models used. The success in simulation of pile driving and reliable prediction of 

the pile response rests mostly on the use of accurate soil reaction models.  

The soil reaction models that have been proposed so far were discussed in Chapter 

4. There has been considerable progress in the course of the last three decades in the 

formulation of soil reaction models. More recent models distinguish between the three 

different types of damping (radiation, hysteresis and viscosity) and have input parameters 

that are either well anchored on standard soil properties or can be determined based on 

laboratory test data. The nonlinearity of the soil stress-strain relations has been taken into 

consideration.  

The most complete shaft resistance models are those by Holeyman et al. (1996) and 

Michaelides et al. (1998). Still, each of these two models has certain limitations. The model 

by Michaelides et al. (1998) is based on a steady-state solution, while the pile motion during 

driving is highly transient (impact pulse). The Holeyman et al. (1996) model does not have 

this deficiency because it considers the surrounding soil as a continuum and its response is 

determined during the dynamic analysis; the solution will be valid for any type of pile input 

motion. However, the formulation of that model appears to be incomplete with respect to the 

behavior within the shaft shear band (as indicated by Charue 2004) and the far-field 
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conditions at the outer boundary of the analysis domain. The models of base reaction are 

less complete. The work by Deeks and Randolph (1995) is the most thorough investigation 

on the rheological models for pile base. However, that model has been calibrated for 

predicting the response of an elastic-perfectly plastic soil; soil nonlinearlity and hysteresis 

are not included. The development of dynamic base resistance in the Holeyman (1988) 

model is a combination of a number of sub-mechanisms that are hard to decouple in the 

manner of the truncated cone model of Holeyman (1988). All of the base models proposed 

so far neglect the effect of embedment on stiffness and damping.  

In this Chapter, we develop and formulate shaft and base reaction models that are 

grounded on the actual physics and mechanics of the pile driving problem and are as 

realistic as possible. The proposed models will be validated against data from pile load tests 

on full-scale and model (small-scale) piles in Chapter 7.   

 

5.2 Proposed shaft reaction model 

5.2.1 Basic soil disk formulation for elastic soil 

The shaft reaction model by Holeyman et al. (1996) has demonstrated the advantages of 

the continuum approach (Table 4.1) and, thus, the proposed model will follow these lines. 

Considering the soil mass explicitly in the formulation of the soil reaction model has the 

significant advantage that the solution will be valid for any type of input motion. Moreover, 

any stress-strain relation can be assumed allowing a versatile treatment of soil nonlinearity 

and hysteresis. Our formulation will be based on the thin soil disk approach, which has been 

used numerous times for the simulation of the soil response around the pile shaft under 

static conditions (e.g., Randolph and Wroth 1978; Potts and Martins 1982, Loukidis and 

Salgado 2008).   

 Let us assume a thin soil disk with an annulus area occupied by the pile with radius 

r0 (Fig. 5.1). The thin soil disk is of finite extent with outer radius rf. The dynamic equilibrium 

equation of a soil element at any radial distance r and time t can be written as  

 
2

2

w
r r t
τ τ ρ∂ ∂

− =
∂ ∂

        (5.1) 
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where w is the vertical soil displacement, τ  is the shear stress, and ρ is the soil density. The 

two terms on the left-hand side of eq. (5.1) are subtracted (instead of being added as in 

most publications and in eq. 4.29) because we assume that the positive direction for the 

displacement w is downwards. Likewise, depth z is positive downwards.  This sign 

convention is more suitable for the problem of pile driving since, once struck by the ram, the 

pile moves mostly downwards. At this initial stage, we will also assume that the soil is 

elastic. This will allow us to establish appropriate far-field boundary conditions at the outer 

boundary of the disk. For an elastic soil, τ  is always equal to Gγ  (=G dw/dr),  and eq. (5.1) 

can be rewritten as:  

 
2 2

2 2

w w wG G
r r t

ρ∂ ∂ ∂
− =

∂ ∂ ∂
       (5.2) 
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Figure 5.1. Soil disk around pile shaft and finite difference discretization.  
 

The differential equation (5.2) can be solved analytically if we assume that the motion is a 

steady-state harmonic oscillation (i.e., w=w0exp[iωt] ), as done by Novak et al. (1978). The 
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specific characteristics of the vertical motion of different pile cross-sections during driving 

are not known a priori; they will be the product the analysis. Since our goal is to produce a 

formulation that can accommodate any type of motion, especially that due to an impact-type 

pulse propagating down the pile, we will solve eq. (5.2) numerically. For this purpose, we 

assume Ns number of points (soil nodes) along the radial axis from r0 to rf separated by 

radial distance Δr (Fig. 5.1). Time is divided into small but finite increments Δt. Using the 

central finite difference approximation, the first and second derivatives appearing in eq. (5.2) 

for the node i  are given by the following equations: 

 
( ) ( )

1 1

2

t t
i iw ww

r r
− +−∂

≈
∂ Δ

        (5.3a) 

( ) ( ) ( )2
1 1

2 2

2t t t
i i iw w ww

r r
− +− +∂

≈
∂ Δ

    (5.3b) 

( ) ( ) ( )2

2 2

2
i

t t t t t
i iw w ww

t t

+Δ −Δ− +∂
≈

∂ Δ
    (5.3c) 

 

The superscripts in parenthesis (i.e. (t-Δt), (t), (t+Δt)) denote the time that the displacement 

w corresponds to. Therefore, eq. (5.2) can be approximated by 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1 1 1
2 2

22
2

i

t t t t tt t t t t
i ii i i i i

i

w w ww w w w wGG
r r r t

ρ
+Δ −Δ

− + − +
− +− + −

− =
Δ Δ Δ

     (5.3) 

 

Provided that we know the displacements at all the nodes at times (t) and (t-Δt), we can 

calculate the displacement at time (t+Δt) at each node i by solving eq. (5.3) with respect to 

wi
(t+Δt): 

 
( ) ( ) ( ) ( ) ( )2

( ) ( ) ( )1 1 1 1
2

2 2 2
2

t t t t t
t t t t ti i i i i

i i i
i

w w w w wt Gw G w w
r r rρ

+Δ −Δ− + − +⎡ ⎤− + −Δ
= − + −⎢ ⎥Δ Δ⎣ ⎦

      (5.4) 

 

Before the pile starts moving, the entire soil disk is at rest; this means that the 

displacements at all nodes are equal to zero. Therefore, all nodal displacements will be 

known at the beginning of the calculations, and eq. (5.4) will be used for calculating the soil 
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displacements at subsequent time increments. At each time increment, eq. (5.4) Is applied    

successively for all nodes, starting from the node at the inner boundary (node 1). 

 

5.2.2 Free-field-consistent boundary conditions 

The discretized soil disk represents only a part of the soil around the pile (the near field). 

The presence of the outer soil mass (far field) needs to be represented in the model 

formulation. The far-field soil absorbs fully the waves traveling radially in the soil disk. If no 

absorbing boundary conditions are provided to the model, then the energy emitted from the 

pile shaft will be fully reflected at the outer boundary of the analysis domain. In numerical 

analysis (finite difference method or finite element method), absorbing boundaries are 

introduced through radiation dashpots with coefficient values such that any wave traveling 

outwards vanishes after reaching that boundary (Fig 5.2). Use of an inconsistent dashpot 

coefficient is easily noticeable, since they will generate reflection waves that will move 

towards the pile.  

 

 

                            

extent of the analysis domain

reflected wave 

pile soil

pile soil

absorbing 
boundary

extent of the analysis domain

 
 
Figure 5.2. Use of radiation dashpot at the outer boundary of the continuum analysis 

domain. 
 

 

The outer boundary of the near field is considered as the inner boundary of the far-field 

domain. The analytical solution by Novak et al. (1978) yields the coefficient of a radiation 

dashpot representing a soil disk of infinite extent when excited at its inner boundary (the 
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location of the shaft wall). Thus, there is an analogy between the shaft wall in the Novak et 

al. (1978) solution and the outer boundary of the near field in the present approach. 

Following the Novak et al. (1978) solution, the radiation dashpot coefficient for the outer 

boundary of the near field for high frequency motion (which is prevalent in pile driving) is 

given by:  

 

   max
FF

s
s

Gc V
V

ρ= = ⋅          (5.5) 

 

where Gmax is the maximum (i.e., small-strain) shear modulus of the soil and Vs is the soil 

shear wave velocity. It can be seen that the dashpot coefficient is independent of the radius 

of the boundary to which the dashpot is attached. It is interesting to note that eq. (5.5) is 

also valid for 1-D wave propagation under plane strain conditions.  

The absorbing boundary formulations available in finite difference or finite element 

analysis software (e.g. FLAC, ABAQUS) consist only of radiation dashpots. This approach is 

not suitable for the present 1-D formulation.  The motion involved in the problem of pile 

driving is highly transient. There is the initial stage of large rise in displacement followed by 

a stage of oscillations with continuously decreasing amplitude with time. After all vibrations 

have been dissipated, we should recover the static solution, i.e., a permanent soil 

displacement with magnitude decreasing with increasing radial distance, caused by a 

residual shear stress on the pile shaft. If no spring is placed at the outer boundary of the 

analysis domain, the soil disk will become level and unstressed with all final displacements 

being equal to the displacement at the pile shaft (Fig. 5.3) because, in the absence of a 

reacting spring, no stress will remain at the outer boundary after dissipation of vibrations 

(the dashpot provides no static resistance since its reaction is proportional to the velocity of 

motion).   
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Final pile displacement 
(after all vibration has been dissipated)

pile

pile

soil

soil

 
                

Figure 5.3. The pring at the outer boundary of the analysis domain generates a 
displacement profile consistent with what is expected at the end of driving. 

 
 
A static solution was derived by Randolph and Wroth (1978) by first establishing an 

expression for the radius of influence rm around the pile (the so-called “magical” radius) 

based on 2-D finite element analysis. The soil displacement at r ≥ rm is assumed to be zero 

by definition. If the soil profile is homogeneous, the radius of influence is simply a function of 

the pile length L and the soil Poisson’s ratio ν :   

 

( )m 2.5 1r L ν= −         (5.6) 

 

Eq. (5.6) can be extended to the case of a nonhomogeneous soil profile (Fleming et al. 

1992): 

 

( ) M L
m

L b
0.25 2.5 1 0.25G Gr L

G G
ν

⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

       (5.7) 

 

where Gb is the shear modulus of the bearing layer, GL is the soil shear modulus of the soil 

immediately above the bearing layer, and GM is the shear modulus value at the middle of the 

soil that lies above the bearing layer.  The static solution of Randolph and Wroth (1978) 

yields the spring constant kFF: 
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( )
max

FF
f m f

1
ln /

Gk
r r r

=        (5.8) 

 

Eq. (5.8) gives a constant spring stiffness value that is valid only after all vibrations in the 

soil have dissipated. On the other hand, if the pile and soil motion were harmonic, kFF would 

be given by the Novak et al. (1978) solution, which is used by Randolph and Simons (1986): 

 

* max
FF

f
1.375 Gk

rπ
=         (5.9) 

 

The actual spring stiffness varies with time during the transient soil response caused by pile 

driving (probably between the values given by eq. 5.8 and eq. 5.9). Unfortunately, there is 

no closed-form solution that would give kFF in accordance with the real dynamic conditions.  

Here, we will use the static solution (eq. 5.8) because kFF does not impact greatly the 

dynamic response and the wave absorption (which is fully controlled by the dashpot) but 

controls the static residual stress acting on the pile shaft after vibrations have dissipated. If rf 

is set to 0.102rm, kFF and k*
FF become equal. 

 

 

extent of the analysis domain rf

rm

rpile

ΚFF

CFF

radius of static influence

 
 
Figure 5.4. Discretized near-field domain with spring and dashpot representing the far-field 

soil attached to the outer boundary. 
 

 

Having established the boundary conditions at the outer edge of the analysis domain as 

indicated in Fig. 5.4, eq. (5.4) for the outmost (Nth) point becomes: 
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−Δ
− −+Δ −Δ

⎡ ⎤− −Δ Δ
= − − − + −⎢ ⎥

Δ + Δ Δ Δ Δ Δ Δ Δ⎢ ⎥⎣ ⎦
 (5.10) 

 

To test the validity of the proposed absorbing boundary formulation, we will perform 

simple simulations of wave transmission through the near-field disk. In the following 

examples, the shear modulus G is equal to 100000kPa and the soil density is 1.8t/m3 (shear 

wave velocity Vs=236m/s).  The pile radius is 0.15m, the extent of the analysis domain rf is 

3.15m, and the number of soil nodes is 30 (Δr =0.1m). Assuming pile length equal to 10m 

and soil Poisson’s ratio equal to 0.25, eq. (5.6) yields a radius of static influence rm equal to 

18.75m.  The time increment Δt is set equal to 0.00003s in all examples. Δt must be smaller 

than Δr/Vs to ensure numerical stability during the integration of the equations of motion 

(Cook et al. 2002). It should be noted that the critical time step that is required in the 1-D 

dynamic pile analysis is much smaller since the shear wave velocity of the pile material is 

much larger than that of the soil. 

In the first example (Fig. 5.5), the applied motion at the inner boundary (the location 

of the pile shaft) is harmonic with constant amplitude and period T=0.02s. The spring 

stiffness is calculated using eq. (5.8). When cFF takes the value given by eq. (5.5), the 

waves are fully absorbed at the outer boundary as attested by the continuously decreasing 

motion amplitude with radial distance and the unaltered pattern of the incident waves with 

time.  

 

 



78 

 

 

 

0.00 0.02 0.04 0.06 0.08 0.10
t (sec)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

w
 (m

)

r=0.25m  (applied at pile shaft)
r=0.65m
r=1.15m
r=1.65m
r=2.15m
r=2.65m
r=3.15m (outer boundary)

0.00 0.02 0.04 0.06 0.08 0.10
t (sec)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

w
 (m

)

dashpot coefficient cFF=ρVs (consistent)
no dashpot

0.00 0.02 0.04 0.06 0.08 0.10
t (sec)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

w
 (m

)

dashpot coefficient cFF=2ρVs

 
 

Figure 5.5. Soil response at different radial distances due to harmonic oscillation of the pile 
shaft.  

