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Abstract— In this paper, we propose for the first time a 2× 2
Space-Time (ST) block code that can be applied with Pulse
Position Modulation (PPM) without introducing any constellation
extension. This encoding scheme is adapted to low cost carrier-
less Time-Hopping Ultra-Wideband (TH-UWB) systems where
information must be conveyed only by the time delay of the
modulated signal that has a very low duty cycle. The proposed
scheme permits to achieve full transmit diversity with M -ary
PPM constellations for all values of M . Moreover, it permits to
overcome the additional phase rotations or amplitude amplifica-
tions that are introduced by all the known ST codes such as the
Alamouti code [1], the rate-1 codes proposed in [2], [3] for PSK
and the diversity schemes proposed in [4] for TH-UWB systems
with PAM or PPM.

I. INTRODUCTION

The literature of Space-Time (ST) coding is huge [1]–[3].
However, ST coding was considered mainly with QAM and
PSK constellations. Recently, ultra-wideband (UWB) emerged
as a promising technology for wireless personal area networks.
Given the very short duration of the transmitted UWB pulses,
Pulse Position Modulations (PPM) that were for long time
exclusive for optical communications can now be used over
radio frequencies. However, all of the existing ST block
codes will result in an additional constellation extension when
associated with PPM.

Consider for example the Alamouti code [1] where the

codewords take the following form: C =
[

s1 s2

−s∗2 s∗1

]
where

s1 and s2 are QAM or PAM symbols. For these constellations,
the Alamouti code does not introduce a constellation extension
since s∗ (the complex conjugate of s) and −s are both QAM
(resp. PAM) symbols whenever s is a QAM (resp. PAM)
symbol. Therefore, the Alamouti code does not introduce any
kind of constellation extension with these modulations. This
property will be referred to as the shape preserving constraint
in what follows.

On the other hand, consider a M -ary PPM constellation.
This is a M -dimensional constellation where each information
symbol is represented by a M -dimensional vector that belongs
to the following signal set:

CPPM = {em ; m = 1, . . . , M} (1)

where em is the m-th column of the M × M identity matrix
IM . It can be easily shown that the Alamouti code permits to

achieve a full transmit diversity order with PPM constellations.
On the other hand, the Alamouti code is not shape preserving
with these constellations since s and −s can never belong
simultaneously to the signal set given in eq. (1).

In the same way, the 2×2 rate-1 codes proposed in [2] can

be expressed as: C =
[

s1 s2

γs2 s1

]
where s1 and s2 are PSK

symbols. Multiplying by γ corresponds to an appropriate phase
rotation or amplitude amplification that permits to achieve
full transmit diversity. Moreover, this code becomes shape
preserving when γ is chosen such that γs is a M -ary PSK
symbol whenever s is a M -ary PSK symbol for a certain value
of M . However, phase rotations or amplitude amplifications
are not admissible with PPM constellations and the code
proposed in [2] is not shape preserving with PPM. From eq.
(1), the only value of γ that results in a shape preserving code
with PPM is γ = 1. However, the transmit diversity will be
lost with this value of γ [2].

The same argument applies to the diversity schemes pro-
posed for TH-UWB systems in [4] where a repetition code
applied on the data stream of one antenna along with an
alternation of the amplitudes of the pulses transmitted from the
other antenna (between ±1) permit to achieve a full transmit
diversity order with two transmit antennas.

In this work, we study the problem of ST coding with two
transmit antennas and PPM constellations. We take advantage
from the structure of the constellation given in eq. (1) in order
to construct an adapted coding scheme that does not necessi-
tate any kind of phase rotations or amplitude amplifications.
This code keeps the natural advantages of low cost TH-UWB
where it is difficult to control the amplitudes and the phases of
the transmitted pulses. Moreover, the proposed minimal-delay
code permits to achieve a full transmit diversity order without
any data rate reduction with all PPM constellations.

