
 

                                    

   Lebanese American University Repository (LAUR) 

Post‐print version/Author Accepted Manuscript 

Publication metadata  

Title: An Overview on XML Semantic Disambiguation from Unstructured Text to Semi‐

Structured Data: Background, Applications, and Ongoing Challenges 

 

Author(s): Joe Tekli 

Journal: EEE Transactions on Knowledge and Data Engineering 

DOI/Link: https://doi.org/10.1109/TKDE.2016.2525768 

How to cite this post‐print from LAUR: 

Tekli, J. (2016). An overview on xml semantic disambiguation from unstructured text to semi‐

structured data: background, applications, and ongoing challenges. IEEE Transactions on 

Knowledge and Data Engineering. Doi: 10.1109/TKDE.2016.2525768 

 

 2016 

 

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives 

(CC‐BY‐NC‐ND 4.0) 

 

 

This paper is posted at LAU Repository 
 
For more information, please contact: archives@lau.edu.lb 

 



 1 

 

An Overview on XML Semantic Disambiguation 
from Unstructured Text to Semi-Structured Data:  

Background, Applications, and Ongoing Challenges 
 

Joe Tekli 
Abstract— Since the last two decades, XML has gained momentum as the standard for Web information management and complex data 
representation. Also, collaboratively built semi-structured information resources, such as Wikipedia, have become prevalent on the Web 
and can be inherently encoded in XML. Yet most methods for processing XML and semi-structured information handle mainly the 
syntactic properties of the data, while ignoring the semantics involved. To devise more intelligent applications, one needs to augment 
syntactic features with machine-readable semantic meaning. This can be achieved through the computational identification of the 
meaning of data in context, also known as (a.k.a.) automated semantic analysis and disambiguation, which is nowadays one of the main 
challenges at the core of the Semantic Web. This survey paper provides a concise and comprehensive review of the methods related to 
XML-based semi-structured semantic analysis and disambiguation. It is made of four logical parts. First, we briefly cover traditional word 
sense disambiguation methods for processing flat textual data. Second, we describe and categorize disambiguation techniques 
developed and extended to handle semi-structured and XML data. Third, we describe current and potential application scenarios that can 
benefit from XML semantic analysis, including: data clustering and semantic-aware indexing, data integration and selective dissemination, 
semantic-aware and temporal querying, Web and Mobile Services matching and composition, blog and social semantic network analysis, 
and ontology learning. Fourth, we describe and discuss ongoing challenges and future directions, including: the quantification of semantic 
ambiguity, expanding XML disambiguation context, combining structure and content, using collaborative/social information sources, 
integrating explicit and implicit semantic analysis, emphasizing user involvement, and reducing computational complexity. 

Index Terms—H.3.1 [Content Analysis and Indexing]; H.3.3 [Information Search and Retrieval]; I.7.1 [Document and Text Processing]: 
Document and Text Editing – Document management; I.7.2 [Document Preparation]: Document Preparation – Markup languages. I.2.4 
[Knowledge Representation Formalisms and Methods]: Semantic Networks. 

 

——————————   �   —————————— 
 
1. INTRODUCTION 

ITH the increasing amount of information published on the 
Web, there is an ever-swelling demand for methods to 
effectively store, describe, access and retrieve Web data. 

After all, the value of information depends on how easy it is to 
search and manage [81]. In this context, a major breakthrough has 
been achieved in the past decade with the development and wide-
spread adoption of XML (eXtensible Markup Language) as a stan-
dard semi-structured data representation model on the Web [20]. 
The ability to distil free-form information and reshape structured 
(e.g., relational, hierarchical, and/or graph-based) data into a uni-
fied semi-structured format has proven central in facilitating large-
scale automatic data processing (with the proliferation of XML-
based Web formats such as SOAP1, RSS2, SVG3, MPEG-74, GML5, 
etc.). Also, collaboratively built semi-structured information re-
sources are becoming increasingly available [78] (such as Wikipe-
dia6, Wikitionary7, Flickr8, Twitter9, and Yahoo Answers10) describ-
ing different kinds of textual and multimedia information which 
can be naturally represented and processed using standardized 
XML (and related) technology. Nonetheless, attaining a higher 
degree of human-machine cooperation requires yet another tech-
nological breakthrough: extending the Web by giving information well 

 
1  http://www.w3.org/TR/soap/                                        
2  http://www.rssboard.org/rss-specification 
3  http://www.w3.org/Graphics/SVG/                               
4  http://mpeg.chiariglione.org/standards/mpeg-7 
5  http://www.opengeospatial.org/standards/gml 
6  http://www.wikipedia.org                                   7  http://www.wikitionary.org               
8  http://www.flickr.com    9  http://twitter.com    10 http://answers.yahoo.com                           

defined semantic meaning, i.e., the motto of the Semantic Web [13]. 
Thus, following the unprecedented Web exploitation and abun-
dance of XML and semi-structured data, the identification of se-
mantic meaning for XML-based information becomes a key chal-
lenge at the core of Semantic Web applications.  

For the past decade, most existing research around XML data 
processing has focused on handling the syntactic and structural 
properties of XML documents [187, 191], while neglecting the 
semantics involved [183]. Yet, various studies have highlighted the 
impact of integrating semantic features in XML-based applications, 
ranging over semantic-aware query rewriting and expansion [36, 
130] (expanding keyword queries by including semantically related 
terms from XML documents to obtain relevant results), document 
classification and clustering [182, 190] (grouping together XML 
documents based on their semantic similarities), schema matching 
and integration [46, 192] (considering the semantic meanings and 
relationships between XML schema elements and data-types), and 
more recently Web and mobile services’ discovery, recommenda-
tion, and composition [94, 113, 220] (searching and mapping se-
mantically similar WSDL/SOAP descriptions when processing Web 
Services, and XHTML/free-text descriptions when dealing with 
RESTful/mobile services), XML-based knowledge engineering 
(semantic annotation of XML data using Linked Data constructs) 
[70, 112], and semantic blog analysis and event detection in social 
networks [2, 12, 154], among other applications (cf. Section  6). 

1.1 Problem Statement and Motivation 
Here, a major challenge remains unresolved: XML semantic disam-
biguation, i.e., how to solve the semantic ambiguities and identify 
the meanings of terms in XML documents [89], which is central to 
improving the performance of XML-based applications. The prob-
lem is made even harder with the huge volume and diversity of 
XML and semi-structured data on the Web. 

W
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On one hand, heterogeneous XML data sources often exhibit 
different and subjective ways to annotate similar (or identical) data. 
XML documents may have common structures across different 
topics, or may encompass common topics across different struc-
tures. A simple example is shown in  Fig. 1, where two different 
XML documents describe the same Hitchcock movie even though 
they have different structures and tag names. On the other hand, a 
common limitation with most existing XML data processing me-
thods is that they often represent information according to its 
syntactic and/or stylistic properties, neglecting its actual semantic 
meaning [183]. The center problem here is lexical ambiguity: a term 
(e.g., an XML element/attribute tag name or data value) may have 
multiple meanings (polysemy), a word can be implied by other 
related terms (metonymy), and/or several terms can have the same 
meaning (synonymy) [89]. For instance (according to a general 
purpose knowledge base such as WordNet [51]), the term “Kelly” in 
XML document 1 of  Fig. 1 may refer to Emmet Kelly: the circus clown, 
Grace Kelly: Princess of Monaco, or Gene Kelly: the dancer. In addition, 
XML allows the definition of syntactic markup: customized (ele-
ment/attribute) tags describing corresponding data values [20], 
which are equally prone to lexical ambiguity. For instance, the XML 
element tag name “Director” in document 1 ( Fig. 1) can have several 
meanings, e.g., “Manager of a company”, “Film director”, “Theater 
director” or “Music director” (likewise for most terms/tag names in 
XML documents 1 and 2, e.g., “Action”, “Plot”, “Cast”, “Star”, etc., 
which can have more than 2 or 3 different semantic senses each, 
following WordNet). However, looking at their context in the doc-
ument, a human user can tell that term “Kelly” here refers to Grace 
Kelly, and that element label “Director” refers to “Film director”.  

The most obvious and accurate solution to the problem would 
be to manually annotate terms, mapping them with their intended 
meanings in a reference knowledge base. However, this remains 
practically infeasible due to the sheer amount of XML and semi-
structured data on the Web. Thus, word sense disambiguation (WSD), 
i.e., the computational identification of the meaning of words in 
context [126], becomes central to automatically resolve the semantic 
ambiguities and identify the intended meanings of XML tag names 
and data values. Yet while WSD has been extensively studied for 
flat textual data [80, 126], nonetheless, the disambiguation of XML 
and semi-structured data remains in its early stages. Existing ap-
proaches have been straightforwardly extended from traditional 
flat text WSD, and thus show several limitations and challenges 
when handling (semi-)structured information (cf. Section  7). 

1.2 Contribution and Organization of the Paper 
In this paper, we provide a concise and comprehensive review of 
the methods related to XML semantic analysis and disambiguation. 
The objective of this study is to briefly describe, compare, and 
categorize the different techniques and methods related to the 
problem, while illustrating some of the main challenges and poten-
tial application scenarios that can benefit from XML semantic anal-
ysis. To our knowledge, this is the first review study dedicated to 
the XML semantic disambiguation domain, which we hope will 
foster and guide further research on the subject. Note that while 
mainly focused on XML (as the present W3C standard for semi-
structured data representation on the Web), yet most concepts and 
methods covered in this paper can be easily adapted/extended to 
handle alternative semi-structured data models (e.g., JSON1). The 
remainder of the paper is organized as follows. Section  2 presents a 
glimpse on XML data and knowledge representations. Section  3  
1  www.json.org 

briefly reviews the background in traditional WSD. Section  4 re-
views and categorizes XML semantic disambiguation techniques, 
followed by a description of experimental evaluation metrics and 
test data in Section  5. XML semantic-aware applications and poten-
tial uses are described in Section  6. Ongoing challenges and future 
directions are covered in Section  7, before concluding in Section  8. 

 
 

<?xml version= “1.0”?> 
<Films> 
    <Picture title= “Rear Window”> 
       <Director> Hitchcock </Director> 
       <Year> 1954 </Year> 
       <Genre> Thriller </Genre> 
       <Cast> 
            <Star> Stewart </Star> 
            <Star> Kelly </Star> 
       </Cast> 
       <Plot>A wheelchair bound   
                 photographer spies on  
                 his neighbors …</Plot> 
        … 
    </Picture> 
</Films> 

 
a. XML document 1 

  

<?xml version= “1.0”?> 
<Movies> 
    <Movie year= “1954”> 
      <Name> Rear Window </Name> 
      <Directed_By>Alfred Hitchcock</Directed_By> 
      <Actors> 
           <Lead_Actor> 
               <FirstName>James</FirstName> 
               <LastName>Stewart</LastName> 
           </Lead_Actor> 
           <Actor>                             
               <FirstName>Grace</FirstName> 
               <LastName>Kelly</LastName> 
           </Actor>              
      </Actors> 
        …   
    </Movie>                          
</Movies>               b. XML document 2 

 

Fig. 1. Sample documents with different structures and tagging, yet 
describing the same information. 

 

2. XML DATA  AND SEMANTIC KNOWLEDGE  
2.1.  XML Data Representation  
XML documents represent hierarchically structured information 
and are generally modeled as Rooted Ordered Labeled Trees 
(ROLT,  Fig. 2), based on the Document Object Model (DOM) [211]. 
A ROLT is a tree2 with a single root node, in which the nodes are 
labeled and ordered. Given a ROLT T, we refer to T[i] as the ith node 
of tree T in pre-order (post-order or breadth-first) traversal, with 
T[i].� its label. An XML document tree is typically represented as a 
ROLT where nodes represent XML elements/attributes, labeled 
using element/attribute tag names, and ordered following their 
order of appearance in the XML document3 (which corresponds to 
pre-order traversal following the ROLT structure). Attribute nodes 
usually appear as children of their containing element nodes, 
sorted4 by attribute name, and appearing before all sub-elements 
[134, 228]. Other types of nodes, such as entities, comments and 
notations, are commonly disregarded in most XML data processing 
approaches since they are not part of the core XML data [40, 182]. 

 

 
 

 

Fig. 2. XML document tree T representing XML document 1 in  Fig. 1. 
 

Also, one of the main characteristics that distinguish XML 
documents from plain semi-structured data is the notion of XML 
grammar. An XML grammar (i.e., DTD [20] or XSD [141]) is a set of 
 
2  Tree and rooted ordered labeled tree are used interchangeably hereafter. 
3  Element node ordering is disregarded in certain applications (such as in 

keyword-based information retrieval, cf. Section  6.3). 
4 While the order of attributes (unlike elements) is irrelevant in XML, yet 

most studies adopt an ordered tree model to simplify processing [134, 228]. 
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definitions and declarations for modeling XML documents, defin-
ing the elements and attributes of the documents they describe, as 
well as element/attribute structural positions, data-types, and the 
rules they adhere to in the documents [147]. XML grammars can be 
viewed as schemas in traditional DBMS, necessary for the efficient 
indexing, storage, and retrieval of document instances. 
As for XML element/attribute values, they can be disregarded 
(structure-only) or considered (structure-and-content) in XML data 
processing following the application scenario at hand (cf.  Fig. 2). 
In general, element/attribute values are disregarded when evaluat-
ing the structural properties of heterogeneous XML documents (ori-
ginating from different data-sources and not conforming to the 
same grammar) [183], so as to perform XML structural classifica-
tion/clustering [40, 182] or structural querying [16, 158] (i.e., query-
ing the structure of documents, disregarding content). Yet, values 
are usually considered with methods dedicated to XML versioning 
[31, 37], data integration [62, 102], and XML structure-and-content 
querying applications [162, 163], where documents tend to have 
similar structures (probably conforming to the same grammar [98], 
cf. Section  6.2). With such methods, XML text sequences can be 
decomposed into word tokens, mapping each token to a leaf node 
labeled with the respective token, appearing as  children of their 
container element/attribute node, and ordered following their order 
of appearance in the element/attribute text value  [162, 163] ( Fig. 2).  

In the following, we will refer to the tree node representations 
of element/attribute tags as structure nodes, and to those of ele-
ment/attribute values as content nodes. 