 
 
Fig 5.5 shows that, in the absence of a radiation dashpot, the wave is fully reflected at the 

outer boundary, generating a standing wave inside the soil disk. If the dashpot coefficient is 

set to twice the value yielded by eq. (5.5), we see that the wave is partially reflected, with 

local increase in motion amplitude midway between the inner and outer boundaries. The 

same conclusions can be drawn from the example presented in Fig. 5.6. In this example, the 

input motion is of transient character and defined by a half sinusoidal pulse. Full and partial 

reflection is observed in the cases of no dashpot and of dashpot coefficient larger than the 

value for a consistent boundary.  
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Figure 5.6. Soil response at different radial distances due to half sinusoidal pulse (no 

permanent displacement) at the pile shaft.  
 
 
 
If the dashpot coefficient is set to the far-field consistent value (ρVs), the outer boundary is 

‘transparent’ to the incident wave, i.e. the soil motion practically vanishes once the wave 

reaches the outer boundary. The soil motion does not cease immediately after the passing 

of the wave through a given point in the soil disk, but a small residual portion of it dissipates 

progressively with time. This is a deviation from the theoretically exact response and is 

caused by numerical error inherent to the numerical solution. The example in Fig. 5.7 

demonstrates the function of the outer boundary spring. The input pulse at the inner 

boundary consist of a sinusoidally increasing displacement up to a value of 2cm at t=0.005s 

t

wpile

0.01sec



80 

 

 

and remaining unchanged thereafter. The dashpot coefficient is that defined in eq. (5.5). If 

no spring is placed at the outer boundary, all nodal displacements converge with time to the 

final input displacement magnitude. In that case, all shear strains and, consequently, 

stresses vanish at the end of the analysis. In contrast, the solution converges to the static 

solution if the spring defined in eq. (5.8) is placed at the outer boundary.  The pile shaft 

motion in pile driving analysis is a combination of the motions used in the examples of Figs 

5.6 and 5.7.  
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Figure 5.7. Soil response at different radial distances due to quarter sinusoidal pulse with 
permanent displacement at the pile shaft.  

 

5.2.3 Soil nonlinearity in soil disk formulation 

The formulation presented in the previous section was based on the assumption that the soil 

is elastic. The major advantage of the continuum approach is that it can handle effectively 

soil nonlinearity and hysteresis by allowing the implementation of any constitutive model for 

t0.005sec

wpile
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the soil. Here, we will assume that the soil follows a “hyperbolic” stress-strain law in rate 

form:  

 

( )

max
2

rev
f

f

1
1

G

LI
b

LI sgn

τ γ
τ τ

τ τ

=
⎛ ⎞− ⋅

+⎜ ⎟
+ × ⋅ −⎝ ⎠

       (5.11) 

 

where τf is the shear strength of the soil in simple shear conditions, τrev is the shear stress at 

the last stress reversal, and LI is the loading index parameter that takes the values 0 for 

virgin loading and 1 for subsequent unloading and reloading. The variable sgn is the sign of 

the strain rate γ . The shear modulus G decreases with shear strain γ  from its maximum 

(small-strain) value Gmax and approaches zero at very high shear strain levels; τf is 

approached asymptotically as the shear strain increases.  Every time the shear strain 

direction changes (strain or stress reversals), the soil shear modulus G becomes again 

equal to Gmax. The parameter bf controls the rate of degradation of the shear modulus. The 

shear modulus degradation is controlled mainly by the plasticity index (PI) of the soil 

(Vucetic and Dobry 1991). The experimental curves by Vucetic and Dobry (1991) can be 

approximated by eq. (5.11) with bf calculated using the following equation: 

 

( )f 5exp 0.05b PI= −        (5.12) 

 

Comparison between secant shear modulus predictions using eqs. (5.11) and (5.12) and the 

experimental curves by Vucetic and Dobry (1991) is shown in Fig. 5.8. The stress-strain 

relationship of eq. (5.11) can be seen as an extension of the Fahey-Carter model to cyclic 

loading conditions with the exponent used in Fahey and Carter (1993) always equal to unity.  

Fig. 5.9 plots the cyclic stress-strain response predicted by eqs. (5.11) and (5.12) for 

two extreme values of the degradation parameter bf. It can be seen that the proposed 

stress-strain relationship reproduces realistically the soil behavior during unloading and 

reloading cycles, producing symmetric hysteresis loops. 
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Figure 5.8. Secant shear strain modulus as a function of shear strain: experimental curves 
by Vucetic and Dobry (1991) compared with predictions using eq. (5.11) and 
(5.12). 

 

  In the case of nonlinear soil, we cannot use eq. (5.2) because the secant shear 

modulus changes continuously with time during the highly transient soil response. Thus, we 

need to consider explicitly the shear stress τ in the solution formulation. The shear stress will 

be calculated at each time increment using eq. (5.11). Using central finite difference 

approximation, the first derivative of the shear stress in eq. (5.1) for the node i is expressed 

as 

 
( ) ( )

, ,
t t

L i R i

r r
τ ττ −∂

≈
∂ Δ

        (5.13) 

 

where τL and τR are the shear stress at the mid-points of the segments on the left and on the 

right of node i. Each pair of adjacent nodes defines a segment where the strain and, 

consequently, the stress are assumed to be constant. The shear stress in each segment at 

each time increment is calculated incrementally based on eq. (5.11): 
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    (5.14b) 

 

The shear stress right at the position of node i is calculated in a similar way: 

 

( )

( ) ( )( ) ( ) ( ) ( )
1 1 1 1( ) ( )max

2( )
i rev,i

f ( )
i f
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− − −
= ⋅ +

Δ⎛ ⎞− ⋅
⎜ ⎟+
⎜ ⎟+ × ⋅ −⎝ ⎠

    (5.15) 

 

Having established the shear stresses on both sides of node i, eq. (5.1) is approximated by 

 
( ) ( ) ( ) ( ) ( ) ( )

, ,
2

2t t t t t t t t
L i R i i i i i

i

w w w
r r t

τ τ τ ρ
+Δ −Δ− − +

− =
Δ Δ

      (5.16) 

 

Provided that we know the displacements at all the nodes at times (t) and (t-Δt), we can 

calculate the displacement at time (t+Δt) at each node i by solving eq. (5.14) with respect to 

wi
(t+Δt): 

 
( ) ( ) ( )2

, ,( ) ( ) ( )2
t t t

L i R it t t t ti
i i i

i

tw w w
r r

τ τ τ
ρ

+Δ −Δ⎡ ⎤−Δ
= − + −⎢ ⎥Δ⎣ ⎦

      (5.17) 
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Figure 5.9. Stress-strain loops predicted by eq. (5.11) for two different values of the 

degradation parameter bf.  
 

 

The main output of the soil disk solution is the soil reaction at the pile shaft wall (i.e., at the 

inner boundary of the near-field continuum domain). This reaction is taken as the shear 

stress in the soil segment between nodes 1 and 2: 

 

( )
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1 1 2 2( ) ( )max
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w w w wG
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τ τ
τ τ

τ τ

−Δ −Δ
−Δ

−Δ

−Δ

− − −
= +

Δ⎛ ⎞− ⋅
⎜ ⎟+
⎜ ⎟+ × ⋅ −⎝ ⎠

    (5.18a) 

 

from which the shear force acting on the shaft can be computed as  

 
( ) ( )

s pile
t t

SR Lτ Π= Δ         (5.18b) 
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where Πpile is the perimeter of the pile cross-section and ΔL is the length of the pile segment 

for which soil reactions are calculated.  

We complete the shaft reaction model by introducing a rheological model that 

represents the shear band along the shaft wall. Here, we adopt the rheological model 

proposed by Randolph and Simons (1986). It consists of a plastic slider and a viscous 

dashpot connected in parallel placed between the first node of the continuous near field and 

the corresponding pile segment (Fig. 5.10). The strength of the plastic slider is equal to the 

static unit limit shaft resistance qsL. As long as the stress τs is smaller than qsL, no sliding 

occurs and τs is transmitted to the pile segment. Sliding initiates once τs=qsL, at which point 

the viscous dashpot becomes activated. The reaction of the viscous dashpot is a power 

function of the relative velocity between the pile and the first node of the near field 

component. The total (static+viscous) resistance of the rheological model is given by  

 

( ) s
sf sL s pile 11

n
q m w wτ ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
       (5.19) 

 

where ms and ns  are input parameters. Based on data by Coyle and Gibson (1970), Dayal 

and Allen (1975), Heerema (1979), Litkouhi and Poskitt (1980), the parameter ns is generally 

in the 0.2 to 0.5 range (but for most cases is in the vicinity of 0.2), while ms takes values 

from 0.3 to 0.5 for sands and 2.0 to 3.0 for clays (velocity is in units of m/s). The strength of 

soil in the near field needs to be consistent with the strength of the shear band. Thus, the 

strength τf inside the continuum is set to be also a function of the relative velocity: 

 

( ) s
f f,stat s pile 11

n
m w wτ τ ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
       (5.20) 

 

The static soil strength of the soil τf,stat is set to be slightly higher than the actual soil shear 

strength because the hyperbolic stress-strain relationship of eq. (5.11) approaches the limit 

shear stress τf asymptotically. The value of τf,stat is chosen so that the slider becomes 

activated at a shear strain level at the first near-field segment in the 5% to 10% range. This 

is the shear strain range within which soils are expected to reach “failure” under simple 

shear conditions. In the case of clays and silts, τf,stat is defined by the following equation 

f,stat F uR sτ =        (5.21) 
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Figure 5.10. Proposed shaft reaction model consisting of three parts: continuous near field, 
far-field consistent spring and radiation dashpot, and rheological shear band 
model at the soil-pile interface.  

 

 

The factor RF is a function of the parameter bf (which, in turn, is a function of PI):  

 

F 1.5
f

1
1 0.015

R
b

=
−

          (5.22) 

 

In the case of sands, τf,stat is defined by the following equation: 

 

f,stat F sL1.2n qτ =       (5.23) 

 

The factor nF depends on the roughness of the shaft wall. It takes the values 1.0 and 1.22 

for piles made of concrete and mild steel, respectively.  In reality, the sand shear strength 

will decrease with radial distance from the pile shaft because of the decrease of mean 

effective stress with r. The stress changes around the pile shaft due to the installation of the 

pile dissipate with distance from the pile. Here, for simplicity, we assume that the strength is 

constant throughout the near field.  

The strain rate affects only the soil shear strength. The small- strain soil stiffness is 

independent of the rate of strain (Tatsuoka et al. 1997). Because of the dependence of the 

ultimate strength on strain rate, the model predicts a small increase in the secant stiffness 
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with strain rate in the intermediate range of strains. Brown et al. (2006) performed rapid and 

static pile load tests on an instrumented drilled shaft installed in a clayey soil profile. Their 

data shows that, although the pile velocity influences the limit shaft resistance, the shear 

stress mobilized on the shaft at pre-failure loads shows small to no increase with pile 

velocity. 

 The extent of the near-field domain, rf, needs to be a certain fraction of the radius of 

influence rm. The radii rf and rm cannot be equal because this will negate the effect of the far 

field spring and radiation dashpot. The near-field domain needs to extend only up to the 

point where the shear strains become small enough for the soil nonlinearity to be negligible. 

We will set the ratio rf/rm to be in the 0.2 to 0.5 range.  The discretization of the near-field 

domain should be fine enough so that the combined length of five consecutive segments is 

not smaller than the wavelength of the shear waves propagating through the domain. 

 Once slippage initiates, the displacement of the first node of the near-field 

component (node 1) and the pile displacement become different. The displacement of node 

1 then ceases to be a known input, and its value needs to be calculated as part of the 

solution. During slippage in the plastic slider, the dynamic equilibrium equation at node 1 

can be written as  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
sf ,1 sf ,1 1 1 1

2
1

2
2

t t t t t t t t t
R R w w w

r r t
τ τ τ τ

ρ
+Δ −Δ− + − +

− =
Δ Δ

      (5.24) 

 

Eq. (5.24) can be solved for wi
(t+Δt): 

 
( ) ( ) ( ) ( )2
sf ,1 sf ,1( ) ( ) ( )

1 1 1
1

2
2

t t t t
R Rt t t t ttw w w

r r
τ τ τ τ

ρ
+Δ −Δ⎛ ⎞− +Δ

= − + −⎜ ⎟⎜ ⎟Δ⎝ ⎠
     (5.25) 

 

Slippage in the slider stops and the near-field rejoins the pile once the relative velocity 

between the pile segment and node 1 becomes again zero. 

 The proposed model has similarities with the shaft reaction model of Holeyman et al.  

(1996), although our formulation does not consider ring soil elements with the soil mass 

lumped at the center of these elements. Our formulation is based on discretizing and solving 

the fundamental dynamic equilibrium equation (eq. 5.1), which, for the present problem, is 

equivalent to the wave equation for shear waves in axisymmetric conditions. The equilibrium 
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is expressed in terms of shear stress (instead of secant forces), and the mass is assumed 

continuous (not lumped). The new model seeks to eliminate the limitations of the Holeyman 

et al. (1996) model identified and described in Chapter 4. The spring and radiation dashpot 

placed at the outer boundary of the near-field domain are consistent with the far-field 

conditions, with the spring constant being a function of the extent of the near-field domain 

and the radius of pile influence. We also added a rheological component between the near-

field domain and the pile in order to more accurately represent the mechanics of the shear 

banding and slippage at the pile shaft wall. Our formulation allows for the consideration of as 

many soil disks as there are lumped masses discretizing the pile. For this reason, the pile 

does not need to be assumed to be rigid. Each soil disk can have different properties and 

input parameters. Any interaction between the soil disks is neglected. In reality, the motion 

of the soil at a given depth influences the motion of the soil immediately above and below 

that depth. Moreover, primary waves will emanate from the pile shaft and will propagate 

through the soil in an oblique direction. Another factor influencing the soil deformation in 

reality is arching, i.e. the oblique transfer of stress through the soil. These phenomena 

cannot be captured by the 1-dimensional approach we propose; capturing these 

phenomena would require use of complicated and computationally expensive 2-dimensional 

solution schemes. . Taking into account soil interaction between different elevations would 

require 2-dimensional discretization of the surrounding soil mass. 

