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Collectively, the results from  Peng et al. (2003)  and this study 

indicate redundant roles for mDia1 and 2 in the assembly of 

F-actin in protrusive structures such as fi lopods. 

 RhoA activation is up-regulated in the 
absence of N-WASP and WAVE2 
 The regulatory connection between the simultaneous in-

hibition of N-WASP and WAVE2 and the activation of mDia1 

was investigated by looking at the activation status of RhoA, 

the upstream regulator of mDia1 activity ( Alberts et al., 1998 ; 

 Watanabe et al., 1999 ;  Alberts, 2001 ). We found that RhoA ac-

tivity is up-regulated in N-WASP/WAVE2 KD cells. We showed 

that the mDia1-dependent protrusions in the N-WASP/WAVE2 

KD cells are directly dependent on RhoA activation. EGF 

stimulation further activates RhoA and amplifi es the produc-

tion of filopods and lamellar protrusions. Furthermore, in-

creasing RhoA activity further increased the formation of 

these protrusions. 

 In particular, our work demonstrates a previously un-

detected interaction between the regulation of protrusion forma-

tion by WAVE2 and N-WASP and mDia1. Our results here, 

and those of previous studies ( Yamaguchi et al. 2005 ), indi-

cate that the formation of lamellipods, invadopods, and fi lo-

pods is coordinated by the WAVE2, N-WASP, and mDia1 

pathways, respectively, and that the relative amount of each 

type of protrusion is determined by cross talk between these 

of the Arp2/3 and ADF/cofi lin mechanisms ( Gupton et al., 

2005 ). In N-WASP/WAVE2 KD cells, we also saw a decrease in 

the Arp2/3 complex localization at the leading edge and an in-

crease in tropomyosin localization at the leading edge (Fig. S3), 

which indicated that the protrusions being formed in MTLn3 

cells under these conditions are lamella ( Gupton et al., 2005 ). 

Furthermore, the protrusions formed by the N-WASP/WAVE2 

KD cells required mDia1 expression and could be induced 

by expression of active mDia1. Therefore, the removal of both 

N-WASP and WAVE2 generated a protrusive phenotype similar 

to that described for lamella, in which the activation of mDia1 

is responsible for actin polymerization and protrusion. 

 The role for formins in fi lopod assembly 
 The observation that mDia1 has an essential role for fi lopodia 

formation in MTLn3 cells is surprising. Previously, mDia2 had 

been implicated in fi lopod formation in mouse embryonic stem 

cells ( Peng et al., 2003 ). In contrast to the previous study, we 

show here that mDia2 expression did not appear to be altered by 

mDia1 KD and that mDia1 is suffi cient for fi lopod formation. 

The lack of change in mDia2 expression is likely because of the 

different approaches used by the two different studies. 

 In the initial study,  Drf1  (mDia1)-null cells were gener-

ated over a long selection process. In this context, the extended 

selection likely drove cells to increase mDia2 expression to 

compensate for loss of mDia1 expression ( Peng et al., 2003 ). 

 Figure 10.    Summary of cell phenotypes re-
sulting from inhibition of WASP family members. 
 (Top) Control. All pathways are intact and 
regulated. (Top, N-WASP KD) Lamellipod ex-
tension containing dendritic network is normal. 
The only difference is the absence of ventral 
protrusions called invadopods ( Yamaguchi 
et al., 2005 ). (Top, WAVE2 KD) Inhibition of la-
mellipods and loss of dendritic network but not 
invadopods. Lamellar structures are more prom-
inent. (Top, N-WASP/WAVE2 KD) Inhibition 
of both N-WASP and WAVE2 results in loss of 
lamellipods and invadopods and activation of 
the mDia1 pathway, leading to the formation 
of a prominent lamella, fi lopods, and jagged 
protrusions. (Bottom, 1) The N-WASP-Arp2/3 
complex is necessary for invadopod formation 
( Yamaguchi et al., 2005 ). (Bottom, 2) WAVE2 
regulates lamellipod formation, not fi lopod for-
mation. (Bottom, 3) Inhibition of both WAVE2 
and N-WASP up-regulates RhoA and mDia1 
activities, resulting in lamellar but not lamelli-
podial extension.   
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oratories, Inc.;  Wallar et al., 2007 ). DA-mDia1:GFP- � GBD-mDia1 (543 –
 1,255) fusion constructs were based on the pEGFP-C1 expression vectors 
(Clontech Laboratories, Inc.;  Wallar et al., 2007 ). CFP-RhoA-G14V fusion 
constructs were fused to pECFP-C1 expression vector (Clontech Laborato-
ries, Inc.). The EYFP and ECFP plasmids were originally altered (A206K) to 
eliminate artifactual dimerization of fl uorescent proteins ( Wallar et al., 
2007 ). Vectors were transfected into cells using Lipofectamine 2000 (Invit-
rogen). Full-length human WAVE2 was expressed in pBabe puro retroviral 
vector ( Morgenstern and Land, 1990 ). 

