L\ Wy
o

A DOS Client/Server
Under TCP/IP

By
Tony Y. Fares

Dr. George E. Nasr, Chairperson
Assistant Professor of Electrical and Computer Engineering
Lebanese American University

Dr. Haidar Harmanani
Assistant Professor of Computer Science
Lebanese American University

Dr.

Assistant Professor of Computer Science
Lebanese American University

€
Assistant Professor of Computer Science
Lebanese American University

ABSTRACT

A DOS Client/Server
Under TCP/IP

The client/server model has long been recognized, and new
techniques were heavily applied during the recent years. However,
considerable amount of problems, such as files representation,
security, interworking, and drives mapping, still exist. The Thesis
consists of creating a DOS client/server model, which uses TCP/IP
as a communication protocol. Such a model can be simply
installed in a UNIX network without the needs for protocol
converter, and DOS is no more isolated from UNIX network. In
addition, it will add to the client local drives, the server drives,
thus, increasing the client capacity of files storing. The analysis
includes client structure, server structure, client/server protocol,
and hardware limitations. A source code' is developed for both-
client and server to demonstrate the real work of this model. The.
experiment consists of loading the developed server program on a
PC, and testing it in a UNIX LAN network, as well as, installing
the developed client software, and establishing a simultaneous
logging to both servers. As a result, the access to the server drives
from several applications such as Microsoft Windows, MSD, and
others was attained. The results of this study were successful
proving general applicability on a wide range of hardware.

Tony Y. Fares
May 31, 1995

Acknowledgments

Many people deserve thanks for their assistance and help in the final
production of my thesis. At the top of this list is Dr. George Nasr, my
instructor and advisor, who provided me with his expert guidance, and
all the needed support and assistance in solving the major problems I
faced in my thesis.

I would like also to thank my teachers Dr. Keirouz,Dr. Harmanani, and
Mr. Moussalem for their contributions and acceptance of being members
of the judging committee.

Also, a special thanks to my friend Rachad Radi who provided me with
all the TCP/IP tools.

I would like also to thank my parents Youssef, and Loris, and my sisters
Mirna, Hala, Maha, and Rania who supported me to overcome all the -
- obstacles 1 have faced in life, and I am greatful for what they gave me,
because, without them I would't have been here.

Finally, thanks to my university LAU, and all its staff and faculty.

i

Table Of Contents

Acknowledgments
List of Figures

List of Tables

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction

TCP/IP and the New Library

2.1 Internetworking

2.2 TCP/IP: the Internet protocols
2.2.1 TCP (Transmission Control Protocol)
2.2.2 TP Datagrams

2.3 OSI Model, Protocols, and Layering

2.4 Connections and Associations

2.5 New TCP APIs Developed Routines

Client/Server Concept

3.1 Introduction

3.2 Technical Advantages

3.3 The Client/Server Model

3.4 Client/Server General Architecture
3.5 The Developed Client/Server Protocol
3.6 The Server Structure

DOS, BIOS, and Device Drivers
4.1 Global View of DOS
4.2 Devices for DOS
4.3 The DOS Interrupts
4.4 DOS Device Management
4.5 Translating Service Calls to Device Driver
Comiands
4.6 The DOS Device Driver
4.6.1 Device Drivers for New Devices
4.60,2 New and Old Device Drivers
4.6.3 Overview of a Driver Program Structure
4.6.4 Communication of DOS with the Driver
4.7 Block and Character Devices
4.8 Device Driver Commands
4.9 Tracing a Request from Program to Device
4.10 An Overview of the Device Driver
4.10.1 The Device Header
4.10.2 The Device Attribute Field
4.10.3 The Device Header Name Field
4.10.4 DOS Command Processing
4.10.5 Exiting from the Device Driver

il

m
1

vii

=Y

oD -1 Sy O L LAt

14
14
14
15
16
17
18

20
20
21
22
22
23

23
23
24
25
26
32
33
35
37
37
37
40
44
67

4.10.6 The Status Word for Unimplemented 68

commands
Chapter 5 Client-Server Operations 70
: 5.1 Development Languages 70
5.1.1 Advantages of High-Level Languages 70
5.1.2 Disadvantages of High-Level Languages 71
5.2 A Closer Look at Tiny Model Programi 73
S . 5.3 Data Segment Preceding Code Segment 81
o | 5.4 C Stack and Data 82
oy o '5.5 Thé C Run-Time Libraries ’ 82
L : ‘ 5.6 DOS Device Driver Header 83
Ly 5.7 DOS Device Driver Requests ‘ 84
o iy 5.8 DOS Device Driver Components 85
C : 5.8.1 The Required Utilities ' 8
o _ 5.8.2 Segment Headers L ‘ 85
SN , . 5.8.3 Definitions | 85
o _ 5.8.4 Global Data 86 '
' Loy : 5.8.5 C Environment _ 86
I i ‘ 5.8.6 Commands ‘ 87
R 5.8.7 Ending Marker | 87
5.8.8 Template Overview 88
: ‘ 5.9 Creating and Loading the Device Driver 88
N - 5.10 Putting Client/Server into work | 89
: : © 5.11 Layers Global View 90
Chapter 6 Conclusion - 92
e Appendix A Disk/Diskette Internals A-1
L Appendix B Network Protocols & Communication B-1
Appendix C The OSI Layers ‘ C-1
"Appendix D Glossary : D-1 -
' Referenées N R-1

iv

List of Figures

Figure 1-1 Plugging DOS Server on a UNIX network

Figure 2-1 Layering in the Internet protocol suite

Figure 2-2 OS] model layers

Figure 2-3 Simplified 4-layer model connecting 2 systems
Figure 2-4 Socket system calls for cbnnection—oriented prdtocol
Figure 3-1 Client/Server Model

Figure 4-1 The functional parts of DOS

Figure 4-2 Converting A simple service request to several
possible disk device driver commands

Figure 4-3 Adding a new device driver to the list
Figure 4-4 The five basic parts of the device driver

Figure 4-5 DOS calling the device driver with a pointer to the
request header

Figure 4-6 DOS calls the device driver twice.

"Figure 417 The effect of three driver requésts

Figure 4-8 DOS preparing to call the device driver for the first
time

| Figure 4-9. The STRATEGY procedure storing the address of

the Request Header in local data storage

5 Figure 4-10 DOS processing the INTERRUPT routine

Figure 4-11 Block diagfam of the paths taken to write a block of

data to the disk o

‘Figure 4-12 The five components of the Device Header

Figure A-1 The relative positions of the four components of a

typical formatted disk

. Figure A-2 The relationship between FAT entrY'and cluster

12
16
21

24

25
26

27

29
30

31
31

32

37

A-T

A-11

- Figure A-3

Figure A-4

Figure A-5

Figure A-6

Figure A-7

The clusters used by myfile

The number of hidden sectors for the four paluuons
of a hard disk

DOS calculations of the start sectors for the FATs,
the File Directory, and the User Data Area

The steps DOS takes to display the contents of the
disk on a DIR command

The Initialization command requirement to returh the
address of the BIOS Parameter Block Table

Vi

A-13

A23
A-23
A-26

A-30

List of Tables

Table 4-1 The standard device names assigned by DOS
Table 4-2 The list of DOS interrupts (not BIOS)

Table 4-3 Definition of the Request Header that is passed to the
device driver '

Table 4-4 The list of commands for character-oriented devices
Table 4-5 The list of commands {or block-oriented devices.

