

 Lebanese American University Repository (LAUR)

Conference

Publication metadata

Title: Analyzing Social Web Services' Capabilities

Author(s): Zakaria Maamar; Hamdi Yahyaoui; Azzam Mourad; Mohamed Sellami

Conference title : 2015 IEEE 24th International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises

DOI: http://dx.doi.org/10.1109/WETICE.2015.11

Handle: http://hdl.handle.net/10725/5348

How to cite this post‐print from LAUR:

Maamar, Z., Yahyaoui, H., Mourad, A., & Sellami, M. (2015, June). Analyzing Social Web

Services' Capabilities. In Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), 2015 IEEE 24th International Conference on. DOI, 10.1109/WETICE.2015.11,

http://hdl.handle.net/10725/5348

 Year 2015

“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.”

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives

(CC‐BY‐NC‐ND 4.0)

This paper is posted at LAU Repository For more information, please contact: archives@lau.edu.lb

Analyzing Social Web Services’ Capabilities

Zakaria Maamar1, Hamdi Yahyaoui2, Azzam Mourad3, and Mohamed Sellami4

1Zayed University, Dubai, U.A.E, zakaria.maamar@zu.ac.ae
2Kuwait University, Kuwait City, Kuwait, hamdi@cs.ku.edu.kw

3Lebanese American University, Beirut, Lebanon, azzam.mourad@lau.edu.lb
4ISEP Paris, Paris, France, mohamed.sellami@isep.fr

Abstract

This paper looks into ways of supporting social Web ser-
vices react to the behaviors that their peers expose at
run time. Examples of behaviors include selfishness and un-
fairness. These reactions are associated with actions pack-
aged into capabilities. A capability allows a social Web ser-
vice to stop exchanging private details with a peer and/or to
suspend collaborating with another peer, for example. The
analysis of capability results into three types referred to as
functional (what a social Web service does), non-functional
(how a social Web service runs), and social (how a social
Web service reacts to peers). To avoid cross-cutting con-
cerns among these capabilities aspect-oriented program-
ming is used for implementing the proof-of-concept system.
Keywords: Behavior, Capability, Social Web service, AOP.

1. Introduction

Web Services (WSs) are regularly hailed for their

role in supporting the development of business processes

that can across organization boundaries transparently and

smoothly [21]. Today’s organizations deem necessary to

work with different partners so they remain competitive,

respond to globalization challenges, secure more market-

share, etc. Simply put a WS is an accessible online ap-

plication that other applications and humans as well can

discover and trigger. Benatallah et al. associate the fol-

lowing properties with a WS [4]: independent as much as

possible from specific platforms and computing paradigms;

developed primarily for inter-organizational and not intra-

organizational situations; and easily composable so that de-

veloping complex adapters for the needs of composition is

not required.

On top of having an online presence on the Internet,

organizations are now embracing new means to reach out

to their stakeholders such as consumers and suppliers.

Web 2.0 applications such as Facebook and Twitter illus-

trate some of these means [2]. Many organizations are

getting the message about Web 2.0: “enterprise spending
on Web 2.0 technologies will grow strongly over the next
five years, reaching $4.6 billion globally by 2013, with so-
cial networking, Mashups, and RSS capturing the great-
est share” [7]. Contrary to traditional organizations that

adopt top-down command flow and bottom-up feedback

flow, these flows in a Web 2.0 organization (aka social en-

terprise [8]) cross all levels and in all directions giving room

for creativity and innovation to employees.

In line with the social “fever” that has caught every sin-

gle activity of people’s daily lives ranging from sharing

live experiences online to seeking feedback on any mat-

ter like what to cook on a special occasion, we demon-

strated on different occasions the outcome of blending so-

cial computing (exemplified with Social Networks (SNs))

with service-oriented computing (exemplified with WSs

technology). We refer to this outcome as Social Web
Services (SWSs) [10, 11]. Compared to (regular) WSs,

SWSs establish and maintain networks of contacts; count

on their (“privileged”) contacts when needed; form with

their contacts strong and long lasting collaborative groups;

and know with whom to partner so that reconciliation efforts

are minimized due to ontology and policy disparities [14].