2.2. SEMANTIC/KNOWLEDGE REPRESENTATION  
The description of the semantic meaning of words/expressions and 
their relationships, also known as semantic/knowledge representa-
tion, has been a central topic in the fields of Natural Language 
Processing (NLP), Information Retrieval (IR), and Artificial Intelligence 
(AI) for the past two decades [126]. Here, Description Logic (DL) has 
been introduced as a family of formal knowledge representation 
languages, allowing to represent and describe semantic meaning 
[28], to be stored in so-called Knowledge Bases (KBs), i.e., repositories 
of machine-readable knowledge, available for automated processes 
aiming to achieve semantic-aware processing. Many languages for 
DL have been proposed [71, 197]: Propositional Logic, First-Order 
Logic, Temporal Logic, etc., with specific properties and applications 
mainly dedicated to semantic data analysis. 

In this context, a typical KB structure is composed of a Termi-
nology-Box (T-Box) and an Assertion-Box (A-Box) [28]. The T-Box 
underlines the set of concept definitions, while the A-Box consists 
of the collection of concept instances (also called individuals). With 
respect to (w.r.t.) a relational database, the T-Box is similar to the 
structure of the tables (database schema) whereas the A-Box is 
more like the data rows (tuples) inserted into the tables [14, 28]. As 
a result, various KB structures such as taxonomies, thesauri, and 
ontologies have been investigated and developed in NLP, IR, and 
AI to define, organize, and link semantic concepts in a KB [84]. 

A KB usually comes down to a semantic network1 which is basi-
cally a graph consisting of nodes and arcs, organizing 
words/expressions in a semantic space [152] (cf.  Fig. 3). Each node 
represents a semantic concept underlining a group of 
words/expressions, designating word senses. Arcs underline the 
semantic links connecting the concepts, representing semantic 

 
1  In the remainder of the paper, terms knowledge base (KB) and semantic 

network are used interchangeably. 

relationships (e.g., synonymy, hyponymy (IsA), meronymy (PartOf), 
etc. [123, 152]). Examples of lexical KBs are Roget’s thesaurus [225], 
WordNet [123], and Yago [74]. In such structures, semantic informa-
tion can be expressed as sets of triplets: concept1-relationship-concept2 
(e.g., Actor-IsA-Performer, Scene-PartOf-Movie in Fig. 3), which are 
more commonly referred to as: subject-predicate-object triplets fol-
lowing the Semantic Web terminology [65] (covered in Section  6.6).  

 

 
 

 

Fig. 3. Extract of the WordNet semantic network. Numbers next to 
concepts represent concept frequencies (based on the Brown corpus [53], 
cf. Section  3.5). Sentences next to concepts represent concept glosses. 

 
3. BACKGROUND IN WORD SENSE DISAMBIGUATION 
 

WSD underlines the process of computationally identifying the 
senses (i.e., semantic concepts designating the meanings) of words 
in context, to discover the author’s intended meaning [80]. Different 
from traditional text mining techniques (e.g., lexical pattern discov-
ery, syntactic dependency, co-occurrence, etc. [6, 69, 171]) which 
mainly capture the lexico-syntactic nature of text, and thus barely 
go beyond the surface appearance of words [126], WSD aims at 
identifying the underlying semantic meaning of information for-
mulated with (possibly) different wordings and syntactic styles, in 
order to help identify the information that is most pertinent to the 
user’s needs. The general WSD task consists of the following main 
elements: i) selecting words for disambiguation, iii) identifying and 
representing word contexts, ii) using reference knowledge sources, 
iv) associating senses with words, and v) evaluating semantic 
similarity between senses. 

3.1. SELECTING WORDS FOR DISAMBIGUATION 
There are two possible methods to select target words for disam-
biguation: i) all-words, or ii) lexical-sample. In all-words WSD, e.g., 
[29, 144], the system is expected to disambiguate all words in a 
(flat) textual document. Although considered as a complete and 
exhaustive disambiguation approach, yet the all-words approach 
remains extremely time-consuming and labor intensive, where the 
high (time and processing) costs usually barely meet performance 
expectations [126]. In lexical-sample WSD, e.g., [64, 144], specific 
target words are selected for disambiguation (usually one word per 
sentence). These words are often the most ambiguous, and are 
usually chosen using supervised learning methods trained to rec-
ognize salient words in sentences [126]. Experimental results re-
ported in [126] show high disambiguation accuracy using the lexi-
cal-sample approach, in comparison with the all-words approach.  
Yet, a major difficulty in adopting the lexical-sample approach is in 
selecting ambiguous (target) words, due to the lack of formal me-
thods to quantify semantic ambiguity, since current supervised 
learning approaches are time-consuming, including a training 
phase that requires training data which is not always available.  
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3.2.  IDENTIFYING AND REPRESENTING CONTEXT 
Once words have been selected for disambiguation, their contexts 
have to be identified, to be utilized in the disambiguation process. 
In fact, WSD relies on the notion of context such that words that 
appear together in the same context usually have related meanings 
[100]. The context of a word in traditional flat textual data usually 
consists of the set of terms in the word’s vicinity, i.e., terms occur-
ring to the left and right of the considered word, within a certain 
predefined window size [100]. Other features can also be used to 
describe context, such as information resulting from linguistic pre-
processing including part-of-speech tags (e.g., verb, subject, etc.), 
grammatical relationships (e.g., verb-subject, verb-object, etc.) [126]. 
Once the context has been identified, it has to be effectively 
represented to perform disambiguation computations. Here, the 
traditional bag-of-words paradigm is broadly adopted with flat 
textual data [80, 126], where the context is processed as a set of 
terms surrounding the word to disambiguate. A vector representa-
tion considering the number of occurrences of words in context can 
also be used [126], along with more structured context representa-
tions using co-occurrence graphs [1, 208]. Yet, the latter representa-
tions require substantial additional processing in comparison with 
the bag-of-words model. 

3.3. USING REFERENCE KNOWLEDGE SOURCES 
In addition to the contexts of target words, external knowledge is 
essential to perform WSD, providing reference data which are 
needed to associate senses with words. Here, WSD methods can be 
distinguished as i) corpus-based or ii) knowledge-based, depending on 
the kind of external knowledge sources they rely on. The corpus-
based approach is data-driven, e.g., [119, 138], as it involves infor-
mation about words previously disambiguated, and requires su-
pervised learning from sense-tagged corpora (e.g., SemCor [124] 
and OntoNotes [143]) where words/expressions have been asso-
ciated with explicit semantic meaning, in order to enable predic-
tions for new words. A sense here underlines a labeled semantic 
category1 to be used in supervised learning, and is not formally 
defined (as opposed to having a formal semantic concept defined in a 
KB, cf. Section  2.2). A more restrictive view of corpus-based methods, 
known as word sense induction, e.g., [21, 87], seeks to automatically 
identify so-called implicit senses, i.e., unlabelled semantic categories1 
(designating the uses) of target words in a raw (unlabeled) corpus 
(e.g., the Brown corpus [53]). Methods in this category rely exclu-
sively on corpus data where word relationships are derived from 
their contextualization and co-occurrence in the corpus itself. They 
cluster words with similar corpus statistical properties, producing 
an implicit sense inventory made of unlabelled word categories 
(clusters), where each category denotes an implicit sense [129] 2. 

On the other hand, Knowledge-based methods are knowledge-
driven, e.g., [122, 128], as they handle a structured (and explicit) 
sense inventory and/or a repository of information about words 
that can be automatically exploited to distinguish their meanings in 
the text. Machine-readable KBs (dictionaries, thesauri, and/or lexi-
cal ontologies, e.g., Roget’s thesaurus [225], WordNet [51], and Yago 
[74]) provide ready-made sources of information about word senses  
1 In machine learning and statistical classification, a labeled category is a class 

or group of entities/variables (e.g., words) sharing the same properties, and 
having an identifying (semantically meaningful) label. An unlabelled category 
however does not have an identifying label [129].   

2 In the remainder of this paper, the term sense means explicit sense, designat-
ing either a labeled semantic category (following the corpus-based approach) or 
a semantic concept in a KB (following the knowledge-based approach), unless 
stated otherwise. 

to be exploited in knowledge-based WSD. While corpus-based me-
thods have been popular in recent years, e.g., [4, 7, 36], they are 
generally data hungry and require extensive training, huge text 
corpora, and/or a considerable amount of manual effort to produce 
a relevant sense-annotated corpus, which are not always available 
and/or feasible in practice. In addition, with corpus-based statistical 
approaches, the “true” understanding of words is hardly obtainable 
[84], since words are evaluated according to their statistical distri-
bution in a corpus, often capturing syntactic or stylistic factors 
instead of semantic meaning [150]. Therefore, knowledge-based me-
thods have been receiving more attention lately, e.g., [122, 126, 182], 
and include most XML disambiguation solutions (Section  4.2). 

3.4. ASSOCIATING SENSES WITH WORDS 
The culminating step in WSD is to associate senses with words, 
taking into account the target words’ contexts as well as reference 
external knowledge about word senses. This is usually viewed as a 
word-sense classification task. In this regard, WSD approaches can 
be roughly categorized as supervised or unsupervised. On one hand, 
supervised methods, e.g., [119, 126, 203], involve the use of machine-
learning techniques, using samples (a human expert manually 
annotates examples of words with the intended sense in context, 
where each sense underlines a labeled semantic category) provided as 
training data for a learning algorithm. The algorithm then induces 
rules to be used for assigning meanings to other occurrences of the 
words. External knowledge (mainly corpus-based) is used, and is 
combined with the human experts’ own knowledge of word senses 
when manually tagging the training examples. While effective, yet 
supervised methods include a learning phase which is highly time-
consuming, and requires a reliable training set with a wide cover-
age which is not always available. 

On the other hand, unsupervised methods, e.g., [58, 137, 224], 
are usually fully automated and do not require any human inter-
vention or training phase. Most recent (and XML-related) ap-
proaches, e.g., [115, 116, 137, 183],  make use of a machine-readable 
KB (e.g., WordNet [51]) represented and processed as a semantic 
network (cf. Section  2.2). Given a target word to be disambiguated, 
WSD consists in identifying the semantic concept (word sense), in 
the reference semantic network, that best matches the semantic 
concepts (word senses) of terms appearing in the context of the 
target word. Semantic concept matching is usually performed using 
a measure of semantic similarity between concepts in the reference 
semantic network [22, 136] (cf. Section  3.5).  

Note that a more restrictive view of unsupervised WSD applies 
to methods for word sense induction, which aim at clustering words 
which are (supposedly) semantically similar and can thus convey a 
specific meaning in a text corpus, without any external training 
data or predefined sense inventory (i.e., without predefined labeled 
categories or a KB) [19, 88]. Here, the induced senses have no exter-
nal meaning, as they only match statistical patterns and syntactic 
divisions in the text corpus at hand [87] (refer to word sense induc-
tion in Section  3.3). In the remainder of this study, we constrain our 
presentation to the general definition of unsupervised WSD using a 
reference KB (i.e., unsupervised and knowledge-based WSD) [126].  

3.5. EVALUATING SEMANTIC SIMILARITY BETWEEN SENSES 
Methods for evaluating semantic similarity between concepts 
(word senses) in a KB (semantic network), in order to perform 
unsupervised and knowledge-based sense matching, can be classified 
as [22]: i) edge-based, ii) node-based, and iii) gloss-based measures. 
Edge-based methods, e.g., [95, 145], are the most intuitive, estimating 
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similarity as the shortest path (in edges, or number of nodes) be-
tween the two concepts being compared, e.g., [219]: 
 

� �0
Edge 1 2

1 2 0

2 NSim (c , c , KB) =    0,1
N + N + 2N

�
�  (1) 

 

where c1 and c2 designate two semantic concepts (word senses) in a 
reference KB, N1 and N2 are respectively the lengths of the paths 
separating c1 and c2 from their lowest common ancestor c0 in KB, 
and N0 is the length of the path separating c0 from the root of KB. 

Node-based approaches, e.g., [84, 150], incorporate an addition-
al knowledge source: corpus statistical analysis, to augment the 
information already present in the reference KB. They estimate 
similarity as the maximum amount of information content (i.e., a 
function of concept occurrence probability, computed based on 
corpus statistics and KB structure [150]) that concepts share in 
common, e.g., [103]: 
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where p(ci) is the occurrence probability of concept ci designating 
the normalized frequency of occurrence of ci in a reference corpus C 
(e.g., the Brown corpus [53]), W designates the size (total number of 
words) in the corpus (cf. concept frequencies in  Fig. 3).  

Gloss-based methods, e.g., [10, 100], evaluate semantic similari-
ty as the word overlap between the glosses of concepts (word 
senses) being compared, a gloss underlining the textual definition 
describing a word sense (e.g., the gloss of the 1st sense of word 
“Actor” in WordNet is “A theatrical performer”, cf.  Fig. 3), e.g., [10]: 
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where gloss(ci) is the bag of words in the textual definition of con-
cept (word sense) ci, and Rel(ci) is the set of concepts related to ci 
through a semantic relationship in KB. [22, 136, 159] 

It has been shown that gloss-based measures evaluate, not only 
semantic similarity, but also semantic relatedness [137], which is a 
more general notion: including similarity as well as any kind of 
functional relationship between terms (e.g., “penguin” and “Antarc-
tica” are not similar, but they are semantically related due to their 
natural habitat connection), namely antonymy (e.g., “hot” and “cold” 
are dissimilar: having opposite meanings, yet they are semantically 
related), which makes gloss-based measures specifically effective in 
WSD [126]: matching not only similar concepts, but also semantic 
related ones1.   

3.6. DISCUSSION 
To sum up, WSD relies on the notion of context, such that words 
that appear together in the same textual context have related mean-
ings. On one hand, supervised and corpus-based methods match 
words in context with senses represented as labeled categories, 
using machine learning techniques applied on text corpus statistics 
to categorize words w.r.t. senses. They usually require extensive 
training and large statistical corpora [126], and thus do not seem 
practical for the Web. In addition, they evaluate the meanings of 
words according to their statistical distribution in a corpus, often 
capturing syntactic factors instead of the “true” semantic meaning 
 
1   The reader can refer to [22, 136, 159] for comprehensive reviews and 

evaluations of semantic similarity measures. 
 

of words which is hard to obtain with this category of methods [84]. 
On the other hand, unsupervised and knowledge-based WSD have 
been largely investigated recently (including most methods target-
ing XML data, cf. Section  4.2), where a target word in context is 
matched with senses represented as concepts in a machine readable 
KB, using semantic similarity measures to compare and identify the 
best matches among target and context word senses in the KB. 
While usually more efficient than their supervised and corpus-based 
counterparts, yet the quality of unsupervised and knowledge-based 
approaches largely depends on the accuracy, coverage, and extensi-
bility of the KB used as semantic reference [126], where KBs are not 
easy to handle and maintain (cf. Section  7.6).  Fig. 4 depicts a simpli-
fied taxonomy summarizes the main characteristics of traditional 
WSD approaches developed in the literature. The interested reader 
can refer to [80, 87, 126] for extensive reviews on traditional WSD. 
 