As for the decoding problem, we show that linear decoders
can assure optimal detection with M -PPM for M = 2
and when the modulation delay is larger than the channel
delay spread (the received constellation is orthogonal). For
M > 2, the absence of the polarity inversions hinders any
kind of orthogonality between the transmitted data streams
necessitating the deployment of more sophisticated maximum-
likelihood decoders (such as the sphere decoder in [5]).
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II. SYSTEM MODEL

Consider the general case of a hybrid M -PPM-M ′-PAM
constellation where the input data is modulated onto both
the amplitudes and the positions of the transmitted pulses.
Each element of this constellation is represented by a M -
dimensional vector that belongs to the set:

C = {(2m′ − 1 − M ′)em ; m′ = 1, . . . ,M ′; m = 1, . . . ,M}
(2)

The PPM constellation given in eq. (1) follows as a special
case of the M -PPM-M ′-PAM constellation.

Consider a single-user multi-antenna TH-UWB system
where the transmitter and the receiver are equipped with P = 2
and Q antennas respectively. The signal transmitted from the
p-th antenna can be expressed as:

sp(t) =

√
Es

PNf

Nf−1∑
n=0

M∑
m=1

ap,mw(t − nTf − (m − 1)δ) (3)

where w(t) is the pulse waveform of duration Tw normalized
to have unit energy. Es stands for the average energy per trans-
mitted symbol and the multiplying factor 1√

P
was introduced

in order to have the same total transmitted energy as in the
case of single-antenna systems. Nf is the number of pulses
used to transmit one information symbol and Tf is the average
separation between two consecutive pulses. No reference to the
TH code is made in eq. (3) since all transmit antennas of the
same user will share the same pseudorandom TH sequence.
δ is the modulation delay and it is chosen to verify δ ≥ Tw.
Finally, ap = [ap,1, . . . , ap,M ]T ∈ C is composed of M − 1
zero components and one component that belongs to the M ′-
PAM constellation (this component is equal to 1 with PPM).

The received signal at the q-th antenna can be expressed as:

rq(t) =
P∑

p=1

Nf−1∑
n=0

M∑
m=1

ap,mhq,p(t − nTf − (m − 1)δ) + nq(t)

(4)
where nq(t) is the noise at the q-th antenna and it is supposed
to be real AWGN. For notational simplicity, the multiplying
factor

√
Es

PNf
was removed since this term can be included in

the expression of the noise variance. In this case, the variance
of the noise term in eq. (4) is equal to PNf N0

2Es
. hq,p(t) is the

convolution of w(t) and gq,p(t) that stands for the impulse
response of the frequency selective channel between the p-th
transmit and the q-th receive antennas.

In order to take advantage from the multi-path diversity, a L-
th order Rake is implemented at the receiver side. The finger
delays are chosen as ∆l = (l − 1)MTw for l = 1, . . . , L.
This corresponds to combining the first arriving multi-path
components. In the absence of Inter-Frame-Interference (IFI),
the QLM decision variables collected at the receiver side

during one symbol duration are given by:

xq,l,m =
∫ Nf Tf

0

rq(t)
Nf−1∑
n=0

w(t − nTf − ∆l − (m − 1)δ)dt

=
P∑

p′=1

M∑
m′=1

ap′,m′rq,p′((m − m′)δ + ∆l) + nq,l,m (5)

where: rq,p(τ) =
∫ Tf

0
hq,p(t)w(t − τ)dt. nq,l,m is a white

Gaussian noise term. This follows from ∆l = (l − 1)MTw

and δ ≥ Tw. Equation (5) follows from the absence of IFI.
This can be obtained by fixing:

Tf ≥ Γ + (M − 1)δ + Tw (6)

where Γ stands for the maximum delay spread of the under-
lying channel (Γ >> Tw).

Equation (5) can be expressed in matrix form as:

X = RA + N (7)

where X is the decision vector of length QLM whose ((q −
1)LM + (l − 1)M + m)-th component is equal to xq,l,m for
q = 1, . . . , Q, l = 1, . . . , L and m = 1, . . . ,M . N is the noise
vector that is constructed from the noise terms nq,l,m with
E[NNT ] = PN0

2Es
IQLM . A is a MP -dimensional vector given

by: A = [aT
1 , . . . , aT

P ]T where ap ∈ C (or ap ∈ CPPM) is the M -
dimensional vector representation of the symbol transmitted
from the p-th antenna for p = 1, . . . , P .