Table 4-6 The bit settings of the Attribute word
Table 4-7 Attribute bits sefting that trigger device driver commands

Table 4-8 The various Aftribute words found in various versions
of DOS

Table 4-9 The DOS device driver commands, the DOS versions'
‘ and the device types with which they work

Table 4-10 The Request Header for the Initialization command

Table 4-11 The DOS service that device drivers may use when
processing the Initialization command

Table 4-. 12 The Request Header of The Media Check command
Table 4-13 The three values for the media change status word
Table 4-14 The Request Header for the Get BPB command
Table 4-15 The fields that comprise the BPB

Table 4-16 The Request Header for the IOCTL Input command
Table 4-17 The Request Header for the Input command

Table 4-18 The request Header for the Nondestructive Input
command

Table 4-19 The Request Header for the Input Status command
Table 4-20 The Request Header for the Input flush command

Table 4-21 The Request Header for the Output command

vii

22
22
28
33
34
40

41

42

44

45

46

47

48

50

50

5l
53

54

54

55

Table 4-22 The request Header for the Output with Verify
command

Table 4-23 The Request Header for the Output Status command
| i Table 4-24 -The Request Header or the Output Flush command
Table 4-25 The Request Header for the IOCTL Output command
Table 4-26 The Request Header for the Device Open command
Table 4-27 The Request Header for the Device Close comimand

Table 4-28 The Reguest Header for the Removable Media
command

Table 4-29 The Request Header for the Output Till Buey
command

Table 4-30 The Request Header for commands 17 and 18
Table 4-31 The Request Header for the Generic IOCTL command
Table 4-32 The Major function codes for Generic I/O Controt
Table 4-33 The Minor function codes for character devices
Table 4-34 The Minor function codes for the block devices

| Table 4-35 The Request Header for the commands 20, 21, 22

Table 4-36 The Request Header for the Get Logical Device
command

Table 4-37 The Request Header for the Set Logical Device
command

Table 4-38 The Request Header for the IOCTL Query command
Table 4-39 The standard error codes for DOS device drivers

Table 4-40 The Request Header Status word for commands that
are not implemented in device drivers

v - Table 5:1 The required tools for writing a DOS device driver
Table 5-2 Device driver components

Table 5-3 Commands exchange between client and server device
drivers

viii

57

58

59

59

60

61

61

62

63

63

64

64

64

65

66

67

68

69

85

88
90

Table 5-4 Client and server different layers

Table A-1 The amount of raw storage available for different types
‘ of disks ,

Table A-2 - Some of the disk formats supported by DOS

Table A-3 The types of disks supported by the various versions
of PC-DOS.

Table A-4 Disk sizes for other types of PCs using MS-DOS

‘Table A-5 The typical cluster sizes for different types of disks

Table A-6 The various FAT entries and what they mean

Table A-7 The number of File Directory entries and the number
of directory sectors for each type of disk

Table A-8 The File Directory entry consists of eight fields

Table A-9 'The various attribute bits that can exist for File
Directory entries

Table A-10 How to decode the 2-byte time field

Table A-11 How to decode the 2-byte date field

Table A-12 How to interpret the start cluster number for the File

Table A-13 The 4-byte file-size ficld

Table A-14 The various calcitlations for determining the size of
the FAT entries and the amount of overhead the disks

can have

Table A-15 The fields that comprise the BIOS Parameter Block
(BPB)

Table A-16 The various values for the media descriptor field

Table A-17 The typical values found in the vendor identification
field and the BIOS Parameter Block for a 40Mb
hard disk

Table A-18 The typical called DOS makes to the disk device
driver in order to process the DIR command on a
newly formatted disk

ix

91

A-3 .

A5

A-0

A-15

A-15

A-20

A-22

A-25

A-27

Table A-19 All of the applicable commands for block device A-29
drivers

Table C-1 OSI Layers C-1

Chapter 1 :

Introduction

Software Engineers, developers, and designers have contributed to, and
witnessed the growth and development of computers, from a simple punched card
machine to a more complex and powerful machine with multiple processors. After a
tong period of interacting with these standalone machines, exploring every part of
them, and developing different applications that range from the most complex
(operating system, device drivers, compilers, etc.) to the simplest accounting program,
computer users started to look for new concepts, wanting to go beyond the limitations
of their machines. The new concepts were applied to wide range of networks starting
from a single one connecting two PCs through a modem, and ending with a most
complex network, such as Internet, connecting thousands of computers around the
world.

A network means connecting computers together using various electronic
techniques. A network can be as simple as connecting two computers, or more
complex such as connecting thousands of computers in the world. The benefits of
being connected to a network are:

I- Exchanging electronic mail with users on other computers. At this time one can
communicate with others using special lines which supports voice, data, and image
simultaneously.

2- Exchanging files between users, instead of copying files into a diskette and mailing
it, which takes usually much more time than just simply forward it across the network.

3- Sharing peripheral devices, such as magnetic tape, bard disks, and printers, which
are connected to a server, rather then buying such devices for each individual
workstation.

4. Executing a program on a different machine. There aré cases where some of the
programs are to be run on other computers which are more powerful and more suited
for these special applications. Also, a single network copy of a program will usually
cost less and take less time to install it on several workstations.

5- The remote login features enabling users on different workstations to login into an
account located on a remote machine, provided one has the right to access the
account. It also allows the connection of a diskless machine to the network, and
letting it boot from a remote server.

Designing a client-server model is not a new topic, several applications and
studies are being done to create a perfect model. Some of these applications are:

(a) Novell Netware is the leader and the pioneer in DOS client/server architecture.
Reliable and fast Novell versions, 2.2, 3.11, 3.12, 4.0, and 4.1 were developed. Novell
Server provides several services such as, print services, file services, login services, and
uses the IPX(Interwork Packet eXchange) as a communication protocol. To plug this
Novell server on a network using TCP/IP as a communication protocol, a router is
needed to convert IPX packets into TCP/IP packets and vice versa. This conversation
feature was only implemented in Novell Netware versions 3.12 and higher[10].

(b) TFTP (Trivial File Transfer Protocol) is a sitple method of transferring files
between two systems using UDP. It does not provide many services such as directory
listing, user authentication, etc. The only service provided by TFTP is the ability to
send and receive files between a client process and a server process ona UNIX
operating system machine. TFTP can be used to bootstrap a workstation on a LAN,

‘since it is simple enough to implement in read-only memory. A protocol to do thm 18

given in REFC 906 [24] and RFC 951 [23].

(¢) NFS (Network File System) was developed by the computer vendor Sun
Microsystems and introduced in late 1984. The NFS allows the file systems of remote
computer systems to appear as if they were attached to the user's own local computer.
It works on different operating systems such as DOS, UNIX, etc. It uses UDP (User
Datagram Protocol) as a transport protocol {22].

Looking at the above proposed solutions, it is apparent that NFS succeded in
mapping the server drives in multiple operating systems, but failed in enabling clients
to access other server's resources, creating user accounts, and granting privileges.
Novell Netware added most of the features that were lacking in NFS, but it did not
take into consideration sharing new devices attached to the server such as opfical
drives. Tt is also, afixed model that contains a pre-defined options list, and it uses a
well amount of the local storage device. TFTP is just a simple file transfer t1at does
not have the client server architecture. -

The objective of this study is to create a DOS server which uses TCP/IP
directly as a communication protocol instead of IPX, thus eliminating the usage of a
router. This DOS server can be plugged in a UNIX network without any protocol
conversion operation since both servers use TCP/IP protocol. Therefore, ore can
login to both UNIX and DOS servers and access files on both at the same time from
any individual workstation on the network. In addition, the server drives are mapped
into the clients drives, so a user can access these network drives as if they were local.
It is model easy to be understood and modified by users who wish to add new devices
to a server. The client and server source code are easy to understand and execute, in
addition, they use a small space on the hard disk, and memory at loading time.

Client

DOS
Server

Client

Figure 1-1: Plugging DOS Server on a UNIX network

In this thesis, a server program SERVER EXE is developed to handle requests
from multiple workstations (such as accessing the hard disk) and returns the résult for
each waiting workstation. It is a simple server model that is easily upgraded. The
SERVER EXE programs shows the different stages that a client should go through in

. order to access the destination device.