 

5.3 Proposed base reaction model 

 

A complete base reaction model needs to take into account the nonlinear soil response 

under the pile base, the rate effect on base resistance, and distinguish between the different 

types of damping. As discussed in Chapter 4, a continuum approach similar to the one used 

for the shaft reaction model may not be suitable for the base reaction model. This is 

because, for the base, the development of limit resistance cannot be decoupled from the 

mechanics of the near-field. In addition, the base reaction problem is 2-dimensional; 

modeling the soil as a series of lumped masses extending below the pile base would 

constitutes only a rough approximation with no real advantage over simpler rheological 

(noncontinuum) models. The predicted soil reaction for very small base velocities (quasi-

static conditions) must be consistent with the static load-settlement response that would 
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have been observed in static pile load tests. This is hard to achieve with a continuum 

approach, such as that proposed by Holeyman (1988). 

 The proposed model consists of a nonlinear spring connected in parallel to a 

radiation dashpot (Fig. 5.11). The total base reaction is the sum of the spring reaction Rb
(S) 

and the radiation dashpot reaction Rb
(D): 

 
( ) ( ) ( )

b b b b b b
S D SR R R R C w= + = +          (5.26) 

 

where wb is the velocity of the pile base and Cb is the radiation damping constant. The 

nonlinear spring follows a hyperbolic-type load-settlement relationship: 

 

( )

( ) b,max
b b2

b b,rev
fb

bf b

1
1

S K
R w

R LI R
b

LI sgn R R

=
⎛ ⎞− ⋅

+⎜ ⎟⎜ ⎟+ × ⋅ −⎝ ⎠

      (5.27) 

 

where Kb,max is the maximum (elastic) base spring stiffness, Rbf  is the limit base capacity, 

Rb,rev  is the spring reaction Rb
(S) at the last displacement reversal, and LI is the loading index 

parameter that takes the values 0 for virgin loading and 1 for subsequent unloading and 

reloading. The variable sgn is the sign of the rate of base displacement w , and bf is a model 

parameter that controls the rate of degradation of the base spring stiffness. Eq. (5.27) is 

similar to eq. (5.11) used in the proposed shaft reaction model.  Because tensile stresses 

cannot be transmitted through the soil-pile base interface, Rb
(S) is not allowed to take 

negative values. The base reaction reaches Rbf asymptotically with increasing pile base 

displacement wb. At points of displacement reversals (unloading and reloading), the spring 

stiffness is equal to the initial stiffness value Kb,max.  The model captures hysteretic damping 

with the help of the variables LI,  sgn, and Rb,rev. The curvature of the base reaction vs. 

settlement curve depends on the pile type. The settlement required for displacement piles 

embedded in clay to reach limit base resistance can be as low as 0.1B – 0.2B. In contrast, 

the limit base resistance is practically never reached in the case of drilled shafts 

(nondisplacement piles).  It was found that, for a displacement pile, bf needs to be in the 1.0 

to 2.0 range. For drilled shafts, bfb values lie between 10 and 20. 
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 The rate effect on the soil strength is included in the model through Rbf. The limit 

base resistance Rbf is set to be a function of the base velocity, similarly to the limit shaft 

resistance: 

( )( )b
bf bL b b1 nR Q m w= +           (5.28) 

 

where mb and nb  are input parameters controlling the rate effect on strength (soil viscosity). 

They are parameters similar but not necessarily equal to ms and ns used in eq. (5.19). 

Experiments on model piles by Litkouhi and Poskitt (1980) show that the exponent nb is 

roughly equal to ns. However, the multiplier mb can be significantly smaller than ms in the 

case of clayey soils, while for sandy soils the parameters are approximately the same). 

Guidelines on the selection of the soil viscosity parameters will be given in the next section.  

For zero base velocity, Rbf is equal to QbL, which is the limit base capacity under 

quasi-static loading. QbL is equal to the product of the unit limit base resistance qbL and the 

pile base area Ab. The attainment of qbL requires very large base displacements, especially 

in the case of nondisplacement piles (drilled shafts). The unit limit base resistance is 

approximately equal to the cone penetration resistance qc (Salgado 2008). 

 

 

Pile

radiation dashpot
Non-linear spring

with rate effect on strength
Rb

wb

w

 
Figure 5.11. Proposed base reaction model consisting of a nonlinear spring and a radiation 

dashpot. 
 

5.3.1. Effects of pile base embedment on the stiffness and radiation damping 

Most existing base reaction models use the spring and radiation dashpots coefficients of 

Lysmer’s analog, which are given by the following equations, respectively: 
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max
Lysmer

4
1
RGK

ν
=

−
         (5.29) 

2
Lysmer max

3.4
1

RC Gρ
ν

=
−

       (5.30)  

 

where Gmax, ρ  and ν are the elastic (small-strain) shear modulus, the density and the 

Poisson’s ratio of the soil, respectively, and R is the pile radius (actual or equivalent). 

Lysmer’s solution was developed for a footing on the surface of a half-space (i.e., a footing 

with embedment equal to zero). Except during the very early stages of pile driving, the 

embedment of the pile base is several times the pile width. Existing base reaction models do 

not take into account any potential effects of embedment on base stiffness and radiation 

damping. In the context of the present study, we will investigate the embedment effect and 

propose improved formulas for the base stiffness and dashpot coefficients.  For this 

purpose, we performed a series of analyses of a circular footing, representing the pile base, 

embedded in an elastic half-space using the finite difference code FLAC.  Typical mesh and 

boundary conditions used in the FLAC simulations are shown in Fig. 5.12. The analysis 

domain is discretized into four-noded axisymmetric elements (zones, in FLAC’s 

terminology). The lateral and bottom boundaries are absorbing boundaries in dynamic 

analyses. In static analyses, the nodes at these boundaries were fixed. A circular rigid 

footing of diameter B is placed at the bottom of a cylindrical well. The well has also diameter 

B and depth D from the ground surface. The soil is assumed to be linear elastic. The footing 

is fully attached to the bottom of the well, but its sides are not connected to the wall of the 

well. The distance between the bottom boundary and footing base is at least 7B. The nodes 

at the wall of the excavation are prevented from moving in the horizontal direction but are 

free to move in the vertical direction. The choice of this boundary condition at the wall of the 

well was made because the goal of the FLAC simulations is to derive base stiffness and 

radiation damping values for pile driving analysis, in which case the presence of the shaft 

prevents the soil from moving inside the annular space. The vertical degrees of freedom are 

left free (zero tangential tractions) because limit shaft resistance conditions are reached 

early during the pile driving analysis and prior to any significant base reaction development. 

Therefore, any incremental deformation at the pile base will be accompanied by little or no 

change of tractions along the pile shaft-soil interface. 
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Figure 5.12. Mesh and boundary conditions used in dynamic FLAC analyses of circular 

footing at the bottom of cylindrical well.  
 
  

A series of static analyses were performed before the dynamic simulations in order 

to investigate the effect of embedment on the static base stiffness. Lysmer’s solution (eq. 
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(5.29)) is valid for both static and dynamic conditions as long as D=0.  Burland (1970) used 

finite elements to investigate the effect of embedment on the stiffness of a flexible footing 

(uniformly loaded area) at the bottom of an unsupported excavation (soil is permitted to 

move inside the annular space). The results of Burland (1970) refer to the settlement at the 

center of the flexible footing. Fox (1948) provided an analytical solution for the case with no 

annular space, i.e., the case in which the space above the flexible footing is filled with soils. 

Pells and Turner (1978) used finite element results to analyze the same as Burland (1970), 

but their results refer to the average flexible footing settlement instead of the settlement at 

the footing center. The problems solved by Fox (1948), Burland (1970) and Pells and Turner 

(1978) are different from the one considered here (rigid footing in a laterally supported and 

smooth excavation wall).  

FLAC static analyses were performed for Poisson’s ratio ν values 0.15, 0.33 and 

0.49. The soil shear modulus G was equal to 100000kPa and the footing diameter was 

0.5m. Analyses were done for embedment ratio values D/B between 0 and 20. The main 

output of the numerical simulations was the ratio of the measured footing stiffness K to the 

stiffness corresponding to zero embedment Kemb.=0. This ratio constitutes the static stiffness 

depth factor Df. The numerical results can be fitted accurately by the following equation 

 

( ) ( )
0.826

f 1.27 0.12ln 0.27 0.12ln exp 0.83 DD
B

ν ν
⎡ ⎤⎛ ⎞= − − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
       (5.31) 

 

Predictions by eq. (5.31) lie between the results of Fox (1948) and Burland (1970) and are 

slightly larger (up to 3% difference) than the results of Pells and Turner (1978). They are 

also roughly 5% larger that the values presented in Gazetas et al. (1985) for a rigid footing 

in an unsupported well.  An important aspect of eq. (5.31) is that Df takes practically a 

constant value for D/B> 8 (Fig. 5.13). This means that the ground surface ceases to 

influence the base stiffness for intermediate and high embedment ratio values. This ultimate 

Df value ranges from 1.36 for ν = 0.5 (saturated clay) to 1.5 for ν = 0.15 (dry sand).  
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Figure 5.13.  Variation of depth factor Df for static footing stiffness with embedment ratio 

D/B.   
 

  

The effect of embedment on the dynamic footing stiffness was investigated by 

Gazetas et al. (1985). However, the embedment D values considered in Gazetas et al. 

(1985) do not exceed the footing diameter B. In pile driving, the embedment ratio D/B values 

usually lie between 10 and 100 and the motion is highly transient (impact-type response). 

Moreover, the equations by Gazetas et al. (1985) are developed for steady-state oscillation. 

Gazetas et al. (1985) and many other researchers suggest that the radiation damping is not 

affected by the embedment.  In the present dynamic analyses, the footing is excited by an 

initial velocity (impact) applied at all the nodes of the footing, and the ensuing oscillations 

then dissipate by radiation and hysteretic damping. The soil is assumed to be linear elastic. 

Rayleigh damping is added in order to simulate soil hysteretic damping. The mass M and 

the diameter B of the footing were 1.96t and 0.5m, respectively. The soil has shear modulus 

G equal to 100000kPa and density ρ equal to 1.8t/m3. The elastic modulus assigned to the 

footing material was 1000 times greater than that of the soil in order to ensure that the 

footing will behave as a rigid body.  



95 

 

 

 

Table 5.1. Summary of results from FLAC simulations of embedded vibrating footing.  

 

 

embedment 
ratio D/B 

hyst. damp 
ξ (%) R (m) M (t) ρ (t/m3) G (kPa) ν Df K (kN/m) C (kN·s/m) K/KLysm C/CLysm C/Cemb.=0 C/Cξ=0 

0 0.01 0.25 1.96 1.8 100000 0.15 1.00 123529 121 1.05 1.14 1.00 1.00 

0 5 0.25 1.96 1.8 100000 0.15 1.00 123529 170 1.05 1.60 1.00 1.40 

0 15 0.25 1.96 1.8 100000 0.15 1.00 123529 265 1.05 2.50 1.00 2.19 

0 30 0.25 1.96 1.8 100000 0.15 1.00 123529 265 1.05 3.90 1.00 3.42 

0.5 0.01 0.25 1.96 1.8 100000 0.15 1.19 164706 212 1.40 2.00 1.75 1.00 

1 0.01 0.25 1.96 1.8 100000 0.15 1.28 167059 246 1.42 2.32 2.04 1.00 

1 5 0.25 1.96 1.8 100000 0.15 1.28 171765 304 1.46 2.87 1.79 1.24 

1 15 0.25 1.96 1.8 100000 0.15 1.28 182353 424 1.55 4.00 1.60 1.72 

1 30 0.25 1.96 1.8 100000 0.15 1.28 194118 615 1.65 5.80 1.49 2.50 

2 0.01 0.25 1.96 1.8 100000 0.15 1.38 205882 202 1.75 1.90 1.67 1.00 

2 5 0.25 1.96 1.8 100000 0.15 1.38 200000 276 1.70 2.60 1.63 1.37 

5 0.01 0.25 1.96 1.8 100000 0.15 1.48 235294 123 2.00 1.16 1.02 1.00 

5 5 0.25 1.96 1.8 100000 0.15 1.48 223529 191 1.90 1.80 1.13 1.55 

5 15 0.25 1.96 1.8 100000 0.15 1.48 223529 329 1.90 3.10 1.24 2.67 

5 30 0.25 1.96 1.8 100000 0.15 1.48 223529 562 1.90 5.30 1.36 4.57 

10 0.01 0.25 1.96 1.8 100000 0.15 1.50 223529 133 1.90 1.25 1.10 1.00 

10 5 0.25 1.96 1.8 100000 0.15 1.50 223529 202 1.90 1.90 1.19 1.52 

10 15 0.25 1.96 1.8 100000 0.15 1.50 223529 329 1.90 3.10 1.24 2.48 

15 0.01 0.25 1.96 1.8 100000 0.15 1.50 223529 138 1.90 1.30 1.14 1.00 

15 5 0.25 1.96 1.8 100000 0.15 1.50 223529 202 1.90 1.90 1.19 1.46 
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In addition, the footing thickness was set to a small value (=0.1m) in order to minimize wave 

transmission inside the footing mass. The combination of soil stiffness and footing mass is 

such that the natural period of the footing-system is roughly 0.02, which is typical of the 

period of motion of piles during driving. Analyses were performed for D/B from 0 to 15 and 

hysteretic damping ratio ξ  from 0.01% to 30%. Analyses were performed for a single 

Poisson’s ratio value (ν=0.15) because it is expected that the effect of ν  will be captured by 

Df (eq. 5.31). The main output of the analysis was the motion of the mass M. Modified 

values for the spring stiffness K and dashpot coefficient C of Lysmer’s analog that account 

for the embedment effect are determined by matching the footing response observed in 

each analysis with that predicted by the simple Lysmer’s analogue. The dynamic simulation 

results are summarized in Table 5.1.  

