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Abstract 
A coherent artificial neural network, ANN, software program capable of real time analysis and decision-
making is utilized in this work for the automatic detection and diagnostics of tool wear during a surfacing 
milling operation using a fly cutter. Several sensors were utilized to collect data indirectly related to wear: 
current measurements from the spindle and two (x, y) drive motors, three (x, y, z) components of cutting 
force, and acoustic emission. Furthermore, direct wear measurements were collected using image capturing 
and dimensional measurements of the worn location (not performed in real-time). As the inputs from these 
sensors were ‘fused’, the ANN utilized this multiple-sensor data to yield reasonable predictions of ‘good’, 
‘used’, and ‘worn’ tools. 
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1. INTRODUCTION 
 
Typically, fly cutters perform surfacing operations using 
small depths of cut.  Due to issues relating to their salient 
features and geometry, and peculiar mounting, the cutting 
action with such cutters may cause dramatic tool wear 
and, often, catastrophic tool breakage. Therefore, the 
study of tool wear of fly cutters is of interest to the 
machining community at large as evidenced by the  
studies of wear inflicting fly cutters that have been 
reported in the literature ([e.g.,1,2]).  

The successful implementation of tool condition 
monitoring (TCM) is critical to the success of fully 
automated cutting operations. To monitor and detect tool 
wear in metal cutting operations, several types of sensors 
have been utilized over the years including direct and 
indirect measurements with both being correlatable to the 
condition of the tool. Direct measurements rely on visual 
and computer vision methods with the latter being made 
while the cutter is rotating [3]. Indirect sensors include a 
host of techniques including: vibration / noise detection 
[4], spindle motor / feed drive current measurements [5], 
and measurements of cutting forces [2]. In the latter, it 
was concluded that ‘tool wear can be properly estimated 
by knowing the average cutting force coefficients and 
cutting parameters when fly cutting aluminum with a 
single cutter and workpiece geometry’. 

Since obtaining exact mathematical functional 
relationships between these signals and tool wear is 
challenging, and in order to combine the data from these 

signals resulting in a functional classification or decision 
regarding tool go/no go decision, artificial neural network 
(ANN) presents an attractive solution. Typically, the 
network is trained in the first stage where sensor data is 
fed to the diagnostics software. Once the software has 
been ‘taught’ to distinguish a good (sharp) tool from a 
partially worn one and from a completely dull one, the 
diagnostic capabilities of the software become automatic 
resulting in the real-time correct identification of the 
drilling tool condition by the software. For example, Lin 
and Lin [6] utilized ANN to study the closely related 
problem of tool wear in face milling cutters using force 
signals only. ANN has been recently utilized by Patra et 
al. [7] where the root mean square (RMS) value of the 
spindle motor current was used as input to a multilayer 
neural network.  Also in [7], it was demonstrated that ANN 
yield more accurate results as compared with traditional 
techniques such as regression models.  
 
2. EXPERIMENTAL PROCEDURES  
 
A fly cutter with a brazed insert was used to surface 
blocks of an aluminum alloy, Alumec. The tool is shown in 
Figure 1 from the side while cutting (l.h.s) and from the 
end (r.h.s.).  

Figure 1. The fly cutter shown in side (l.h.s.) and end 
(r.h.s.) views. 
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The cutting was performed on a Haas V6 vertical 
machining center. The (compact) test matrix is conducted 
according to the cutting parameters in Table 1.  
Specifically, 

• Speeds and depths of cut are as in Table 1. 
• All feeds are fixed at = 0.0125 mm/rev. 
• Blown air is used for cooling (no coolant). 

 
Table 1. Test matrix showing speeds and depths of cut 

used in milling experiments. 

 
 
Indirect sensors utilized in this study are: force 
dynamometer, acoustic emission sensor, and current 
transducer. The direct sensor utilizes a high-resolution 
camera suitable for computer vision applications.  
 
To collect thrust and x,y force data, Kistler’s CompacDyn 
3-Component Dynamometer (Type 9254) was used. The 
Kistler 9254 can measure forces up to 0.5 kN in the X- 
and Y-Directions, and forces of up to 1 kN in the Z-
Direction (but not torques). The Kistler 5070A Charge 
Amplifier was used to acquire and amplify the signal 
emanating from the dynamometer. This was then 
processed through the Dynamometer’s Dynoware data 
acquisition software (also from Kistler).  
 