A client device driver DOS_DRVR.SYS is developed to access the server
drives, and a login program LOGIN.EXE is also developed to establish connection to
the server. The main function of DOS_DRVR.SYS is to add a logical drives to each
workstation loading the designed client device driver, and to map the server physical

«drives to these logical drives. Whenever an access to these drives is needed, the

developed driver sends the desired request across the network to the server, which
handles this request, and returns the answer back to the device driver.

Since, the details of error handling resulting from packets sending or receiving,
collisions, and traffic are managed by TCP/IP[14], only the application and
presentation layers of the OSIT model need to be investigated. '

TCP/IP must be loaded on clients and DOS-Server, and no two TCP addresses
must be the same on the same network, since a network error will occur. The DOS-
Server machine runs the program SERVER.EXE which prepares the server for any
expected connection. The DOS_DRVR.SYS is loaded in config.sys and LOGIN.EXE
is run so, a complete access to the server's drives is obtained.

The first version of DOS_drvr.sys used 26k of lower memory. The improved
version used 20k of lower mémory. The TCP/IP development kit functions were not
used since they can't be utilized from inside the device driver because they are calling
interrupt 21h. As a substitute, a library called TCPCOM.LIB is developed to handle
the required TCP/IP functions.

The thesis organization is as follows. Chapter 2 gives a brief introduction
-about TCP/IP, OSI representation, and describes the new developed TCP APIs library.
In chapter 3, an outline is drawn about the developed client/server model, and an
explanation of the used chient-server protocol is discussed. Chapter 4, contains a
detailed description about the client components such as, device driver structure,

commands , error control, and DOS device driver protocol. In chapter 5, we describe
the needed tools, the language used, problems encountered and solutions provided.
Also, the DOS client/server is designed using the various components discussed in

C previous chapters. Finally, a conclusion is presented in chapter 6.

~ Chapter 2

TCP/IP and The New Library

2.1 Internetworking

A computer network is a communication system for connecting end-systems.
The end-systems are often referred to as hosts. The hosts can range in size from small
microcomputers to the largest super computers. Some hosts on a computer network
are dedicated systems, such as print servers or file servers, without any capabilities for
interactive users. Other hosts might be single-user personal computers, while others
might be general purpose time-sharing systems. :

A local Area Network, or LAN, connects computer systems that are close
together typically within a single building, but possibly up to few kilometers apart.
Popular technologies today for LANs are Ethernet and Token Ring. LANSs typically
operates at high speeds, for instance, Ethernet operates at 10Mbps. Newer LAN
technologies such as FDDI (Fiber Distributed Data Interface), use fiber optics and
have a data rate of 100Mbps. Each computer on a LAN has an interface card of sorme
forms that connects it to the actual network hardware. Additional information about
different protocols are provided in Appendix B.

2.2 TCP/IP: the Internet protocols

During the late 1960s and the 1970s the Advanced Research Projects Agency
(ARPA) of the Department of Defense (DoD) sponsored the development ofthe
ARPANET {21]. The ARPANET included military, university, and research sites, and
was used to support computer science and military research projects. ARPA is now
called DARPA, with the first letter of the acronym standing for "Defense". In 1984
the DoD split the ARPANET into two networks, the ARPANET for experimental

research, and the MILNET for military use. In the early 1980s a new family of
protocols was specified as the standard for the ARPANET and associated Dol
networks. Although the accurate name for this family of protocols is the "DARPA
Internet protocol suite”, it is commonly referred to as TCP/IP protocol suite, or just
TCPAP [20].

In 1987 the National Science Foundation (NSF) funded a network that
connects the six national super computer centers together. This network is called the
NFSNET. Physically this network connects 13 sites using high-speed leased phones
lines and this is called the NFSNET backbone. About eight more backbone nodes are
currently planned. Additionally the NSF has funded about a dozen regional networks

that span almost every state. These regional networks are connected to the NFSNET
backbone, and the NFSNET backbone is also connected to the DARPA Internet. The
NFSNET backbone and the regional networks all use TCP/IP protocol suite.

There are several interesting points about TCP/IP.
= [t is not vendor-specific.
e It has been implemented on everything from
personal computers to the largest supercomputers,
e It is used for both LANs and WANS.
» It is used by many different government agencies
and commercial sites, not just DARPA-funded research projects.

The DARPA-funded research has led to the interconnection of many different
individual networks into what appears as single large network or simply an internet. It
is important to realize that while sites on the Internet use the TCP/IP protocols, many
other nongovermental organizations have established their own internets using the
same TCP/IP protocols. At one extreme an Internet using TCP/IP connects more than
150,000 computers throughout the United States, Europe and Asia, and at the other
extreme a single network consisting of only two personal computers in the same room
connected by an Ethernet, uses the same TCP/IP protocols[21].

2.2.1 TCP (Transmission Control Protocol)

It is a connection oriented protocol, that provides a reliable, full duplex, byte
stream for a user process. It also provides sequencing, error control, and flow control.
It is an end-to-end protocol, the TCP layer in the TCP/IP suite calculates and stores a
checksum in the TCP message header which is then checked by the receiving TCP
layer. TCP buffers store data internally and then pass it to next lower layer for
transmission to the other end|[8]. Tt also, allows flushing buffered data and sending it
to the other end. This process is called the push process. Also, it allows unlimited
amount of out-of-band data routing to be used, however, this is typically used only by
network administrators for testing only. TCP/IP protocol suite uses a 32-bit integer to
specify a combined network ID and host, and uses 16 bit-port numbers to identify
spectfic user processes. The big endian representation for both the 16-bit integers and
32-bit integers is used[6].

Figure 2-1 shows the user process using TCP protocol, which in turn uses IP(Internet
Protocol), to exchange data with other host process. The Internet protocol uses the
hardware interface to connect to the network. ‘

2.2.2 IP Datagrams

The IP Jayer provides a connectionless and reliable delivery system. It is
connectionless because it considers each IP datagram independent of all others. Any
association between datagrams must be provided by the upper layer. Every IP
datagram contains the source address and the destinatton address so that each
datagram can be delivered and routed independently.

6

OSI Layer 5-7 uSer process

R
v

OSI Layer 4 TCP
Transmission Control Protocol

f

V
osI Layer 3 IP
Internet Protocol

A

v

OSI Layeri-2 | hardware interface l

Figure 2-1: Layering in the Internet protocol suite

The IP layer computes and verifies a checksum that covers its own 20-byte header (
that contains, for example, the source and destination addresses). This allows it to
verify the fields that it needs to examine and process. But if an IP header is found in
error, it is discarded, with the assumption that a higher layer protocol will retransmit
the packet. '

In Gateways, it is the IP layer that handles routing through the internet. The 1P
layer is also responsible for fragmentation. For example, if a gateway receives an IP -
datagram that it too large to transmit across the next network, the 1P module breaksup
the datagram into fragments and sends each fragment as an IP packet[15]. AnIP
packet can be fragmented into smaller IP packets. When fragmentation does occur,
the IP layer duplicates the source address and the destination address into each IP
packet, so the resulting IP packets can be delivered independently of each other. The

.fragments are reassembled into an IP datagram only when they reach their final
destination. If any of the fragments are lost or discarded, the entire datagram is
discarded by the destination host.

The IP provides an elementary form of flow control. When IP packets arrive at
a host or gateway so fast they are discarded. In this case the IP module sends an
ICMP source quench message to the original source informing the system that the data
is arriving too fast. '

2.3 OSI Model, protocols, and layering

The computer in a network uses well-defined protocols to communicate. A
protocal is a set of rules and conventions between the communicating participants.

Since these protocols can be complex, they are designed in layers to make their
implementation more manageable. Figure 2-2 shows 4 description of the 7 layers.

' The model developed between 1977 and 1984, is a guide, not a specification[19]. It
provides a framework in which standards can be developed for services and protocols

at each layer. Indeed, the networks protocols (TCP/IP, XNS, and SNA) were
developed before OSI model. Realize that no network is implemented exactly as the
OSI model shows.

Application
Presentation
Session
Transport
Network
Data Link
Physical

—)W B O =

Figure 2-2: OSI model layers.