The ratio of the observed K values to the corresponding KLysm values yielded by eq. 

(5.29) leads to a depth factor Df,dyn for the dynamic base stiffness. From Table 5.1, it can be 

seen that the ratio K/KLysm is larger than the static depth factor Df. Moreover, the hysteretic 

damping has minimal effect on the stiffness except for D/B equal to 1.0. The dynamic depth 

factor can be expressed as  

 

( )1.7
f,dyn fD D=          (5.32) 

 

The stiffness enhancement under dynamic conditions can be attributed to the inertia of the 

soil above the footing elevation that is dragged down by the soil right underneath the footing.  

The initial stiffness of the nonlinear spring appearing in eq. (5.27) will be given by  

 

( )1.7
b,max Lysmer f,dyn Lysmer fK K D K D= =      (5.33) 

  
The ratio chys of the observed dashpot coefficient C to the corresponding dashpot coefficient 

for zero hysteretic damping Cξ=0 quantifies the effect of hysteretic damping on the radiation 

damping.  There is a theoretical solution for chys for steady-state response based on the 

correspondence principle of viscoelasticity (Dobry and Gazetas 1986): 
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b,max

Lysm emb
hys

2
1

K
C c

c ξ
ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= +         (5.34) 

 
The natural frequency of the pile is  

 

pile pile

pile

/
L

E ρ
ω μ=        (5.35) 

 

where Epile, ρpile and Lpile are the Young’s modulus, the density, and the length of the pile, 

respectively, and μ  is a coefficient that depends on the boundary conditions at the two ends 

of the pile. If the pile is assumed to be a rod with one end fixed and the other end free, then 

μ is equal to 1.57. If the pile is assumed to have both ends free, then μ is equal to 3.14. 

Since, the conditions at the ends of the pile in reality lie between these two extremes, we will 

assume μ equal to 2.4. 

The C/Cξ=0 values in Table 5.1 agree very well with those yielded by eq. (5.34), 

indicating that eq. (5.34) is also valid for transient motion. The soil mass outside the base 

failure mechanism is expected to be in the small to intermediate shear strain regime. It is 

common in the analysis of machine foundations to assume ξ between 2% and 5%. We use 

the upper value of 5% in dynamic pile driving analysis because the amplitude of the quasi-

elastic deformation in the soil outside the bearing capacity mechanism is most likely larger 

than that occurring under machine foundations.  

The ratio of the observed C values to the corresponding CLysm values yielded by eq. 

(5.30) helps us establish a depth factor for the radiation damping. From Table 5.1, we see 

that C/CLysm starts from 1.0 (at D/B=0) and increases rapidly, attaining a peak value at 

D/B=1. Beyond that point, C/CLysm decreases with increasing embedment ratio, reaching a 

plateau at D/B=5 (at the same point Df reaches its ultimate value). By dividing C/CLysm by the 

corresponding chys from eq. (5.34), we obtain values of the depth factor for the radiation 

damping cemb. The depth factor cemb values can be fitted closely by the following equation: 

 

 1.3 sin 1.25 0.35 exp 0.24emb
D Dc
B B

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
       (5.36) 
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Figure 5.14.  Velocity field in dynamic FLAC analysis showing wave propagation in all 

directions.  
 
The factor cemb reaches a final value equal to 1.3 for large D/B. This means that the radiation 

damping coefficient for the pile base needs to be 30% greater than the one for a footing on 
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the ground surface.  The 30% increase in Cb is caused by the embedment of the footing into 

the ground, which allows a certain part of the energy emanating from the vibrating footing to 

propagate not only downwards and laterally but also upwards. This is easily visualized by 

plotting the velocity field around the vibrating footing (Fig. 5.14). The wave front increases in 

size with time in all directions, including the upward direction. Thus, a part of the initial 

energy is lost in the soil above the pile base elevation.  

After the bearing capacity mechanism under the pile base is fully formed, waves stop 

being transmitted from the pile to the far-field soil, with the possible exception of some minor 

transmission of energy through the lateral boundaries of the mechanism. The soil in contact 

with the lateral boundaries of the mechanism provides predominantly horizontal reaction to 

the rotation of the fan zones of the collapse mechanism. The waves transmitted to the soil 

mass diminish as the bearing capacity mechanism develops. Hence, the influence of the 

radiation damping should decrease with increasing plastic deformation inside the 

mechanism. Radiation damping is associated mostly with the quasi-elastic deformation 

outside the bearing capacity mechanism since only such deformation will result in wave 

propagation to the far field. Therefore, the radiation dashpot reaction Rb
(D) should be 

proportional to the rate of the elastic component of the deformation (base settlement): 

 

   ( )( )
b Lysm emb hys b,el

DR C c c w=          (5.37) 

 
Based on eq. (5.27), the elastic component of the pile base settlement is  

 

( )

b,el b2

b b,rev
fb

bf b

1

1
1

w w
R LI R

b
LI sgn R R

=
⎛ ⎞− ⋅

+⎜ ⎟⎜ ⎟+ × ⋅ −⎝ ⎠

       (5.38) 

 
and the radiation dashpot coefficient for the pile base to be used in eq. (5.26) becomes  

 

( )

Lysm emb hys
b 2

b b,rev
fb

bf b

1
1

C c c
C

R LI R
b

LI sgn R R

=
⎛ ⎞− ⋅

+⎜ ⎟⎜ ⎟+ × ⋅ −⎝ ⎠

       (5.39) 
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At the beginning of the base loading and at the moments of loading-reloading, eq. (5.39) 

yields a radiation dashpot coefficient value equal to that of the elastic solution. The base 

radiation dashpot coefficient decreases gradually towards zero as plastic deformation 

becomes more pronounced and the tangent modulus of the base spring approaches zero.  

 

5.4 Soil reaction model input parameters 

 

The input parameters used directly in the shaft and base reaction models are:  

1) soil density ρ ; 

2) maximum (i.e., small-strain) shear modulus Gmax or, alternatively, the shear wave 

velocity Vs of the soil; 

3) soil’s Poisson’s ratio ν ; 

4) plasticity index PI;  

5) pile dimensions (radius R and length L);  

6) static unit shaft resistance qsL;  

7) static unit base resistance qbL;  

8) soil viscosity parameters ms, ns, mb and nb  

 

Additional soil properties are needed for the indirect estimation of some of the 

aforementioned parameters, such as Gmax, the limit resistances, and the viscosity 

parameters. These are: 

a) relative density DR and the critical state friction angle φc for sandy soils; 

b) the undrained shear strength su and overconsolidation ratio OCR for clayey soils. 

 

It can be seen that most of the input parameters pertaining to the soil are standard 

parameters that are commonly used in geotechnical engineering. There are no parameters 

that are specific to the pile driving problem. This reduces significantly the degree of 

empiricism in the dynamic pile analysis. A number of input parameters are expected to be 

found in any geotechnical report. These are the soil density ρ, the plasticity index PI, the 

relative density DR, and the undrained shear strength su.  

The static unit pile shaft and base resistances can be calculated according to the 

static design methods presented in Chapter 3.  The qbL can also be determined directly from 

CPT data, if available. The unit shaft and base resistances will be inputs to the calculation 
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algorithm for drivability analysis. In the case of back-calculation of the static pile capacity 

from driving data collected during driving or a re-strike test, the qbL and qsL will be the output 

of the analysis procedure. Nonetheless, good initial qbL and qsL guesses will accelerate 

convergence of the calculation process.  

 

5.4.1 Selection of small-strain soil parameters 

The Poisson’s ratio used in the model equations is the small-strain Poisson’s ratio. 

Measuring the Poisson’s ratio require elaborate experimental procedures (use of high-

resolution local strain transducers). Therefore, it is expected that there will be no data 

regarding the Poisson’s ratio. However, Poisson’s ratio estimates can be easily made since 

it shows practically no dependence on soil density and confining stress (Gazetas, 1991). 

The small-strain Poisson’s ratio takes values in the 0.1 to 0.25 range for soils with degree of 

saturation Sr < 70%, with the lower range values being more representative of sands. 

Standard values of 0.15 and 0.22 can be used for sandy and clayey soils, respectively, 

without much impact on the analysis results. The value of Poisson’s ratio increases as the 

degree of saturation increases beyond 70%. For saturated or nearly saturated soils 

(Sr>95%), the Poisson’s ratio should be set equal to 0.5.  

The small-strain shear modulus is an input parameter in both shaft and base reaction 

models. Direct determination of the small strain shear modulus (or alternatively the shear 

wave velocity) requires specialized laboratory testing, such as resonant column tests and 

bender element tests, or field testing, such as cross-hole or down-hole tests. It is highly 

unlikely that measured Gmax or Vs data will be available in routine projects. Such testing is 

usually done in the context of research or in important projects in seismic regions. 

Therefore, we need to estimate Gmax based on information gathered from the field 

exploration procedures that are employed in routine projects. These will be the relative 

density DR of sandy soils calculated from SPT or CPT data and the undrained shear 

strength su for clayey soils determined either from laboratory tests (UC, UU) or CPT data. 

The plasticity index PI and the overconsolidation ratio OCR can also be determined from 

collected specimens.  

The small-strain shear modulus of granular soil with rounded particles can be 

estimated using the correlation established by Hardin and Black (1968): 
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( )2

max

2.17
691

1 A

e
G p p

e
−

′=
+

      (5.40) 

 

where e is the void ratio, p′ is the mean effective stress, and pA is a reference stress (the 

standard atmospheric pressure of 100kPa=0.1MPa=1kgf/cm2=1tsf). In the case of granular 

soil with angular particles, an equation of similar form was also proposed (Hardin and Black 

1968): 

 

( )2

max

2.97
323

1 A

e
G p p

e
−

′=
+

      (5.41) 

 

An extended version of eq. (5.41) for clayey/silty soils (Hardin and Drnevich 1972) takes the 

form 

 

( ) ( )
2

max

2.97
323

1
k

A

e
G OCR p p

e
−

′=
+

     (5.42) 

 

The power k to which the overconsolidation ratio OCR is raised is given in Table 5.2. Eq. 

(5.42) may overpredict the stiffness of silts and clays that have low void ratios, comparable 

to that of sands (0.4 to 1.0). Kim and Novak (1981) proposed the following equation for clays 

and silts, which has range of applicability regarding void ratio e from 0.4 to 1.1: 

 

( ) ( ) g g

2
1

max

2.97
1

k n n
g A

e
G C OCR p p

e
−−

′=
+

        (5.43) 

 

with Cg in the 54 to 208 range and ng in the 0.46 to 0.61 range. Equations (5.40) through 

(5.43) require knowledge of the soil void ratio. In the case of sandy soils, obtaining the void 

ratio from relative density requires knowledge or good estimation of the minimum and 

maximum void ratios (emin and emax). 
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Table 5.2. Exponent k for eqs. (5.42) and (5.43) 
 

 

 

 

 

 

 

 

 

There are correlations that give Gmax not as a function of the void ratio but as a 

function of variables that will be readily available in any deep foundation design project, 

namely the sand relative density DR and the clay su. For example, Gmax for sands can be 

estimated from the empirical relationship (Seed and Idriss 1970): 

  

max 2,max1000G K p′=          (5.44) 

 

where K2,max is determined from relative density of the sand (Table 5.3). The mean effective 

stress in eq. (5.44) and the resulting Gmax   are in psf.   

 
 
 

Table 5.3. Estimation of K2,max (Seed and Idriss 1970) 

Dr(%) K2,max 

30 34 
40 40 
45 43 
60 52 
75 59 
90 70 

 

 

For fine-grained soils, Gmax can be estimated from su, OCR and PI using the correlation by 

Weiler (1988):  

max u uG K s=          (5.45) 

Plasticity 
Index (PI) k 

0 0.00 
20 0.18 
40 0.30 
60 0.41 
80 0.48 
≥100 0.50 



104 

 

 

 

 

Table 5.4. Values of Ku after Weiler (1988) 

PI 
Ku 

OCR=1 OCR=2 OCR=5 

15-20 1100 900 600 
20-25 700 600 500 

35-45 450 380 300 
 

 

Finally, if CPT data is available, one may use the correlations shown in Table 5.5 in order to 

estimate Gmax directly from the measured cone resistance qc. 

 

 

Table 5.5.  Correlations between Gmax and cone resistance qc (from Kramer 1996) 
Relationship Soil Type Reference Comments 

( ) ( )0.250 0.375
max 1634 'c vG q σ=  Quartz 

Sand 
Rix and Stokoe 

(1991) 

Values in kPa; 
Based on calibration 
chamber and field 

tests 

( )0.695 1.130
max 406 cG q e−=  Clay Mayne and Rix 

(1993) 
Values in kPa; 

Based on field tests 

 

 

5.4.2 Selection of soil viscosity parameters 

The soil viscosity parameters have been measured in only few research projects. It is 

practically impossible for site specific measurements of these parameters to be available in 

routine deep foundation design. Therefore, the parameters ms, ns, mb and nb will need to be 

estimated based on the findings of existing research studies. Coyle and Gibson (1970) 

performed triaxial tests with the soil specimen loaded dynamically by a falling mass. Coyle 

and Gibson (1970) were the first to propose this power law for the shear strength under 

dynamic conditions: 

 

dyn stat
ref

1
n

wR R m
w

⎛ ⎞⎛ ⎞⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
         (5.46) 
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where refw is a reverence velocity taken as 1m/s. The data by Coyle and Gibson (1970) 

shows that the exponent n is in the 0.18 to 0.26 range for sands and in the 0.11 to 0.25 

range for clays. The multiplier m varies from 0.34 to 0.56 for sand and from 0.95 to 1.55 for 

clays.  Dayal and Allen (1975) performed cone penetration tests in sand and clay in the 

laboratory at various rates of penetration. The penetration rates were always high enough 

that fully undrained conditions existed in the tests in clays. Results from experiments in clay 

show that mb = 0.49 and nb = 0.23 for cone tip resistance, while, for sleeve resistance, 

ms=0.93 and ns=0.34. Dayal and Allen (1975) observed no gain in cone resistance or sleeve 

resistance in sands even at penetration velocities up to 0.8m/s. Heerema (1979) also did not 

observe a rate effect on the interface friction between sand and steel. This is in contrast with 

model pile load tests in sand by Flemming (1958), who observed rate effects that can be 

modeled using ms=0.25 and ns=0.12. The interface shear tests between clay and steel by 

Heerema (1979) show that ns is in the vicinity of 0.2 and ms ranges from 0.6 to 1.9. Litkouhi 

and Poskitt (1980) performed model pile load tests in clay, measuring shaft and base 

resistance independently. According to shaft resistance data, ms falls between 0.78 and 2.1, 

with ns in the 0.16 to 0.57 range. For base resistance, mb ranges from 0.44 to 1.0 and nb 

from 0.17 to 0.37. Model pile load tests in clay by Brown (2004) yield ms and ns values 1.26 

and 0.34, respectively, which are in agreement with the Litkouhi and Poskitt (1980) data.  

