Greatest Common Divisor and Least Common Multiple Matrices on Factor Closed Sets in a Principal Ideal Domain

Article in Journal of Mathematics and Statistics · April 2009

DOI: 10.3844/jmssp.2009.342.347 · Source: DOAJ

CITATIONS
0

READS
78

3 authors, including:

Abdul-Nasser El-Kassar
Lebanese American University
36 PUBLICATIONS 138 CITATIONS

Samer Habre
Lebanese American University
23 PUBLICATIONS 115 CITATIONS

All content following this page was uploaded by Abdul-Nasser El-Kassar on 21 March 2016.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Greatest Common Divisor and Least Common Multiple Matrices on Factor Closed Sets in a Principal Ideal Domain

A.N. El-Kassar, S.S. Habre and Y.A. Awad
1Lebanese American University, P.O. Box 13-5053, Chouran-Beirut, 1102 2801, Lebanon
2Lebanese American University, Lebanon
3Lebanese International University, Lebanon

Abstract: Problem statement: Let T be a set of n distinct positive integers, x_1, x_2, ..., x_n. The n×n matrix [T] having (x_i, x_j), the greatest common divisor of x_i and x_j, as its (i,j)-entry is called the greatest common divisor (GCD) matrix on T. The matrix [[T]] whose (i,j)-entry is [x_i, x_j], the least common multiple of x_i and x_j, is called the least common multiple (LCM) matrix on T. Many aspects of arithmetics in the domain of natural integers can be carried out to Principal Ideal Domains (PID). In this study, we extend many recent results concerning GCD and LCM matrices defined on Factor Closed (FC) sets to an arbitrary PID such as the domain of Gaussian integers and the ring of polynomials over a finite field. Approach: In order to extend the various results, we modified the underlying computational procedures and number theoretic functions to the arbitrary PIDs. Properties of the modified functions and procedures were given in the new settings. Results: Modifications were used to extend the major results concerning GCD and LCM matrices defined on FC sets in PIDs. In the domains of Gaussian integers and the ring of polynomials over a finite field were given to illustrate the new results. Conclusion: The extension of the GCD and LCM matrices to PIDs provided a larger class for such matrices. Many of the open problems can be investigated in the new settings.

Key words: GCD matrix, lcm matrix, factor-closed sets, principal ideal domain

INTRODUCTION

Let T = \{x_1, x_2, ..., x_n\} be a set of n distinct positive integers. The nxn matrix [T] having (x_i, x_j), the greatest common divisor of x_i and x_j, as its (i,j)-entry is called the Greatest Common Divisor (GCD) matrix on T. The matrix [[T]] whose (i,j)-entry is [x_i, x_j], the least common multiple of x_i and x_j, is called the least common multiple (LCM) matrix on T. The set T is said to be factor closed (FC) if it contains every divisor of x for any x \in T. In 1876, Smith showed that the determinant of the GCD matrix [T] on a FC set T is the product \( \prod_{i=1}^{n} \phi(x_i) \), where \( \phi \) is Euler's totient phi-function. Moreover, Smith considered the determinant of the LCM matrix on a FC set T is equal to the product \( \prod_{i=1}^{n} \varphi(x_i) \pi(x_i) \), where \( \pi \) is a multiplicative function defined for a prime power \( p^r \) by \( \pi(p^r) = -p \). Since then many papers related to Smith's results have been published. Recently, this field has been studied intensively. This new inspiration started in by Beslin and Ligh.

In [3], Beslin and Ligh obtained a structure theorem for GCD matrices and showed that, if S is FC, then \( \det[T] = \prod_{i=1}^{n} \phi(x_i) \). They conjectured that the converse is true. In [10], Li proved the converse and provided a formula for the determinant of an arbitrary GCD matrix. Beslin and Ligh [4,5] generalized these results by extending the FC sets to a larger class of sets, gcd-closed sets. In [1], a structure theorem for [[T]] was obtained from the structure of the reciprocal GCD matrix 1/[T], the (i,j)-entry of which is 1/(x_i, x_j). Given a FC set T, Bourque and Ligh [6] calculated the inverses of [T] and [[T]] and showed that [[T]][[T]]^{-1} is an integral matrix. In that study, they stated their famous conjecture that the LCM matrix on any gcd-closed set is invertible. Bourque and Ligh [7,8] investigated the structures, the determinants and the inverses associated with classes of arithmetical functions. For a brief
review of papers relating to Smith's determinant, we refer to\textsuperscript{[3]}. Using the language of posets, the authors gave a common structure that is present in many extensions of Smith's determinants. Beslin and El-Kassar\textsuperscript{[2]} extended the results in\textsuperscript{[3]} to unique factorization domains.