 Protein 
 Recombinant TAT-C3 protein was a gift from E. Sahai (Research UK London 
Research Institute, London, UK). TAT protein transduction domain was added 
to recombinant C3 exoenzyme. A pGEX-KG MYC-C3 plasmid was modifi ed 
to include the nucleotide sequence 5 � -GGAGGATACGGCCGAAAGAAGC-
GACGACAGCGACGCCGTGGAGGA-3 �  at a position 5 �  to the C3 coding 
sequence. The C3 sequence corresponds to nucleotides 1 – 780 of EMBL 
accession X51464 ( Sahai and Olson, 2006 ). Cells were treated with a fi nal 
concentration of 5.3  μ g/ml TAT-C3 in full media for 12 h. 

 siRNA 
 The WAVE2, N-WASP, WAVE1, mDia1, mDia2, and P34 siRNA duplexes 
were designed against the following gene sequences: WAVE2, 5 � -AAA-
CCTATAACAGTGTGACG-3 � ; Scrambled, 5 � -AAGGAATCGGATCTCGT-
AAGG-3 � ; N-WASP, 5 � -AAGACGAGATGCTCCAAATGG-3 � ; WAVE1, 
5 � -AAGTGCAGGGGCTGCCTCCGC-3 � ; P34, 5 � -AAGGAACTTCAGGCA-
CACGGA-3 �  (Ambion); mDia1, 5 � -AAGCAGGAGCTTCGAGAGATTTT-3 � ; 
and mDia2, 5 � -GCAGGAGCTTCGAGAGATTTT-3 �  (Dharmacon). Abi1 
siRNA was predesigned (QIAGEN). MTLn3 cells were transfected with the 
siRNA duplex in the presence of oligofectamine (Invitrogen). The transfection 
was terminated after 4 h by using 2 ×  serum-containing media. 

 Quantitative RT-PCR method 
 RNA was extracted from MTLn3 cells using the TRIzol reagent (Invitrogen), 
as per the manufacturer ’ s instructions. A further round of RNA purifi cation 
was performed using RNeasy (QIAGEN) for RNA clean up, as per the 
manufacturer ’ s instructions. RNA was diluted to a concentration of 2  μ g/5  μ l 
for the reverse transcription reaction. The reverse transcription reaction 
included 2  μ g RNA, 25 mM MgCl2, deoxyribonucleotide triphosphates 
(each at a fi nal concentration of 10 mM), random hexamers (N808-0127), 
RNase inhibitor (N808-0119), and Multiscribe reverse transcription 
(N808-0118; all reagents were obtained from Applied Biosystems). Ther-
mal cycling was done at 25 ° C for 10 min, 48 ° C for 30 min, and a fi nal in-
cubation at 95 ° C for 5 min. Target mDia1, mDia2, and mDia3 sequences 
were developed using Primer Express software (version 1.5; Applied Bio-
systems). The sequences include the following: mDia1 forward (agg atg 
cac agg aac agt ata aca aac), mDia1 reverse (acg aag tag tca cct agc tcc 
tta tag ag), mDia2 forward (ttt gaa gag cag gtg aac aac atc), mDia2 re-
verse (tga tct cct cgc agg cag tac), mDia3 forward (aga gac cgc aga aag 
cga att), mDia3 reverse (gcg aga gcg aga tct ttc ca), WAVE1 forward (cca 
ctc cca caa ggt gaa gt), WAVE1 reverse (agg cag gac ttg tga agg tg), 
WAVE2 forward (ctt ttc cgt cgt ccc tgt aa), WAVE2 reverse (tca ctc agc tag 
atc cca agg), N-WASP forward (tgg tga cca tca agt tcc ag), N-WASP re-
verse (ggt tgg tgg tgt gga ctc tt), P34 forward (gaa caa ccg cat cat cga g), 
and P34 reverse (aag gac gcc atc aaa atc tg). These primers were used 
with internal probe sequences that had FAM dye incorporation for accu-
rate measurement in real time. A total of 200 ng cDNA was added to the 
Universal PCR mastermix (Applied Biosystems) with 100  μ M of forward 
primer, 100  μ M of reverse primer, and 100  μ M of probe. The thermal cy-
cling was at 50 ° C for 2 min, 95 ° C for 10 min, and 95 ° C for 15 s, cycling 
40 times, followed by a fi nal incubation at 58 ° C for 1 min. The reactions 
were all performed in an ABI 7700 (Applied Biosystems) machine. WASP 
family member mRNA levels were analyzed by quantitative RT-PCR as pre-
viously described ( Wang et al., 2002 ). 