The parameters ns and nb fall in a relatively narrow range, with most values being in 

the vicinity of 0.2, with only a few cases falling outside the 0.15-0.25 range. Hence, most 

researchers proposed to consider a single ns=nb=0.2 independently of the soil type. For 

clays, mb is shown to be less than ms, suggesting that the rate effect is more pronounced for 

shaft resistance than for  base resistance. This can be explained by the fact that the 

average velocity inside the plastic mechanism below the pile base is less than the base 

velocity. The mb and ms take higher values for clays than for sands. This is because of the 

high viscosity exhibited by clays compared to sands. The input parameters mb and ms are 

fitting parameters similar to the damping factors js and jb used in the Smith-type reaction 

models (eqs. 4.5 and 4.8). However, the scatter of the mb and ms values is much smaller 

than that of the js and jb values. This means that in reality the dependence of soil strength on 

loading rate is highly nonlinear and is better fit by eqs. (5.19) and (5.28) rather than by the 

Smith-type reaction models, which assume a linear dependence. The observed nonlinearity 

is captured adequately by the power law proposed by Coyle and Gibson (1970). 
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Lee et al. (1988) collected the data of several experimental studies (Coyle and 

Gibson, 1970; Dayal and Allen, 1975; Dolwin et al., 1979; Heerema, 1979,1981; Litkouhi 

and Poskitt, 1980) and found that the parameters ms and mb correlate relatively well with the 

shear strength parameters of the soil; the stronger the soil is, the smaller the ms and mb 

values are. Lee et al. (1988) consider a value of 0.2 for both ns and nb, independently of the 

soil type. Based on Lee et al. (1988), the following correlations can be established  

 

u
s

A
1.65 0.75 sm

p
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

         (5.47) 

u
b

A
1.2 0.63 sm

p
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

         (5.48) 

for clays, and 

( )b 1.5 0.083 30om φ= − −          (5.49) 

for sands, where φ  is the sand peak friction angle in degrees. Lee et al. (1988) assume that 

the multiplier ms for the pile shaft in sands is negligible. In this study, we will use the Lee et 

al. (1988) correlations for clayey soils (eqs. 5.47 nad 5.48). In addition, we will assume 

mb=ms=0.3 for sands in accordance with Coyle and Gibson (1970) and Randolph (2003). 

The exponents ns and nb will be set equal to 0.2 independently of the soil type. 

 

5.5 Pile driving analysis solution algorithm 

 

In FEM or FDM, there are two approaches available regarding the discretization of a 

system’s mass: the lumped mass formulation and the consistent mass formulation. 

According to Cook et al. (2002), a lumped mass formulation is likely to provide better 

accuracy than a consistent mass formulation, in addition to its reduced computational cost 

per time step. The pile discretization into springs and masses is shown in Fig. 5.15. The 

continuous pile is replaced by N-1 lumped masses (Mi). The ram (pile hammer) is also 

represented in the system as an additional mass (M1). The lumped masses are connected to 

each other through linear springs (Ki). A force Rs,i due to the soil around the pile shaft is 

exerted on each pile lumped mass lying below the ground surface. The base reaction Rb 

acts on the last (Nth) mass.  
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The lumped pile masses are given by  

 

    i pile iM L Aρ= Δ         (5.50) 

 

where ρpile is the density of the pile material, A is the pile cross-sectional area, and ΔLi is the 

length of the pile segment corresponding to the pile lumped mass. The pile segments do not 

have to have the same length. The pile discretization should generally be consistent with the 

soil profile at hand. Having pile segments intersecting more than one layer should be 

avoided, otherwise average soil properties will need to be assigned to the shaft reaction 

models. The first mass of the system corresponds to the mass of the hammer ram 

 

ram
1 ram

WM M
g

= =         (5.51) 

 

where Wram  is the weight of the ram of the driving system and g is the acceleration of 

gravity. 

The stiffness of the interconnecting pile springs is given by   

 

 
( )

pile
i

i i-10.5
E A

K
L L

=
Δ + Δ

            (5.52) 

 

where Epile is the Young’s modulus of the pile. The spring connecting the pile head to the pile 

hammer needs to combine the stiffness of the first pile element and the stiffness of the ram:  

 

pile ram ram

2 ram
2 com

pile ram ram

2 ram

0.5

0.5

E A E A
L L

K K E A E A
L L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠= =

+
Δ

          (5.53) 

where Eram, Aram and Lram are the Young’s modulus, the cross-sectional area and the length 

of the ram. Because tensile forces cannot be transmitted between pile head and ram in the 

case of ram rebound, the stiffness Kcom is set equal to zero whenever the force in the first 

spring tends to take negative values. 
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Figure 5.15. Formulation of 1-D dynamic analysis: discretization of pile into lumped masses 

with soil reactions applied to each lumped mass.   
 

  

The global stiffness matrix of the system is tridiagonal: 

 

[ ]

com com

com com 3 3

3 3 4

N-2 N-1 N-1

N-1 N-1 N N

N N

0 0 0 0
0 0 0

0 0 0 0

0 0 0 0
0 0 0
0 0 0 0

K K
K K K K

K K K
K

K K K
K K K K

K K

−⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− +
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

− + −⎢ ⎥
⎢ ⎥−⎣ ⎦

     (5.54) 

 

The global mass matrix of any system comprising of lumped masses is a diagonal matrix: 
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[ ]

ram

2

3

N-2

N-1

N

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M
M

M
M

M
M

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (5.55) 

 

Shaft reaction forces Rs,i are applied to each pile lumped mass that is below the ground 

surface. The base reaction force Rb is applied at the pile base in addition to the 

corresponding shaft reaction Rs,N. At each time increment, the values of Rs,i and Rb are 

calculated using eq. (5.18b) and eq. (5.26), respectively. In lumped mass systems, the 

damping matrix is also diagonal. All elements in the damping matrix [ ]C  are equal to zero 

except the last diagonal element (corresponding to the pile base), which is equal to Cb. This 

is because any shaft reaction component due to damping is already included in the force 

Rs,i.  

 The system of equations of motions is then  

 

[ ]{ } [ ]{ } [ ]{ } { }pile pile pile 0M w C w K w R+ + + =        (5.56) 

 

where { }pilew , { }pilew , and { }pilew  are the vectors of acceleration, velocity and displacement 

of the pile lumped masses, and { }R  is the vector of corresponding soil reactions (Rs’s and 

Rb). The system of equations of motions is solved numerically by discretizing the time in 

small increments Δt. Any explicit or implicit time integration algorithm can be used. Here we 

use Newmark’s algorithm because it has been found to be more accurate than the central 

difference algorithm. The displacement, velocity, and acceleration of each pile segment at 

time t+Δt are computed using the following equations, respectively: 
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where [Keff] is the modified stiffness matrix, given by  

 

[ ] [ ] [ ] [ ]eff 2

1K K C M
t t

γ
β β

= + +
Δ Δ

         (5.60) 

 

According to Newmark’s algorithm, the reaction vector appearing in eq. (5.57) ought to refer 

to time t+Δt. In the pile driving problem, the { }( )t t
R

+Δ
cannot be known before calculation of 

{ }( )t t
w

+Δ
, which would require performing an iteration for each time increment. Here, the 

reaction vector corresponds to time t in order to avoid the increased computational cost 

caused by iterations. It was found that this time lag between input reactions and computed 

displacement has no effect on the predicted response for the small time increments used in 

pile driving analysis. 

Newmark’s algorithm is unconditionally stable as long as the integration factors 

β  and γ satisfy the inequality  

12
2

β γ≥ ≥          (5.61) 

We use β =0.25 and γ=0.5, which correspond to the so-called average acceleration method. 

Higher β  and γ  values introduce into the solution a certain amount of numerical damping, 

which may be beneficial in cases where spurious high frequency numerical noise arises 

during integration. These numerical factors control accuracy, numerical stability, and the 

amount of algorithmic damping. Although the numerical algorithm is unconditionally stable, 

the time step size needs to be sufficiently small to obtain an accurate solution to the highly 
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nonlinear pile driving problem. Generally, the time increment size must be small enough that 

information does not propagate more than the distance between adjacent nodes during a 

single time step.  This means that the time increment Δt needs to be smaller than the 

threshold value 

 

i
lim

E

min( )Lt
V

Δ
Δ =          (5.62) 

 

where VE is the wave velocity inside the pile, given by 

 

pile
E

pile

E
V

ρ
=           (5.63) 

 

Trial simulations show that results are practically no longer influenced by the time step size 

for Δt values less than 0.1Δtmin.   

The analysis starts with the ram mass impacting the pile head with a velocity V0.  

The impact velocity is given by the equation 

 

i
1 0

ram

2 2f f
Ew V e gh e

M
= = × = ×       (5.64) 

 

where g is the acceleration of gravity, h is the hammer drop height, and ef is the driving 

system efficiency expressing the energy losses inside  the pile hammer system and inside 

the assembly placed between pile head and hammer (pile helmet, hammer and pile 

cushions). Ei is the initial potential energy of the hammer (M×g×h; also called the 

‘theoretical’ energy). In the case of diesel hammers, the boundary condition at the pile head 

is more accurately represented by a hammer force time history at the pile head (force pulse) 

instead of a ram mass with initial velocity. For simplicity, we will not account explicitly for the 

presence of pile helmet, anvil and cushion. Their effect can be implicitly incorporated in the 

analysis by altering accordingly the ram mass (or the pile lumped mass) and stiffness of the 

first spring. Any energy losses in the assembly placed between pile head and hammer can 

be accounted for through the efficiency ef. 
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CHAPTER 6. FIELD AND MODEL PILE LOAD TESTS 
 

This chapter presents the results from the experiments done on two full-scale steel pipe 

piles and six model pipe piles. The experiments include 1) pile driving monitoring and static 

load testing of the full-scale pile, 2) pile driving monitoring and static load testing of the 

model piles. Procedures followed in conducting the pile tests are presented in detail. 

Pictures taken during the preparation of the pile and during the field tests are shown in the 

APPENDIX. The results are used in Chapter 7 for validating the proposed dynamic pile 

analysis modeling approach discussed in Chapter 5.   

 

6.1 Field pile load test in Jasper County 

 

A full-scale steel pipe pile was installed on the north side of a bridge construction project 

over Oliver ditch, on State Road 49, in Jasper County, Indiana.  The purpose of this field 

load test was to examine setup effects in clay as well as to study the dynamic behavior of 

piles during driving. Figure 6.1 shows the location of all piles installed at the site as well as 

the location of instrumentation and in situ testing (SPT and CPT locations marked with ‘S’ 

and ‘C’, respectively). There were two instrumented test piles; one was a closed-ended steel 

pipe pile (MP1) and the other an H-pile (MP2). Nine other piles acted as reaction piles for 

the static load tests. In the present report we will focus on the results obtained from the 

closed-ended pipe pile.   

 

6.1.1 Laboratory and in situ testing 

Extensive in situ and laboratory testing was performed to characterize the soil profile and 

obtain the soil properties for each layer in the profile. The split spoon samples obtained from 

different depths showed that the soil profile consisted mainly of a thick deposit of clayey silt 

and silty clay down to 25m depth.  Several seams of sand and silt were also present. Table 

6.1 summarizes the soil property values determined by laboratory testing.  Figure 6.2 shows 

data from CPT logging at three locations close to pile MP1. It can be seen that the soil 

profile consists of soft to moderately stiff clay and silt  and medium dense to dense clayey 
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sand down to a depth of 17m, at which point a 2m-thick layer of very stiff silt is encountered 

(qc up to 50MPa) .  
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Figure 6.1. Plan view of field pile test layout 
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Comparison between the data from CPT loggings C2 and C7, which are 5m apart, reveals 

that the variability of the soil profile in the horizontal direction is very small. Cone penetration 

resistance is compared with SPT blowcounts from nearby boreholes in Figure 6.3. All the 

samples recovered were found to be fully saturated (degree of saturation very close to 

100%). The water table was estimated to be at 1m depth at the time of testing.  

Four vibrating wire piezometers were also installed to monitor the excess pore 

pressure generated in the soil during pile driving.  The piezometers were installed close to 

the boundaries of the test site and at a safe distance from the piles (Fig. 6.1) in order to 

avoid being damaged during pile driving. At each location, two piezometers were installed at 

two different depths (13.5m and 17.8m) inside the clay layers.  A Campbell Scientific 

datalogger (model CR5000) was used to record the piezometer signals. The datalogger has 

the capabilities of recording under both static (long-term) and dynamic conditions (very-short 

term).   