The purpose of this study is to extend many of the recent results concerning GCD and LCM matrices defined on factor-closed sets to arbitrary Principal Ideal Domains (PID) such as the domain of Gaussian integers and the ring of polynomials over a finite field.

**MATERIALS AND METHODS**

Let \( S \) be a PID and let \( a, b \in S \). We say that \( a \) and \( b \) are associates and write \( a \sim b \), if \( a = ub \) for some unit \( u \) in \( S \). If \( b \) is a nonzero nonunit element, then \( S \) has a unique factorization, up to associates, into prime elements in \( S \). That is, \( b = \prod_{i=1}^{n} p_i^{\alpha_i} \), where the \( p_i \)'s are distinct primes in \( S \). Also, every finite set \( \{ b_1, b_2, ..., b_n \} \) admits, up to associates, a greatest common divisor. For a nonzero element \( b \) in \( S \), define \( q(b) \) to be \( |S/\langle b \rangle| \), the order of the quotient ring \( S/\langle b \rangle \), where \( \langle b \rangle \) is the principal ideal generated by \( b \). Note that \( q(u) = 1 \), for any unit \( u \). Also note that in \( Z, Z[i] \) and \( Z[x] \), \( q(b) \) is finite \( \forall b \neq 0 \). Throughout the following we consider \( S \) to be a PID having the property that \( q(b) \) is finite \( \forall b \neq 0 \). It can be shown that \( q(ab) = q(a)q(b) \). Hence, if \( b = \prod_{i=1}^{n} p_i^{\alpha_i} \), then \( \sum_{i=1}^{n} \alpha_i \) is the smallest index \( j \) such that \( a_j \neq b_j \). If the set \( T \) is ordered so that \( t_1 \sim t_2 \) whenever \( b_1 < b_2 \). In the case \( S = Z[i] \) and \( q(t(x)) = q(t(x)), t(x) \sim c+ib, a, b, c, d \geq 0 \), then define \( t_1 \sim t_2 \) whenever \( b \neq d \). Note that if \( T \) is ordered so that \( t_1 \sim t_2 \) (\( \forall b \neq d \)), then \( t_1 \sim t_2 \) whenever \( a_0 \neq b_0 \). If \( p \) is prime in \( S \), then \( \sum_{a \in T} \phi_a(d) = \sum_{a \in T} \phi_a(d) \) whenever \( t_1 \sim t_2 \).

**Theorem 1:** Let \( S \) be a PID and let \( b \) be a nonzero element in \( S \). If \( E(b) \) is a complete set of distinct nonassociate divisors of \( b \) in \( S \). Then, \( \sum_{a \in T} \phi_a(d) = \sum_{a \in T} \phi_a(d) \) whenever \( t_1 \sim t_2 \).

**Proof:** Let \( b = 0 \). The result is true when \( b \) is a unit. Suppose that \( b \) is a nonunit so that \( b = \prod_{i=1}^{n} p_i^{\alpha_i} \). Since \( \phi_a(d) \) is multiplicative, the function \( f(b) = \sum_{a \in E(b)} \phi_a(d) \) is also multiplicative. For any prime element \( p_j \), (1) gives:

\[
\phi(p_j^s) = \sum_{a \in E(p_j^s)} \phi_a(d) = \phi(p_j^s) + \phi(p_j^s) + \cdots + \phi(p_j^s)
\]

where, \( p_j(x) \) is of degree \( r_j \). For example, if \( f(x) = (x^2+1)(x^3+1)(x^4+x+1) \), then \( f(x) = 3^7 \cdot 2^5 \). Now, if \( \beta = u_1 \beta_1 \beta_2 \cdots \beta_k \), a product of distinct Gaussian primes \( \beta, \beta_1, ... \), then:

\[
\phi_1(\beta) = \prod_{j=1}^{k} (a_j^2 + b_j^2 - 1)
\]

For example, if \( \beta = 6+42i \sim (1+i)(1+2i)^2 \), then \( q(\beta) = 640 \).