The aforementioned four operations illustrate the capa-
bilities (c) that support SWSs function compared to regular

WSs. Without these capabilities a SWS cannot identify the

peers that it would like to work with, for example. In this

paper we examine the specification of such capabilities by

decomposing them into three types: functional (fc: what a

SWS does), non-functional (nfc: how a SWS runs), and

social (sc: how a SWS reacts to what other SWSs do).

WSs capabilities are reported through the literature. For

instance, Derguech and Bhiri use capabilities to discover

WSs [6] and Maamar et al. use capabilities (referred to

them as capacities) to address the particular concern that

WSs do not cater to different levels of service offers and

hence, treat all user invocation requests uniformly [16]. To

the best of our knowledge this is the first time that capabil-

ity analysis targets SWSs. Our contributions are manifold

namely (i) capability categorization into functional, non-

functional, and social, (ii) concise definition of capability in

the particular context of SWSs, (iii) analysis of how SWSs

react to peers’ actions and behaviors using social capabili-

ties, and (iv) a system implementing social capability using

Aspect-Oriented Programming (AOP). The rest of this pa-

per is organized as follows. Section 2 is overview of SWSs

and capabilities in the WSs literature. Section 3 specifies

SWSs’ capabilities. Prior to concluding in Section 5, im-

plementation is presented in Section 4.

2. Background

2.1. Social Web services in a nutshell

Three communities analyze the blend of social comput-

ing with service-oriented computing. A first community de-

ploys SNs of persons using WSs as a development technol-

ogy of these SNs. A second community deploys SNs of

SWSs to address issues like WSs discovery. Finally a third

community mixes SNs of users and SNs of SWSs to de-

velop composite WSs.

In the first community, we cite initiatives such as [1,

3, 17, 18, 23, 24]. Al-Sharawneh and Williams [1], mix

semantic Web, SNs, and recommender systems to help

users select WSs with respect to their functional and non-

functional requirements. Bansal et al. [3] examine trust for

WSs discovery. Users’ trust in the providers of WSs is the

social element in this discovery. Maaradji et al. [17] pro-

pose a social composer known as SoCo to advise users on

the next actions to take in response to specific events like

selecting specific WSs. Last but not least, Wu et al. [23]

rank WSs based on their popularity among users.

In the second community, we cite other initiatives such

as [5, 12, 15, 25]. Chen and Paik [5], build a global so-

cial service network to improve service discovery. They

link services together using specific data correlations. Maa-

mar et al. [12] develop a method to engineer SWSs. Ques-

tions that the method addresses include what relations exist

between WSs, what SNs correspond to these relationships,

how to build SNs of SWSs, and what social behaviors can

SWSs exhibit. Last but not least, Maamar et al. [15] use

SNs of SWSs to tackle the “thorny” problem of WSs dis-

covery. WSs run into various situations at run time like

competing against similar peers during selection, collabo-

rating with peers during composition, and replacing similar

peers during failure despite the competition. These situa-

tions help build the privileged contacts of a SWS.

In the last community that mixes SNs of users and

SNs of SWSs, Maamar et al. [13] intertwine these net-

works to compose, execute, and monitor composite WSs.

To achieve this intertwine three components namely com-

poser, executor, and monitor are developed. The social

composer develops composite WSs considering social re-

lations between users and between WSs. The social ex-

ecutor assesses the impact of these relations on these com-

posite WSs execution progress. Finally, the social monitor

replaces failing WSs to guarantee the execution continuity

of these composite WSs.

2.2. Capabilities of Web services

As stated in Section 1 capability adoption is extensively

reported in the WSs literature. However, and to the best

of our knowledge, nothing is reported in the particular con-

text of SWSs. In the following we discuss some work on

capability/WS combination.

Derguech and Bhiri [6] discuss WSs’ capabilities from

modeling, interlinking, and discovery perspectives, and

stress out that “a good capability description is a must ei-
ther for allowing machine processing or human centric-
ity”. The authors identify the shortcomings of description

of WSs’ capabilities namely capabilities are treated as an-

notations and not functionalities, capabilities are described

at different levels of abstraction, and there is no explicit

link between these levels which requires a manual interven-

tion to identify the necessary capabilities that satisfy users’

needs. To address these shortcomings Derguech and Bhiri

develop a meta-model for capability description along with

the following three principles: capability is described via

domain specific features, capability offers can be generated

automatically from the abstract descriptions, and capabili-

ties are described at several levels of abstraction and explicit

links are established between these levels.