Acoustic emissions measurements were made using a 
small diaphragm, directional microphone placed at a 
constant distance of 0.20 meter from the cutting zone. 
The audio signal is interfaced to the PC through the PC 
soundcard, and run through LabVIEW for signal analysis. 
The signal is divided into three frequency ranges namely: 
• 50Hz – 100 Hz (contains the frequency of the 
tool’s rotational speed for all test cases in Table 1). 
• 5kHz – 10kHz (chosen as a representative of 
mid-range frequency). 
• 15kHz – 22kHz (chosen as a representative of 
high-range frequency).  
After filtering, the root mean square (RMS) of the signal in 
each frequency range is extracted as one representative 
feature for ANN processing. Also a power spectral 
analysis program was used to observe and identify 
resonant or predominant frequencies in the auditory 
range. 
 
The setup for the spindle motor and x,y drive motors 
current measurement was as follows: 
• Texas Instruments (TI) Transformer: Transforms 
the primary current emanating from each motor into a 
secondary current.  
• IMA AC current transducer (Input: 0-5 A, Output: 
0-10 V): Takes as input the scaled down current coming 
out of the transformer and outputs a voltage signal. 
• National Instruments (NI)-USB 6251: Data 
Acquisition board, which takes as input the voltage signal 
coming out of the transducer and outputs the signal to the 
Lab VIEW software for data Acquisition. 
• PC: LabVIEW program writes the data coming 
from the main spindle motor onto excel sheets. The 
sampling was done at 10 kHz. 
 
The role of the computer vision system is to give a direct 
method to complement the other sensors in the 

measurement of tool wear. Of the many modes of wear 
investigated, flank wear, VBmax, is by far the most popular, 
and as such, was studied in this work. All images were 
captured using a Canon 1000D camera and all image 
analyses were performed using Matlab. The Hough 
transform is a feature extraction technique commonly 
used [8] so that the pictured image need not be taken 
from exactly the same position and orientation for correct 
image analysis. In this work, three Matlab built-in 
functions related to the Hough transform (hough, 
houghlines and houghpeaks) were used in combination 
so that extraction of the wear region from the image was 
made possible.  
 
Table 2 summarizes the extracted features from the 
various sensor signals. 

 
Table 2.  Extracted Features from sensor data 

 
 
3. IMPLEMENTATION AND RESULTS  
 
As cutting progressed, so did tool wear causing the tool to 
go from a ‘sharp’ condition, through a partially worn 
condition, and ultimately to a dull condition where 
catastrophic failure is likely to occur if cutting commences 
with a dull tool.  
 
3.1. Direct measures of tool wear  
 
Computer vision and optical dimensional measurements 
yielded VBmax vs. cutting time (or distance) histories such 
as that shown in Figure 2. From the figure and from other 
similar results, the following reference critical wear 
criterion was adopted where classification of tool wear is 
according: 
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Figure 2. Typical flank wear history (test case B1). 

 
 
3.2. Forces  
 
Figures 3 (a, b, c) contrast the collected Fx, Fy, and Fz 
force components for a dull tool with those for a sharp 
tool (for test case A1) where significant increases in force 
components are recorded. 
 

 

 

 
Figure 3 (a, b, c). Plots contrasting the Fx , Fy , and Fz 
force components (a, b, and, c, respectively) for a dull 

tool with those for a sharp tool (test case A1). 
 

Figure 4 illustrates the increase, over total cutting time, in 
x- and y- force components (shown RMS values for Fx 
and peak-to-peak for Fy).   

 

 
Figure 4. Increase, over total cutting time, in x- and y- 

force components. (Shown RMS values for Fx and peak-
to-peak for Fy). 

 
3.3. Acoustic emissions  
 
Unlike mid-range frequencies (5kHz – 10kHz), both low 
(50Hz – 100 Hz) and high (15kHz – 22kHz) frequency 
ranges exhibited a strong response to tool wear. Filtered 
signal RMS extraction yielded data such as those in 
Figures 5 (a, b) show RMS signals plotted for fly cutter 
tools of varying wear condition.  

 

Figure 5 (a, b). RMS current signal for (a) 50Hz-100Hz 
and (b) 15kHz-22kHz over the duration of the cut (test 

case A1). 
 
3.4. Current  
 
Figure 6 illustrates the effect of tool wear on the main 
spindle current signal (shown over two cycles; test case 
A1). 
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Figure 6. Effect of tool wear on the main spindle current 

signal (shown over two cycles; test case A1). 
 
 

Extracted current RMS signal features for the main 
spindle motor and the x- and y- drive motors are plotted 
against total machining time collected on the tool in 
Figure 7. The plot shows considerable sensitivity to tool 
wear for all measurements over time. 
 

 
Figure 7. Increase over total cutting time in RMS current 

for the main spindle and x-, y- drive motors. 
 