 
 
 
 
 
 
 
 

 
 

 

Fig. 4. Simplified taxonomy of the properties of WSD approaches. 
 

4. XML SEMANTIC ANALYSIS AND DISAMBIGUATION 
4.1.  XML SEMANTIC-AWARE PROCESSING  
Given the semi-structure (tree-like) nature of XML, most methods 
for processing XML data (including XML querying, classification, 
clustering, and integration techniques, cf. Section  6) have leveraged 
results from prominent research on combinatorial pattern/tree 
matching [166], namely tree edit distance and approximation me-
thods, e.g., [40, 134]. Other works have focused on extending con-
ventional information retrieval techniques [120], using vector-space 
models to represent and handle XML in structural feature spaces, 
e.g., [27, 202]. Extensive reviews of both families of XML-based 
methods can be found in [61, 187, 191]. Among those, the majority 
of existing approaches use only syntactic information in processing 
XML data, while ignoring the semantics involved. Yet, recent me-
thods have attempted to integrate semantic and structural features 
in handling XML information. One of the early solutions to propose 
such a method is [198], where the authors make use of a textual 
similarity operator and utilize Oracle’s InterMedia text retrieval 
system to improve XML similarity search. In a more recent exten-
sion of their work [161], the authors define a generic ontological 
model, built on WordNet, to account for semantic similarity (in-
stead of utilizing Oracle InterMedia). Another approach in [96] 
integrates XML label semantics (synonyms, compound words, and 
abbreviations, identified using WordNet) within an XML vector-
space representation, so as to improve XML similarity evaluation in 
XML mining applications. More recent XML structure-based me-
thods in [131, 132] have identified the need to support XML tag 
semantic similarity (including synonyms, hyponyms, etc., using 
WordNet) instead of only tag syntactic equality while performing 
XML clustering. In [109], the authors introduce a structure and 
content based method for comparing XML documents conforming 
to the same grammar (DTD/XSD), and consider semantic similarity 
evaluation between element/attribute values, using a variation of 
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the edge-based semantic similarity methods [145]. In [188], the 
authors introduce a hybrid XML similarity approach integrating a 
node-based semantic similarity measure [103] within a classic tree 
edit distance algorithm [31], to compare XML tag names. The ap-
proach is later extended to consider XML sub-tree structural and 
semantic similarities [193]. Similar techniques have been exploited 
in a wide array of XML similarity-based processing applications, 
which we further categorize and describe in Section  6. 

While the aforementioned methods have endeavored to inte-
grate a dose of semantic analysis in XML processing, yet, most of 
them completely neglect the problem of semantic ambiguity, or 
implicitly consider it as already solved. In other words, they consider 
XML labels to be inherently associated with disambiguated seman-
tic concepts in the reference KB, which is unfortunately not the case 
in practice. Recent studies (described in the following section) have 
affirmed that the semantic analysis of XML documents involves, 
first and foremost, the identification of the possible senses of XML 
tag names/values (which are typically ambiguous, similarly to flat 
textual data). Hence, a word sense disambiguation task is required 
in order to assign each XML node label with the most appropriate 
sense, as a prerequisite to XML semantic-aware processing. 

4.2.  XML SEMANTIC DISAMBIGUATION  
The main challenges in XML semantic disambiguation reside in: i) 
how to define the notion of XML (structural) contextualization, ii) 
how to process XML context information for disambiguation, and 
iii) how to assign senses to XML node labels. 

4.2.1. XML CONTEXT IDENTIFICATION 
While the context of a word in traditional flat textual data consists 
of the set of terms in the word’s vicinity [100], yet there is no uni-
fied definition of the context of a node in an XML document tree. 
Different approaches have been investigated, namely: i) parent node 
context, ii) root path context, iii) sub-tree context, and iv) crossable edges 
context, which we describe in the following sub-sections. 

 
 

 
 
 
 

 
 
 

 
 

Fig. 5. Canonical trees identified in XML tree T from  Fig. 2. 
 

4.2.1.1. PARENT NODE CONTEXT (PNC) 
The authors in [184, 185] consider that the context of an XML leaf 
element (i.e., an element containing a data value) or an attribute can 
be efficiently determined by its parent element, and thus process a 
parent node and its children leaf element/attribute nodes as one 
unified canonical entity. The approach is based on the observa-
tion/assumption that an XML leaf element constitutes by itself a 
semantically meaningless entity. As a result, the authors introduce 
the notion of canonical tree as a structure grouping together a leaf 
element node with its parent node, which is deemed as the simplest 
semantically meaningful structural entity. For instance,  Fig. 5 de-
picts three canonical trees: CT1, CT2, and CT3 identified in XML 
document tree T of  Fig. 2. Here, one can realize that the context of 
leaf element nodes T[2] (T[2].� = "Title"), T[4] ("Director"), T[6] 

("Year"), and T[8] ("Genre") is node T[1] ("Picture"). Likewise, the 
context of leaf element nodes T[11] and T[13] (T[11].� = T[13].�� = 
"Star") is node T[10] ("Cast").  

4.2.1.2.ROOT PATH CONTEXT (RPC) 
In [182, 183], the authors extend the notion of XML node context to 
include the whole XML root path, i.e., the path consisting of the 
sequence of nodes connecting a given node with the root of the 
XML document (or document collection). For instance,  Fig. 6 
represents the contexts of each XML node in XML document tree T 
of  Fig. 2. Note that the approach targets structure-only XML dis-
ambiguation and disregards data values.  

 
Node Context root path  Node Context root path 
Films /Films  Genre /Films/Picture/Genre 
Picture /Films/Picture  Cast /Films/Picture/Cast 
Title /Films/Picture/Title  Star /Films/Picture/Cast/Star 
Director /Films/Picture/Director  Plot /Films/Picture/Plot 
Year /Films/Picture/Year      

Fig. 6. Root path contexts identified in XML tree T from  Fig. 2. 
 

The authors consequently perform per-path sense disambiguation,               
comparing every node label in each path with all possible senses of 
node labels occurring in the same path. Each XML path is                
transformed into a weighted graph, with nodes underlining the 
senses of each path element, and edges connecting node senses 
following path direction and node sense semantic similarities ( Fig. 
7). The authors utilize an existing gloss-based WordNet similarity 
measure [10] (Formula 3) and introduce an edge-based measure 
(similar to Formula 2) to compare semantic senses in the weighted 
graph, where semantic similarity scores are assigned to correspond-
ing graph edge weights. Then, selecting the appropriate sense for a 
given node label consists in identifying the set of node senses, in 
the weighted graph, where the sum of the weights over their edges 
is maximum (cf. highlighted nodes in  Fig. 7). 
 

 
 

Fig. 7. Sample weighted graph for the root path Films/Picture/Director. 
We only show a limited number of senses for each node label, and 

omit edge weights (designating semantic similarities between 
concepts) for ease of presentation. 

4.2.1.3. SUB-TREE CONTEXT (STC) 
Different from the notions of parent context and path context, the 
authors in [200] consider the set of XML nodes contained in the 
sub-tree rooted at a given element/attribute node, i.e., the set of 
labels corresponding to the node at hand and all its subordinates, to 
describe the node’s XML context. For instance,  Fig. 8 represents the 
sub-tree contexts for each XML element node from XML document 
tree T in  Fig. 2, where sub-trees are numbered following the corres-
ponding sub-tree root node (pre-) order. Note that XML data values 
in [200] are considered as part of the context information of an XML 
element/attribute node, yet are not processed separately as nodes 
targeted for disambiguation. [8] 

The authors apply a similar paradigm to identify the contexts 
of all possible node label senses in the WordNet KB (i.e., sub-tree 
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contexts, similar to the ones in  Fig. 8, can be identified for each 
sense in the sample WordNet extract in  Fig. 3). As a result, the 
target XML node to be disambiguated (along with its XML context 
sub-tree), and each of its potential node label senses in the reference 
KB (each with its own KB context sub-tree) are represented each as 
a set of lexical words/expressions: extracted from the correspond-
ing sub-tree context node labels. For instance, the context set of 
node T[2] (T[2].� = “Title”) in  Fig. 3 is {“Title”, “Rear Window”}, 
whereas the context set of node T[10] (“Cast”) consists of terms 
{“Cast”, “Star”, “Stewart”, “Kelly”}. Then, the target XML node’s 
label is processed for sense disambiguation by comparing the XML 
node context set with each of the candidate sense context sets. The 
authors in [200] utilize the cosine similarity measure to perform 
context set comparison, where sets are extended to vectors includ-
ing TF-IDF 1 word frequencies. The target XML node is finally 
mapped to the semantic sense where their context sets (vectors) 
have the highest similarity. 
 

 

 
 

Fig. 8. Sub-tree contexts identified in XML tree T from  Fig. 2.   
 

4.2.1.4.CROSSABLE EDGES CONTEXT (CEC) 
In [115, 116], the authors combine the notions of parent context and 
descendent (sub-tree) context in disambiguating generic structured 
data (e.g., XML, web directories, and ontologies). The authors 
consider that a node’s context definition depends on the nature of 
the data and the application domain at hand. They propose various 
edge-weighting measures, namely a Gaussian decay function (cf. 
Formula 4) to identify crossable edges, such that nodes reachable 
from a given node through any crossable edge (following a user-
specified direction, e.g., direct: ancestor/descendent, opposite: des-
cendent/ancestor, or both) belong to the target node’s context: 
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where nc is a context node, n is the target node, and d is the distance 
(in number of edges) separating nc form n in the XML tree. For 
instance, given XML document T tree in  Fig. 2 (reported in  Fig. 8), 
assume that the weight of the parent/child arcs is 1 in the direct 
direction and 0.5 in the opposite one, and that the maximum number 
of allowed crossings (to determine the context of a target node) is 2. 
As a result, the graph context of node T[13] ("Star") would be made 
of the terms "Star" (T[13]), "Kelly" (T[14]),  "Cast" (T[10]), "Picture" 
(T[1]), and "Star" (T[11]). In fact, the respective distances between 
node T[13] and nodes T[14], T[10], T[1], and T[11] are: 1 (i.e., 1 arc 
crossed in the direct direction with weight 1), 0.5 (i.e., 1 arc crossed 
in the opposite direction with weight 0.5), 1 (i.e., 2 arcs crossed in the 
opposite direction with weight 0.5), and 2 (i.e. 2 arcs crossed in the  
1 Term Frequency – Inverse Document Frequency is a term weighting score 

developped in information retrieval to highlight the relative importance of 
a term in describing a given document within a document collection [8]. 

opposite direction with weight 0.5, and 1 arc crossed in the direct 
direction with weight 1). Then, following Formula 4, weight(T[14], 
T[14]) = 1, weight(T[14], T[13]) = 0.91, weight(T[10], T[13]) =0.95, 
weight(T[1], T[13]) = 0.91, and weight(T[11], T[13]) = 0.8.  

Structure disambiguation is then undertaken by comparing 
the target node label with each candidate sense (semantic concept) 
corresponding to the labels in the target node’s context, taking into 
account corresponding XML edge weights. The authors utilize an 
edge-based semantic similarity measure [93] (cf. Formula 1), ex-
ploiting the hypernymy/hyponymy relationships (and excluding 
remaining relationships such as meronymy and holonymy), to identi-
fy the semantic sense which best matches the target node label.   

4.2.2.  XML CONTEXT REPRESENTATION 
Another major issue in XML semantic disambiguation is how to 
effectively represent and process the context of an XML node, once 
it has been identified, taking into account the structural positions of 
XML data in order to perform disambiguation.  

In fact, most existing WSD methods - developed for flat tex-
tual data (Section  3) and/or XML-based semi-structured data [182-
185] - adopt the bag-of-words paradigm where context is processed 
as a plain set of words surrounding the term/label (XML node) to 
be disambiguated. Hence, all context nodes are treated the same, 
despite their structural positions in the XML tree. One approach 
identified as the relational information model in [115, 116] (developed 
within the CEC approach, cf. Section  4.2.1.4) extends the traditional 
bag-or-words paradigm toward a vector-based representation with 
confidence scores combining: i) distance weights separating the 
context and target nodes, and ii) semantic weights highlighting the 
importance of each sense candidate. On one hand, the authors 
introduce a distance Gaussian decay function (cf. Formula 4) esti-
mating edge weights such that the closer a node (following a user-
specified direction), the more it influences the target node’s disam-
biguation [115, 116]. The distance decay function is not only uti-
lized in identifying the context of a target node (Section  4.2.1.4), but 
also produces weight scores which are assigned to each context 
node in the context vector representation, highlighting the context 
node’s impact on the target node’s disambiguation process ( Fig. 9). 

 
 

  Context BOW (T[13]) = {T[13].�, T[14].�, T[10].�, T[1].�, T[11].� } 
                              = {"Star", "Kelly", "Cast", "Picture"} 2 
                                            

 "Star" "Kelly" "Cast" "Picture" 
Context RIM (T[13]) = 1.8 0.91 0.95 0.91 

 

 

Fig. 9. Sample bag-of-words (BOW) context representation versus 
relational information model (RIM) context representation for target 

node T[14] ("Kelly") in document tree T in  Fig. 2, built with a 
maximum of 2 edge crossings (cf. example in Section 4.2.1.4). 