Kagal et al. [9] describe WSs’ capabilities and con-

straints using declarative policies that are based on deontic

concepts namely permissions, obligations, claims, prohibi-

tions, and privileges. These policies describe what the ideal

behavior for an entity should be in a certain context. The

policies are specified in the Rei language, which is based

on OWL-Lite.

Maamar et al. [16] propose a goal-based approach for

engineering capacity-driven WSs. Capacity, which is basi-

cally a set of operations to execute, is used instead of capa-

bility. In this approach goals define the roles that capacity-

driven WSs will play in implementing business applica-

tions, frame the requirements that will be put on these WSs,

and identify the business processes that these WSs will

carry out. Because of the nature of capacity-driven WSs

compared to regular (i.e., mono-capacity) WSs, their engi-

neering is quite different. Indeed a capacity-driven WS has

to choose out of many the capacity to trigger at run-time

taking into account some requirements such as data avail-

ability and privacy level.

Paolucci et al. [19] discuss the semantic matching of

WSs’ capabilities. This match requires a declarative lan-

guage of capabilities so that what is looked for versus what

is offered occurs with success. The authors propose an ap-

proach based on DAML-S with focus on profiles. Because

WSs may offer several functionalities, not all of them need

to be advertised to the community. For Paolucci et al. a

WS’s capability consists of inputs, outputs, preconditions,

and effects.

Senivongse et al. [20] examine invocations of service

clients to a particular WS for the sake of finding fine-

grained capabilities that can be invoked so that a task is ful-

filled. The capability granularity analysis framework mon-

itors invocations to WSs and analyzes them using associ-

ation rules and an algorithm to discover relations between

the invoked operations. The analysis result can suggest to

the service provider some possibilities of combining certain

operations in order to reduce invocation costs.

The aforementioned paragraphs provide an overview of

some existing works on WSs’ capabilities. However social

aspects are still overlooked. There is enough competition

between WSs that these aspects will surely affect their se-

lection when answering users’ requests. For instance self-

ishness would require special arrangements to ensure fair

collaboration among all WSs.

3. Specification of SWSs’ capabilities

This section discusses the foundations of SWSs’ capa-

bilities and then presents how capabilities are put into ac-

tion. For the needs of activating capabilities we assume

that each SN is led by an authority component referred to

as SNauth (more details are given in [11]).

3.1. Foundations

We decompose a SWS’s capability (c) into into three

categories: fc, nfc, and sc. fc refers to the functionality

(e.g., reserve meeting-room) of the SWS that both users and

peers invoke at run-time. The specification of this function-

ality is ontology-dependent and outside this work’s scope.

nfc refers to the non-functional properties (aka as QoS) that

establish the performance of the SWS at run-time. Like

with fc, the establishment of nfc does not fall into this

work’s scope. Last but not least sc refers to the additional

actions (neither related to fc nor to nfc) that empower a

SWS since it now signs up in many SNs1.

By being a member of a SN a SWS interacts with

other SWSs in this SN and reacts to their behaviors. For

this purpose we decompose sc into operation (op) and

behavior (be). On the one hand scop refers to actions

1Collaboration, competition, and substitution are examples of social

networks of SWSs [14].

dedicated to SNs management like sign-in, sign-off, and

contact members. On the other hand scbe refers to actions

that permit to respond to some members’ behaviors in

a SN. For instance if the SNauth labels a member as

selfish in its network then the SWSs in the network may

(depending on their “utility functions”) execute actions

included in scbe to tackle this selfishness. More details on

these actions are given in Section 3.2.

Definition 1 (Capability). A SWS capability is a triple

SWS-c = < fc, nfc, sc > where:

1. fc is a 4-tuple <Input, Output, Condition,
Effect>.

2. nfc is a set of non-functional properties {nfp1, nfp2, ...

nfpi}.

3. sc is a pair < scop, scbe > where:

(a) scop is a set of actions {aop1 , aop2 , ... aopi} (that

are different from the actions in the business logic

of fc).