 
4. TOOL CONDITION PREDICTIONS  
 
 A neural network emulates a biological neural system in 
the sense that in a sort of feedback mechanism or 
learning, optimizes its neural connections, or weights to 
attain a specified target output. Figure 8 [9] is a schematic 
of the process. 
  

 
Figure 8. Neural Network feedback and weighing 

functions [9]. 
 
Figure 9 illustrates how the neural network is envisioned 
to work in this paper where the multiple sensor data is 
integrated into the ANN software (using Matlab). 
Specifically, inputs to the ANN network are: 

1. Cutting parameters: speed, depth of cut 
2. Cutting distance  

3. Direct measurements of tool wear 
4. Current (RMS and the other extracted 

parameters according to Table 2) for the  
a. Main spindle motor 
b. x- drive motor 
c. y- drive motor 
d. z-drive motor (not collected) 

5. Measured x, y, and z forces (RMS and the other 
extracted parameters according to Table 2) 

6. Acoustic emissions (RMS) 
 
The only output is the tool flank wear. As advanced 
above, based on quantitative measurements, three 
‘gross’ descriptions of the state of the tool are: sharp (or 
good), partially worn (or used), or dull.  
 
In this method, some form of learning or pattern 
recognition tool is primarily used, in which the machine or 
program ‘learns’ how to classify the output given the input 
from the signal by comparison with predefined signal 
inputs and targets. After which, the software is capable of 
automatic classification of cutting tools undergoing new 
cutting conditions as ‘good’, ‘used’, or ‘dull’.   
 

 
Figure 9. Illustration of how the neural network is 

envisioned to work in this paper 
 
 
Using cutting parameters and sensor features listed in 
Tabl 2e  as the input vector   

 
݌ ൌ ሺݐݑܿ ݂݋ ݄ݐ݌݁ܦ, ,݀݁݁݌ݏ ,௠௘௔௦௨௥௘௦ݎܽ݁ݓ ,௫ܨ    ,௭ܨ ,௬ܨ
,௦௣௜௡ௗ௟௘ܫ ,௫ܫ ,௬ܫ , ௭ܫ ,௅௢௪ି௙௥௘௤ܧܣ ,ு௜௚௛ି௙௥௘௤ଶܧܣ … ሻ 

 
(2) 
 
and a multiple-layer-perceptron network (MLP) with one 
hidden layer and an output layer, the network was trained 
to output the current state (or condition) of the tool . 
 
Implemented and tested in this work is an MLP with 20 
neurons in the hidden layer and the 3 class output (good’, 
‘used’, ‘dull’) according to the criteria in (1). This network 
uses scaled conjugate gradient back-propagation as its 
learning algorithm. After training this network with 240 
data samples, the network was given 15 sample inputs 
and outputs compared to the required target class. Figure 
10 shows the confusion matrix of this validation run. 
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4. Mathew, M., Pai, P., and Rocha, L., 2008, “An Effective 
sensor for tool wear monitoring in face milling: acoustic 
emission”, Sadhana, 33(3). 

 
Figure 10. Confusion matrix for a validation run of 15 

samples. 

5. Chang, Y.-C. , Lee, K.-T., and Chuang, H.-Y., 1995 
“Cutting force estimation of spindle motor,” J. Contr. Syst. 
Technol., 3(2), pp. 145–152. 

6. Lin S. C., and R. J. Lin, 1996, “Tool wear monitoring in 
face milling using force signals”, Wear, 198(1-2), pp.136-
142. 

7. Patra, K., and Pal, S.K. , and Bhattacharyya, K., 2007, 
“Artificial neural network based prediction of drill flank 
wear from motor current signals”, Applied Soft 
Computing, 7, pp. 929-935. 

8. Shapiro, L., and Stockman, G., 2001, Computer Vision, 
Prentice-Hall, Inc.  

Except for a misclassification where the network 
classified an acceptable used tool as a bad/worn tool, 
Figure 10 shows mostly promising results for the network. 
More data would only strengthen the network and reduce 
classification errors. 

9. Demuth, H., Beale, M., and Hagan, M., 2010, Neural 
network toolbox™ 6. 

 
 
5. SUMMARY 
 
Artificial neural network, ANN, is implemented in order to 
predict the instantaneous tool condition of fly cutters in 
surfacing of Alumec. Several sensors were utilized to 
collect data indirectly related to wear: current from the 
spindle and two (x, y) drive motors, three (x, y, z) 
components of cutting force, and acoustic emission. 
Furthermore, direct wear measurements were collected 
using image capturing and dimensional measurements of 
the worn location. Utilizing this multiple-sensor data, the 
ANN yielded reasonable predictions of ‘good’, ‘used’, and 
‘worn’ tools. 
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