 
On the other hand, the authors also include a semantic decay 

function, considering the frequency of usage of senses (i.e., desig-
nating how often a sense is used in common language), in order to 
assign a higher/lower weight (confidence) score highlighting the 
impact of each candidate sense on the disambiguation process. This 
is based on the assumption that senses with a higher usage fre-
quency should be deemed more relevant in semantic evaluation. To 
do so, the authors exploit WordNet’s ordered lists of senses ranked 
based on their frequencies of usage in the Brown text corpus: 

 

 
2   The second occurrence of node "Star" (T[11]) is removed from the bag-of-

words context when adopting a set-based model, and can be sustained 
when utilizing a multi-set based model. 
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(5) 

 

where t is a term (node label) being disambiguated, si is a candidate 
sense for t,  � � [0, 1] is a parameter set at 0.8 (by the authors1), 
Senses(t, KB, C) is the ordered list of candidate senses for t in KB 
based on their usage frequency in a corpus C (i.e. the first is the 
most common sense, and so forth), and pos(si) is si’s position in 
Senses(t, KB, C). Given Formula 5, the weight (confidence) score in 
choosing a sense candidate si from Senses(t, KB, C) is inversely 
proportional to its position, pos(si), in Senses(t, KB, C), which emu-
lates human behavior in choosing the right meaning of a term [115]. 

4.2.3.  ASSOCIATING SENSES WITH XML NODES 
Once the contexts of XML nodes have been determined, they can be 
handled in different ways to perform XML disambiguation. Two 
automated approaches, both unsupervised and knowledge-based, have 
been adopted in the literature, which we identify as: i) concept-based 
and ii) context-based. Also, semi-automated feedback techniques have 
been suggested to improve the results of disambiguation methods. 

 
Fig. 10. Depiction of concept-based disambiguation approach. 

4.2.3.1. CONCEPT-BASED APPROACH 
The concept-based approach adopted in [182, 183] was inspired by 
the original Lesk algorithm developed for disambiguating flat text 
[100], and consists in evaluating the semantic similarity between 
XML target node senses (concepts) and those of its context nodes, 
using measures of semantic similarity between concepts in a KB (cf. 
Section  3.5). The overall process is depicted in  Fig. 10.  

Given a target node to disambiguate, and after identifying 
context nodes (cf. Section  4.2.1) and performing XML context repre-
sentation (cf. Section  4.2.2), the possible senses for each context 

1   Parameter � was set empirically by the authors in [115, 116] without any 
specific rationale.  

node label as well as the candidate senses for the target node label 
are identified ( Fig. 10, steps 1 and 2) and mapped to the reference 
KB. Then, each potential combination of context/target node senses 
is identified (Fig. 10, step 3), which comes down to 

i
N
i 1 | (n . ) |Senses� ) |

 

candidate combinations where N represents all 

nodes in the disambiguation context, including the target node. 
Then, semantic similarity (cf. Section  3.5) is evaluated between pair-
wise senses in each candidate combination, averaged to produce a 
candidate combination score. The target node label is matched with 
the candidate sense corresponding to the candidate combination 
having the maximum score (Fig. 10, step 4).

4.2.3.2.CONTEXT-BASED APPROACH 
The context-based approach introduced in [200] was inspired by the 
simplified Lesk algorithm developed for flat text [205], and consists in 
building a context set (the authors adopt the bag-of-words model, 
albeit a vector representation using the relational information model 
can be used, cf. Section  4.2.2) for each target node sense (concept) in 
the KB, as well as for the target node in the XML document tree, 
and then comparing context sets to select the target sense with 
maximum context set similarity. The overall process is depicted in 
 Fig. 11. Given a target node to disambiguate, and after identifying 
context nodes, a context set representation is built for the target 
XML node in the XML tree ( Fig. 11, steps 1 and 2) and a context set 
representation for each of the candidate senses in the KB (semantic 
network,  Fig. 11, step 3). The XML context set is compared with 
each of the KB context sets, using a typical set comparison measure 
(e.g., Jaccard similarity). Then, the target node label is matched with 
the candidate sense having the KB context set with maximum score 
w.r.t. the XML target node context set ( Fig. 11, step 4). 
 

 
 

Fig. 11. Depiction of context-based disambiguation approach. 

4.2.3.3. FEEDBACK TECHNIQUES 
While both automated disambiguation (sense assignment) ap-
proaches have been shown to produce useful results in a single run, 
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yet recent studies in [115, 125] have argued the need for dedicated 
feedback techniques allowing the user (e.g., a human expert) to 
further refine the initial disambiguation result following her needs 
and individual understanding of the data. The main process con-
sists in allowing the user to manually activate/deactivate the influ-
ence of a (set of) select candidate sense(s), after running the auto-
mate disambiguation process, and then repeating the same task by 
performing (as many) successive disambiguation runs (as needed) 
until reaching the desired result [125]. This can be achieved 
through two consecutive phases [115, 125]. First, producing a rank-
ing of the plausible senses for each target node label, based on the 
similarity scores computed after each run of the automated disam-
biguation process. The ranking would highlight to the user the 
confidence of the automated process in choosing each sense as the 
right one for the target node label. Second, given the produced 
sense ranking, the user can retain (or disregard) the proper (noisy) 
sense(s) following her understanding of the meaning of the target 
node label. The process is repeated until the user identifies the right 
sense(s) for the target node label. In this context, the authors in 
[115] suggest multiple semi-automated strategies facilitating the 
user’s task in providing feedback:  

 

i) Simple Feedback: the top-N ranked senses are retained after 
each run, where N is a threshold value chosen by the user. 
When N=1, the system would require only one feedback itera-
tion to select the topmost sense for the target node label.  

ii) Knockout feedback: the sense with the lowest confidence (i.e., at 
the bottom of the ranked list of plausible senses) is deactivated 
(disregarded) at each run, until reaching the top-N senses. 
This approach requires more runs than simple feedback, but is 
usually more effective due to its greater gradualness [115].  

 

iii) Stabilizing knockout feedback: a fix-point version of the knockout 
feedback method. It consists in computing an average confi-
dence variation score for the target node label, w.r.t. all poten-
tial senses, between the current run and the previous run, then 
repeats the process until variation stabilizes (i.e., becomes 
lesser than a given threshold). Then, the top-N senses are re-
tained. This method usually achieves the same effectiveness 
levels as knockout feedback while requiring less time [115]. 

 
While allowing user feedback through semi-automated 

processes seems certainly interesting, and promises to improve and 
adapt disambiguation results following the user’s needs, nonethe-
less, feedback techniques inherently require substantial additional 
time (i.e., running successive iterations of the disambiguation 
process), and additional manual effort (i.e., fine-tuning thresholds, 
and manually validating senses). A possible compromise could be 
to limit feedback only to those most critical/ambiguous node labels 
(which we further discuss in Sections  7.1 and  7.8). 

4.3. COMPARATIVE COMPLEXITY ANALYSIS 
Comparing the effectiveness (quality) and efficiency (time perfor-
mance) levels of XML disambiguation approaches is not trivial 
theoretically, and requires a dedicated experimental study (cf. 
Section  5). Yet, one can theoretically analyze the computational 
complexity of existing methods, which would provide an informed 
hint on efficiency levels. Note that most existing studies do not 
provide complexity analyses. 

On one hand, the complexity of context identification (cf. Sec-
tion  4.2.1) and context representation (cf. Section  4.2.2) is almost 
linearly dependent on the size of the XML document at hand, and 
can be roughly performed in one single traversal over the XML 
document tree T, thus requiring O(|T|) where |T| is the number of 
structure and content nodes in T. On the other hand, when it comes 
to associating senses with XML nodes (i.e., the core task in the 
disambiguation process, cf. Section  4.2.3), one can realize that the 
concept-based approach is more computationally complex (less 
efficient) than the context-based approach. 

First, the complexity of the concept-based approach in disambi-
guating one target node label comes down to O(

i
N
i 1 | ( . ) |� Senses n ) |� N�((N-1)/2) � SimSemantic) time, considering 

respectively: the number of candidate combinations to process 

i
N
i 1 | ( . ) |� Senses n ) | , the number of pairs of senses to compare 

within each combination N�((N-1)/2), as well as the complexity of 
the semantic similarity measure utilized SimSemantic (which can be 
either a node-base, edge-based, or gloss-based measure, or their 
combination, cf. Section  3.5), which simplifies to O(|Senses(n.�)|N 
�N2� SimSemantic). Note that the complexity of a typical edge-based 
and/or node-based semantic similarity measure simplifies to 
O(|KB| � depth(KB)) [103, 219] whereas the complexity of a typical 
gloss based similarity measure simplifies to O(|gloss|2) [10]. 

Second, the complexity of the context-based approach in disam-
biguating one target node label comes down to O(|Senses(n.�)| � 
SimSet) time, considering respectively: the number of candidate 
(target node label) senses to process |Senses(n.�)|, which underlines 
the number of KB context sets built for each candidate sense in the 
KB, as well as the complexity of the set-based similarity measure 
used to compare each of the KB context sets with the XML target 
node context set, SimSet. For instance, SimJaccard simplifies to O(N 2) 
time where N is the maximum number of elements per set.  

A hybrid approach in [115, 116] (i.e., CEC, cf. Section  4.2.1.4) 
combines variants of the two preceding methods to disambiguate 
generic structured data. 

4.4. DISCUSSION 
To sum up, XML disambiguation approaches have been extended 
from traditional flat text WSD, introducing adapted processes for 
identifying disambiguation contexts, producing context representations, 
and performing word-sense matching taking into account the semi-
structured nature of XML. The main characteristics of existing 
solutions are summarized in  TABLE 1. 

Nonetheless, we argue that most XML disambiguation me-
thods share several common limitations, namely: i) ignoring the 
problem of semantic ambiguity in identifying target nodes to process 
for disambiguation (i.e., processing all nodes for disambiguation, 
which might be needless), ii) neglecting XML structural features by 
using traditional flat text representation techniques (e.g., the bag-of-
words paradigm) which are not designed for describing structured 
XML data [182, 185], iii) only partially considering the structural 
relationships of XML nodes (e.g., parent-node [185] or ancestor-
descendent relationships [183]), and iv) using fixed contexts (e.g., 
parent node [185], root path [183]) or preselected semantic similari-
ty measures (e.g., edge-based [93], or gloss-based [183]), thus mi-
nimizing the user’s involvement in the disambiguation process. We 
further discuss each of above limitations along with other ongoing 
challenges and future directions in Section  7. 
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TABLE 1. COMPARING XML DISAMBIGUATION METHODS W.R.T.  FIG. 4.  
 

 Approaches PNC 
 [184, 185] 

RPC 
 [182, 183] 

STC 
 [200] 

CEC 
 [115, 116] 

T
ar

ge
t 

 

Node Selection 
 

 1- All nodes  
 2- Sample nodes 

All nodes All nodes All nodes All nodes 

 

XML Data 
 

 1- Structure-only 
 2- Structure & Content 

Structure and 
Content 

Structure 
only 

Structure 
only 

Structure 
only 

C
on

te
xt

 

 

Context Model 
 

 1- Parent node 
 2- Root path 
 3- Sub-tree 
 4- Crossable edges 

Parent node Root path Sub-tree Crossable 
 edges 

 

Context Representation 
 

 1- Set (BOW) 
 2- Vector (Extended) 

Set Set Set Vector 

 

Context Size 
 

 1- Fixed 
 2- Flexible 

Fixed Fixed Fixed Flexible 

So
ur

ce
  

External Information 
 

 1- Corpus 
 2- KB 

KB KB KB KB 

M
at

ch
in

g 

 

Word-Sense Matching 
 

 1- Supervised 
 2- Unsupervised 

Unsupervised Unsupervised Unsupervised Unsupervised 

 

Semantic Similarity 
 

 1- Edge based 
 2- Node based 
 3- Gloss based 

Edge-based1 Edge-based & 
Gloss-based NA Edge-based 

C
ha

ra
ct

er
is

tic
s 

 

User Involvment 
1. Limited  
2. Partial 

Limited Limited Limited Partial 

 

User feedback 
 

NA NA NA Semi-automatic 

Complexity NA 
O(|Senses(n.�)|N

 � N2� SimSemantic) 
O(|Senses(n.�)| � 

SimSet) 
NA 

 

Evaluation method 
 

 1- Standalone 
 2- Embedded2 

Embedded Standalone Embedded Standalone 

Applications XML Search XML clustering Document 
classification Generic 

5. EVALUATION METHODOLOGY 
As for empirical evaluation, XML disambiguation methods can be 
assessed (similarity to WSD) in two ways [126]: i) stand-alone, i.e., as 
a separate application, where the tester evaluates the quality of the 
disambiguation process, or ii) end-to-end, i.e., as a component em-
bedded within an application (such as data search, document clus-
tering, or document classification, cf. Section  6), where the tester 
aims to demonstrate whether the disambiguation task improves (or 
not) the performance of the application as a whole. For clearness of 
presentation, we present stand-alone evaluation measures in this 
paper, and omit end-to-end evaluation measures since they are 
application dependent3 (the interested reader can refer to Section 6 
for a detailed discussion and references regarding XML semantic-
aware applications and evaluation measures). 

5.1. TEST MEASURES 
The effectiveness (i.e., quality) of an automatic (XML) disambigua-
tion approach can be evaluated based on the quality of the map-
ping between user identified senses and system generated senses 
for a select number of test data (e.g., XML element/attribute tag 
names and/or values targeted for disambiguation). In this context, 
most existing approaches suggest to i) first manually solve the 
 
1 The authors in [184, 185] use multiple heuristic functions which are mostly 

comparable to edge-based semantic similarity measures. 
2  Standalone disambiguation solutions are evaluated independently, whereas 

embedded solutions are evaluated within specific applications (e.g., XML 
semantic search), which we discuss in Section  5. 

3 E.g., evaluating the quality of the XML disambiguation process embedded 
within a document clustering application comes down to measuring the 
quality of the produced clusters using cluster evaluation measures such as 
inter-cluster and intra-cluster indexes. The same goes for all applications. 

disambiguation task, and then ii) use the results as a reference to 
evaluate the quality of the senses produced by the system [126].  