 Pulldown assay and Western blots 
 Activation of Rho was assayed using GST-RBD. Activation of Cdc42 and 
Rac was assayed using GST – Cdc42-Rac interactive binding domain 
(CRIB). GST-RBD and GST-CRIB were expressed in  Escherichia coli  and pu-
rifi ed using glutathione-agarose. The cells were lysed in buffer A (25 mM 
Hepes, 1% Igepal, 150 mM NaCl, 10 mM MgCl 2 , 10% glycerol, 1 mM 
EDTA, 1 mM NaVO 4 , 20 mM NaF, 1 mM PMSF, 100  μ g/ml aprotinin, and 
5  μ M leupeptin). Lysates were cleared by centrifugation and incubated 
with 20  μ g GST-RBD protein for 30 min at 4 ° C while rotating. The beads 
were washed three times with buffer A and boiled in Laemmli sample buffer. 

pathways ( Fig. 10 ). In addition, our work suggests that the relative 

balance between the protrusion of lamellipods and the extension 

of the lamella is determined by the cross talk between N-WASP, 

WAVE2, and mDia1. Our work also supports the speculation 

by  Gupton et al. (2005)  that an Arp2/3-independent generation 

of BEs is responsible for extension of the lamellum. Further 

work will be required to understand the consequences of this 

cross talk in determining the invasive and metastatic phenotype 

of tumor cells. 

 Materials and methods 
 Cell cultures 
 MTLn3 cells (rat mammary adenocarcinoma cell line) were maintained, 
starved, and stimulated as described previously ( DesMarais et al., 2004 ). 
For light microscopy experiments, cells were plated on glass-bottom 
dishes (MatTek Corporation) that had been treated with 1 M HCl for 10 min, 
followed by one wash with 75% ethanol and then one wash with 
PBS. Before each experiment, cells were starved in L15 medium (Invitro-
gen) supplemented with 0.35% BSA (starvation medium) for 3 – 4 h. For 
stimulation, MTLn3 cells were treated at 37 ° C with a bath application 
of 5 nM EGF (Invitrogen) for various times. Previous work has shown 
that serum stimulation of MTLn3 protrusion activity, cell motility, RhoA 
activity, and Cdc42 activity is mediated by the EGF receptor ( Wyckoff 
et al., 2004 ;  El-Sibai et al., 2007, 2008 ). Therefore, we used EGF stimu-
lation in place of serum to examine the motility pathways in MTLn3 cells 
after stimulation. 

 Antibodies 
 Primary antibodies were purchased from Santa Cruz Biotechnology, Inc. or 
supplied by T. Takenawa (Tokyo University, Tokyo, Japan) and A. Alberts 
(Van Andel Research Institute, Grand Rapids, MI). WAVE2 (C-14), a goat 
polyclonal Ig antibody, was used to stain against WAVE2 in immuno-
fl uorescence at a concentration of 20  μ g/ml (Santa Cruz Biotechnology, 
Inc.). Arp3 (H-110), a rabbit polyclonal antibody, was used to blot against 
the Arp2/3 complex at 1:300 dilution (Santa Cruz Biotechnology, Inc.) 
Anti-mDia1 rabbit polyclonal was used against mDia1 at a concentration 
of 1  μ g/ml. Westerns blots were probed with N-WASP – specifi c monoclo-
nal Ig rabbit antibodies (donated by T. Takenawa) at a dilution of 1:3,000. 
Immunoblots for WAVE2 were probed by WAVE2-specifi c monoclonal Ig 
rabbit antibodies (provided by T. Takenawa) at a dilution of 1:500. 
Immunoblots for Abi1 were probed for Abi1-specifi c Ig goat antibodies 
(T-15; Santa Cruz Biotechnology, Inc.) at a dilution of 1:300. mDia1 was 
stained using an anti-mDia1 (C-terminal) rabbit polyclonal antibody (pro-
vided by A. Alberts) at a 1  μ g/ml dilution for Western blots and a 0.2- μ g/ml 
dilution for immunofl uorescence. LC24, a mouse monoclonal IgG specifi c 
to TM4, was provided by J. Lin (University of Iowa, Iowa City, IA;  DesMarais 
et al., 2002 ). For BEs, the Cy5-conjugated antibiotin (Jackson Immuno-
Research Laboratories) was used at a 1:50 dilution. 