In eq. (7), R = [RT
1 , . . . , RT

Q]T is the QLM ×PM channel
matrix. Rq = [RT

q,1, . . . , R
T
q,L]T is a LM × PM matrix for

q = 1, . . . , Q. Rq,l is a M × PM matrix given by: Rq,l =
[Rq,l,1 · · · Rq,l,P ] where Rq,l,p is a M × M matrix whose
(m,m′)-th element is given by:

Rq,l,p(m,m′) = rq,p((m − m′)δ + ∆l) (8)

Note that the impact of the interference between the differ-
ent modulation positions is included in eq. (7). This interfer-
ence is present when δ < Γ. In the absence of Inter-Position-
Interference (IPI), Rq,l,p becomes a M × M diagonal matrix
whose diagonal elements are all equal to rq,p(∆l).

When a ST block code of length J is applied at the
transmitter side, eq. (7) will take the following form:

X = RC + N (9)

where X and N are now QLM × J matrices obtained from
the horizontal concatenation of the decision variables and noise
samples collected during the J symbol durations respectively.
R has the same structure as before and C is a PM ×J matrix
whose ((p−1)M+m, j)-th entry corresponds to the amplitude
of the pulse (if any) transmitted at the m-th position of the p-
th antenna during the j-th symbol duration for p = 1, . . . , P ,
m = 1, . . . ,M and j = 1, . . . , J .
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III. CODE CONSTRUCTION

For M -dimensional constellations, we propose the follow-
ing structure for the minimal-delay 2M × 2 codewords:

C =
[

s1 s2

Ωs2 s1

]
(10)

where s1, s2 ∈ C given in eq. (2) are the M -dimensional
vector representations of the information symbols. For PPM
constellations, s1, s2 ∈ CPPM given in eq. (1). Ω is a M × M
cyclic permutation matrix given by:

Ω =
[

01×(M−1) 1
IM−1 0(M−1)×1

]
(11)

where 0m×n is the all-zero m × n matrix.
Evidently, Ωs ∈ CPPM given in eq. (1) whenever s ∈

CPPM and the code is shape preserving with PPM. The same
argument holds for the constellation given in eq. (2).

Proposition: The proposed code permits to achieve full
transmit diversity with M -PPM-M ′-PAM constellations for
M ≥ 3 and ∀M ′ and with M -PPM constellations for M ≥ 2.

Proof : Denote by ∆C(a1, a2) the difference between two
codewords given by:

∆C(a1, a2) = C(s1 − s′1, s2 − s′2) = C(s1, s2) − C(s′1, s
′
2)

=
[

a1,1 · · · a1,M a2,π(1) · · · a2,π(M)

a2,1 · · · a2,M a1,1 · · · a1,M

]T

(12)

where π(.) stands for the cyclic permutation given by π(i) =
(i−2) mod M +1. ai,m is the m-th component of the vector
ai for i = 1, 2 and m = 1, . . . , M . a1 and a2 belong to the
set A that denotes the set of all possible differences between
two information vectors:

A = {s − s′ ; s, s′ ∈ C} (13)

where C must be replaced by CPPM for PPM.
The proposed code is fully diverse if the matrix ∆C(a1, a2)

has a full rank for (a1, a2) ∈ A2\{(0M , 0M )} where 0M

stands for the M -dimensional all-zero vector. In other words,
the code is fully diverse for a given value of M if all the
non-zero M -dimensional vectors that result in a rank-deficient
matrix ∆C(a1, a2) do not belong to the set A given in eq. (13).

As can be seen from the proposition, the properties of the
code depend on the dimensionality of the signal set (M ).
Following from eq. (13), elements of A can have a maximum
number of two non-zero components. The transmit diversity
order is achieved because of this particular structure of A.