Here, the Precision and Recall evaluation measures adopted 
from the field of information retrieval [157] are usually utilized to 
compare user and system generated senses [126]. Precision (PR) 
identifies the number of correctly identified senses, w.r.t. the total 
number of generated senses (correct and false) produced by the 
system. Recall (R) underlines the number of correctly identified 
senses, w.r.t. the total number of correct senses, including those not 
identified by the system. Having: 
 


 A the number of correctly identified senses (true positives), 

 B the number of wrongly identified senses (false positives), 

 C the number of correct senses not identified by the system 

(false negatives). Precision and recall are computed as follows:  

 [0,1]PR A
A B

 �
�

   and    [0,1]R A
A C

 �
�

 (6) 
 

High precision denotes that the disambiguation process 
achieved high accuracy in identifying correct senses, whereas high 
recall means that few correct senses were missed by the system. In 
addition to evaluating precision and recall separately, it is a common 
practice to consider F-value as a combined measure, representing 
the harmonic mean of precision and recall. High precision and recall, 
and thus high F-value indicate high disambiguation quality: 

                  
2    

  [0, 1]
  

- PR R
PR R

F Value � �
�

�
  (7) 

 

Disambiguation coverage is another interesting measure that 
can also be utilized to evaluate an aspect of disambiguation quality 
which is not captured by precision and recall: the case in which the 
system does not provide an answer (i.e., when the system is unable 
to match an XML node label with any semantic sense). Coverage 
(CR) measures the percentage of XML nodes in the test document 
(collection) for which the system provided a sense assignment, over 
the total number of assignments (answers) that should have been 
provided by the system:  

                  
  

  [0, 1]
  

A B
A C

CR �
�

�
  (8) 

 

Besides evaluating effectiveness (i.e., quality), note that evaluat-
ing the efficiency (i.e., time and/or space performance) of XML dis-
ambiguation methods is almost completely dismissed in existing 
approaches (along with complexity analyses), and needs to be 
addressed in upcoming studies.  

5.2. TEST DATA 
Recent studies in [182, 183] have published information regarding 
XML-based test data and manually annotated tag names, which can 
be used as a baseline for future evaluation/comparative studies.  

 
TABLE 2. CHARACTERISTICS OF TEST DATASETS (FROM [182, 183]). 

 

 # Leaf 
Nodes 

Max  
Fan-out 

Max/Avg 
Depth Size # Docs # Elements 

# Terms in 
Text 

Values 
DBLP 13,209 20 3/3 822KB 3000 8231 1437 
IEEE 228,869 43 8/5.15 150MB 4874 135,869 5224 

PubMed 18,202 40 7/6.27 2608KB 1000 11,489 7838 
Reuters 15,159 12 4/3.92 1911KB 572 7727 3235 

Shakespeare 13,856 194 7/5.92 1446KB 7 7517 2049 
Wikipedia 267,718 141 12/3.79 122MB 10,000 174,688 5989 

Hybrid-Data 24,769 80 7/4.33 4712KB 2325 16,341 3213 

 
The test data were collected from various application domains with 
different characteristics, which we briefly describe in  TABLE 2 : i) 
DBLP: a subset of the DBLP XML data archive4 containing data  
4  http://dblp.uni-trier.de/xml/ 
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concerning scientific bibliography. The DBLP dataset exhibits high 
structural variety and short text values (e.g., author names, paper 
titles, conference names, etc.); ii) IEEE: a subset of the IEEE collec-
tion version 2.2, which has been used in the INEX document min-
ing track 20081. IEEE articles generally follow a complex structural 
schema, with lots of abbreviations in element names; iii) PubMed: a 
scientific dataset, containing biomedical articles obtained as results 
of the query “protein” submitted to the PubMed search engine2. 
PubMed data exhibits deeply nested elements with relatively long 
text values (e.g., journal abstracts); iv) Reuters: news headlines from 
the Reuters RSS channel3. Documents in this dataset have a regular 
structure with short text values (e.g., news titles, links, descriptions, 
etc.); v) Shakespeare: a selection of plays from the Shakespeare 2.0 
collection4. This dataset has a rich structure and contains long text 
values (e.g., actors’ speeches, where all the lines corresponding to 
the same speech were concatenated to form a unique element); vi) 
Wikipedia: a subset of the Wikipedia XML corpus used in the INEX 
2007 document clustering track5, including data representing en-
cyclopedia articles extracted from Wikipedia. This collection con-
tains big articles, with long textual values (e.g., paragraphs); vii) 
Hybrid-Data: a heterogeneous dataset combining documents from 
the above collections (i.e., DBLP 30%, Wikipedia 15%, Reuters 20%, 
PubMed 20%, and Shakespeare 15%). 

Note that the datasets in  TABLE 2 have been partly utilized for 
stand-alone XML disambiguation evaluation in [183], and for end-to-
end evaluation within an XML document clustering application in 
[182]. Other experimental datasets have been partly described in 
alternative studies, e.g., [115, 116]6. A major challenge in this con-
text is to integrate experimental data in a unified benchmark to be 
used as a gold standard data repository for future XML (and semi-
structured) disambiguation methods (cf. Section  7.10). 

6. XML SEMANTIC-AWARE APPLICATIONS 
As for usage in practical scenarios, the diversity of XML and semi-
structured data highlights a wide spectrum of applications which 
can benefit, in one way or another, from XML semantic analysis and 
disambiguation. Most applications in this context are built around 
methods for XML structure and semantic similarity evaluation, e.g., 
[3, 187, 191], i.e., comparing the structural positions of XML ele-
ment/attribute nodes in the XML tree while taking into account the 
semantic similarities between node labels and/or values. In this 
context, developing semantic-aware applications usually requires 
three main steps: [146]145] 
 

a. XML semantic disambiguation: an initial pre-processing step to 
identify the intended meanings of node labels and/or values, 

b. XML similarity evaluation: comparing XML trees w.r.t. the 
meanings of node labels/values identified in the initial step, 

c. Semantic-aware processing: an application specific step, where 
semantic-aware processing is undertaken based on XML se-
mantic similarity evaluation. 

 

Accordingly, in this section, we present an overview of such appli-
cations which we gradually look at from different angles, starting 
from i) the layer of abstraction at which XML similarity is evaluated 
(Sections  6.1), and ii) the kind of XML information being assessed  
1  http://www.inex.otago.ac.nz/data/documentcollection.asp 
2  http://www.ncbi.nlm.nih.gov/entrez/ 
3  http://www.reuters.com/tools/rss 
4  http://metalab.unc.edu/bosak/xml/eg/shaks200.zip 
5  http://www-connex.lip6.fr/~denoyer/wikipediaXML/ 
6 The authors in [115, 116] did not provide the manual mappings used as 

reference in the evaluation process. 

(Section  6.2), and then describing high-end application domains 
covering: iii) Information Retrieval (Section  6.3), iii) Image and 
Multimedia Retrieval (Section  6.4), iv) Web and Mobile Services 
(Section  6.5), and v) the (Social) Semantic Web (Section  6.6). 

6.1. FOLLOWING THE SIMILARITY ABSTRACTION LAYER 
Following the XML similarity abstraction layer, three groups of 
semantic-aware approaches emerge, targeting: i) the data layer, i) 
the type layer, and ii) in-between the data and type layers [16]. 
 

Similarity at XML data layer, i.e., performing XML docu-
ment/document comparison, is relevant in a variety of applications 
(cf. detailed reviews in) [3, 191], such as data versioning, monitoring, 
and temporal querying: a user may want to view or access a version 
of a particular document (e.g., an XHTML Web site, a Web Service 
SOAP description, an RSS feed, or an MPEG-7 video description, 
etc.) which was available during a certain period of time, or may 
want to view the results of a continuous query, or monitor the 
evolution of a certain document in time. All these tasks require 
sophisticated and semantic-aware version control capabilities, i.e., 
maintaining, describing, and learning about changes in the data, 
while taking into account the semantic meaning of the data cap-
tured in a pre-processing disambiguation step. Such tasks can be 
implemented using semantic-aware tree edit distance similarity 
measures (a.k.a. differencing measures) which produce, along with 
the similarity score, an edit script (a.k.a. diff) consisting of a set of 
edit operations describing semantic changes to the disambiguated 
data (e.g., inserting/deleting/updating semantically related nodes, 
to transform one XML document tree into another) [188, 189, 193]. 
Another major application is document clustering, i.e., grouping 
XML documents together, based on their structural and semantic 
similarities, which can improve data storage indexing [153, 165] and 
thus positively affect the data retrieval process [3, 182]. Afterall, 
semantically similar documents/elements would likely satisfy or 
not a given query, and thus would be easier to retrieve when stored 
together [101]. Also, clustering is essential is information extraction, 
wrapping, and summarization, allowing to automatically identify the 
sets of semantically similar XML elements to be extracted from 
documents in order to be reformulated (e.g., substituting disambi-
guated node labels with semantically related ones), restructured, or 
summarized to make it more processible in enterprise applications 
(e.g., adapting/simplifying the semantic content of a Web page, 
blog, RSS feed, or Web Service description for select users/non-
experts)  [78, 182].  

 

 Similarity at XML type layer, i.e., performing XML gram-
mar/grammar comparison, is also useful for many tasks (cf. reviews 
in) [46, 168], namely data integration, which consists in: i) comparing 
(matching) grammars to identify semantically related elements 
[192], and then ii) merging the matched elements under a coherent 
grammar or semantic view [178]. Here, a disambiguation step is 
necessary to capture the semantic meaning of grammar elements 
prior to performing grammar matching. Data integration allows the 
user to efficiently access and acquire more complete information 
(e.g., accessing similar Websites, blogs, or RSS feeds simultaneous-
ly) [180, 181]. It is also essential in performing data warehousing7, 
where XML information is transformed from different data-sources 
complying with different grammars into data conforming with 
grammars defined in the data warehouse [47]. Other applications 
include message translation in Business-to-Business (B2B) integration 
 
7  A warehouse is a decision support database that is extracted from a set of 

data sources (e.g., different databases describing related data) [146]. 
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[26]: reconciling the semantics of XML message grammars used by 
trading partners in order to translate in-coming and out-going 
messages accordingly, which is central in E-commerce and B2B 
applications [91, 92]; and XML data maintenance and schema evolu-
tion: detecting the structural and semantic differences/updates 
between different versions of a given grammar to consequently 
revalidate corresponding XML documents [16, 99].  
 

 Similarity between XML data and type layers, i.e., per-
forming XML document/grammar comparison, can also benefit 
from XML disambiguation applied on the documents and gram-
mars being compared, highlighting various applications (cf. review 
in) [187]. One such application is XML document classification, i.e., 
categorizing XML documents gathered from the Web against a set 
of reference grammars declared in an XML repository. In this con-
text, evaluating semantic similarity between incoming disambi-
guated documents on one hand, and reference disambiguated 
grammars on the other hand (e.g., defined in a data warehouse), 
allows the identification of entities that are conceptually close, but 
not syntactically identical, which is common in handling heteroge-
neous XML repositories, particularly on the Web where users have 
different backgrounds and no precise definitions about the matter 
of discourse [16, 111]. Evaluating semantic similarity between 
documents and grammars can also be exploited in XML document 
retrieval via structural queries [59, 177]: a query being represented as 
an XML grammar with additional constraints on content; as well as 
in the selective dissemination of information: user profiles being ex-
pressed as grammars against which the incoming XML document 
stream is semantically matched [16, 176]. 

6.2.  FOLLOWING THE KIND OF XML INFORMATION 
Considering the kind of XML information being evaluated, seman-
tic-aware applications can be grouped in two main categories: i) 
structure-only, and ii) structure-and-content XML. 

 

XML structure-only applications: Methods in this category 
compare the structure of XML documents and/or grammars, i.e., 
they compare the structural positions and ordering of XML ele-
ment/attribute nodes identified by their labels, while disregarding 
their values. Processing the semantic meaning of XML tag names 
allows to improve the performance of structure-only XML applica-
tions, namely: structural clustering [40, 97, 134] and classification [16, 
25] of heterogeneous XML documents from different sources (i.e., 
having different structures and not conforming to the same gram-
mar); XML structural querying [16]: searching for docu-
ments/elements based on their structural and semantic properties; 
and XML grammar integration: semantic matching and merging of 
two grammars into one unified view [178, 186]. 
 

XML structure-and-content applications: Methods in this cat-
egory compare the structure and content of XML documents and/or 
grammars1, i.e., they compare element/attribute values taking into 
account their structural positions in the XML documents. 
Processing the semantic meaning of XML content is central with 
methods dedicated to XML versioning and monitoring [32, 37], data 
integration [62, 102], and XML structure-and-content querying (re-
trieval) applications [162, 163], where documents tend to have 
relatively similar structures and semantics (probably conforming to 
the same or similar grammars [98, 215]). The semantics of XML 
 
1  In the context of XML similarity evaluation, we underline by XML grammar 

content, the content of the document instances conforming to the grammar. In other 
words, the content of a given grammar element comes down to the contents of its 
corresponding instance document elements. 

content could also be exploited in XML grammar matching [45], by 
processing the meanings of disambiguated element values in the 
document instances corresponding to the grammars being com-
pared, to identify semantically matching elements (Section  6.1). 
 

Note that methods for comparing content-only XML process 
element/attribute values only, while disregarding their structural 
positions (disregarding element/attribute tag names, and their 
containment relations). In other words, methods that target content-
only XML handle XML documents as traditional flat textual files 
[108], and consequently exploit classic DB, IR, and semantic 
processing and disambiguation techniques (Section  3) in managing 
(e.g., searching, clustering, and classifying) the XML data [8, 120]. 

6.3. INFORMATION RETRIEVAL 
Information Retrieval (IR) is one of the foremost application do-
mains requiring sophisticated semantic-aware and similarity-based 
processing, where systems aim at providing the most relevant 
(similar) documents w.r.t. a user information need expressed as a 
search query. In this context, a wide range of techniques extending 
traditional IR systems to handle XML IR have been designed (cf. 
extended reviews in) [149, 191]. In brief, XML IR systems accept as 
input: i) a user query: expressed as an XML document [142], an 
XML fragment [27], an XML structured query (e.g., XPath [199] or 
XQuery [18]), or as a set of keywords [221], and ii) an indexed XML 
document repository [108], and produce as output: a ranked list of 
XML elements (and their sub-trees)2 selected form the repository, 
and ordered following their relevance (similarity) w.r.t. the user 
query [185]. Hence, the quality of an XML IR engine depends on 
two key issues: i) how documents and queries are represented 
(indexed), and ii) how these representations are compared 
(matched) to produce relevant results. In this context, most solu-
tions in the literature have explored syntactic XML indexing para-
digms (based on node positions, paths, or structural summaries) 
integrated in dedicated inverted indexing structures, e.g., [108, 212].  