Let \( S \) be a PID and let \( T = \{ t_1, t_2, ..., t_n \} \) be a set of nonzero nonassociate elements in \( S \). Define a linear ordering \( \prec \) on \( T \) according to the following scheme: If \( q(t_1) < q(t_2) \), then \( t_1 \prec t_2 \) and if the equality \( q(t_1) = q(t_2) \) holds then order \( t_1 \) and \( t_2 \) according to any scheme depending on the given domain \( S \). For instance, if \( S = Z[i] \) and \( \phi(t_1) = \phi(t_2) \), where \( t_1 \sim t_1 \) and \( t_2 \sim t_2 \), then define \( t_1 \prec t_2 \) whenever \( b_1 < b_2 \). Theorem 1 gives:

\[
\phi_1(\beta) = \prod_{j=1}^{k} (a_j^2 + b_j^2 - 1)
\]
By the multiplicity of \( f(b) \), we have
\[
q(b) = \sum_{d \in E(b)} \phi(d).
\]

**Corollary 1:** (Euler's) If \( n \) is a positive integer, then
\[
n = \sum_{d \mid n} \phi(d).
\]

**RESULTS**

**GCD matrices on FC sets in a PID:** Throughout the following, we consider \( T = \{t_1, t_2, \ldots, t_n\} \) to be a \( q \)-ordered set of nonzero nonassociate elements of a PID \( S \). Define the GCD matrix on \( S \) to be the \( n \times n \) matrix \([T]\) consisting of the ordered set of nonzero nonassociate elements of a PID \( S \). Define the \( n \times m \) matrix \( A = (a_{ij}) \) where
\[
a_{ij} = \begin{cases} 1 & \text{if } a_{ij} \neq 0 \\ 0 & \text{otherwise} \end{cases}
\]
and \( B = (b_{ij}) \) be the incidence matrix corresponding to the transpose of \( A \), where
\[
b_{ij} = \begin{cases} 1 & \text{if } a_{ji} \neq 0 \\ 0 & \text{otherwise} \end{cases}
\]
Hence, the product \( AB \) is given by:
\[
(AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = \sum_{d \in E(t_i), d \in E(t_j)} \phi(d) = \sum_{d \in E(t_i), d \in E(t_j), d \in E(t_i) \cap E(t_j)} \phi(d) = \phi((t_i,t_j))
\]

**Example 1:** Let \( T = \{1,1+x,1+x^2,1+ x^3\} \) in \( \mathbb{Z}[x] \).
Then \([T]\) = \[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 8 \\
1 & 2 & 8
\end{bmatrix}
\]. Let \( D = \{1, 1+x, (1+x)^2, 1+x+x^2, 1+x^3, (1+x)^3\} \). Then, \([T]_{4 \times 4} = A_{4 \times 4}B_{6 \times 4}\) where:
\[
A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 3 & 0 \\ 1 & 1 & 2 & 0 & 4 \end{bmatrix}
\text{ and } B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}
\]

**Example 2:** Let \( T = \{1, 2, 5\} \). In \( \mathbb{Z}[i] \), \([T] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 25 \end{bmatrix} \).

Note that \( T \) is not FC in \( \mathbb{Z}[i] \). Select \( D = \{1, 1+i, 2, 2+i, 1+2i, 5\} \). Then \( A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 4 & 4 & 16 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \)

**Theorem 3:** The GCD matrix \([T]\) is the product of an \( n \times m \) matrix \( A \) and its transpose \( A^T \). The nonzero entries of \( A \) are of the form \( \sqrt{\phi(d)} \) for some \( d \) in a FC set \( D \) containing \( T \).