 

 

Table 6.1. Soil properties for samples obtained from Jasper County pile load test site 

Soil Type 
Depth 

(m) 

PI 

(%) 

Total Unit 

Weight 

(kN/m3) 

DR(%) e0 OCR 
su 

(kPa) 

Organic 0 - 1 89 13.4 - 3.56 - - 

Silty Sand 1 - 4 0 20.0* 78 - - - 

Clayey Sand 4 - 7 0 20.0* 52 - - - 

Sandy Clay 7 - 8 0 20.0* - - - - 

Clayey Sand 8 - 9 0 20.0* 81 - - - 

Silty Clay 9 - 10 19 20.1 - 0.73 3.2 220 

Clayey Silt 10 - 12 10 20.6 - 0.63 1.9 320 

Silty Clay 12- 14 9 21.9 - 0.45 4.9 103 

Clayey Silt 14 - 16 10 21.6 - 0.4 2 292 

Clayey Silt 16 - 17 10 21.6 - 0.4 2 292 

Stiff Silt 17-18.4 0 22.0* 95-100 - - - 

* These values are assumed.  It was not possible to obtain laboratory test data because of high 

sample disturbance. 
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Figure 6.2. Cone penetration test results 
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Figure 6.3.  Comparison between CPT and SPT test results 
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6.1.2. Pile Instrumentation 

The closed-ended pipe pile was a spiral weld steel pipe with an outer diameter of 356mm 

(14 in) and a wall thickness of 12.7mm (0.5 in).  The end was closed with a 25.4mm (1in) 

thick steel plate welded to the base.  The pile was embedded approximately 0.3-0.4m in the 

very stiff clay layer to a depth of 17.4m below ground level.  The total length of the pile was 

about 20m, including the part above ground.  The instrumentation of the pile included strain 

gages, accelerometers, and strain transducers. Strain gages were used in the static load 

tests to determine the static shaft and base resistance of the pile.  Accelerometers and 

strain transducers (PDA instrumentation) were used to obtain the pile acceleration and force 

time histories at the pile head and at the pile base.   

Thirty four (34) Geokon vibrating-wire strain gages (model 4150) were attached to 

the closed-ended pipe pile at 17 levels. Two gages were attached diametrically opposite at 

each elevation. These strain gages measure the strain induced by loading as the length of 

the vibrating wire changes. This type of strain gage is only suitable for static measurements 

because it cannot measure the high-frequency changes in strain present in dynamics 

testing.  The data acquisition system for the vibrating wire strain gages was the Micro-10 

Geokon datalogger (model 8020). Three multiplexers (model 8032-16-1) were used to allow 

the datalogger to capture the signal from all gages simultaneously. The strain gages were 

carefully placed away from the welding joints of the spiral weld and the pile surface was 

smoothed and cleaned before the strain gages were welded to their location.  In order to 

protect the gages from the wet conditions expected on site, each gage was individually 

covered with a steel cap and sealed with silicone. An iron angle, 76mm (3in) wide and 6mm 

(0.24in) thick, was also used to protect all the strain gages and their cables from direct 

contact with the soil during pile driving.  The locations of all strain gages are shown in Fig. 

6.4. Pictures taken during the preparation of the pile and during the field tests are shown in 

the APPENDIX.  The stress at the pile shaft is calculated from the measured strain based on 

the Young’s modulus of the pile material using Hooke’s law. The base resistance was 

calculated from the measurements obtained from the bottom row of strain gages. The total 

pile resistance was also measured by a load cell placed between the hydraulic jack and the 

reaction beam. There is a good match between the total pile resistance calculated based on 

the strain gage measurements and that measured by the load cell. 

For the dynamic testing, two strain transducers and two piezo-electric 

accelerometers were attached to the pile shaft two diameters below the pile head. A second 

set of strain transducers (F1 and F2) and piezo-electric accelerometers (A1 and A2) were 
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attached to the pile base as shown in Fig. 6.5. The pile driving analyzer (PDA) was used to 

record the acceleration and force data during pile driving.     
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Figure 6.4. Location of strain gages on pipe pile 
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Figure 6.5.  Location of accelerometers A1 and A2 and strain transducers F1 and F2 at pile 
base 
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6.1.3 Pile driving and dynamic test results 

The ICE-42S single-acting diesel hammer was used to drive all piles in this project. The ram 

weight was 18.2 kN. The maximum hammer stroke is 3.12m and the rated maximum driving 

energy was 56.8 kJ.  The actual driving energy delivered to the pile head was on average 

about 36% of the initial potential (rated) energy of the ram.  From 0 to 10m of pile 

penetration, the observed hammer stroke was about 2m on average. By the time the pile 

had reached the final penetration depth of 17.4m, the observed stroke had risen to the value 

of 2.8m.   

Fig 6.6 shows the cumulative hammer blow counts and the pile penetration per blow 

vs. depth of penetration. Driving resistance is negligible for the first 3m of depth, as the pile 

penetrates the superficial layers of organic soil and soft clay. The blow count increased 

gradually with depth until the stiff silt layer (bearing layer) was reached.  At approximately 

17m depth, there was a large increase in the number of hammer blows as the pile 

penetrated the stiff silt layer (20mm/blow).  Driving stopped when the pile was sufficiently 

embedded in that layer.  The pile was driven in two sections because the total pile length 

was greater than the length that the hammer guide could accommodate.   
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Figure 6.6.  Driving resistance of closed-ended pipe pile 
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The acceleration and force time histories were recorded for every hammer blow using the 

Pile Driving Analyzer (PDA). The velocity and displacement time histories are extracted from 

the acceleration records through numerical integration with time. This is done automatically 

by the PDA. Figures 6.7 and 6.8 show examples of the velocity and displacement time 

histories at the pile head, respectively. The peak velocity at the pile head is of the order of 

6m/sec, and the total duration of the motion is 0.075s to 0.2s. The pile head displacement 

increases with time until a peak is reached, after which it decreases to a final residual 

displacement (the pile “set”). The observed shape of the displacement vs. time curves is 

typical of the pile response during driving. Both peak and residual pile head displacement 

decrease as the pile penetrates deeper into the ground. 

Acceleration records were obtained also from accelerometers placed close to the pile 

base. However, the acceleration records obtained at the pile base were found to be 

unreliable. Fig. 6.9 shows the displacement time histories at the pile base for various 

hammer blows. The final displacement values at the pile base are found to be negative, 

while the corresponding pile set was positive. The pile base motion time histories are 

erroneous probably due to excessive noise caused by reflections and wave scattering at the 

pile base. The protective iron angle and the base plate with its welding seams constitute 

irregularities of the pile cross-section. The excessive noise renders the numerical integration 

with time unreliable. It is possible that the accelerometer calibration and configuration was 

unsuitable for the frequency content of the motion it was meant to record. It is also possible 

that the poor-performance of the accelerometers was due to malfunctioning. Finally, Fig. 

6.10 shows the force histories at the pile base derived from the strain transducer 

measurements.  
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Figure 6.7.  Velocity records at pile top for different hammer blows (pile MP1, Jasper 

County). 
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Figure 6.8.  Displacement records at pile top during different driving stages of pile MP1 in 

Jasper County 
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Figure 6.9. Displacement time histories at pile base for different hammer blows (pile MP1, 

Jasper County). 
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Figure 6.10. Force records at pile base during final driving stages (pile MP1, Jasper County). 
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6.1.4 Static Pile Load Testing 

The reaction frame that was designed for the static load test is shown in Fig. 6.11.  The 

reaction piles were driven to depths of either 17.4m or 24.5m, depending on the required 

resistance during the static load tests. Two static load tests were conducted on the closed-

ended pipe pile.  The total load applied to the pile head was measured by a load cell with a 

capacity of 2.0 MN.  The vertical settlement of the pile head was measured by two dial 

gages attached to two reference beams.  The values of all strain gages were zeroed before 

the start of each static load test.  The load is applied in increments on the pile head using a 

hydraulic jack.  At each loading increment, the settlement is recorded after 5, 15, 35, 55, 75, 

95, and 120 min.  The next loading increment is applied when the pile settlement stabilizes 

(settlement rate becomes less than 0.025mm/h). The magnitude of the loading increments 

at the early stages of each test was initially 0.4MN and was reduced progressively to 0.05 

MN near the end of the test.  Decreasing the loading increment as the pile gets closer to 

failure allows accurate determination of the plunging load.  
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Figure 6.11. Reaction frame system and setup for static load test 
 

 

The two static load tests were carried out 50 (test No.1) and 90 (test No.2) days after 

driving, respectively. Therefore, it is expected that the pile load test results will reflect some 

amount of pile setup. Pile setup is the phenomenon of increase in pile capacity with time 
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and is particularly pronounced in the case of clayey soils because of the development of 

pore pressure during driving, which then dissipates slowly after pile installation. Fig. 6.12 

shows the axial load-settlement curves from both static load tests. Both curves approach the 

same limit load of 1900kN, although the second test shows a much stiffer response. 

CAPWAP analysis based on the PDA-recorded force and velocity at the pile head during 

driving yielded a limit load of 908kN. Part of the difference between pile load test and 

CAPWAP results should be attributed to pile setup. 
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Figure 6.12.  Load-settlement curves for field static load tests on pile MP1 in Jasper County 
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Figure 6.13. Load transfer curves from the static load tests on pile MP1 in Jasper County. 
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The load transfer curves derived from the strain gage data shown in Fig. 6.13. The load 

transfer curves stop changing inclination and shape very early in the loading process, at a 

fraction of the pile limit load. This because the limit shaft resistance is reached well before 

the final loading, while the base load keeps increasing. After limit shaft capacity is reached, 

each load transfer curve is simply a parallel translation of the previous one.  Fig. 6.14 shows 

the unit shaft resistance derived from strain gage data. The limit shaft resistance is very 

small in the upper 8m of the soil profile, at which point it starts increasing with depth. This is 

consistent with the CAPWAP results, which show almost zero limit shaft resistance above 

8m depth.   
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Figure 6.14. Unit shaft resistance versus depth. 
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6.2 Model pile load tests 

 

6.2.1 Experimental setup 

The model pile load tests were conducted at the Bowen Laboratory for Large-Scale Civil 

Engineering Research at Purdue University. The purpose of the model tests was to obtain 

dynamic and static pile load data from tests performed under fully controlled conditions, 

avoiding the large uncertainties that are inherent in natural soil profiles. Two model piles and 

a drop hammer driving system were manufactured specifically for these tests. Both model 

piles were close-ended pipe piles.  The first pile (model pile I) is made of mild steel and is 

1.05m long. Its outer diameter is 33.4mm with wall thickness 4.54mm. The average 

roughness Ra of mild steel is in the 5μm to 10μm range. The second pile (model pile II) is 

made of stainless steel and is 1.10m long. The outer diameter and the wall thickness of the 

model pile II is 30.2mm and 2.1mm, respectively. The roughness Ra of pile II is 0.63μm.  

The model piles were driven by a 3.06kg hammer with drop height ranging from 0.5m 

to 1.0m. The model pile and drop hammer assembly schematics are shown in Fig. 6.15.  

The closing end at the base of the model piles was configured so that it can function as a 

load cell (Figure A.7 in the Appendix). The model piles were instrumented with two piezo-

electric accelerometers attached to the pile head. Pile I was also instrumented with six 

electric resistance strain gages. Two of the strain gages and the two accelerometers were 

installed diametrically opposite approximately two diameters below the pile head.  The other 

four strain gages were placed in the specially configured base.  Pile II was instrumented with 

nine pairs of strain gages at the shaft and four strain gages at the base (Fig. 6.16).  

However, the strain gages that were attached to the pile shaft gave unreliable results 

(negative shaft resistance, large difference between gages in the same pair). Therefore, the 

determination of load transfer curves along the shaft was not possible in the model pile 

tests. A list of the model pile load tests is given in Table 6.2. 

 

6.2.2 Soil properties 

The first two tests in Table 6.2 were done with medium grained Ottawa sand (D50=0.39mm) 

designated as ASTM C778. This type of Ottawa sand has been tested extensively at Purdue 

University and its small- and large- strain soil properties are well-known. It is a uniform 

quartz sand (coefficient of uniformity Cu=1.43) with round to subround particles. The 
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maximum and minimum void ratios emax and emin are 0.78 and 0.48, respectively (Carraro et 

al., 2003). The critical-state friction angle cφ  in triaxial compression is 30.2o (Murthy et al., 

2007). Based on bender element test data, the small-strain shear modulus of Ottawa sand is 

given by the following equation (Carraro et al., 2003; Carraro, 2004):  

 

2
0.5630.437

max A
(2.17 )611

1
eG p p

e
− ′=

+
        (6.1) 

 

where e is the void ratio, p′ is the mean effective stress, and pA is a reference stress 

(=100kPa). 
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Figure 6.15.  Model pile and drop hammer assembly 
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Figure 6.16.  Arrangement of strain gages in model pile II 
 

 

Table 6.2.  List of model pile tests (tests 3-6 after Lee 2008) 

Test # Location Pile Sand 
Relative 

density 

Pile 

penetration 

depth (m) 

1 test pit I medium DR=20% 0.86 

2 test pit I medium DR=95% 0.70 

3 test pit II fine DR=61% 0.96 

4 test pit II fine DR=36% 0.94 

5 test pit II fine DR=80% 0.89 

6 soil tank II fine DR=91% 0.92 
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In later tests, fine-grained Ottawa sand (D50=0.23mm) was used. This sand is also uniform 

and rounded, with maximum and minimum void ratios emax and emin of 0.78 and 0.47, 

respectively. Drained triaxial compression tests showed that the critical-state friction angle 

for the fine sand was roughly 32o. Data from small-strain tests is not available yet. However, 

since the fine Ottawa sand has strong similarities (particle angularity, limiting void ratios) to 

the medium one, it is reasonable to assume that the Gmax value will not be much different 

from that predicted by eq. (6.1). 

Most of the pile load tests was performed outside the Bowen Laboratory building, 

where a cylindrical test pit was excavated. Both diameter and depth of the pit were roughly 

1.3m. One test (No.6) was performed in the soil tank inside the Bowen Laboratory building. 