(b) scbe is a set of pairs {(be1, {abe1,i}), (be2,

{abe2,j}), ... (bej , {abej,k})} with bei being a cer-

tain behavior (e.g., selfish and unfair) and {abei,j}
being a set of actions to carry out in order to respond

to bei. It might happen that (bei, φ) exists, which

means that no actions are available to respond to a

certain behavior.

Note: all bei are different and that some actions could be

common to behaviors, i.e., ∩{abei,j} �= ∅.

3.2. Reacting to peers’ behaviors

A social capability (sc) allows a SWS to react to peers’

behaviors so that this SWS continues functioning as per the

objectives (e.g., process more users’ requests) that it (i.e., its

owner) has set. These reactions take different forms and

will be discussed hereafter. Prior to this we define the sc’s

life cycle using 3 phases (Fig. 1)2: sensing, assessment, and

action (focus of this paper).

1. Sensing phase consists of collecting details on peers in

a network in terms of what actions they execute, what

responses they provide, what credentials (e.g., reputation

and credibility) they announce, etc. These details allow

to establish the peers’ behaviors as per the next phase.

2. Assessment phase consists of evaluating the details col-

lected during the sensing phase in preparation for taking

2According to West et al., achieving dynamic capabilities with cloud

computing includes four dimension [22]: sensing the environment, learn-

ing, integrating knowledge, and coordinating activities.

SWS
1

SWS
2

SWS
i

Sensing

Social netwoks
of SWSs

Life cycle

AssessmentAction

Figure 1. Representation of sc’s lifecycle

actions as per the next phase. This evaluation uses rules

that consist of Conditions (C) over Values (V) related to

specific non-functional properties (nfp). We recall that

these properties constitute the nfc of the peer SWSk. A

rule is defined as follows:
∧

Ci ⇒ bej (1)

where Ci compares Vnfpi to a Threshold (Ti) that the

provider of SWS �=k sets (compare(Vnfpi , Ti)). bej is

an element of a set of Behaviors (Be) (e.g., selfish and

unfair) and denotes the behavior that SWSk exposes.

3. Action phase consists of taking actions (reported in scbe
of SWS �=k), if necessary, to respond to the behavior

(bej) defined in the assessment phase. Examples of ac-

tions include stop sharing private data with a peer, re-

view the cooperation level with a peer, and adjust some

non-functional properties to serve well a peer.

In [25] we made SWSs expose certain social behaviors

like selfishness, untrustworthiness, and fairness based on

factors that characterize collaboration, substitution, and se-

lection scenarios. For instance, “a slave Web service be-
haves in a selfish way if it does not show a positive atti-
tude towards first, its direct master Web service and second,
other peers located in its community or other communi-
ties” [25]. In the following we develop strategies to respond

to selfishness, untrustworthiness, and unfairness behaviors

of SWSs (e.g., SWSk) in networks.

A) How to deal with selfishness behav-
ior (be:selfish)? Selfishness arises when a peer

continuously refuses to act either as a substitute for a fail-

ing SWS or as a collaborator in an ongoing composition

upon the request of a SWS. In either way the SWS could

take actions included in scselfish:

1. Substitution scenario: depending on the criticality level

(e.g., high) of the composition that the SWS now takes

part in, the SWS could take the following actions:

(a) aselfish,1: the SWS stops relying on the peer for

future substitutions.

(b) aselfish,2: the SWS adjusts (e.g., decrements) the

willingness level of the peer to act as a substitute.

As a result the peer could be among the last to con-

tact in the future.

2. Collaboration scenario: depending on the criticality

level of the composition that the SWS now takes part

in, the SWS could take the following actions:

(a) aselfish,3: the SWS stops recommending the peer

for future collaborations.

B) How to deal with untrustworthi-
ness (be:untrustworthy)? Untrustworthiness arises

when a peer does not comply with for instance, the

non-functional properties that it announces to a SWS.

This SWS needs to invoke the functionality of this peer

as part of an ongoing composition execution. This lack of

compliance will affect the SWS’s performance. Examples

of untrustworthiness signs and detection mechanisms

are discussed in [25]. When a SWS interacts with

an untrustworthy peer it could take actions reported in

scuntrustworthy:

1. auntrustworthy,1: the SWS restricts data exchange to a

minimum level with the peer, e.g., only public data.

2. auntrustworthy,2: the SWS agrees on sanctions on the

peer prior to any interaction.