One advantage of Jayering is to provide well-defined interfaces between the layers, so
that a change in one layer does not affect an adjacent layer. It is important to
understand that protocols exist at each layer. A simplified 4-layer OSI model is shown
in Fig. 2-3. '

| Process I Process 1
A A
| |
V V
| Transport] Transport —I
A A
l |
V V _
L Network] | Network - |
A A
| l
V v
| Data Link I Lo > DataLink |

Figure 2-3: Simplified 4-layer model connecting 2 systems.

The layers that defines a protocol suite are the two boxes called the transport Jayer and
the network layer. The multiple layers that define the network and hardware
characteristics (Ethernet, Token Ring, etc.) are grouped together into the data-link
layer. Application programs exist at the process layer where most of the user
programs are rui.

2.4 Connections and Associations

The term connection is used to define the communication link between two
processes. The term association is used for 4-tuple that completely specifies the two
processes that make up a conpection:

{protocol, local _addr, base_port_addr, foreign addr}

The local_addr and foreign_addr specify the network 1D of the local host and foreign
host. A typical format uses four integers from 0 to 255 separated by dotse.g.
155255.66.1. The base_port_addris the address of the logical port which is used to
make the connection.

3.5 New TCP APIs Developed Routines

‘ The two programs that are communicating are called the transport endpoints
by TLI. TLI isaset of routines that provides the interface between the user process
and the transport provider(TCP). Figure 2.4 contains a description of the TLI
functions usage between the server and each workstation.

Calling the default TCP TLI routines(socket(), connect(),
read(), ...) from inside the device driver caused some serious problems. The device
_ driver was debugged using some utilities developed with Borland C. It was found that
whenever a request from DOS is issued to the device driver, instructions will be ’
normally executed until a TCP/IP default function callis reached. These functions
. caused the PC to be rebooted; the program was traced, and afler examining the
assembly code of the socket() function, it was found that it is calling interrupt 2 1h,
which is prohibited, because DOS is not reentrant. To get around this problem, and to
make sure that interrupt 21h is never used in the device driver, under study, a new
communication library containing all the previous listed functions is created, and this
library is called tepcom.lib. The first function in this library which retrieves TCP
interrupt Toutine is GetNolt{), :
where NoltMin, NoltMax represent the minimum and maximum interrupt number to

seatch among for TCP/IP service routine. NoltMin and NoltMax were set equal to 60
and 80 respectively. TCP/IP signature, TCPTSR, was used for the signature field.
‘The offset between the beginning of the ISR and the beginning of the signature is 3.
Whenever TCP/IP TSR is loaded, its service coutine address will be obtained, and
modified communication functions will be used. Below is the code of GetNolt():

int GetNolt(int NoltMin,int NoltMax,char *Signature,long offset)
P */

char far *IpReel,
char far *IpProt;
char Found = 0;
int Nolt ;

Nolt = NoltMin :
while ((!Found) && (Nolt<=NoltMax)) {
IpReel = MK _FP(0, Nolt*4);
IpProt= (char far *)(* ((long far *)lpReel))
[pProt += offset;
if (_fmemcmp{IpProt,Signature, str]en(Slgnature)) ==
Found =1 ;
else
Nolt++ ;
} /* endwhile */
if.(1IFound)
Nolt=-1;

return(Nolt);
]

After retrieving the TCP ISR number, a TCPCOM_ LIB is created, and contains similar
functions to the default TLI routines. An s character is added to the beginning of each
function name to follow the same TLIs naming conventions. Below, is a description
about the TLIs functions, and an example of the new developed TLIs funct10ns 15
shown in

ssocket(), for more information about others functions refer to TCPCOM.LIB fouind
on the diskette.

assocket ()
To do network I/O, the first thing a process must do is the socket system call. The
TCPIP_INT argument is the integer value returned by GetNolt(} function:

int ssocket(int TCPIP_INT)

A
struct REGPACK reg;

- reg.rax = NET_GETDESC;
intr (TCPIP _INT, ®),
if (reg.r_flags & 1),

return -1;
return reg.r_ax;

'

The ssocket returns a small integer value, similar to a file descriptor.

10

» esbhind()
The sbind call assigns 2 name to an unnamed socket

int sbind(int socket, struct addr *addr, int addrlen);

The second argument is a pointer to a protocol-specific address and the third argument
is the size of this address structure. There are three uses df sbind:
1- Servers register their well-known address with the systern. Both
connection-oriented and connectionless servers need to do this before
accepting client requests.
2- A client can register a specific address for itself.
3- A connectioniess client needs to assure that the system assigns it some
unique address, so that the other end (the server) has a valid return
address to send its responses to.

esconnect()
A client process connects a socket descriptor following the ssocket system call to
establish a connection with a server.

int sconnect(int socketfd, int type,struct addr *addr, int TCPIP_INT);

The socketfd is a socket descriptor that was returned by the ssocket system call. The
second and the third arguments are a type of socket, and the third one is a pointer to a
socket address. The fourth argument is TCP_IP interrupt number.

The sconnect() results in the actual establishment of a connection between the local
system and the foreign system. Messages are typically exchanged between the two
systems, and specific parameters relating to the conversation might be agreed on (
buffer sizes, amount of data to exchange between acknowledgments, etc.). In this case
the sconnect() does not return until the connection is established, or an error is
returned to the process.

sslisten()
This function is used by a connection-oriented server to indicate that it is willing to
receive connections.

int slisten(int socketfd, int type, struct addr * addr, int TCPIP_INT);

slisten{) takes the same arguments as sconnect(), and is executed after both ssocket()
and sbind().

ssaccept()
After a connection-oriented server executes the slisten(), an actual connection from
some client process is waited for by having the server executed saccept() function call.

int saccept(int socketfd, int type, struct addr * addv,int TCPIP_INT);
saccept() takes the first connection request on the queue and creates another socket

with the same properties as socketfd. If there are no connection requests pending, this
call blocks the caller until one arrives.

11

saccept() returns a new socket descriptor.

Server

{ ssocket() | |

I
V

[sbind()]

|
V

| slisten() |

v
blocks until connection
request from client

v .
saccept() connection established
ek e e
l
V
. sread() data request ‘
, S e

I

process request
V

swrite() data reply

- Figure 2-4: Soclet system calls for connection-oriented protocol.

ssread()

Client

ssocket()

|
%

sconnect{)

|
V

swrite()

|
' .
V

sread()

The sread() function is used to read a stream of bytes being sent by remote process to

the local one,

int sread(int socketfd, char far * buffer, int size, int TCPIP_INT);

socketfd is the socket returned by ssocket() function, The two other arguments are
pointer to the buffer allocated to receive the data, and size is the maximum number of

bytes to read.
sread() returns the actual nuinber of bytes being read.

sswrite()

The swrite() function writes a stream of bytes to the network in order to be sent to the

remote process.

int swrite(int socketfd, char far *buffer, int size, int TCPIP_INT);

12

swrite() takes the same arguments as sread(), and returns the actual size of data sent
to the remote process.

ssclose(}
int sclose(int socketfd, int TCPIP_INT);

sclose() is used to close a socket. Ifthe socket being closed is associated with a
protocol that promises reliable delivery (TCP,..) the system must assure that any ddta
within the kernel that still has to be transmitted is sent. Normally the system returns
from the sclose() immediately, but the kernel still tries to send any data already
queued.

The modifications in the communication functions do not require the usage of interrupt
21h, and allow TCPCOM.LIB functions to be securely called from within the device
driver.

13

Chapter 3

The Client/Server Concept

3.1 Introduction

Many companies today are beginning to implement client/server computing.
It's not hard to understand why Client/server computing gives companies the means to
make the most of all their resources: information, capital, technology - and, most of all,
people. _

Today, client/server solutions are at work in companies in all industries. They
are helping people to work cross-functionality to improve customer service, to
participate in international teams that enhance product quality; to apply information in
new ways to create innovative and unique products; and to redesign and streamline
business processes to reduce time-to-market and improve profitabifity. '

Client/Server computing allows all of a company information to be almost
immediately available on any authorized person's desktop system. Properly
implemented, the old barriers between functions and different computer systems cease
to exist. It isa completely new way of getting things done. It's also one of the most
radical changes in information technology since the invention of the microcomputer
back in the 70's. In fact, Client/Server computing is helping to revolutionize the way
organizations do business.