Nonetheless, as XML data on the Web became more prevalent 
and diverse, element/attribute labels and values became noisier, 
such that syntactic indexing techniques could not keep pace [48]. 
As a result, non-expert users have been increasingly faced with 
what is described as the vocabulary problem [54]: query keywords 
chosen by users are often different from those used by the authors 
of the relevant documents, lowering the systems’ precision and recall 
rates. To tackle the problem, various approaches have suggested 
expanding the original query with terms synonymous to XML tag 
names and/or values, [107, 160]. Yet, query expansion methods 
remain of limited capabilities since the relationships between key-
words chosen by users and those used by authors often extends 
beyond simple synonymy [48], thus highlighting the need for a more 
aggressive approach: XML disambiguation, taking into account all 
semantic relationships in the disambiguation process.  

With XML disambiguation, both the XML query and docu-
ments can be processed and represented using semantic concepts, 
instead of (or in addition to) syntactic keywords and element 
names/values (e.g., typical XML indexing techniques can be used, 
except that element names/values would be replaced with semantic 
concepts). Consequently, query/document matching can be per-
formed in the semantic concept space, instead of performing syn-
tactic keyword/node label matching, thus extending XML IR to-
ward semantic XML IR, or so-called concept-based XML IR.  Prelimi-

 
2    Selecting a whole XML document as a potential answer comes down to selecting 

its root node (along with the corresponding sub-tree). 
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nary studies on semantic XML IR have shown that representing 
documents and queries using semantic concepts usually results in a 
retrieval model that is more effective and less dependent on the 
specific terms/node labels used [164]. Such a model could yield 
matches even when the same notion is described by different 
terms/node labels in the query and target documents, thus increas-
ing the system’s recall. Similarly, if the correct concepts are chosen 
for ambiguous terms appearing in the query and in the documents, 
then non-relevant documents that were retrieved with traditional 
(syntactic) XML IR could be eliminated from the results, thus in-
creasing the system’s precision [149].  

Semantic XML IR, along with ontological (RDF/OWL1) IR, is 
currently a hot research topic [149, 164]. Aside from the promise of 
achieving improved quality (effectiveness), the time performance 
(efficiency) of: i) XML disambiguation during query/document pre-
processing and representation, and then ii) semantic concept com-
parison during query/document matching, remains a major chal-
lenge, which might require dedicated optimization and/or XML 
parallelization techniques, e.g., [49, 68] (cf. Section  7.9).   

6.4. IMAGE AND MULTIMEDIA RETRIEVAL 
A more specialized application area which extends XML IR is XML-
based Image (and multimedia data) retrieval, i.e., XML ImR. In fact, 
for the last two decades, image datasets (and other kinds of multi-
media data such as videos and audios2) have become increasingly 
available, especially on the Web considered as the largest multime-
dia database to date [76]. Thus, the need to efficiently index and 
retrieve images (and multimedia data) is becoming ever-more 
important. In this context, the large battery of existing ImR me-
thods can be roughly categorized as: i) text-based, ii) content-based, 
and iii) hybrid methods, where a range of recent hybrid methods 
utilize XML-based IR techniques [42]. [76] 

On one hand, most existing Web image search engines (such 
as Google Images3) and photo sharing sites (such as Flickr and 
Picasa4) mainly adopt the keyword (text-based) querying paradigm, 
where images are indexed based on their textual descriptions (e.g., 
tags, annotations, surrounding text, links, etc.), which are then 
mapped to keyword queries using adapted IR techniques. While 
text-based image search is time efficient, yet it shows various limita-
tions, namely: poor result quality, since the automated engines are 
guessing image visual contents using indirect textual clues [213], 
and are thus usually unable to confirm whether the retrieved im-
ages actually contain the desired concepts expressed in the user 
queries [52]. In content-based ImR systems, e.g., [35, 106], images are 
indexed based on their visual content, e.g., color, texture, and shape 
descriptors, and are then processed via search engines devised to 
handle and compare low level feature descriptors (e.g., dominant 
color, color and edge histograms, etc.) [105, 106]. The main prob-
lems with this category of methods are: i) computational efficiency 
(low-level feature indexing and mapping is time consuming), and 
ii) the so-called semantic gap: low-level features are usually unable 
to capture the high-level semantic meaning in the image [105]. 

To address some the limitations mentioned above, various hy-
brid approaches have been developed, integrating both text-based 
and content-based image processing capabilities [42, 105]. Most 
methods in this category target Web images where both low-level  
1  Refer to Section  6.6. 
2 We focus on image retrieval here for clarity of presentation, and since it is a 

typical (and one of the most widespread) example(s) of multimedia IR [76]. 
3 https://images.google.com/                4 http://picasa.google.com/ 
 
 

and text-based image clues are available such as: i) the Web links of 
image files (e.g., URLs) which have a clear hierarchical structure 
including useful information such as image Web categories [105], as 
well as ii) the Web documents in which images are imbedded (e.g., 
HTML or XHTML) which encompass textual metadata (e.g., image 
label, Webpage title, ALT-tag, etc.) [24]. Hence, given the semi-
structured nature of Web image annotations, XML-based solutions 
have been recently introduced, e.g., [82, 201, 204], organizing Web 
images into an XML document tree hierarchy, and then applying 
image search and retrieval operations on the obtained XML multi-
media tree. The general process consist of three main steps [201]: i) 
placing images into a hierarchy made of link connectivity and Web 
document metadata, ii) defining multiple evidence scores based on 
image ascendants, brothers, and children, evaluated using an XML 
retrieval system, and then iii) retrieving multimedia fragments 
from relevant images. Recent methods have extended XML solu-
tions toward MPEG-7 retrieval, e.g. [5, 11], providing a higher level 
of semantic expressiveness with the use of MPEG-7 constructs4. [81]  

In this context, given that the meaning of an image is rarely 
self-evident using traditional text-based and/or content-based descrip-
tions, the semantic analysis and disambiguation of XML-based data 
becomes central to enrich, with as little human intervention as 
possible, a collection of raw Web images (or multimedia data) into a 
searchable semantic-based structure that encodes semantically 
relevant image contents. This would provide the stepping stone 
toward full-fledged semantic image processing [156], which could 
be exploited to improve a range of applications namely: i) (semi-) 
automatic image annotation (using semantic clues and fact deduction 
to infer semantic annotations [50, 214]), ii) semantic image clustering 
and classification (grouping together similar images based on their 
semantic meaning [73, 213]), and iii) semantic image retrieval (find-
ing, ranking, and re-organizing image search results according to 
their semantic similarity, with respect to an image and/or a key-
word query) [106, 172]. In this context, dedicated image (multime-
dia) ontologies can be utilized, relating low-level features with 
high-level semantic concepts (e.g., color ontologies where colors are 
defined using color names – red, blue, etc. – linked with numerical 
representations [148, 175]), allowing to generate semantic templates 
to support high-level semantic ImR solutions integrating text-based 
and content-based features (e.g., the retrieval of named events, or of 
pictures with emotional significance such as “find pictures of a joyful 
crowd”, e.g., [30, 227]). The main premise with this family of hybrid 
techniques is to simulate the visual concept space in terms of lexical 
concepts as perceived by humans, which remains a major ongoing 
challenge in ImR [42, 105].  

6.5. WEB AND MOBILE SERVICES 
Another interesting application area which requires XML semantic 
disambiguation is the matching, search, and composition of Web 
Services (WS). WS are software systems designed to support inte-
roperable machine-to-machine interactions over a network (namely  
the Internet) [34]. An individual WS comes down to a self-
contained, modular application that can be described, published, 
and invoked over the Internet, and executed on the remote system 
where it is hosted [155]. WS rely on two standard XML schemata: i) 
WSDL (Web Service Description Language) [34] allowing the defi-
nition of XML grammar structures to support the machine-readable 
 
4 MPEG-7 provides standardized Descriptors (D): representing low-level 

features (date of creation, author, time, etc.) and high-level features (domi-
nant color, edge histogram, etc.), and Description Schemes (DS): defining the 
structure and semantic relationships between descriptors and schemes [81].  
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description of a service’s interface and the operations it supports, 
and ii) SOAP (Simple Object Access Protocol) [216] for XML-based 
communications and message exchange among WS end-points. 
RESTful services have been recently promoted as a simpler alterna-
tive to SOAP and WSDL-based WS: communicating over HTTP 
using HTTP request methods (e.g., Get, Post, Put, etc., instead of 
exchanging SOAP messages), and using XHTML or free test to 
describe the services (instead of WSDL) [151]. While WS (XML-
based) descriptions are inherently more expressive than RESTful 
service descriptions (using XHTML or keywords), yet RESTful 
services can be specifically useful in developing mobile services 
with reduced processing and bandwidth requirements [207].  

Hence, when searching for WS (or RESTful services) achieving 
specific functions, XML (or XHTML/keyword) based service re-
quests can be issued, to which are then matched and ranked service 
WSDL (or XHTML/keyword) descriptions, thus identifying those 
services answering the desired requests. Here, matching and rank-
ing service descriptions requires effective XML semantic analysis 
and disambiguation techniques, due to service author/user hetero-
geneity (same as the vocabulary problem in XML IR, cf. Section  6.3). 
The same applies for services discovery, recommendation, and 
composition: searching and mapping together semantically similar 
WSDL/SOAP descriptions when processing WS, and performing 
semantic-aware mapping of XHTML/keyword descriptions when 
dealing with RESTful and/or mobile services [94, 113, 220]. 

XML similarity and differential encoding can also be used to 
boost SOAP performance [194, 195]: comparing new SOAP messag-
es with predefined message patterns or WSDL grammars (at the 
sender/receiver side), processing only those parts of the messages 
which are different, thus reducing processing cost in SOAP parsing, 
(de)serialization and communications (cf. review in) [196] .  

6.6. SEMANTIC WEB AND SOCIAL SEMANTIC WEB 
Above all, the Semantic Web vision [13] benefits from most of the 
above-mentioned applications, as it naturally requires XML disam-
biguation to deal with the semantics of Web documents (encoded in 
XML-based format), in order to enable and improve interoperabili-
ty between systems, ontologies, and users. Typically, XML disam-
biguation can be utilized in ontology learning, to build domain tax-
onomies [88, 206] and enrich/update large-scale semantic networks 
[139], based on user input data (e.g., Web pages, blogs, image anno-
tations, etc.) encoded in XML. Here, technologies such as RDF 
(Resource Description Framework) [117, 173]), and OWL (Web 
Ontology Language) [121] can be used to construct such ontologies.  

Subject Predicate        Object 
Films has  Picture 

Picture hasTitle  “Rear Window” 
Picture hasDirector  “Hitchock” 
Picture has  productionYear 
“1954” isA  productionYear 
Picture hasGenre  “Mystery” 
Picture has  Cast 

Cast hasStar  “Stewart” 
Cast hasStar  “Kelly” 

Picture hasPlot  … 

a. Sample RDF triples describing  
XML document 1 in  Fig. 1.  

b. RDF graph (Linked Data) representation. 
 

Fig. 12. Sample RDF triples describing XML document 1 from  Fig. 1,  
with the corresponding graph representation. 

 
RDF enables the definition of statements specifying relationships 
between instances of data in the form of < subject, predicate, object > 
triples, which designate that a resource (i.e., the subject) has a 

property (i.e., the predicate) whose value is a resource or a literal 
(i.e., the object). OWL is built on top of RDF and adds additional 
expressiveness which depends on the type of Description Logic (DL) 
language applied (OWL allows different levels of semantic expres-
siveness, ranging from OWL-Lite, to OWL-DL and OWL-Full [57, 
121]).  Fig. 12.a shows sample RDF triples generated based on XML 
document 1 in  Fig. 1. RDF (OWL) triples can also be represented as 
a labeled directed graph (cf.  Fig. 12.b), and can thus be considered 
as a kind of semantic network where the concepts (nodes) are 
related to one another using meaningful relationships (edges). 

As a result, RDF and OWL highlight the concept of Linked Da-
ta: the seamless connection of pieces of information and knowledge 
on the Semantic Web [70], where a given resource (i.e., subject) can 
be associated with new properties (i.e., objects) via new relation-
ships (i.e., predicates), and where additional statements (i.e., 
triples) can be easily added to describe resources and properties 
[57]. Here, XML disambiguation is central: allowing to extract the 
semantic information form XML data so that it can be utilized or 
integrated with semantic annotations from: i) reference ontologies, 
ii) previously annotated (disambiguated) XML documents, or iii) 
user generated annotations (e.g., social tagging). Practical examples 
include integrating hotel and airline reservations, order processing, 
and insurance renewal with social networking information [112]. 
Also, augmenting Web data (in XML) with semantic annotations 
(i.e., triples) provides a way of blending traditional information 
with Linked Data and Semantic Web constructs. A real-world ex-
ample is the US retailer Best Buy who annotates its XHTML pages 
that describe products (e.g., business record), with RDFa (i.e., RDF 
annotations) that can be processed programmatically by search 
engines and classifiers [110].    

An emerging trend in this context is the integration of user in-
formation (e.g., user annotations, hash-tags, search queries, and 
selected search results), i.e., so-called social semantics [164], to se-
mantically augment Web (XML-based) data. This highlights the 
concept of the Social Semantic Web [78, 164], a Web in which social 
interactions lead to the creation of collective and collaborative 
knowledge representations such as Wikipedia, Wikitionary, Yahoo 
Answers, and Flikr (cf. Section  7.6), providing semantic information 
based on human contributions and paving the way for various new 
applications ranging over: i) blog classification, e.g., introducing 
simple and effective methods to semantically classify blogs, deter-
mining their main topics, and identifying their semantic connec-
tions [167, 170], ii) social semantic network analysis, e.g., disambiguat-
ing entities in social networks, and identifying semantic relation-
ships between users based on their published materials [12, 154], 
and iii) socio-semantic information retrieval, e.g., taking into account 
user information to improve/adapt Web data indexing, query 
formulation, search, result ranking, and result presentation tech-
niques [140, 164] (cf. reviews on Semantic Web and Social Semantic 
Web applications in [39, 164]). 