**Proof:** Let \( D = \{d_1, d_2, \ldots, d_m\} \) be a FC set containing \( T \). Define the \( n \times m \) matrix \( A = (a_{ij}) \) by
\[
a_{ij} = \begin{cases} \sqrt{\phi(d_i)} & \text{if } d_i \in E(t_j) \\ 0 & \text{otherwise} \end{cases}
\]
Hence, the product \( AA^T \) is given by:
\[
(\sum_{k=1}^{n} a_{ik}b_{kj})_{ij} = \sum_{d_k \in E(t_i), d_k \in E(t_j)} \sqrt{\phi(d_k)} \phi(d_k) = \sum_{d_k \in E(t_i), d_k \in E(t_j), d_k \in E(t_i) \cap E(t_j)} \phi(d_k) = \phi((t_i,t_j))
\]

Note that Theorem 2 and 3 hold even if \( T \) is not \( q \)-ordered. In the case when both \( T \) and \( D \) are \( q \)-ordered, \( B \) becomes in raw-echelon form.

**Corollary 2:** (Smith's Determinant over a PID) If \( T \) is FC in \( S \), then
\[
\det[T] = \prod_{i=1}^{n} \phi(t_i).
\]

**Proof:** Let \( T \) be a FC set. Choose \( D \) to be \( q \)-ordered and \( D \sim T \). From Theorem 2, the GCD matrix \([T] = AB \), where \( A \) is an \( n \times n \) lower triangular matrix and \( B \) is an upper triangular matrix such that \( a_{ii} = \phi(t_i) \) and \( b_{ii} = 1, 1 \leq i \leq n \). Therefore, \( \det[T] = \det[AB] = \det[A] \det[B] = \phi(t_1) \phi(t_2) \cdots \phi(t_n) \).

We note that if \( T' = \{t_1, t_2, \ldots, t_n\} \) is any arrangement of the elements of \( T = \{t_1, t_2, \ldots, t_n\} \) in \( S \), then \( \det[T] = \det[T'] \). This can be verified as follows.
The matrix $[T]$ can be obtained from $[T']$ by switching the rows and the columns of $[T']$. Thus, $[T] = E_1 E_2... E_r [T']$, where the $E_i$'s are elementary matrices with det$[E_i] = \pm 1$, $1 \leq j \leq r$. Hence, $[T]$ and $[T']$ are similar matrices and det$[T] = \text{det}[T']$.

Next, we consider the converse of Corollary 2. Let $S$ be a PID and let $T = \{ t_1, t_2, ..., t_n \}$ be a nonempty set of nonzero nonassociate elements in $S$ with $\text{det}[T] = \prod_{i=1}^{n} \phi_i(t_i)$. Is it true that $T$ is factor-closed in $S$?

Consider a minimal FC set $D = \{ t_1, t_2, ..., t_{n+r} \}$ containing $T = \{ t_1, t_2, ..., t_n \}$ with $t_1 \neq t_2 \neq ... \neq t_n$ and $t_{n+1} \neq t_{n+2} \neq ... \neq t_{n+r}$. Define an $n \times (n+r)$ matrix $A$ by $A_{ij} = \sqrt{\phi_i(t_j)}$, where $\phi_i(t_j)$ is 1 if $t_j \in \phi_i(t)$ and 0 otherwise. Denote the matrix $(c_{ij})_{n \times n}$ by $E$, a $[0,1]$-matrix. Note that the matrix $A$ is the same matrix $A$ defined in Theorem 3.

For an $n \times m$ matrix $M$, $n > m$ and any set of indices $k_1, k_2, ..., k_n$ with $1 \leq k_1 < k_2 < ... < k_n \leq m$, let $M_{(k_1, k_2, ..., k_n)}$ denote the submatrix consisting of $k_1$th, $k_2$th, ..., $k_n$th columns of $M$.