3.2 Technical Advantages

Using open Client/Server computing offers advantages that are both visible and
transparent to the professional and the end-user, including:

. Individuals can work with applications they prefer - but access and work with
information held on other applications and databases across the enterprise.

. I'T managers can maintain a cost-effective, reliable and secure infrastructure, but
respond quickly to new challenges because client/server solutions are very flexible.

. Computing resources can be distributed across the organization - but managed
centrally.

-« New applications can be developed very quickly - but existing investments in

hardware and software are protected.

14

3.3 The Client/Server Model

The standard model for network applications in the client-server model. A
server is a process that is waiting to be contacted by a client process so that the server
can do something for the client. A typical (but not mandatory) scenarto is as follows:

A- The server process is started on some computer system. It initializes
itself, then goes to sleep waiting for a client process to contact it
requesting some service.

B- A client process is started, either on the same system or on another
system that is connected to the server's system with a network. Client
processes are often initiated by an interactive user entering a command
to a time-sharing system. The client process sends a request across the
network to the server requesting service of some form. Some of the
type of service that a server can provide are:

return the time-of-day to the client.
« print a file on a printer for the client.
» read or write a file on the server's system for the client.
« allow the client to login to the server's system. '
! ‘ » execute a command for the client on the server's system.

C- When the server process has finished providing its service to the client,
the server goes back to sleep, waiting for the next client request to
) : arrive,
o - We can further divide the server processes into two types.

1- When a client's request can be handled by the server in a known, short
amount of time, the server process handles the request itself. We call
these iterative servers[6]. A time-of-day services is typically handled in
an iterative fashion by the server.

2- When the amount of time to service a request depends on the request
itself (so that the server doesn't know ahead of time how much effort it
takes to handie each request), the server typically handles it in
concurrent fashion. These are concurrent servers. A concurrent server
invokes another process to handle each client request, so that the
original server process can go back to sleep, waiting for the next client
request. Naturally, this type of server requires an operating system that
allows multiple processes to run at the same time. Most client requests
that deal with a file of information (print a file, read or write a file, for
example) are handled in a concurrent fashion by the server, as the
amount of processing required to handle each request depends on the
size of the file.

15

3.4 Client/Server General Architecture

Client/server model is a natural model for many applications. The basic idea is
that there is a server, which provides a useful service via some defined exported
interface, and there are one or more clients which use the service by requesting the
server to perform certain actions. The actions that may be requested are defined by the
exported interface. !

In essence, the server acts as an implementation of an abstract data type with a
well defined interface (think in terms of object-oriented programming). We might
think of parts of a program as clients and servers; for example, if you put a module in
your program to access a database, you could think of that module as the server, and
the parts of the program that use the module as clients. The location of the server may
be on the same machine as the client, or it may be on another machine far away as in
this model because, DOS is not multitasking operating system. (see Figure 3-1)

Client3| Client4

Figure 3-1: Client/Server Model.

.Some important aspects of the client/server model are:

1- There s an asymmetric relationship between the client ahd the server;
that is, each takes on well-defined role. For example, in the proposed
model the client requests files from the file server, which provides the
filesystem services.

2- Usually a machine or a process on a2 machine is dedicated to servicing
requests. That is, a server machine or process doesn't generally have
other work to be done.

3- Services may be cascaded: A may request a service of B, which may in
turn request a service of C in order to complete A's request.

16

4- The interface for the service must be agreed upon by the client and the
server. It defines which services are exported (e.g., for a print server,
the services may be queue, check status, dequeue, etc.) and how those
services may be accessed. If a client and a server disagree on the
interface protocol, it may lead to unpredictable results.

The reasons for the popularity of the client/server model are:

» It is convenient.

» Itis the dominant model in use for today's distributed systems.
e It is simple to understand.

3.5 The Developed Client-Server Protocol

The Client-Server model is prevalent in computer networking. We define
iterative servers, which means, that the server knows ahead of time about how long it
takes to handle each request and the server process handle each request itself, because
we know what the client requested from the server. Notice that the roles of the client
an server processes are asymmetric. This means that both halves are coded differently.
The server program SERVER EXE is started first, and dedicates the computer for its
usage. Typically it does the following:

1- Checks how many device drivers are loaded, and returns a pointer to the desired
block device driver to access later on specified unit of that block device.

2- Displays a group of clients PC, and indicates later on which client is connected to
the server, and tells the state of each one (request, error, frame type, etc.) .

3- Opens a communication channel and informs the local host of its willingness 1o
accept client requests on some well-known address.

4-Waits for a client request to arrive at the well-known address.

5- Displays the client PC in connected mode, and shows all connections information.

6- Checks each request and sends it to a specific function. Ifit is a DOS request, it
will forward the command to the specified unit in the block device driver, and waits for
an answer from the device.

7- Forwards The answer returned by the device driver to a communication pr ocedure
which returns the answer back to the client.

8- Loops back and goes to its wait state, checks for new clients desiring connect:om
and check if already connected clients have any read/write requests.

The client does the following;

I- Runs the login.exe program, which connects to a server through a well kriown
address, and verifies if it is acknowledged by a server, and returns the server's total
drives.

2- Displays a list of the server mapped drives.

3- Sends any command issued by DOS to access the server mapped drives, to the
communication procedure, which forwards it across the network to the server, and
blocks for an answer.

17

4- Retrieves the answer from the communication procedure, and forwards it back to
the device driver, which returns it to DOS.

5- Repeats the same job until the user logged out of the system by issuing logout
command that closes the communication channel, and terminates.

3.6 The Server Structure

The SERVER.EXE program, first, calls the list() routines which lists all the
device drivers loaded on the server, and saves a pointer to the block device driver
controlling its focal drives. Then, it issues a call to Init_Connection() procedure that
opens a socket and prepares the server process to accept incoming connections. To
handle multiple connections at the same time, all clients requests must be served with
short period of time. This problem can be managed by making the server non blocking
at slisten() procedure, and simply doesn' t wait for clients connections request, it
creates a table that contains the socket descriptors of all previous connections, in order
to check if they have read/write requests.

Whenever the server receives a message from a client to execute a job for him,
the server goes with it till it is accomplished before handling another request. Below,
is simply a description of the main loop of the server program.

while (TRUE)
{
if (slisten()}
{
{d = accept(),
update_table();
}
for (i=0; i < max_connect; i++)
if (read (client_info[i].table fd, buffer, length})
process_command (client_info[i] table fd),
} /* end while */

After the server collects the needed data, and information from the client, it
calls call_dd(} routines which sets ES, and BX equal to the address of the request
header, and calls the server device driver, once through the device Strategy routine,
and a second time through the Interrupt routine to perform the work.

18

void call_dd(void)
{
v_call = (void (far *) ()) MK_FP(FP SEG(dlsk) disk->dev_strat),
ES= DS ;
_BX=FP_OFF (r_ptr),
v_call ();

v_call = (void (far *3() MK FP(FP _ SEG(disk), d|~3k~t>de\:r ~int),
_ES=_DS ;

BX =FP_OFF (r ptr);

v_call (};

So, after presenting a general description of the client-server architecture, and
discussing the main issues concerning the server components, a detailed description of
the client components is described in chapter 4.

19

Chapter 4

DOS BIOS and Device Drivers

4.1 Global view of DOS

Since its introduction with the IBM PC, DOS has become the most popular
operating ' system in the world. From its humble beginnings, DOS has evolved into a
powerful tool, with features such as hierarchical disk structures, the ability to control
just about any device, and networking capabilities,

The conceptual model for DOS as the master supervisor of resources of a
computer system is shown in Figure 4-1[1].