 

7. DISCISSION AND ONGOING CHALLENGES 
To wrap up, we discuss in this section some of the major challenges 
facing existing XML disambiguation methods, which were partially 
covered throughout the paper, and outline some ongoing and 
future directions. Note that we mainly emphasize XML-based 
disambiguation challenges here and do not address general WSD 
challenges [87, 126] (which could also affect XML disambiguation, 
such as: bootstrapping and active learning [133], knowledge 
enrichment and integration [17], and domain-oriented WSD [23]) 
since the latter are out of the scope of this paper.  

has 
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hasTitle 

Hitchcock 

hasDirector 

1954 
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Stewart Kelly 
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Films 
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7.1. EVALUATING SEMANTIC AMBIGUITY 
Most existing XML disambiguation methods completely neglect the 
problem of evaluating the semantic ambiguity of an XML node 
within the tree structure. In other words, to our knowledge, 
existing methods do not address the issue of selecting words for 
disambiguation, and rather perform semantic disambiguation 
(and/or semi-automatic feedback) on all XML document nodes. 
This is inherently time consuming, and might even be needless. For 
instance, there is no need to disambiguate node labels "Movies", 
"Thriller", and "Hitchcock" in the XML documents of  Fig. 1 since 
they have one prevalent meaning each (based on WordNet1). Here, 
it would be more efficient to select the most ambiguous nodes in 
the XML document tree as target nodes to be processed for 
disambiguation, before running the disambiguation process on the 
document as a whole. Hence, a formal mathematical approach for 
semantic ambiguity evaluation is required to quantitatively assess 
ambiguity, taking into account different XML features such as: i) the 
number of node label senses: the more senses a node label has, the 
more ambiguous it is, ii) the node’s structural position and depth 
w.r.t. the root of the document tree: nodes closer to the root of the 
document tend to be more descriptive of the whole document, i.e., 
having a broader and more ambiguous meaning, than information 
further down the XML hierarchy which tends to be more specific 
[15, 228], and iii) the number of children nodes having distinct 
labels: a greater number of children nodes provide more hints on 
the actual meaning of the parent node, thus making it less 
ambiguous. For instance, in  Fig. 13, one can clearly identify the 
meaning of root node label “Picture” (i.e., “Motion picture”) in  Fig. 
13.a, by simply looking at the node’s distinct children labels. Yet the 
meaning of "Picture" remains ambiguous in the XML tree of  Fig. 
13.b (having several children nodes but with identical labels). 
 

 
 

 
a. Distinct children node labels. b. Identical children node labels. 

 

Fig. 13. Sample XML document trees. 

7.2. EXPANDING STRUCTURAL CONTEXT 
Most disambiguation methods limit XML context to specific 
structural features, e.g., parent nodes (PNC) [185], root node paths 
(RPC) [182, 183], node sub-trees (STC) [200], or nodes reachable 
through certain crossable edges (CEC) [115, 116]. Consequently, 
most approaches are static in that the size/span of the XML context 
is predefined (e.g., the parent node, the root path, or the node sub-
tree), which makes the context relatively poor for the 
disambiguation process. For instance, in the document tree T of  Fig. 
2, given XML node “Cast” as the target for disambiguation: 
considering (exclusively) the parent node label (i.e., “Picture”), the 
root node path labels (i.e., “Films” and “Picture”), or the node sub-
tree labels (i.e., “Star”) remains insufficient for effective 
disambiguation. Note that in contrast with the above methods, the 
CEC approach in [115, 116] allows the user to adapt context size by 
tuning XML edge weights (using dedicated decay functions, cf. 
Formulas 4 and 5) to identify crossable edges. Yet, tunig the proposed 
weight functions might prove unintuitive: chiefly for non-experts. 

Also, an XML document may encompass elements defining 
 
1  Following WordNet, term “Movie” has one single meaning: “A motion 

picture”. Similarly, “Thriller” has one sense: “A suspenseful adventure story, 
play, or movie”, and “Hitchcock” has one sense: “Sir Alfred Hitchcock: English 
film director noted for his skill in creating suspense”. 

hyper-links to other documents, and/or referencing other elements 
in the same document (e.g., elements of type XLink, or elements 
which are associated special attributes ID, IDREF and/or IDREFS). 
Including such links in the XML data model would give rise to a 
graph rather than a tree. While such links might not be important 
as far as the structure of the document at hand [134] (i.e., they are 
usually disregarded in most XML structure-only comparison 
methods and applications such as document clustering and 
classification, e.g., [40, 72]), yet hyper-links can be important in the 
use of XML data content, i.e., in structure-and-content applications, 
namely in XML data search and integration [60, 63] (cf. Section  6.2).  

In addition, XML documents can represent different kinds of 
data: both rigorourisly structured (e.g., normalized relational) data, 
as well as loosely structured and graph-based data (e.g., Web 
directories, ontological structures). As a result, the notion of 
structural context can be expanded/fine-tuned w.r.t. the kind of 
data at hand. For instance, it would be interesting to consider the 
primary-key/foreign-key (PK/FK) relationships (joins) in defining 
the context of a node representing a tuple in a relational table, 
including in its structural context: nodes representing tuples in 
other tables linked to the latter through the PK/FK join [115]. Also, 
we might need to disregard certain ontological links (e.g., IsA, 
PartOf, RelatedTo, etc.) in defining the context of a target node 
representing an ontological concept, disregarding nodes which 
might not be useful (or might be noisy) for disambiguation [115]. 

Hence, expanding/adapting the XML context of a target node 
to consider nodes connected to the latter via different kinds of 
relatiohships, e.g., hyper-links, PK/FK joins, or ontological links, in 
addition to those connected via structural containment relations, 
would provide more adapted context information, and thus 
improve disambiguation quality. 

7.3. COMBINING STRUCTURE AND CONTENT 
Most XML disambiguation methods target XML structure-only 
disambiguation, e.g., [116, 182, 183, 200], taking into account XML 
element/attribute tag names and disregarding data values. Yet, 
many applications rely on XML structure-and-content processing, 
ranging over document versioning, monitoring, integration, and 
retrieval (cf. Section  6.2). However, those disambiguation 
approaches which do handle both XML structure and content, e.g., 
[184, 185], process content (data values) similarly to structure 
(element/attribute tag names), which might not always be effective.  

On one hand, we believe integrating XML structure and 
content is beneficiary in resolving ambiguities in both tag names 
and data values. For instance, it would be beneficial to consider 
data values “Stewart” and “Kelly” in disambiguating XML node 
“Cast” in  Fig. 2. Likewise the other way around: considering tag 
name “Cast” would help disambiguate data values “Stewart” and 
“Kelly”. On the other hand, while XML element/attribute tag names 
represent string values and can be processed using traditional 
lexico-syntactic disambiguation techniques (cf. Section  4.2), yet 
corresponding data values could be of different types, e.g., decimal, 
Boolean, date, year, etc. Thus for each data-type, a different method 
should be utilized to identify semantic meaning. In such a 
framework, an XML grammar/schema might have to be utilized in 
the disambiguation process, an XML schema defining 
element/attribute data types which can be used in disambiguating 
corresponding element/attribute data values2. For instance, 
 
2 XML Schemas (XSDs) [140] enable a thorough management of data-types 

(19 different data-types are supported, the user being able to derive new 
data-types), which is otherwise very restricted in DTDs [20]. 

Picture 

Title Title Title Title 

Picture-

Plot-Title- Director- Cast 
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knowing that data values “Stewart” and “Kelly” correspond to data-
type Person_Name, we can use a dedicated knowledge base such as 
FOAF [2] to identify corresponding semantic relations, instead of 
running them through a general purpose knowledge base such as 
WordNet where they might not link to any semantic concepts.  

Handling XML data values also relates to the problems of 
Named Entity Recognition [135] (i.e., NER, identifying named entities 
in text) and Named Entity Disambiguation [66] (i.e., NED, which can 
be viewed as domain-specific WSD which associates NEs with 
appropriate references in a dedicated KB, e.g., FOAF [2] or 
Wikipedia [217]). NER and NED methods could be integrated 
within XML disambiguation, identifying NEs in data values (e.g., 
“Hitchcock”, “Stewart” and “Kelly” in document tree T of  Fig. 2), and 
then linking them with proper references (e.g., Wikipedia pages 
describing Alfred Hitchcock, James Stewart, and Grace Kelly 
respectively). Using Wikis to bridge (the different yet 
complementary tasks of) WSD, NER, and NED, has been recently 
identified as the task of Wikification [78], and has been receiving 
increasing attention lately in the domains of collaborative semantic 
analysis and processing [56, 164] (cf. Section  7.6). 

7.4. EXTENDING SYNTACTIC PROCESSING 
Most XML disambiguation methods follow the bag-of-words 
paradigm, e.g., [182, 183, 185], such that the XML context is 
processed as a homogeneous set of words surrounding the 
term/label (node) to be disambiguated, regardless of XML node 
structural relationships/proximity. Nonetheless, based on the 
structured nature of XML, nodes closer together in the XML 
hierarchy are usually more related than separated nodes, and thus 
should be considered differently in the disambiguation process. For 
instance, considering target node label “Star” in document tree T 
( Fig. 2), one can realize that XML nodes “Stewart” and “Cast”, 
which are closer to the target node, can better influence the latter’s 
disambiguation, whereas nodes farther away such as: “Picture”, 
“Year”, “Genre”, etc., would have a lesser impact on the target’s 
disambiguation. To our knowledge, only one approach, i.e., CEC 
[115, 116], considers XML node proximity in the disambiguation 
process, introducing the so-called relational information model where 
the semantic contribution of each context node is weighted 
following its relative distance from the target node (computed as 
the sum of the weights of crossable edges, evaluated using a 
dedicated weight function, cf. Formula 4). Yet, the authors do not 
compare their solution with existing XML disambiguation methods.  

Also, recent studies in [9, 79] have highlighted the usefulness 
of going beyond the simple bag-of-words model in describing semi-
structured data, including in the vector representation of docu-
ments additional features that explicitly model structural informa-
tion gathered: i) from within the document itself (similar to the 
relation information model in [115, 116]), and ii) from external struc-
tured sources (such as mapping document terms with labels from 
the Wikipedia category hierarchy [9, 79]). Comparing the bag-of-
words model with expanded structural models in [9, 79] showed 
significant improvement in document clustering quality and se-
mantic concept matching [127] (cf. Sections  6.1 and  6.2), which 
highlights the importance of extending syntactic processing when 
handling XML and semi-structured data.   

7.5. HANDLING COMPOUND XML TAG NAMES 
Most XML disambiguation methods process XML element/attribute 
tag names as independent textual tokens (terms) similarly to tokens 
in flat text, while neglecting to handle compound tags. In fact, 

following the XML data model (cf. Section  2.1), we distinguish 
three kinds of textual input:  i) element/attribute tag names (i.e., 
structure node labels) consisting of individual terms, ii) ele-
ment/attribute tag names consisting of compound words, usually 
made of two individual terms (t1 and t2)1 separated by special deli-
miters (namely the underscore character, e.g., “Directed_By”, or 
using upper/lower case to distinguish the individual terms, e.g., 
“FirstName”), and iii) element/attribute text values (e.g., content 
node labels) consisting of sequences of terms separated by the 
space character. To process these textual input, the WSD task is 
typically preceded by a linguistic pre-processing phase which 
performs: i) tokenization2, ii) stop word removal3, and iii) stem-
ming4, applied on the input document’s tag names and text values, 
to produce corresponding XML tree structure and content node 
labels. While most existing approaches process tag names and 
values similarly (cf. Section  4.2), we argue that special care should 
be taken in handling compound tags.  

Considering the first case (i.e., tag names made of a single 
term), no significant pre-processing is required, except for stem-
ming (e.g., tag names “Films” and “Movies” in the XML documents 
of  Fig. 1 can be respectively stemmed into “Film” and “Movie”). As 
for the second case (i.e., tag names made of compound terms t1 and 
t2), most existing methods consider t1 and t2 as a sequence made of 
two separate terms, which are then processed for stop word remov-
al and stemming (similarly to processing element/attribute values). 
The resulting stemmed terms are represented in separate structure 
nodes (xi) labeled with the corresponding terms (xi.� = ti), and are 
then processed separately for sense disambiguation, each structure 
node label being associated with the most relevant sense [116, 200].  

Yet, we argue that processing compound tag terms as separate 
entities in the XML tree might not be the best strategy for disam-
biguation. On one hand, if t1 and t2 match a single concept in the 
reference KB (e.g., synset first name in WordNet), they need not be 
tokenized and can be considered as a single token, kept in a single 
structure node label, and assigned to a single KB sense. On the 
other hand, if t1 and t2 do not match a single semantic concept (e.g., 
terms of compound label LeadActor in document 2 of  Fig. 1.b, which 
do not match any sense in WordNet), it seems more relevant to 
keep both terms within a single XML structure node label (�) in 
order to be treated together for disambiguation, i.e., one sense will 
be finally associated to �, which can be formed by the best combina-
tion of t1 and t2’s senses. This taps into a related research area which 
could also benefit from XML disambiguation: lexicography, i.e., the 
creation of new senses, dictionaries, and KBs [126], which is central 
in performing ontology learning on the Semantic Web (e.g., build-
ing/enriching domain specific taxonomies to describe Web pages, 
blogs, image annotations, cf. Section  6.6).  While traditional flat text 
WSD helps provide empirical/statistical sense groupings to gener-
ate new senses or adapt the definitions of existing senses, e.g., [86, 
87], XML compound tag names could allow a similar functionality 
with i) less processing (e.g., accessing compound tags in the XML 
tree is less costly then performing statistical analysis) and with ii) 
higher expressiveness (taking into account the XML hierarchical 
relationships and hyper-links connecting nodes to identify new 
semantic relationships between concepts).   

 
1 Having more than two terms per XML tag name is unlikely in practice [200]. 
2  Decomposing a sentence/sequence of terms, into a set of individual tokens. 
3 Removing tokens which useless for semantic analysis (e.g., “the”, “that”). 
4 Identifying the word’s lexical root or origin (e.g., “Acting” becomes “Act”). 
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7.6. USING COLLABORATIVE/SOCIAL KNOWLEDGE SOURCES 
Another central issue which could promote the development of 
more sophisticated XML disambiguation methods is to go beyond 
the usage of conventional KBs as reference semantic information 
sources. In fact, conventional KBs like Roget’s thesaurus [225] and 
WordNet [51] (cf. Section  2.2) are extremely powerful tools and 
have helped achieve quality WSD and XML disambiguation me-
thods [126], mainly since they are i) manually-built (word senses and 
relationships have been vetted by experts), and ii) fully-structured 
(which is easier to process by machines than unstructured corpora). 
Yet, conventional KBs also show many limitations [78]: i) the need 
for significant human effort to create and maintain, ii) the need for 
wide coverage which is difficult to achieve by means of manual input 
from experts, and iii) the need to update information in the KB in a 
timely manner which cannot always be achieved by experts.  