3. auntrustworthy,3: the SWS monitors interactions be-

tween the SWS and peer through an independent third-

party.

4. auntrustworthy,4: the SWS adjusts (e.g., decrements)

the trustworthiness level of the peer. As a result the peer

could be among the last to contact in the future.

C) How to deal with unfairness (be:unfair)? Unfair-

ness arises when a failing SWS contacts specific peers for

substitution needs and excludes others purposely. Exam-

ples of unfairness signs and detection mechanisms are dis-

cussed in [25]. When a peer detects unfairness from a SWS
it could take actions reported in scunfair:

1. aunfair,1: the SWS limits the interactions with the

SWS to the minimum.

2. aunfair,2: the SWS stops recommending the SWS to

others in the future.

3. aunfair,3: the SWS adjusts (e.g., decrements) the fair-

ness level towards the SWS .

In the aforementioned cases the SWS also informs the

SNauth of the actions that it has taken so that other mem-

bers in the network are made aware of these actions as well.

This offers different benefits to the whole network’s mem-

bers such as adjusting the admission policies to the network,

comparing reasons of similar actions taken in the past, and

ensuring fairness across all the members.

4. Aspects for behaviors’ reactions

To write...

5. Conclusion

In this paper we discussed the notion of capacity in the

particular context of social Web services. Capacity is de-

composed into functional, non-functional, ad social (de-

composed as well into operation and behavior). We mainly

focussed on the social/behavior capacity to illustrate how a

social Web service should react to the behaviors of peers in

the same network. A selfish peer might undermine the op-

eration of the social Web service so that recommendations

of what to do have been developed. Examples of recom-

mendations are exchanging public data only and suspend-

ing interactions temporarily. In term of future work we

would like to associate actions in social/behavior capacity

with three properties: time-dependent property: the effect

of executing actions in social/behavior capacity holds for a

limited time-period; Afterwards the effect is canceled auto-

matically; final property: the effect of executing actions in

social/behavior capacity is indefinite and hence, cannot be

reversed; and scope (local versus global) property: the ef-

fect of executing actions in social/behavior capacity targets

either specific social Web services or all social Web services

in a network.

References

[1] J. Al-Sharawneh and M.-A. Williams. A Social Network

Approach in Semantic Web Services Selection using Fol-

low the Leader Behavior. In Proceedings of the 13th En-
terprise Distributed Object Computing Conference Work-
shops (EDOCW’2009), Auckland, New Zealand, 2009.

[2] Y. Badr and Z. Maamar. Can Enterprises Capitalize on Their

Social Networks? Cutter IT Journal, 22(10), October 2009.
[3] S. Bansal, A. Bansal, and M. B. Blake. Trust-based Dynamic

Web Service Composition Using Social Network Analysis.

In Proceedings of the International Workshop on Business
Applications for Social Network Analysis (BASNA’2010)
held in conjunction with the Fourth International Confer-
ence on Internet Multimedia Systems Architecture and Ap-
plications (IMSAA’2010), Bangalore, India, 2010.

[4] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv

Environment for Web Services Composition. IEEE Internet
Computing, 7(1), January/February 2003.

[5] W. Chen and I. Paik. Improving Efficiency of Service Dis-

covery using Linked Data-based Service publication. Infor-
mation Systems Frontiers, Spinger, 2012 (forthcoming).

[6] W. Derguech and S. Bhiri. Modelling, Interlining, and Dis-

covering Capabilities. In Proceedings of the 10th ACS/IEEE
International Conference on Computer Systems and Appli-
cations (AICCSA’2013), Fez, Morocco, 2013.

[7] S. Drupad. Enterprise Web 2.0 Worth $4.6 Billion in

2013, Visited September 2008. Searchviews, 21 April 2008,

www.searchviews.com/index.php/archives/2008/04/enterprise-

web-20-worth-46-billion-in-2013.php.
[8] N. Faci, Z. Maamad, E. Kajan, and D. Benslimane. Re-

search Roadmap for the Enterprise 2.0 Issues & Solutions.

Scientific Publications of the State University Of Novi Pazar
Journal, Series A: Applied Mathematics, Informatics & Me-
chanics, 2(2), 2014.