At the core of DOS is the kernel. The kernel provides control functions for
administrating and managing the resources of the PC. Memory management routines
provide space in which programs can execute. 1/0 requests from application programs
are managed and processed by the kernel. File-management routines within the kerné
organize the data for easy access by applications programs. In addition, the kernel is
responsible for initializing itself when DOS is booted.

The DOS services interface provides a path for application programs to request
services from DOS. It is a defined interface mechanism that processes requests by
interacting with the kernel. DOS services include file I/O to devices and disk files,
time and date functions, and program control.

Strictly speaking, device drivers are part of the DOS kernel. They provide a
standard interface to the devices from within the DOS kernel. As a group, the device
driver provide device management for DOS. Each device driver controls a device ang
uses the PC's BIOS routines, for example, the serial port device driver uses the sefial
port BIOS interrupt.

Programs generally use DOS services to access and control devices. However,
DOS does not prevent a program from directly accessing the B1OS routines. The
"back-door" approach is used by many programs to attain higher performance or to
perform a task that DOS does not provide.

The most important utility program, and the one that users are familiar with, :is
COMMAND.COM. This program runs automatically when DOS is booted.
COMMAND.COM provides the interface for users to communicate with DOS. The
commands that are entered on the keyboard are translated to services requested of
DOS. For example, COMMAND.COM is used to set the time and date, to run
programs, and to contirol the devices attached to the PC.

20

PROGRAMS COMMAND.COM

DOS KERNEL
DOS SERVI INTERFACE

DEVICE DRIVERS

ROM BIOS ROUTINES,

Modem . —] Disks

Monitor; / m%\\ Printers

¥

Keyhoards

Figure 4-1: The functional parts of DOS.

Moreover, application programs request the PC's resources through the DOS
services interface. Without DOS, these programs would have to incorporate all of the
services provided by DOS and would, be incompatible with other application
programs. DOS provides a common set of features. Application programs use the
services provided by the DOS kernel by requesting services through programming calls
to DOS. :

4.2 Devices for DOS

As we have seen, DOS allows programs to control a set of standard PC
devices: keyboard, screen, disks, and serial and parallel adapters. Each DOS device
has a unique name assigned to it, and it is through these names that programs are able
to access the devices. Table 4-1 lists the names of the standard DOS devices as they
are defined in version 2.00 and higher.

21

4.3 The DOS Interrupts

DOS provide access to devices, files, and various services through the use 6f
the 8086/8088 software interrupt mechanism and the int instruction. Programs call
DOS through documented interrupt numbers which are in the range 20h to 3Fh([3].
v : These interrupt numbers are reserved for use by DOS; they should not be used by your
programs. For more information and usage of these interrupts you can refer to any
DOS book. These 32 interrupts are shown in Table 4-2.

Ly [DOS Device Name Standard Device |
- con; Keyboard/screen

coml: Serial port #1

aux: Auxiliary port(identical to coml)

com2: Serial port #2

Iptl: Printer port #1

Ipt2: Printer port #2

Ipt3: Printer port #3

prn: Logical printer port

nul: Null device

clock$ Software clock

A: First diskette unit

B: Second diskette unit

C: Hard disk (normally)

Table 4-1: The standard device names assigned by DOS

20h DOS terminate program

2th DOS function call

22h DOS terminate address

23h DOS CTRL/break exit address
24h DOS vector for fatal error

25h DOS absolute disk read

26h DOS absolute disk write

27h DOS terminate but stay resident
Z28h-3th DOS reserved

" Table 4-2: The list of DOS interrupts (not BIOS).

4.4 DOS Device Management

To access a device using DOS, your programs need to indicate what file or
device to use; this is called opening the file or device. DOS requires that the name of
the file or device be specified through the DOS Open service(3Dh). After this
interrupt is received, DOS sets up a file handle, which is used as a standard mechanism

22

to access the device. This file handle is also used to keep information regarding use of
the file or device. A device such as the serial port must be opened using coml: as the
device name. Then you can read or write to this device using DOS service calls.

When DOS services a request that requires device access, DOS will translate this
request according to a standard set of rules imbedded in code. These rules are uniform
across all devices, from simple output-only parallel devices to complex input and
output devices, such as disks.

These request services, once converted to a specific command, are then passed
to a certain set of routines that process the command. These routines are not common
to all devices; rather, each device has a unique set of routines. These routines are the
-actual DOS device drivers.

DOS has a device drivers for each ofthe devices attached to the PC. Each
service request, however complex, is eventually converted by DOS into a series of
simple driver commands and passed to the appropriate device driver.

4.5 Translating Service calls to device Driver Commands

Device drivers are designed to handle simple commands from DOS. The two
most common DOS services used to access devices are interrupt 21's read (ah = 3F)
and write (ah = 40). These DOS services are relatively complex and may not be
translatable to single device driver commands. DOS will issug as many commands to
the appropriate device driver as necessary to satisfy the DOS service request.

For example, a program that writes to the disk may issues a write command -
interrupt 2Th (ah = 40) - that happens to append data at the end of the file. DOS may
have to process this single service request by issuing several commands to the disk
device driver[1]. The first of these driver commands will need to find more space on
the disk for the new data. A driver command will be issued to read the File Allocation
Table in which the information on disk space is kept. Then, if there is room on the
disk, DOS will write the new data to the disk file by issuing a write command to the
disk device driver. Lastly, DOS will update the disk to indicate the time of last access
by issuing another driver command to write to the disk. Although this scenario has
been simplified, the idea here is that DOS converts a single service request into one or
more device driver cornmands. This is shown in Figure 4-2.

Now, after describing how DOS processes requests for device access by
passing the request in the form of smaller, simpler commands to the device driver, let's
explore device drivers themselves.

4.6 The DOS Device Driver
4.6,1 Device Drivers for New Devices

DOS device drivers are device-controlling software routines that actually
become part of DOS. Because these programs are written to Microsoft-designed
specifications, DOS can recognize these new devices and can integrate them with the
rest of its standard devices.

23

DISK
DEVICE
DRIVER

Wrile 1.Read disk space lable
a record 2.Write 1o disk file
at end 3.Update disk directory

- of file pdate disk space tabl

FLOPPY
DISK

=l

Figure 4-2: Converting A simple service request to several possible disk device
driver commands.

Once DOS knows about these devices through their specific device driver
routines, the devices can be accessed as easily as the standard disk and screen devices.

DOS needs to know only that the device driver is controlling a particular
device, identified by a device name, and that it is capable of processing standard device
driver commands.

Without installable device drivers that have a uniform interface to DOS, adding
a new device to DOS would be difficult. The manufacturer of the device would have
to supply a custom-modified version of DOS in order for you to use the new device.
This would create a number of problems. First, you could not use a newer release of
DOS unless the newer version also modified to control the new device. Second,
because each device manufacturer uses different methods of modifying DOS,
incompatibility problems would arise.

The DOS device driver is the most universal and meaningfi) method of
soﬂwa:e control for devices. New devices become standard devices in DOS, available
for accessing at any time, from within programs and outside of programs, such as from
the command level.

4.6.2 New and Old Device Drivers

As we discussed earlier, DOS manages requests for device access from
programs by issuing commands to the appropriate device driver. Each device driver
contains the name of the specific device it is controlling, and DOS locates the
appropriate device driver by searching through the list of installed device drivers. -

24

DOS maintains a linked list of the device drivers starting with the nul: device.
The device driver for NUL: is the first in the list and contains a pointer to the next
device driver. In turn, each device driver points to the next. The pointer for the fast
device driver will contain the value -1, thus signaling the end of the list.