**Theorem 4:** Let $D = \{ t_1, t_2, ..., t_n, t_{n+1}, ..., t_{n+r} \}$ be a minimal FC set containing $T = \{ t_1, t_2, ..., t_n \}$ in $S$, where $t_1 \neq t_2 \neq ... \neq t_n \neq t_{n+1} \neq ... \neq t_{n+r}$. Then:

$$\text{det}[T] = \sum_{i \leq k_1 \leq k_2 \leq k_3 \leq k_{n+s}} (\text{det}[E_{(k_1, k_2, ..., k_n)}])^2 \phi_i(t_1) \phi_j(t_2) \phi_k(t_3) ... \phi_{(k_{n+s})(t_{n+s})}$$

**Proof:** Since $[T] = AA^T$, Cauchy-Binet formula gives that:

$$\text{det}[T] = \text{det}[A A^T] = \sum_{i \leq k_1 \leq k_2 \leq k_3 \leq k_{n+s}} (\text{det}[A_{(k_1, k_2, ..., k_n)}])^2 \text{det}[A_{(k_1, k_2, ..., k_n)}]$$

The result follows from the fact that:

$$\text{det}[A_{(k_1, k_2, ..., k_n)}] = \text{det}[E_{(k_1, k_2, ..., k_n)}] \prod_{i=1}^{n} \phi_i(t_i) \phi_j(t_2) \phi_k(t_3) ... \phi_{(k_{n+s})(t_{n+s})}$$

**Corollary 3:** Let $[T]$ be the GCD matrix defined on $T$ in $S$. Then, $\text{det}[T] \geq \phi_i(t_1) \phi_j(t_2) ... \phi_{(t_{n+s})}$. 

**Proof:** The terms in the summation of Theorem 4 are nonnegative. Since the submatrix $E_{(k_1, k_2, ..., k_n)}$ is lower triangular with diagonal elements equal to 1, we have that the term corresponding to $(k_1, k_2, ..., k_n) = (1, 2, ..., n)$ is $\phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n) = \phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n)$. Therefore, $\text{det}[T] \geq \phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n)$.

**Theorem 5:** Let $[T]$ be the GCD matrix defined on $T$ in $S$. Then, $\text{det}[T] = \phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n)$ if and only if $T$ is factor-closed in $S$.

**Proof:** The sufficient condition holds from Corollary 2. Conversely, suppose that $\text{det}[T] = \phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n)$. For contradiction purposes, suppose that $T$ is not FC. Let $D = \{ t_1, t_2, ..., t_n, t_{n+1}, ..., t_{n+s} \}$ be a minimal FC set containing $T$ in $S$ such that $t_1 \neq t_2 \neq ... \neq t_n \neq t_{n+1} \neq ... \neq t_{n+s}$. Since $T$ is not FC, $D$ is not factor-closed in $S$. Then, $t_{n+1}$ is in $D$ but not in $T$ and $t_{n+s} \in \text{det}[T]$ for some $t$ in $T$. Now, let $t_i$ be the first element in $T$ such that $t_i \in \text{det}[T]$. Then, the submatrix $A_{(1,2, ..., n+1, n+s)}$ consisting of the $1$st, $2$nd, ..., $(r+1)$th columns of $A_{(1,2, ..., n+1, n+s)}$ is a lower triangular matrix of nonzero determinant. Hence, $E_{(1,2, ..., n+1, n+s)}$ is a $[0, 1]$-matrix whose diagonal elements are equal to 1. Since $E_{(1,2, ..., n+1, n+s)}$ can be obtained from $E_{(1,2, ..., n+1, n+s)}$ by performing a certain numbers of successive column permutations, $\text{det}[E_{(1,2, ..., n+1, n+s)}] = \pm \text{det}[E_{(1,2, ..., n+1, n+s)}]$ = $\pm 1$. From Theorem 4, we have:

$$\text{det}[T] = \sum_{i \leq k_1 \leq k_2 \leq k_3 \leq k_{n+s}} (\text{det}[E_{(k_1, k_2, ..., k_n)}])^2 \phi_i(t_1) \phi_j(t_2) ... \phi_{(k_{n+s})(t_{n+s})}$$

This contradicts the necessary condition that the equality holds.