∆C(a1, a2) is a rank-deficient matrix if there exits a
non-zero rational number k such that ∆C2(a1, a2) =
k∆C1(a1, a2) where ∆Ci(a1, a2) stands for the i-th column
of ∆C(a1, a2). From eq. (12) this implies that:

a2,1

a1,1
= · · · =

a2,M

a1,M
=

a1,1

a2,π(1)
= · · · =

a1,M

a2,π(M)
= k (14)

After some manipulations, eq. (14) implies that:

a2,M = k2ia2,M−i ; i = 1, . . . ,M − 1 (15)

Since k �= 0, eq. (15) implies that all the components of a2

must be equal to zero or different from zero simultaneously.
Since the elements of A can have a maximum number of two
non-zero components, then for M ≥ 3 at least one component
of a2 is equal to zero. Consequently, eq. (15) implies that
a2 = 0M when a2 ∈ A and M ≥ 3. From eq. (12), a2 =
0M implies that rank(∆C(a1, a2)) = 2 unless when a1,1 =
· · · = a1,M = 0. Therefore, the only rank-deficient matrix
∆C(a1, a2) associated with two elements a1 and a2 of A is
the all-zero matrix. Since the above proof is independent from
the value of M ′, then the code given in eq. (10) permits to
achieve a transmit diversity order of 2 when associated with
M -PPM-M ′-PAM constellations for M ≥ 3 and for all values
of M ′. In particular, a full transmit diversity order can be
achieved with M -PPM for M ≥ 3.

Consider the case of M -PPM with M = 2. In this case, eq.
(15) implies that a2,2 = k2a2,1. For a2,1 = 0, then an approach
similar to the proof presented above for M -PPM-M ′-PAM can
be applied implying that all the non-zero matrices ∆C have a
full rank. On the other hand, eq. (1) and eq. (13) imply that one
of the components of a2 must be equal to +1 while the other
component must be equal to −1 when a2 �= 0M is an element
of A. Consequently, the relation a2,2 = k2a2,1 will imply
that k2 = −1 which is not possible given that all the entries
of the different codewords are real-valued. Consequently, the
proposed code is fully diverse with M -PPM for M = 2 in
addition to the values M ≥ 3.

Note that for M -PPM-M ′-PAM, and even though the pro-
posed ST code is novel, it is not so interesting because the
Alamouti code can be applied with M -PPM-M ′-PAM and it
is shape preserving when M ′ �= 1. On the other hand, for
M -PPM with M ≥ 2, the proposed code is the first known
rate-1 code that is shape preserving and fully diverse.

IV. DECODING

Equation (9) can be written as:

X = (I2 ⊗ R)Φ(Ω)S + N (16)

where ⊗ stands for the Kronecker product. X and N are
2QLM -dimensional vectors given by: X = vec(X) and
N = vec(N) respectively where the function vec(X) stacks
the columns of the matrix X vertically one after the other.
S = [sT

1 sT
2 ]T is the 2M -dimensional information vector.

For a given M×M matrix M, the 4M×2M matrix Φ(M)
is defined as:

Φ(M) =




IM 0M

0M M
0M IM

IM 0M


 (17)

where 0M is the all-zero M × M matrix.
From eq. (16), the information vector S can be determined

based on the Maximum-Likelihood (ML) criterion:

Ŝ = arg min
S∈C2

||X − (I2 ⊗ R)Φ(Ω)S||2 (18)

When QL ≥ P , the decoding algorithm proposed in [6]
can be applied in order to assure a ML detection of S.
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This algorithm assures the convergence towards the closest
M -PPM-M ′-PAM point (and not simply towards the closest
lattice point as the sphere decoder [5]). In other words, this
algorithm assures that the vector Ŝ contains two sub-vectors
each having M − 1 zero components and 1 component of the
M ′-PAM constellation. On the other hand, for binary PPM
constellations in the absence of IPI, we will show in what
follows that a simpler decoding technique based on linear
processing can assure a ML detection.

Consider the binary PPM constellation. In this case:

Ωs = −s + 1M ∀ s ∈ CPPM ; M = 2 (19)

where 1M stands for the M -dimensional vector whose com-
ponents are all equal to 1.

Consequently, from eq. (17) and eq. (19):

Φ(Ω)S = Φ(−IM )S + I ′ (20)

= (φ ⊗ IM ) S + I ′ (21)

where I ′ = [0 0 1 1 0 0 0 0]T and M = 2 in the last two
equations. The matrix φ is given by:

φ =
[

1 0 0 1
0 −1 1 0

]T

(22)

Moreover, for M -PPM in the absence of IPI, the QLM ×
2M channel matrix R can be written as:

R = R′ ⊗ IM �
[

R′
1 R′

2

]⊗ IM (23)

where R′
p is a QL-dimensional vector for p = 1, 2. Its ((q −

1)L + l)-th element is equal to rq,p(∆l) for l = 1, . . . , L and
q = 1, . . . , Q.