 Constructs 
 Expression plasmid DN-mDia1 (mDia1 F2 � N1 YFP) encodes N-terminal 
modifi cations of the FH2 region (codons 752 – 1182) of mDia1 ( Copeland 
and Treisman, 2002 ) fused to pEYFP-C1 expression vectors (Clontech Lab-

 Table II.    The persistence of fi lopods increases in N-WASP/WAVE2 
KD cells  

Persistence (s)

Scr N-WASP/WAVE2

Mean 111.38 139.13

SEM 8.52 5.42

Cells were treated with either scrambled (Scr) or N-WASP and WAVE2 siRNA. 
Filopod length was quantifi ed from time-lapse videos after EGF stimulation. 
Persistence was measured by lifetime of fi lopods throughout EGF stimulation. 
Lifetime is defi ned as the total duration of a fi lopod from fi rst appearance to fi nal 
disappearance in the time-lapse movie. P-values are in comparison to control. 
P = 1.73  ×  10  � 5 .

on F
ebruary 8, 2017

D
ow

nloaded from
 

Published March 24, 2008



1259WASP FAMILY AND FORMIN REGULATE PROTRUSION  •  SARMIENTO ET AL.

anti-biotin antibody in TBS/BSA for 1 h, and then washed fi ve times for 
5 min with TBS/BSA and mounted in 50% glycerol in TBS, pH 8.1, and 
6 mg/ml  N -propyl gallate. Quantifi cation of fl uorescence intensity (see Micros-
copy and fl uorescence quantifi cation) versus distance from the cell periphery 
was used to determine the number of free BEs in the leading edge. The mean 
intensities, which correspond to the zone between 0 and 0.66  μ m inside the 
cell, plotted separately versus time reveal that the generation of free BEs in 
response to EGF stimulation follows two transients with the two peaks corre-
sponding to 1 and 3 min after addition of EGF. siRNA and plasmid transfec-
tions were performed as described in Constructs and siRNA. 

 Microscopy and fl uorescence quantifi cation 
 Pictures were taken using either a 20 ×  NA 0.75 or 60 ×  NA 1.4 infi nity-
corrected optics on a microscope (IX170) supplemented with a computer-
driven cooled charge-coupled device camera and operated by IPLab 
Spectrum software. 

 For BE, tropomyosin, and WAVE2 localization analysis, cells were 
fi xed as described in Immunofl uorescence. Images were analyzed using a 
macro for Image designed to measure cell edge fl uorescence intensity, de-
veloped by the Analytical Imaging Facility of the Albert Einstein College of 
Medicine. Cells were traced and the macro automated the collection of 
pixel intensity in a perimeter of the cell starting at 1.98  μ m outside the cell 
and extending to 4.18  μ m inside the cell in 0.11- μ m steps (background 
was automatically subtracted from the measured mean fl uorescence inten-
sity). The mean intensity corresponds to the zone between 0 and 0.66  μ m 
inside the cell, plotted separately versus time. For area time-lapse analysis, 
Image J was used to quantitate cell area at each time point. For all fi xed 
cells, image acquisition was done at room temperature. 

 Online supplemental material 
 Fig. S1 shows that WAVE1 KD has no affect on lamellipod formation. 
Fig. S2 shows quantitation of protein expression of siRNA KD cells. Fig. S3 
shows that N-WASP/WAVE2 KD has a more prominent tropomyosin 
compartment at the cell periphery and decreased Arp2/3 localization and 
that mDia1 KD inhibits tropomyosin at the cell periphery. Fig. S4 shows 
that KD of either mDia1 or 2 does not affect lamellipod protrusion at the 
leading edge. Fig. S5 shows Cdc42 and Rac activity in N-WASP/WAVE2 
KD cells. Video 1 shows that upon EGF stimulation, control MTLn3 cells 
exhibit lamellipod extension and accumulation of F-actin at the leading 
edge of the lamellipod. Video 2 shows that N-WASP/WAVE2 siRNA KD 
cells exhibit jagged protrusions and increased fi lopod formation upon EGF 
stimulation. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200708123/DC1. 
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