**Inverses of GCD matrices in a PID:** Let $t$ be any nonzero element in $S$. The generalized Mobius function over $S$ is defined by:

$$\mu(t) = \begin{cases} 1 & \text{if } t \text{ is a unit} \\ (-1)^m & \text{if } t = \text{product of } m \text{ nonassociate primes} \\ 0 & \text{otherwise} \end{cases}$$

**Note that:**

$$\sum_{d|t} \mu(d) = \begin{cases} 1 & \text{if } t \text{ is a unit} \\ 0 & \text{otherwise} \end{cases}$$

**Corollary 4:** Let $[T]$ be the GCD matrix defined on $T$ in $S$. Then, $[T]$ is invertible and its inverse $[T]^{-1} = (r_{ij})$ is given by:

$$\mu(t_1) \mu(t_2) ... \mu(t_n) = \phi_1(t_1) \phi_2(t_2) ... \phi_n(t_n)$$
Let \( S = \mathbb{Z}[x] \).

**Example 3:** Let \( S = \mathbb{Z}[x] \) and let \( T = \{1,1+x,1+x^2, (1+x)^2,1+x+x^2\} \), which is a \( q \)-ordered FC set of non-zero non-associate elements in \( \mathbb{Z}[x] \). Then,

\[
[T] = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}.
\]

By corollary 4, \([T]^{-1}\) is obtained as follows:

\[
a_{11} = \frac{1}{\phi_q(1)} \cdot \frac{1}{\phi_q(1+x)} + \frac{1}{\phi_q(1+x+x^2)} = 1 + \frac{1}{3} = \frac{4}{3}
\]

\[
a_{12} = -\frac{1}{\phi_q(1+x)} = -1
\]

\[
a_{13} = a_{14} = 0, \quad a_{24} = -\frac{1}{\phi_q(1+x+x^2)} = \frac{1}{3}
\]

and so forth. Therefore,

\[
[T]^{-1} = \begin{bmatrix}
\frac{4}{3} & -1 & 0 & 0 & -1/3 \\
-1/3 & 3/2 & -1/2 & 0 & 0 \\
0 & -1/2 & 3/4 & -1/4 & 0 \\
0 & 0 & -1/4 & 1/4 & 0 \\
0 & 0 & 0 & 0 & 1/3
\end{bmatrix}.
\]

**Reciprocal GCD Matrices in a PID:** The reciprocal GCD matrix on \( T \) in \( S \) is the \( n \times n \) matrix \( 1/[T] \) whose \((i,j)\)-entry is \( 1/q((t_i, t_j)) \). It is clear that \( 1/[T] \) is symmetric. Furthermore, permutations of the elements of \( T \) yield similar reciprocal GCD matrices. For a non-zero element \( t \) in \( T \), define the function \( \xi \) by

\[
\xi(t) = \frac{1}{q(t)} \sum_{d \in E(t)} q(d) \mu(t, d).
\]

A generalized version of the Mobius inversion formula can be used to show that

\[
\frac{1}{q(t)} = \sum_{d \in E(t)} \xi(d).
\]

Since \( \xi(t) \) is the product of two multiplicative functions \( \frac{1}{q(t)} \) and \( \chi(t) = \sum_{d \in E(t)} q(d) \mu(t, d) \), we have that \( \xi(t) \) is itself multiplicative. Moreover, if \( p \) is prime in \( S \), then \( \chi(p^s) = 1q(p) \). Hence,

\[
\xi(p^s) = \frac{1}{q(p)^s}.
\]

where, the product runs over all prime divisors \( p \) of \( t \) in \( E(t) \).

In the following two theorems we obtain two factorizations for the reciprocal GCD matrices.

**Theorem 6:** Let \( D = \{d_1, d_2, ..., d_n\} \) be a FC set containing \( T \) in \( S \). The reciprocal GCD matrix defined on \( T \) is the product of an \( n \times m \) matrix \( A = (a_{ij}) \), defined by

\[
a_{ij} = \begin{cases} 
\xi(d_i) & \text{if } d_i \in E(t_j) \\
0 & \text{otherwise}
\end{cases}
\]

and an \( m \times n \) incidence matrix \( B \) corresponding to \( A^T \).

**Proof:** Let \( A \) be as defined and let \( B \) be the \( m \times n \) matrix with

\[
b_{ij} = \begin{cases} 
1 & \text{if } a_{ij} \neq 0 \\
0 & \text{if } a_{ij} = 0
\end{cases}
\]

Then:

\[
(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} = \sum_{d_i \in E(t_j)} \xi(d_i) = \sum_{d_i \in E(t_j), d_i \in E(t_k)} \xi(d_i)
\]

\[
= \sum_{d_i \in E(t_j), d_i \in E(t_k)} \xi(d_i) = \frac{1}{q((t_i, t_k))}
\]

In a similar manner we prove the second factorization given in the following theorem.