DOS manages the standard, replacement, and new device drivers using a
relatively simple mechanism. As shown in Figure 4-3, the list of DOS standard device
drivers begins with NUL: and continues with CON:, AUX:, and so forth. These
device driver programs reside in the area of the PC memory that DOS uses. Whenever
a new device driver is installed, DOS inserts it in the list just after the NUL: device.
This allows you to replace a standard device driver, because any device request will
cause DOS to search this list starting from the first, which is nul:. If you replace a
standard device with one of your own, DOS will find the new device first and will
never reach the original device of that name, which is now second in the list.” Thus,
DOS will be able to access new, replacement, and standard device drivers simply by
searching this list.

New HEAD QF

device DEVICE CHAIN

drivert-i

adde

here NUL:
CON:
LPT:

LPT:

Before After
instafling installing
device driver
driver NEW:

Figure 4-3: Adding a new device driver to the list,

This list of DOS device drivers is called the device chain and is a linked list of
the actual device driver programs. To access drivers all DOS needs is a pointer to the
first item, the device nul:. DOS can then find the rest of the device drivers.

4.6.3 Overview of a Driver Program structure
A device driver program consists of five parts: the Device Header, data storage

and local procedures, the STRATEGY procedure, the INTERRUPT procedme and
the command-processing routines (see Figure 4-4),

25

Figure 4-4: 'The [ive basic parts of the device driver

Let's look briefly at these five sections. The begiming of a device driver
pragram does not contain code the way normal programs do. Rather, the Device
Header contains information about the device driver itself. This information is used by
3OS and includes the device name for the driver and (he pointer to the next driver.

The second part of the driver is used (o siore local data variables and local
routines and procedures.

The third and fourth parts of the device driver contain what Microsofl calls the
STRATEGY and INTERRUPT procedures. These two procedures are integral (o
proceeding each command that is passed
from DOS to the device driver. They allow DOS to pass control to the driver.

The last part of the driver contains the actual code roufines (hat process each of
the commands that DOS passes to the device driver.

4.6.4 Communication of DOS with the Driver

Let's see how DOS and the driver work together. Figure 4-5 shows that when
DOS calls the driver it passes a packet of data to the device driver This call might be
to write to a RAM disk or send some special character to a graphics hoard. This
packet of data is called a Request Header and contains information for the device
driver such as the data to be written to the device. DOS sets up the registers S and
BX to contain the address of the Request Header when DOS calls device driver.

26

The Request Header The request Header is a packet of data that is passed from DOS
to the driver; this data tells the driver what to do and the location the data involved in
the work to be performed. For example, if DOS wants write a character to the serial
port, it needs to specify the write command and the character to write. Therefore,
DOS needs to pass to the driver both command and some data. Both of these are
contained in the Request Header (Note: Do not confuse the Request Header with the
Device Header. The Device Header tells DOS about the driver program, and the
Request Header contains the data on which the device driver works.) The Request
Header is described in Table 4-3.

As shown in Table 4-3, the Request Header is a variable-length packet of data.
Within this packet, the length of the Request Header is contained in the first entry.
The second entry contains the unit code of the
device. This is normally used when more than one device is attached to the controller.
An example of this is the floppy disk controller, which often controls two drives.

The A: drive would be unit 0, the B: drive would be unit 1, and so forth. The
third entry is the command code, which tells the device driver what action to take.
The fourth entry is used as a status indicator.

DRIVER

REQUEST
HEADER

Length of packet

Device unit code

Command number

Stafus

Reserved

Address of data

Figure 4-5: DOS calling the device driver with a pointer to the request header.

27

Entry Length Description

{bytes)

1 1 Length in bytes of this Request Header (varies
with the amount of data in the Request

2 | Unit code of the device

3 | Command code

4 2 §6-bit word for the status upon completion

5 8 Reserved for DOS

6 Varies Data specific for a command

Table 4-3: Definition of the Request Header that is passed to the device driver,

The fifth entry is reserved for use by DOS (its use is undocumented). Finally,
the last entry is the data field. This field varies in length depending on the command in
the third field.

DOS automatically sets up a Request Header whenever a program makes a
request to DOS that involves device driver. This data packet residesin DOS's
reserved memory space and is built with information provided from the calling
program. The address of the Request Header is passed to the device driver when DOS
passes control to the driver. This address is stored in the driver's local storage area.
You need to specify both the segment address and the offset address of this Request
Header, because the Request Header can be anywhere in the 640K memory. specifying
only an offset address assumes that the packet will be in the current segment of
memory in which the program is executing. DOS passes this segment and offset
address in the ES and BX registers of the 8088/8086, respectively[2].

Drivers Calls from DOS You might assume that each command DOS passes to the
driver involves a single call to the driver. Alas, this is not the case. Recall that DOS
expects the device driver to have two procedures defined - the STRATEGY and the
INTERRUPT procedures. Let's explore the two-step call that DOS makes to the
device driver for each command request.

The Two-step Call to the Device Driver Each time DOS asks the device driver to
process a command, for example a read or write command, DOS will call the device
driver twice. The first time, DOS will pass control to the STRATEGY procedure
defined for the device driver. The second time, the device driver wili be called at the
address specified for the INTERRUPT procedure. 7

Think of the STRATEGY procedure as instructions that perform the set-up
‘and initialization for the driver, The INTERRUPT procedure the uses the information
from the STRATEGY procedure to process the command request from DOS. This
process is shown in Figure 4-6.

Although it is not apparent from DOS manuals, this two step approach allows
DOS to distinguish between the request for the driver (the set-up) and the actual work
to be done by the driver. You can think of this two-step process as analogous to
writing a check and cashing it at a bank. You may write the check on Monday(the set-

28

up) and not cash it (the work) until Friday. In the same way, DOS notifies the driver
that here is a work to be done with a call to STRATEGY and then calls the driver
again through INTERRUPT to allow it to work.

Let's develop a scenario to see why the STRATEGY and INTERRUPT are
necessary. Assume that your PC, through DOS, can multitask, which means that it can
perform several tasks at one time. This permits you to do more work in given period
of time[i]. Although DOS does not provide third capability currently, it is an
. important feature that future versions of DOS will have.

It is likely that the various multiple tasks in order of importance, the calls they
make to device drivers also need to be prioritized. For example, a task thatis
downloading a file using a modem might be higher priority than a task that is updating
a collectton of addresses. The two-entry point approach allow DOS to do this. DOS
can process the device driver calls in the priority order of the calling task. This is
accomplished by linking into a chain all driver request calls(all the calls to STRATEGY
and putting all the actual work calls (calls to INTERRUPT) into another chain in
priority order. After DOS calls all device drivers through the STRATEGY routine, it
then inspects the INTERRUPT chain to see which one has the higher priority. The
closer a device driver is to the beginning of the chain, the higher its priority.

DOS DEVICE

DRIVER
e
calls - -
STRATEGY
first STRATEGY: §

Sets
f Up
N driver

. DOS

calls

INTERRUPT INTERRUPT:B :

second Partorms
actual
worlc

Figure 4-6: DOS calls the device driver twice.

Without this two-step mechanism to set up and perform the actual work DOS
would call the device drivers on a first-come, first-served basis. To make this scenario
a little easier to understand, let's use an example. Assume that there are three
outstanding driver requests:

* Request A has a low priority
* Request B has a medium priority
» Request C has a higher priority

29

The STRATEGY and INTERRUPT chains are illustrated in Figure 4-7 As this figure
shows, each program request for device driver service causes DOS to place the first
(set-up) call in the STRATEGY chain and the second (work) call in the INTERRUPT
chain,

STRATEGY
chain is Setup
linked in . is pariormed
arrival in this
arder order

A
INTERRUPT
chainis i
finked in Fﬁ.??grlrsned
priority inthis
order order

Figiire 4-7: The effect of three driver requests '

When three programs make device driver requests, the set-up calls are linked
into the STRATEGY chain in order of arrival, and the work calls are placed in the
INTERRUPT chain in priority order. Think of this as writing checks in order during
the week and then sending out the most important checks first on Saturday. In effect,
you are handling all the incoming items as they arrive but storing the most important
items into a work list for processing[1].