The cylindrical soil tank has diameter 2.0m and height 1.6m. The dimensions of test pit and 

soil tank were chosen based on the studies of the calibration chamber size needed for 

boundary effect on pile bearing capacity and cone penetration resistance to be small. Parkin 

and Lunne (1982) and Salgado et al. (1998) suggested that the diameter of the calibration 

chamber must be at least 50 times and 100 times the cone diameter, respectively. Even 

though the literature suggests a test pit dimension at least 50 times the pile diameter (about 

1.6m), the pit diameter of 1.3m is still acceptable because the pit wall was left unlined. This 

can be seen as the native soil taking the place of Ottawa sand beyond 0.65m from the pit 

center. Hence, the actual boundary condition is less severe than a fully rigid or fully flexible 

(inflated membrane) calibration chamber wall.   

The model pile tests were performed in dry soil samples for various relative density 

values. In test No.1, the very loose sample (DR=20%) was achieved by emptying the sand 

bags into the test pit. The very dense sample (DR=95%) of test No.2 was prepared by using 

a vibrating plate compactor. The sand was placed in lifts and the compaction effort was 

controlled in order to achieve a homogeneously dense sample throughout the pit. During the 

preparation of the very dense sample, an earth pressure cell was placed in the soil at a 

depth of 40cm and close to the pit wall, in order to measure the actual at-rest earth pressure 

coefficient (K0). This was done because, due to compaction, the sand will have experienced 

larger stress than the in situ stress during pile testing (OC sand). The K0 of an NC sand can 

be estimated adequately since the possible value falls in a relatively narrow range (0.4 to 

0.5). The K0 cannot be guessed in the case for OC sand. Hence, a disk-type lateral earth 

pressure cell was placed at 0.5m depth and close to the wall of the pit before placement of 

the sand. A value of Ko=1.1 was measured after the pit was filled to the top with compacted 

sand.  The K0 value is necessary for calculating mean effective stress, which is in turn used 
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for calculating the small-strain shear modulus and the limit base resistance used in the 1-D 

pile driving simulations. In the other pile load tests, the samples were prepared by air 

pluviation using a pluviator that was manufactured specifically for soil tank tests. The use of 

the pluviator helped in producing sand profiles that are much more uniform than those in the 

first two tests. In all cases, the density of the sand is estimated from the weight of the sand 

placed in the pit and the volume of the pile.    

 

6.2.3 Pile test results 

Typical pile driving records (pile penetration per blow versus depth of penetration) are 

shown in Figs. 6.17 and 6.18. The acceleration at the pile head was captured using the Pile 

Driving Analyzer (PDA). An oscilloscope was used to record the signals from the strain 

gages.  The acceleration histories were recorded for every blow as the model pile was 

driven into the ground. Typical displacement and velocity time histories are shown in Fig. 

6.19, 6.20, 6.21, and 6.22. Displacement and velocity time histories are calculated 

automatically by PDA from the measured acceleration time history using numerical 

integration.  
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Figure 6.17.  Driving resistance in Tests No.1 and No.2 
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Figure 6.18.  Driving resistance in Tests No.1 and No.2 
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Figure 6.19.  Displacement and velocity records from Test No.1 
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Figure 6.20.  Displacement and velocity records from Test No.2 
 

 

 

The procedure followed during the static load tests on the model piles was similar to the one 

used in field test.  In the case of the tests performed in the sand pit, the reaction was 

provided by dead weights.  Two concrete blocks were placed on the two sides of an H-beam 

that serves as the reaction beam (Fig, A.12). In the case of the test in the soil tank, the 

reaction beam was firmly attached to the walls of the tank, which provided the necessary 

reaction. The hydraulic jack and a load cell were placed between the pile and the reaction 

beam (Fig. A.11). The total load applied to the pile head was measured by a load cell with a 

capacity of 20kN.  

The CR5000 Campbell Scientific datalogger was used to read the strain gage 

signals. Dial gages were attached to two reference beams placed on the two sides of the 

pile in order to monitor the pile settlement. The measured shaft and base capacities are 

presented in Table 6.3. Typical axial load-settlement curves are shown in Fig. 6.23 and 

6.24.  
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Figure 6.21.  Displacement and velocity records from Test No.3 
 

Table 6.3 Shaft and base capacities from the static load tests on model piles 

Test # QsL (kN) Qb,ult (kN) 

1 0.30 0.07 

2 4.72 5.50 

3 0.78 0.73 

4 0.14 0.17 

5 0.97 1.09 

6 1.65 2.72 
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Figure 6.22.  Displacement and velocity records from Test No.6 
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Figure 6.23.  Load-settlement curves for static load tests No. 1 and No. 2 
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Figure 6.24.  Load-settlement curves for static load tests No. 4 and No. 5 
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6.3. Field pile load test in Lagrange County 

 

Full-scale pile load tests were conducted at the bridge construction project over the Pigeon 

River, on State Road 9, in Lagrange County. Details of this experimental program can be 

found in Paik et al. (2003). The testing program included pile driving monitoring, restrike 

tests, and static load tests. The tests were performed on two instrumented pile, one closed-

ended steel pipe pile and one open-ended steel pipe pile. Herein, we will focus on the 

closed-ended pipe pile. The pile was instrumented with two accelerometers and two strain 

transducers at the pile head to obtain the acceleration and force time histories during 

driving. Eighteen strain gages grouped in pairs were attached at nine levels along the pile 

shaft in order to measure the strain in the pile during static loading. The site exploration, 

which included SPT and CPT testing (Figure 6.25), showed that the natural soil profile 

consisted of loose gravelly sand (DR=30%) down to 3m depth, followed immediately by 

dense gravelly sand with DR=80%. The water table was at 3m depth. The pile was 8.24m 

long and had outer and inner diameters of 356mm and 330.6mm, respectively.  

The pile was driven down to 6.9m depth using an ICE-42S single acting diesel 

hammer. The ram weight was 18.2 kN and the maximum hammer stroke was 3.12m. The 

rated maximum driving energy was 56.8kJ. Data recorded during driving using the PDA 

showed that the energy transferred to the pile head ranged from 19.0kJ to 28.5kJ, i.e. 33% 

to 50% of the rated (potential) hammer energy.  The pile set per blow ranged from 300mm 

during early stages of driving to 10mm near the end of the installation.  The reaction system 

used in the static pile load tests consisted of six reaction piles. According to the static load 

test results, the limit base resistance of the closed-ended pipe pile is 12166kPa. The limit 

unit shaft resistance calculated based on the strain gage data ranges from 17kPa to 132kPa 

(Figure 6.26). 
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Figure 6.25. SPT and CPT data for test site at Lagrange County 
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Figure 6.26. Distribution of limit unit shaft resistance along pipe pile at Lagrange County. 
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CHAPTER 7. NUMERICAL PREDICTIONS USING PROPOSED MODELS AND 
COMPARISON WITH PILE DRIVING DATA 

 

 

In this Chapter, we simulate the field and model pile load tests presented in Chapter 6. The 

pile driving simulations use the new shaft and base reaction models presented in Chapter 5. 

The comparison between the numerical predictions and the observed pile driving data is 

done in order to validate the proposed soil reaction models. The predictions using the new 

soil reaction models are also compared with those using the Smith (1960) shaft and base 

reaction models, which constitute the core of dynamic pile analyses as currently done in 

design practice. The simulations compute the pile set given the hammer energy transmitted 

to the pile head. The hammer energy inputted in the simulations accounts for the energy 

losses inside the hammer system before impact and the energy losses during the impact as 

thermal energy and scattered transverse waves in the anvil, pile helmet and cushions. All 

analyses are done for the last few hammer blows (i.e., pile installation is complete or nearly 

complete), and so there are pile load test data on the static resistance of the pile (which is 

an inseparable part of its dynamic resistance and thus of the driving analyses). Validating 

the numerical model for the case of a pile at its final penetration depth is of most importance 

because back-calculation of the pile capacity in practice through signal matching is done for 

a fully installed pile.  

 

 

7.1  Field pile load test in Jasper County  

 

According to GRLWEAP, the efficiency of open-ended (single acting) diesel hammers is 0.8. 

This efficiency factor accounts only for hammer energy losses before impact. The PDA 

measurements showed that the energy transmitted from the open-end diesel hammer to the 

pile head at the last stages of driving was only 36% of the maximum potential (rated) energy 

of the hammer. Since we are not modeling explicitly the parts that lie between the ram and 

the pile head, and, consequently, the energy losses inside and at the interfaces of these 

parts, we scale the rated hammer energy by an efficiency factor ef (eq. 5.64) equal to 0.36. 

The pile is divided into 19 segments. The input unit shaft and base resistances are based on 

the results of the first static load test, which was performed 50 days after installation. These 
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unit resistance values may include some amount of pile setup, which would lead to a slight 

underprediction of the pile displacement from the dynamic analyses.  The maximum soil 

shear modulus Gmax in the case of silty clay and clayey silt was estimated based on the 

undrained shear strength using the correlation by Weiler (1988) (eq. 5.45). In the case of 

silty sand, clayey sand, and stiff silt, Gmax  was calculated using the CPT- based correlation 

by Rix and Stokoe (1991) (Table 5.5). The coefficient of lateral earth pressure at rest K0 in 

the sand or nonplastic silt layers was assumed equal to 0.45. The small-strain Poisson’s 

ratio of the soil at the base was assumed to be equal to 0.5. The coefficient bfb in eqs. (5.27) 

and (5.39) was set equal to 1.5 based on the load-settlement curves of the static load test. 

The soil viscosity parameters were set to mb=ms=0.3 and nb=ns=0.2 for the clayey and silty 

sand and the stiff silt. Eqs. (5.47) and (5.48) were used for calculating the soil viscosity 

parameters in the case of cohesive soils (silty clay and clayey silt). 
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Figure 7.1.  Predicted and measured pile head displacement time history for closed-ended 

steel pipe pile in Jasper County. 
 
 

Figure 7.1 compares the predicted displacement time history at the pile head from 

the simulations using the proposed soil reaction models with that recorded during pile 
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driving using the PDA. The prediction using Smith (1960) reaction models are also plotted in 

the figures. The analyses using the proposed model predict final set equal to 7.5mm, while, 

according to PDA measurements, the final set is 9mm. The analyses using Smith’s model 

largely underpredict the final set and yield pile head motion characterized by large amplitude 

oscillations. In contrast, the shape of the displacement time history curve from the proposed 

model is similar to the observed one.  

From the many variables describing the pile motion, the pile set, which is the residual 

displacement after all oscillations have dissipated, is of most importance. This is because 

the pile set depends directly on the overall energy losses inside the soil, and, consequently, 

on the work done by the shaft and base resistance. Adequate representation of the work 

done by the soil resistance in dynamic pile analysis is required for the effective back-

calculation of the pile capacity using signal matching.  

 
 

7.2  Model pile load tests  

 

The model piles were driven using a drop hammer. According to Bowles (1996), the 

efficiency of drop hammers ranges from 0.75 to 1.0, while the software GRLWEAP suggests 

a value of 0.67. The hammer in the model tests was donut-shaped and was allowed to fall 

free without a rope or string attached to it.  According to the experimental study by Morgano 

and Liang (1992) on safety hammers attached to rope and pulley, 20% of the initial potential 

hammer energy is lost before impact (i.e. the kinetic energy of the hammer right before 

impact is 0.8 times the initial potential energy) and another 16% is lost during the impact (for 

short rod length and resistance up to 4.5kN, similar conditions to the model pile tests), 

resulting in a hammer efficiency factor of 0.67. Measurements on free falling (no rope and 

pulley) SPT donut hammers in Japan yielded a hammer efficiency factor equal to 0.78. 

(Bowles, 1996). Based on the above, we will use a hammer efficiency factor ef equal to 0.75. 

The piles were divided into 8 to 11 segments. 

 The total shaft capacity measured in the static load tests was distributed along the 

pile shaft by first calculating the limit unit shaft resistance values using the method by Foye 

et al. (2006) for displacement piles (Chapter 3) based on the sand relative density and the 

effective confining stress. Then, the computed limit unit shaft resistance distribution was 

scaled so that the corresponding shaft capacity matched the one observed in the pile load 

tests. The pile used in the first two model tests (pile I) was made of mild steel. Hence, the 
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coefficient nF in eq. (5.23) was set equal to 1.22 for pile I. This value reflects the fact that the 

ratio of the mild steel-sand interface friction angle to the critical-state friction angle of the soil 

is 0.85. The model pile used in the remaining tests (pile II) was made of stainless steel with 

a much smoother shaft wall surface. Based on the experimental study of Ling and Dietz 

(2005) on the strength of sand-steel interfaces, the interface friction angle is estimated to be 

0.5 times the critical state friction angle of the sand for the measured average roughness of 

0.63μm and the D50 of the fine Ottawa sand. Hence, the coefficient nF for pile II was set 

equal to 2.0. The maximum shear modulus of the sand was estimated using eq. (6.1). The 

small-strain Poisson’s ratio was assumed to be equal to 0.15. It was found that the static 

base resistance vs. base settlement curves are adequately fitted by using a coefficient bfb 

equal to 2.0. The soil viscosity parameters were set to mb=ms=0.3 and nb=ns=0.2.  

 Figures 7.2 through 7.7 compare the predicted displacement time history at the pile 

head from the simulations using the proposed soil reaction models with that recorded during 

pile driving using the PDA . The prediction using Smith (1960) reaction models are also 

plotted in the figures. The values for quake and damping coefficients in the simulations 

using Smith’s models were set equal to those recommended in the GRLWEAP manual 

(Qs=2.5mm, Qb=B/120, Js=0.16s/m, and Jb=0.5s/m).  
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Figure 7.2.  Predicted and measured pile head displacement time history for model pile test 
No.1: medium Ottawa sand with DR=20%. 
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Figure 7.3.  Predicted and measured pile head displacement time history for model pile test 

No.2:  medium Ottawa sand with DR=95%. 
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Figure 7.4.  Predicted and measured pile head displacement time history for model pile test 

No.3: fine Ottawa sand with DR=61%. 
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Figure 7.5.  Predicted and measured pile head displacement time history for model pile test 
No.4: fine Ottawa sand with DR=36%. 
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Figure 7.6.  Predicted and measured pile head displacement time history for model pile test 
No.5: fine Ottawa sand with DR=80%. 
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Figure 7.7.  Predicted and measured pile head displacement time history for model pile test 
No.6: fine Ottawa sand with DR=80%. 