Consequently, for 2-PPM constellations in the absence of
IPI, combining eq. (16), eq. (21), eq. (22) and eq. (23) results
in (M = 2):

X = [I2 ⊗ (R′ ⊗ IM )] [(φ ⊗ IM ) S + I ′] + N (24)

Following from the properties of the Kronecker product, the
last equation implies that:

Y � X − [(I2 ⊗ R′) ⊗ IM ] I ′ (25)

= [(I2 ⊗ R′) φ ⊗ IM ] S + N � [R⊗ IM ] S + N (26)

From eq. (22) and eq. (23), the 2QL × 2 matrix R can be
written as:

R = (I2 ⊗ R′) φ =
(

R′
1 −R′

2

R′
2 R′

1

)
(27)

Consequently:

RTR =

(
Q∑

q=1

P∑
p=1

L∑
l=1

(rq,p(∆l))
2

)
I2 (28)

Consequently, the two constituent sub-vectors s1 and s2 of
S can be decoded independently according to:

pi = arg max
m=1,2

(
Y ′

2(i−1)+m

)
; si = epi

(29)

where Y ′
j is the j-th component of the vector Y ′ given by:

Y ′ =
[RT ⊗ I2

]Y (30)

As a conclusion, eq. (25), eq. (29) and eq. (30) describe
the detection process that must be performed with 2-PPM
constellations in the absence of IPI.

V. SIMULATIONS AND RESULTS

The second derivative of the Gaussian pulse with a duration
of Tw = 0.5 ns is used. In order to eliminate the inter-frame-
interference and inter-symbol-interference, the frame duration
(Tf ) is chosen to verify eq. (6). At the receiver side, perfect
channel state information is assumed. The antennas of the
transmit and the receive arrays are supposed to be sufficiently
spaced so that each one of the PQ sub-channels is generated
independently from the other sub-channels using the standard
IEEE 802.15.3a channel model recommendation CM2 that
corresponds to non-line-of-sight (NLOS) conditions [7].

Fig. 1 compares the performance of single-antenna and of
the ST coded TH-UWB systems with one receive antenna and
a 5-finger Rake. The modulation delay is chosen to verify
δ = Tw = 0.5 ns and, consequently, the simulations are
performed under the impact of IPI. In this case, the ML
decoder proposed in [6] is used for detection. Results show
the high performance levels achieved by the proposed coding
scheme. The performance gains are visible with different
orders of the PPM signal sets.

In Fig. 2, we fix δ = 100 ns and the results show the
performance of binary PPM in the absence of IPI. In particular,
we compare 1 × 1, 2 × 1 and 2 × 2 systems with receivers
that are equipped with L-finger Rakes for L = 1, 15. The
linear detection process described in the last section is used
for separating the two transmitted data streams. Results show
the utility of the additional spatial degree of freedom. For a
2 × Q ST coded system with a L-finger Rake, the diversity
order is equal to 2QL (from eq. (28)). Results show that a
2 × 2 system whose decisions are based simply on the first
arriving multi-path component (the diversity order is equal to
4) outperforms the single-antenna systems combining up to
15 multi-path components (having a diversity order of 15).
Moreover, even for systems that profit from a relatively high
multi-path diversity order (L = 15), applying the proposed
coding scheme results in important performance gains. In
particular for L = 15, the 2×1 system outperforms the single-
antenna system by 3 dB at a bit error rate of 10−3.

VI. CONCLUSION

We investigated the problem of constructing a ST coding
scheme that is suitable for TH-UWB systems using PPM.
The proposed construction solves the problem of the non-
existence of shape preserving constructions for PPM. The
shape preserving constraint renders this code applicable with
optical wireless communications as well.
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Fig. 1. Performance of single-antenna and 2×1 ST coded TH-UWB systems
over CM2 with a 5-finger Rake and M -PPM constellations for M = 2, 4, 8.
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