[9] L. Kagal, T. Finin, and A. Joshi. Declarative Policies for De-

scribing Web Service Capabilities and Constraints. In Pro-
ceedings of the W3C Workshop on Constraints and Capabil-
ities for Web Services, Oracle Conference Center, Redwood

Shores, CA, USA, 2004.
[10] Z. Maamar, Y. Badr, N. Faci, and Q. Z. Sheng. Realizing a

social ecosystem of web services. In A. Bouguettaya, Q. Z.

Sheng, and F. Daniel, editors, Handbook on Web Services
- Advanced Web Services Part. Springer, 2014.

[11] Z. Maamar, F. Faci, K. Boukadi, Q. Z. Sheng, and L. Yao.

Commitments to Regulate Social Web Services Operation.

IEEE Transactions on Services Computing, IEEE Computer
Society, 7(2), April/June 2014.

[12] Z. Maamar, N. Faci, L. Krug Wives, H. Yahyaoui, and

H. Hacid. Towards a Method for Engineering Social Web

Services. In Proceedings of the IFIP WG8.1 Working Con-
ference on Method Engineering (ME’2011), Paris, France,

2011.
[13] Z. Maamar, N. Faci, Q. Z. Sheng, and L. Yao. Towards

a User-Centric Social Approach to Web Services Compo-

sition, Execution, and Monitoring. In Proceedings of the
13th International Conference on Web Information System
Engineering (WISE’2012), Paphos, Cyprus, 2012.

[14] Z. Maamar, H. Hacid, and M. N. Huhns. Why Web Services

Need Social Networks. IEEE Internet Computing, 15(2),

March/April 2011.
[15] Z. Maamar, L. Krug Wives, Y. Badr, S. Elnaffar, K. Boukadi,

and N. Faci. LinkedWS: A Novel Web Services Discov-

ery Model Based on the Metaphor of “Social Networks”.

Simulation Modelling Practice and Theory, Elsevier Science
Publisher, 19(10), 2011.

[16] Z. Maamar, S. Tata, K. Yétongnon, D. Benslimane, and

P. Thiran. A Goal-based Approach to Engineering Capacity-

driven Web Services. Knowledge Engineering Review,

29(2), 2014.
[17] A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi. To-

wards a Social Network Based Approach for Services Com-

position. In Proceedings of the 2010 IEEE International
Conference on Communications (ICC’2010), 2010.

[18] M. Nam Ko, G. P. Cheek, M. Shehab, and R. Sandhu. Social-

Networks Connect Services. IEEE Computer, 43(8), August

2010.
[19] M. Paloucci, T. Kawamura, T. R. Payne, and K. Sycara.

Semantic Matching of Web Services Capabilities. In Pro-
ceedings of the First International Semantic Web Confer-
ence (ISWC’2002), Sardinia, Italy, 2002.

[20] T. Senivongse, N. Phacharintanakul, C. Ngamnitiporn,

and M. Tangtrongchit. A Capability Granularity Anal-

ysis on Web Service Invocations. In Proceedings of
the World Congress on Engineering and Computer Sci-
ence (WCECS’2010), San Francisco, USA, 2010.

[21] Q. Z. Sheng, X. Qiaob, A. V. Vasilakosc, C. Szaboa,

S. Bournea, and X. Xud. Web Services Composition: A

Decade’s Overview. Information Sciences, 2014 (to appear).
[22] B. C. West, D. A. Battleson, J. Kim, and B. Ramesh. Achiev-

ing Dynamic Capabilities with Cloud Computing. IEEE IT
Professional, 16(6), November/December 2014.

[23] Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou, I. Silva-

Lepe, and T. Mikalsen. Combining Quality of Service and

Social Information for Ranking Services. In Proceedings of
ServiceWave 2009 Workshops held in conjunction with the
7th International Conference on Service Service-Oriented
Computing (ICSOC’2009), Stockholm, Sweden, 2009.

[24] X. Xie, B. Du, and Z. Zhang. Semantic Service Composi-

tion based on Social Network. In Proceedings of the 17th In-
ternational World Wide Web Conference (WWW’2008), Bei-

jing, China, 2008.
[25] H. Yahyaoui, Z. Maamar, E. Lim, and P. Thiran. Towards

a Community-based, Social Network-driven Framework for

Web Services Management. Future Generation Computer
Systems, 29(6), 2013.