**Theorem 7:** Let \( D = \{d_1, d_2, ..., d_n\} \) be a FC set containing \( T \) in \( S \) and let \( C \) be the \( n \times n \) matrix given by

\[
a_{ij} = \begin{cases} 
\sqrt{\xi(d_i)} & \text{if } d_i \in E(t_j) \\
0 & \text{otherwise}
\end{cases}
\]

The proof of the following theorem is similar to those of Theorems 4 and 5.
Theorem 8: Let \( T \) be a set in \( S \). Then, \( \det(1/|T|) = \xi(t_1)\xi(t_2)\ldots\xi(t_n) \) iff \( T \) is factor-closed in \( S \).

LCM Matrices on FC Sets in a PID: The least common multiple (LCM) matrix defined on \( T \) in \( S \) is the \( n \times n \) matrix \( [T] = \begin{pmatrix} q(t_{11}) & \cdots & q(t_{1n}) \\ \vdots & \ddots & \vdots \\ q(t_{n1}) & \cdots & q(t_{nn}) \end{pmatrix} \) where \( q(t) \) is the least common multiple of \( t \) and \( t_j \) in \( S \).

Theorem 9: If \( T \) is FC in \( S \), then
\[
\det([T]) = \prod_{i=1}^{n} \phi(t_i) \prod_{p \in I(t_i)} (-q(p)) \prod_{p \in I(t_j)} \phi(t_i/p) \prod_{p \in I(t_j)} (-q(p)) \]

since \( \det([T]) = \prod_{i=1}^{n} \phi(t_i) \prod_{p \in I(t_i)} (-q(p)) \).

Proof: Since \( [t, t_j] \sim (t, t_j) \), we have and \( q(t, t_j) = q(t)q(t_j)q(( t, t_j)) \). Now \( q(t) \) can be factored out from the \( i \)th row and \( q(t_j) \) from the \( j \)th column to obtain \( 1/|T| \). Hence, \( [T] = D.(1/|T|).D \), where \( D \) is the \( n \times n \) diagonal matrix with diagonal entries \( q(t_1), q(t_2), \ldots, q(t_n) \). From this, we have that:
\[
\det([T]) = \det(D.(1/|T|).D) = \det(D) \det(1/|T|) = \prod_{i=1}^{n} \phi(t_i) \prod_{p \in I(t_i)} (-q(p)) \prod_{p \in I(t_j)} \phi(t_i/p) \prod_{p \in I(t_j)} (-q(p)) \]

Cauchy Binet formula yields a formula for the determinant of the LCM matrix defined on a set \( T \) which is not necessarily FC. The formula is given by:
\[
\det([T]) = \sum_{i=1}^{n} \prod_{k=1}^{n} \left( q(t_{ki})q(t_{kj})q((t_{ki}, t_{kj})) \right) \xi(t_1)\xi(t_2)\ldots\xi(t_n) \]

From Theorem 9, we have that the determinant of the GCD matrix on \( S \) divides the determinant of the LCM matrix whenever \( T \) is FC in \( S \).

DISCUSSION

Most of the existing results related to GCD and LCM matrices are obtained in the domain of natural integers. The results are based on certain number theoretic functions such as Euler’s phi function and the Mobius function. These function and their properties can be generalized to principal ideal domains. By describing the underlying computational procedures and the various properties in the new settings, the existing results related to GCD and LCM defined on factor closed sets are extended to PIDs. This provides a large class of such matrices where many new examples can be constructed. In particular, examples in the domains of Gaussian integers and the ring of polynomials over a finite field may give new insight to some open problems.

CONCLUSION

The extension of the GCD and LCM matrices to PIDs provide a larger class for such matrices. Many of the open problems can be investigated in the new settings. For future study, we suggest the problem of extending GCD and LCM matrices defined on gcd closed sets to PIDs.

REFERENCES