To overcome these limitations, there is an increasing need to 
consider non-conventional sources such as Wikipedia [41], Google 
[87], Yahoo [179], and Flikr [169], which are collaboratively built, 
where content can be efficiently created and updated by non-
experts from different domains, and then the produced content is 
simply vetted by experts. This requires significantly less effort than 
manually creating the information from scratch, and allows for a 
wider coverage and faster update [78]. While, such sources are 
semi-structured in nature, nonetheless information is not fully for-
malized or disambiguated. For instance, Wikipedia’s text corpus is 
partially structured in pages (articles) and info-boxes1, with various 
relationships among pages, namely: redirection pages, internal hyper-
links, inter-language links, as well as category pages. Yet, Wikipedia 
pages also contain vast amounts of unstructured text with no lin-
kage to any pages or other terms (i.e., with no semantic meaning). 
Thus, dedicated additional processing is required, such as mapping 
ambiguous/related terms/pages together [41, 83] and identifying 
missing relationships between terms/pages [75, 217], in order to 
perform WSD. Also, expanding/integrating semi-structured sources 
such as Wikipedia, with structured KBs such as WordNet, to fill-in 
the semantic knowledge gap, has been a promising research direc-
tion with successful projects such as Yago [74] and DBPedia [17].  

Also, another form of collaboratively built knowledge sources 
has emerged in the context of the Social Semantic Web, known as 
folksonomies [140, 164], as a user-driven approach to annotate Web 
resources, and which could be particularly useful in semi-
structured WSD. A folksonomy is basically a 3-dimensional data 
structure (usually represented as a 3-uniform graph) whose dimen-
sions are represented by users, tags, and resources, where users 
assign tags to Web resources, such that tags are freely chosen by the 
users without a reference KB [140]. Then a post-processing, organi-
zation, and mining of the tags and their relationships with users and 
resources would identify user vocabularies describing the resources 
[12, 170]. Such vocabularies are commonly referred to as emergent 
semantics [140], and represent a (bottom-up) complement to the 
more formalized (top-down) knowledge organization in conven-
tional KBs [164]. Here, producing high quality semantics requires 
dedicated additional processing and disambiguation techniques to 
map the semi-structured and ambiguous tags in the folksonomy 
with concepts in the KB, allowing to extend the vocabulary and/or 
the KB with new concepts/relationships highlighting the users’ 
perception of the semantic meaning of information. Then, either the 
user vocabulary or the extended KB can be used (with corpus-
based and/or knowledge-based analysis) to achieve quality WSD.
 
1 Tables summarizing important attributes and contents in a Wikipedia page. 

Here, note that since XML inherently describes semi-
structured data, processes originally developed for XML disambig-
uation can be utilized to handle collaboratively built semi-
structured sources, and vice versa: techniques devised to disambi-
guate concepts and identify relationships in semi-structured know-
ledge sources like Wikipedia or folksonomies could inspire the 
development of new XML disambiguation techniques. 

7.7. USING EXPLICIT AND IMPLICIT SEMANTIC ANALYSIS 
7.7.1. EXPLICIT SEMANTIC ANALYSIS 
An original method for using the semi-structured representation of 
non-conventional KBs (such as Wikipedia’s links and category 
pages) was motivated in [55, 56]. The authors introduce a novel 
technique titled: Explicit Semantic Analysis (ESA) which relies on 
statistical and distributional analysis of term occurrences in Wiki-
pedia’s corpus. The ESA approach attempts to evaluate the seman-
tic relationships between terms in a (flat text) document against a 
high-dimensional space of concepts, automatically derived from 
Wikipedia. Here, the semantics of a given term are described by a 
vector storing the term’s association strengths with Wikipedia-
derived concepts. A concept is generated from a single Wikipedia 
article, labeled with the article’s title, and is represented as a vector 
of terms that occur in the article, weighted by their TF-IDF scores. 
Once these concept vectors are generated, an inverted index is 
created to map back from each term to the concepts it is associated 
with. Each term appearing in the Wikipedia corpus can be seen as 
triggering each of the concepts it points to in the inverted index, 
with the attached weight representing the degree of association 
between that term and the concept.  

For instance, some of the main Wikipedia concepts triggered 
by the term “actor” are (articles titled) Actor, Movie star, Acting, Film, 
and Academy award. Even without reading the Wikipedia articles 
associated with these concepts, it is clear to most readers that these 
concepts are relevant to the input term. One can also realize that the 
concepts’ labels exhibit a degree of semantic relatedness with the 
input term that extends simple synonymy. As a result, performing 
semantic analysis and computing word relatedness between words 
based on their Wikipedia-ESA representation has been shown 
highly effective in comparison with traditional KB approaches [55]. 

In this context, we believe that ESA can be adapted/extended 
toward XML semantic analysis and disambiguation, such that an 
input XML document is represented as a vector (term-element ma-
trix) whose weights measure: the strength of association between 
terms in XML element tag names/text values on one hand, and ESA 
concepts extracted from Wikipedia’s corpus on the other hand. 
Note that applying ESA on flat text documents has been shown 
effective in a wide range of applications, namely computing the 
semantic relatedness between text fragments (i.e., terms or documents) 
[55], text categorization [56], and semantic information retrieval [48], 
and would most likely benefit XML-based applications. 

7.7.2. IMPLICIT SEMANTIC ANALYSIS 
Another direction to improve XML semantic analysis and disam-
biguation is to incorporate implicit semantics (a.k.a. latent semantics) 
inferred from the statistical analysis of XML element tag names/text 
values, following the basic idea that: documents which have many 
node labels in common are semantically closer than ones with 
fewer node labels in common [164]. Implicit concepts are synthetic 
concepts generated by extracting latent relationships between terms 
in a document (or a document collection), or by calculating proba-
bilities of encountering terms, such that the generated concepts do 
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not necessarily align with any human-interpretable concept [43, 
226]. This is different from conventional concept-based semantic 
analysis, which utilizes explicit concepts representing real-life enti-
ties/notions defined following human perception (e.g., concepts 
defined within a conventional/non-conventional KB such as Word-
Net or Wikipedia) [210]. In this context, the few existing methods 
toward XML implicit semantics fall into two main categories: i) 
Kernel Matrix Learning (KML), and Latent Semantic Indexing (LSI). 

On one hand, the KML approach [222, 223] is based on the no-
tion that XML elements might have different contributions to the 
meaning of the XML document, where an element’s contribution 
depends on its relationship with other elements (rather than only 
the relative position of the element) in the XML document. To 
quantify element contribution, the authors utilize supervised 
and/or unsupervised learning [104] to produce a so-called kernel 
matrix: i.e., an m-by-m matrix representing the implicit semantic 
relationships between each pair of m elements in the documents 
being processed. The kernel matrix is then used as reference in 
comparing and evaluating the similarity between XML documents. 

On the other hand, the LSI approach [38, 202] projects an XML 
document from the original term-element document feature space 
onto a concept-element (or so-called latent semantic) space, made of 
implicit concepts identified via Singular Value Decomposition (SVD). 
LSI can be viewed as a feature transformation method, taking as 
input a set of (XML syntactic) features, and producing as output a 
set of new (latent semantic) features. The document is then 
represented and processed using its latent semantic concept-element 
features. An approach in [222] combines both KML and LSI such 
that the kernel matrix is used to compare document representations 
in the concept-element (latent semantic) space. 

While performing XML-based implicit semantic analysis is 
promising, yet existing KML and LSI methods suffer from various 
limitations, namely: i) implicit concepts are difficult to understand 
and evaluate by human users, ii) the number of generated implicit 
concepts depends on statistical/algebraic analysis rather than the 
actual meaning of the data, and iii) existing methods are relatively 
complex and do not scale well [164]. Some of these limitations have 
been recently addressed, introducing innovative techniques such as 
distributed LSI [209], probabilistic LSI [44], paralleled probabilistic 
LSI [85], and optimized LSI [174] to deal with flat documents. These 
(and other optimization techniques) need to be further explored 
toward handling XML and semi-structured data. 

7.8. EMPHASIZING USER INVOLVEMENT 
Furthermore, existing XML disambiguation methods are mostly 
static in adopting a fixed context size (e.g., parent node [185], root 
path [183] or sub-tree [200]) or using preselected semantic similari-
ty measures (e.g., edge-based measure [116], or gloss-based meas-
ure [183]), such that user involvement/system adaptability is mi-
nimal. Here, a more dynamic approach, allowing the user i) to 
choose context size, ii) to choose the semantic similarity measure to 
be used, and iii) to fine-tune the impact/weight of context nodes 
and semantic similarity measures on the disambiguation process, 
can help the user optimize the disambiguation process following 
her needs, taking into account the nature and properties of the 
XML data being disambiguated. For instance, increasing context 
size with highly ambiguous or structure-rich XML (i.e., nodes 
having many siblings/descendents) could increase the chances of 
including noise (e.g., unrelated/heterogeneous XML nodes) in the 
disambiguation context and thus disrupt the process. Yet, increas-
ing context size with less ambiguous/poorly structured XML could 

actually help in creating a large-enough and/or rich-enough context 
to perform effective disambiguation. 

Having a dynamic approach, disambiguation parameters can 
be fine-tuned: i) manually by human experts, or ii) using automatic 
or semi-automatic optimization techniques where parameters are 
chosen to maximize disambiguation quality through some cost 
function (such as precision or f-measure [87]). This requires the inves-
tigation of optimization techniques that apply linear programming 
and/or machine learning in order to identify the best weights for a 
given problem class, e.g., [77, 118]. Providing such a capability, in 
addition to manual tuning, and the use of semi-automatic feedback 
techniques (cf. Section  4.2.3), would enable the user to start from a 
sensible choice of values (e.g., identical weight parameters to con-
sider all disambiguation features equally) and then optimize and 
adapt the disambiguation process following the scenario and opti-
mization (cost) function at hand. 

7.9.  REDUCING COMPUTATIONAL COMPLEXITY 
Also, one of the main concerns in WSD in general, and in XML 
disambiguation in particular, remains: high computational com-
plexity (cf. Section  4.2.3.3). WSD has been described as an AI-
complete problem [114] in comparison with NP-completeness in 
complexity theory, i.e., a problem whose difficulty is equivalent to 
solving centrals problems in AI  (e.g., the Turing Test) [126]. Various 
adaptations and simplifications of traditional WSD techniques have 
been proposed in the literature (e.g., the adapted and simplified 
versions of the Lesk algorithm [100, 205]), some of which have been 
extended toward XML disambiguation (cf. Section  4.2.3). Yet, de-
spite the various efforts to simplify the algorithmic nature of the 
process, it has been widely accepted that WSD’s main complexity 
resides in the so-called knowledge bottleneck [164], i.e., its heavy 
reliance on external knowledge which requires substantial time to 
acquire and process. In fact, without external knowledge, it would 
be virtually impossible for both humans and machines to identify 
the meaning of words and expressions [126], since external know-
ledge serves as a common reference of semantic meaning.  

In this context, performing efficient semantic analysis and dis-
ambiguation requires more sophisticated knowledge (and semi-
structured data) indexing capabilities, e.g., [33, 90], along with 
more powerful (parallel) processing architectures, e.g., [49, 196].  

Note that in light of the increasing growth and evolving nature 
of collaborative knowledge sources, the knowledge bottleneck can be 
viewed as a variant of the Big Data problem, highflying similar 
issues of Volume and Velocity (as well as Variety and Veracity) which 
are among the hottest in DB, IR, and AI research [67, 218]. 

7.10.  CREATING AN EXPERIMENTAL BENCHMARK 
Last but not least, a major challenge for future XML and semi-
structured disambiguation studies is to develop a comprehensive 
experimental benchmark: i) implementing existing disambiguation 
methods to be used in comparative stand-alone evaluation, and 
which can also be embedded and evaluated end-to-end within vari-
ous application scenarios (cf. Section  6), enabling the user to eva-
luate the effectiveness and efficiency of various algorithms in each 
application domain, and then choose the one that is most adapted 
to her needs, ii) implementing dedicated test measures (e.g., preci-
sion, recall, and coverage) for evaluating the effectiveness of different 
methods, iii) providing readily available test data with manual 
annotations serving as a baseline (gold standard) for testing, and 
iv) allowing testers to easily append their own algorithms, test 
measures, and test data in order to dynamically extend the bench-
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mark for future empirical evaluations. Providing an experimental 
benchmark would facilitate future empirical studies and thus foster 
further research in the area.  
 

8. CONCLUSION 
In this survey paper, we have given an overview of current research 
related to XML-based semi-structured semantic analysis and dis-
ambiguation. We have described how different techniques were 
extending from traditional flat text WSD toward disambiguating 
semi-structured XML data. We have identified and utilized differ-
ent criteria to categorize and compare existing XML disambigua-
tion approaches, ranging over: target node selection (all nodes, or 
sample nodes), context identification (parent node, root path, sub-
tree, or crossable edges), context representation (set-based, or vector-
based), context size (fixed, or flexible), the kind of XML data targeted 
for disambiguation (structure-only, or structure-and-content), the 
type of external information used (corpus-based, knowledge-based, 
or collaborative), the word-sense matching approach adopted (con-
cept-based, or context-based), the semantic similarity measure used 
(edge-based, node-based, or gloss-based), and the evaluation method 
used for empirical testing (standalone, or embedded within an 
holistic application). We have also presented and discussed a wide 
variety of applications requiring XML semantic-aware processing, 
and concluded by identifying and discussing some of the main 
challenges and future directions in the field.  

Recall that we focus on XML as the present W3C standard for 
semi-structured data representation on the Web, yet most concepts 
and methods covered in this paper can be easily adapted or ex-
tended to handle alternative or future semi-structured data models 
(e.g., JSON). We hope that the unified presentation of XML-based 
semantic disambiguation in this paper will contribute to strengthen 
further research on the subject. 
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