 

 

 

With the exception of test No.5, the predicted final pile head displacement using the 

proposed reaction models is roughly ± 30% different from the one recorded by the PDA. In 

contrast, the analyses using the Smith (1960) analysis significantly underpredict the final 

set. The discrepancies become particularly severe in the case of dense sand, in which the 

Smith-based analysis predicts penetration refusal. The main implication of the significant 

pile set underprediction is that back-calculation of pile capacity using signal matching and 

Smith’s reaction model would yield overly conservative results.  The analyses with the 

proposed models yield displacement time history curves with similar shape as the measured 

ones. At the initial stage, the displacement increases until a peak values is attained. Then 

the displacement decreases to a residual values with minimal or no oscillations. The 

displacement time histories obtained from the analyses with the Smith (1960) reaction 

models exhibit high amplitude oscillation that have a slow rate of dissipation with time.   
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Table 7.1.  Experimental data and numerical predication on pile set for model piles tests. 

Test 
# Location Pile Sand Relative 

density 

Pile 
penetration 
depth (m) 

Observed 
pile set 
(mm) 

Pile set 
form 
PDA 
(mm) 

Predicted pile 
set using 

proposed model 
(mm) 

1 test pit I medium DR=20% 0.86 27.00 24.00 19.70 
2 test pit I medium DR=95% 0.70 0.70 0.84 0.86 
3 test pit II fine DR=61% 0.96 10.00 10.00 7.80 
4 test pit II fine DR=36% 0.94 40.00 30.00 38.70 
5 test pit II fine DR=80% 0.89 5.00 3.20 4.98 

6 soil tank II fine DR=91% 0.92 5.00 1.80 2.30 
 

 

7.3  Field pile load test in Lagrange County  

 
Data recorded during driving using the PDA showed that the energy transferred to the pile 

head ranged from  33% to 50% of the rated (maximum potential) hammer energy. 

Therefore, we scale the rated hammer energy by an efficiency factor ef (eq. 5.64) equal to 

0.41. The pile is divided into 8 segments. The input unit shaft and base resistances were 

those described in Section 6.3. The maximum soil shear modulus along the pile shaft and at 

the pile base was estimated based on the relative density and the initial effective confining 

stresses using eq. (5.41). The coefficient of lateral earth pressure at rest K0 was assumed to 

be equal to 0.45. Since steel pipe piles are made of mild steel, the coefficient nF in eq. (5.23) 

was set equal to 1.22. The small-strain Poisson’s ratio was assumed to be equal to 0.15. 

The coefficient bfb in eqs. (5.27) and (5.38) was equal to 2.0 and the soil viscosity 

parameters were mb=ms=0.3 and nb=ns=0.2.  

Figure 7.8 compares the predicted displacement time history at the pile head from 

the simulations using the proposed soil reaction models with that predicted by analysis using 

the Smith (1960) reaction models (Qs=2.5mm, Qb=B/120, Js=0.16s/m, and Jb=0.5s/m). The 

analyses using the proposed model predict final set equal to 7.5mm. According to the 

driving log, the observed pile set was 10mm. Again, the analysis using Smith’s model 

significantly underpredicts the pile set. 
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Figure 7.8.  Predicted and measured pile head displacement time history for closed-ended 

steel pipe pile in Lagrange County. 
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 
 
 

The main goal of the present study was to make a comprehensive assessment of the 

existing methods for static and dynamic analysis of pile driving, identify key shortcomings 

and propose improvements. Chapter 2 presented the results of interviews with two INDOT 

engineers and two private geotechnical consultants involved in INDOT projects. Chapter 3 

compiles a collection of recommended up-to-date static design methods recently proposed 

in the literature. These are compared with the methods currently used in INDOT projects. 

Chapter 4 includes an evaluation of the existing shaft and base reaction models used in 

dynamic pile analyses. Chapter 5 describes the development and the formulation of the 

proposed improved shaft and base reaction models for 1-D dynamic pile analysis. The field 

and model pile tests used for the validation of the proposed reaction models are described 

in Chapter 6. Finally, Chapter 7 contains comparisons between field and model pile test data 

and the prediction from 1-D dynamic pile analysis using the proposed reaction models. 

The interviews focused on the methods and procedures presently followed in deep 

foundation design projects. The interviews focused on the tasks and responsibilities of the 

parties involved in design, the type of soil input data used, the methods and software used 

for static design and dynamic analysis.  The methods and the computer software used by 

private consultants involved in INDOT projects for the design of axially-loaded piles are 

consistent with those used by INDOT geotechnical engineers. These methods and software 

follow FHWA guidelines and are in accordance with standard practice in the US. Pile design 

is mostly based on Standard Penetration test (SPT) data and undrained shear strength 

measured in unconfined compression tests. Cone penetration tests are rarely performed, 

although the necessary equipment (CPT rigs) is available by both private soil exploration 

companies and INDOT. The programs DRIVEN and S-PILE are employed for calculating the 

static capacity of displacement piles. The commercial program SHAFT is used in the case of 

nondisplacement piles. Pile drivability is analyzed using the program WEAP (or GRLWEAP). 

Static load tests are reserved mostly for research projects. Pile driving monitoring and re-

strike tests are usually performed only in projects whose cost exceeds a certain limit. The 

computer program CAPWAP is used for back-calculating the pile capacity based on the data 

collected from the dynamic tests using PDA (Pile Driving Analyzer). Empirical formulas, such 

as ENR formula and Gates’ formula, are also employed for the same purpose. 
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8.1. Static design methods 

 

The methods for estimating the unit shaft and base resistances currently used by 

geotechnical engineers (INDOT or private consultants) were developed at least twenty years 

ago. These methods were developed by matching predictions with a large number of 

(mostly noninstrumented) pile load test data without a solid theoretical basis. In the case of 

piles in sands, they use as input the peak friction angle, which is usually estimated based on 

SPT data using empirical correlations. Hence, this peak friction angle value presumably 

corresponds to the peak friction angle for triaxial compression conditions and for effective 

stresses equal to the in situ (pre-installation, geostatic) ones. In reality, the unit shaft 

resistance depends directly on the critical-state friction angle under simple shear conditions. 

In addition, the unit base resistance depends on the effective stresses existing around the 

pile base at limit state conditions, which are much greater than those in existence prior to 

installation.  

 Significant progress has been made in the last two decades in the field of pile 

foundation engineering. Numerous improved methods that are grounded on the physics and 

mechanics governing the development of pile resistance have been developed by 

combining experimental data with analysis. The new methods for the unit soil resistance in 

sands are substantially different from the methods currently used in practice and 

recommended by FHWA. The improved unit shaft resistance calculation methods use as 

input the critical-state friction angle instead of the peak friction angle. The new methods for 

the base resistance in sands use as input either the relative density or the cone resistance 

directly. The recently developed methods recognize the fact that the limit base resistance is 

almost equal to the cone penetration resistance and that the ultimate unit base resistance in 

sands is smaller than the limit unit base resistance. Implementing the recently developed 

methods in pile design practice and in design software will enhance the reliability of the 

design, and thus is highly recommended. A notable case is that of the unit shaft resistance 

of nondisplacement piles (drilled shafts) in sands. The equations for β in the FHWA 

guidelines yield overly unconservative shaft resistance predictions.  

CPT-based methods have many advantages and are superior to methods that rely 

on SPT data or other empirical methods. The CPT provides nearly direct estimate of the limit 

unit base resistance. This is because the mechanics involved in cone penetration are very 
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similar to those involved in pile penetration. Researchers have also found that the cone 

resistance correlates very well with the unit shaft resistance. CPT should be performed more 

often in the field investigation for INDOT’s deep foundation projects. Both INDOT and 

private companies can perform CPTs.  CPT can be performed successfully in many types of 

soils as long as the gravel content is not excessive. If a cobble or boulder is encountered, 

the CPT rig will need to be relocated and penetration resumed a few feet away. Research 

and practice in Europe has proven that CPT can be performed without problems in dense 

sand down to the depths usually reached by piles.  

Further research must be conducted in order to assess the accuracy and reliability of 

the equations for the estimation of unit shaft and base resistances. This should be done for 

both the equations currently used in standard practice and the more recently proposed and 

improved equations, for both clayey and sandy soils. Assessing the accuracy and the 

variability of these methods is a prerequisite for the successful development of LRFD 

methodologies for axially loaded piles. 

 

 

8.2. Dynamic analysis of pile driving 

 

One-dimensional dynamic analysis following the lumped mass approach is at this time the 

only practical option when it comes to pile design. Semi-analytical methods are too 

elaborate (and not as versatile) and the finite element method is too computationally 

expensive. The key components for accurate 1-D simulation of pile driving are the shaft and 

base soil reaction models. The computer programs used presently in practice employ the 

soil reaction models proposed by Smith (1960), which are characterized by a high degree of 

empiricism. These models are overly simple and rely on empirical constants. Researchers 

have developed improved soil reaction models that eliminate the empirical ‘quake’ 

parameter and attempt to more rigorously account for the different components of damping.  

These models are consistent with the mechanics involved in pile driving and have input 

parameters that are physically meaningful.   

We performed a thorough review of the existing soil reaction models. Based on the 

shortcomings identified in the review process, we developed improved shaft and base 

reaction models that are consistent with the physics and mechanics of pile driving. The 

proposed shaft reaction model consists of a continuous annular soil disk representing the 
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near-field soil surrounding the pile shaft. A plastic slider-viscous dashpot system 

representing the thin shear band forming at the soil-pile interface is placed at the inner 

boundary of the soil disk, while far-field, consistent boundaries are placed at the outer 

boundary of the disk. The soil in the disk is assumed to follow a hyperbolic-type stress-strain 

law. The base reaction model consists of a nonlinear spring and a radiation dashpot 

connected in parallel. The nonlinear spring is formulated in a way that reproduces 

realistically the base load-settlement response under static conditions.  The initial spring 

stiffness and the radiation dashpot take into account the effect of the high base embedment. 

Both shaft and base reaction models capture effectively soil nonlinearity, hysteretic 

damping, viscous damping, and radiation damping.  The input parameters of the models 

consist of standard geotechnical parameters, thus reducing the level of empiricism in the 

analysis and making it easier for engineers to make informed decisions related to input data. 

Data collected during the driving of full-scale piles in the field and model piles in the 

laboratory were used for validating the proposed models. The predictions using the 

proposed shaft and base reaction models compared favorably with measured pile driving 

data. It was shown in Chapter 7 that the simulations using the proposed models better 

match observations than those using the Smith (1960) models. 

The pile dynamic analysis conducted in the context of this study consisted of 

computing the pile motion given the unit resistance values along the shaft and at the base 

and the rated energy of the hammer. For performing the 1-D pile driving simulations, the unit 

soil resistances can be estimated using the equations presented in Chapter 3 and the profile 

and soil property data contained in any given geotechnical report. A more important practical 

application would have been the back-calculation of the pile base and shaft capacities 

based on the force and velocity time histories measured at the pile head during driving or 

during a restrike test. Adding this capability to the present analysis should be part of 

INDOT’s future research efforts. This additional capability requires the implementation of an 

efficient signal matching algorithm (e.g. Goble and Rausche 1979; Courage and Van 

Foeken, 1992; Charue 2004). The algorithm will perform a series of dynamic pile analyses 

using as input the measured force time history at the pile head. The values of unit soil 

resistance would change automatically between simulations with the ultimate goal of 

obtaining an adequately good match between the predicted and the measured velocity 

histories at the pile head, as done by the program CAPWAP. The methodology followed by 

CAPWAP does not require knowledge of any soil data other than the soil type. A possible 

alternative approach could be performing a series of simulations using as input the initial 
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potential energy of the ram and trying to get a match on the observed pile set (the final pile 

head displacement after each hammer blow) and the peak velocity at the head (measured 

by the PDA). In this case, some information about the soil properties (anchor values), such 

as the relative density, the undrained shear strength, and the overburden effective stress, 

estimated from the geotechnical report data, would need to be provided as input. The 

algorithm would then try to match the predicted and observed pile set and peak velocity by 

slightly adjusting the inputted soil property values. 

Finally, the creation of a public access database of pile load test results is highly 

recommended. Access to such data will be beneficial for private firms, INDOT engineers, 

and academic researchers for developing pile design knowledge that is suitable for local 

soils types. INDOT should also consider creating a field test site, where innovations in 

technology and design could be explored. 
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APPENDIX. FIELD AND MODEL PILE LOAD TEST PICTURES 

 

 

A.1 Field pile load test in Jasper County 
 
 

 
Figure A.1 Welding of a vibrating wire strain gage to the pile shaft 

 

 

 

 
Figure A.2 Spot-welded gage on smoothed pile surface 
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Figure A.3 Gage protected with steel cover and silicon caulking 

 

 

 
Figure A.4 ICE-42S diesel hammer used in pile driving 
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Figure A.5 Pile marked every 1ft for blow count records 

 

 

 

 

 
Figure A.6 Static pile load test setup 
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A.2 Model pile load tests in test pit 
 

 

 
Figure A.7 Electric resistance strain gage attached to the pile base load cell 

 

 

 

 

 

 
Figure A.8 Strain gages and accelerometers attached to the pile top 
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Figure A.9 Test pit and model pile setup 

 

 
Figure A.10 Close-up on drop hammer and model pile top 
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Figure A.11 Load cell and hydraulic jack setup for model pile 

 

 

 
Figure A.12 Reaction beam and counter weights for model pile test 
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