What The STRATEGY Procedure Does When the driver is first called. the
STRATEGY routines saves the address of the Request Header, which is contained in
the ES and BX registers. This is done to prepare the driver for the second call to its
INTERRUPT procedure.

The sequence of events is shown in Figure 4-8, in which DOS prepares to call
the device driver by building a Request Header, and in Figure 4-9, DOS calls the
device driver at the STRATEGY procedure. -

30

DOS

Length

Unit Code

Command
Number

Status

REQUEST
HEADER

Figure 4-8: DOS preparing to call the device driver for the first time.

When DOS calls the device driver the second time, it does so through the
INTERRUPT procedure. Here the real work of the device driver begins. The Request
Header that contains information for the device driver to process is handled by the
code located in the INTERRUPT procedure. Control is then passed to the command-
processing routines. This is shown in Figure 4-10,

POS oS

calls

STRATEGY

REQUEST
HEADER

DEVICE
DRIVER

DEVICE
HEADER

STRATEGY | /

STRATEGY

saves the

address of the
REQUEST HEADER
in LOCAL DATA
STORAGE

Figure 4-9: The STRATEGY procedure storing the addmss of the Request

Header in local data storage.

31

4.7 Block and Character Devices
DOS drivers need to distinguish between character and block devices.
Recall that a block device transfers data in groups of characters, and character devices
transfer data one character at a time. Of the control commands that the device driver
_issues to the device, some are appropriate to character devices and some to block
devices. The Media Check command is one example of a block device command.
Because diskettes can be formatted for single-sided or double sided use, the DOS disk
device driver needs to know which format has been used. To find out, DOS issues a
Media Check command to the disk device driver, which'in turn reads a block of data
from the disk. From the information returned in this block of data, DOS can determine
if the diskette is single or double-sided. '
The Media Check command is unique to disk block devices and is not
applicable to character devices.

DEVICE
DRIVER

DEVICE
HEADER
LOCAL
DATA
STORAGE 2. INTERRUPT
retrieves
ES:BX the address
of the REQUEST
- - “HEADER and
passes il o
STRATEGY command
processing
1. DOS calls
INTERRUPT
o perferm
work

INTERRUPT.

Figure 4-10: DOS Processing the INTERRUPT routine.

DOS also needs to know which type of device its driver is controlling in order to
determine the appropriate commands the device driver can perform.

32

4.8 Device Driver Commands '
Recall that programs make service requests of DOS. Each of these requests

translates to a specific set of commands that the driver understands[2]. These
commands are coimmon to all device drivers.

Number Command Description
0 ~ Initialization
1-2 Not applicable
3 1I0CTL Input
4 Input
5 Nondestructive Input
6 Input Status
7 Input Flush
8 Quiput
9 Qutput With Verify
10 Qutput Status
1] QOutput Flush
12 IOCTL Gutput
13* Device Open
j4% Device Close
15*% Not applicable
16* Qutput Till Busy
17-18** Undefined
19%* Not applicable
20-22%* Undefined
23 Get Logical Device
24 Set Logical Device
25 %%+ I0CTL Query
* = DOS version 3+ only
*x =DOS version 3.2 only

k*k =DOS version 5.0 only
Table 4-4: The list of commands for character-oriented devices.

Commands defined by Microsoft for device drivers are listed by device type in
Table 4-4 for character devices and in Table 4-5 for block devices. Note that not all of
the commands are available for all versions of DOS.

33

Number Command Description
0 Initialization
1 Media Check
2 Get BIOS Parameter Block
3 I0CTL Input
4 Input
5 Not applicable
6 Not applicable
7 Not applicable
8 Output
9 Output With Verify
10 Not applicable
i1 Not applicable
12 ~IOCTL Qutput
13* Device Open
14* Device Close
[5% Removable Media
16* Not applicable
17-18** Undefined
19% Generic JOCTL
20-22%* Undefined
23** Get Logical Device
24** Set Logical Device
25k 10CTL Query
* = DOS version 3+ only
ko = DOS version 3.2 only

% =DOS version 5.0 only
Table 4-5: The list of commands for block-oriented devices.

34

4.9 Tracing a Request from Program to Device

To finish this section, we will look at an example of what happens along the
way as a program calls a device driver. Let's assume that a program has asked you to
type some data from the keyboard into a file called MYFILE. Let's say the program
will write the data into a record in a disk file. Figure 4-11 shows the various steps
performed by your program, DOS, the disk device driver, the BIOS, and the device
itself.

YOUR
PROGRAM
Write
‘"M;{v';:-f)" 1. Frogram
e H
pos. - [DOS
service [INTERBUPT
INT 21h: request IROUTINES
Dos
21h Services
el

2. D035 services

Absalute Disk

trahslates 26h Writes
write request
o physical
address for,
a drive 3. DOS determines
appropriate Processing
disk driver -
- - " and calls

the driver

'BICS
ROUTINES

Video

. The ORIVER
issues a
B8ICS call

to tha disk
roulinas wilh
areauest

to write

£

1Gh

TISK b3

5. The BIOS
disk routine
wries lo
the disk .

Figure 4-11: Block diagram of the paths taken to write a block of data to the
disk.

When you have typed in all - your data, your apphlication program will issue a
Write to a previously opened disk file named "myfile". The data to be written ts
contained in a record or variable block of data named "newdata". The Write is a cali
to a library function in the programming language used in your program. This function
will take your Write command and convert it to a DOS function call. There are many
DOS calls that write data to a file; for this example, we will assume that it is simply &
Write Sequential File Record call. The library function is generally written il assembly
language. It will set up the data for a Write Sequential File Record as DOS needs it
and then calt DOS by issuing interrupt 21h. -

35

The first part of DOS that is used is the call handler, which is where control
goes when the interrupt 21h is executed. It is here that DOS inspects the type of
function that the caller has set up (as found in the Al register). In this case the
function ts hex 15, which means Write Sequential File Record to DOS,

DOS then internally locates the relative position of the disk file to which you
record is to be written. Next, DOS finds the starting address, relative to the beginning
of the disk, of the file "myfile." This is done by searching through the disk directory for
information on where "myfile" resides. The relative position of the record to be
written to is added to the position of the start of the file; this yields the absolute
position on the disk at which the "newdata” record should be stored. This part of the
DOS call handler is responsible for determining all the information for a given disk and
all the information for the files on this particular disk.

The next step performed is that this data is sent to the general disk handler,
which is also the DOS Absolute Disk Write routine (also known as interrupt 26h).
This is called from the DOS kernel.

Interrupt 26h or the DOS Absolute Disk Write routine requires two basic
pieces of information. The first piece of information identifies the drive to which DOS
needs to write the data. The second piece of defines the location of the write relative
to the beginning of the disk(that is the starting sector). The reason for this routine is
that DOS treats all disks alike: all of the sectors of each disk are numbered from 0,
starting. at the beginning of the disk. Thus, the file, and the general disk handler
calculates- the relative position of the record within the disk. What the DOS Absolute
Disk Write routine does is to determine the actual physical address to which the data
should be written, using the relative information calculated by the original int 21h
service Write Sequential. The physical address referred to here is the relative physical
sector on the disk to which data should be written. Finally, this information is passed
to the disk device driver.

In turn, the disk device driver is responsible for converting the physical address
to a track, a sector, and a surface; it also performs the actual write.

A point should be made here about the BIOS routines. The disk device driver
uses the disk BIOS routines to perform the actual reads and writes to the disk. This is
accomplished by executing an interrupt 13h after specifying the appropriate
subfunctions for read or write.

Once the disk device driver has finished the write operation, it will return a
status to the Absolute Disk Write routine, which, through the DOS call handler, will
return the status to the original calling program. Just as the original write request
passed . through the DOS call handler, the Absolute Disk Write routine, the disk device
driver, and the disk BIOS routine, the status "percolates" through the layers back to
the original program.

So the device driver plays 'a vital role in ensuring that your data is written to
the disk. This iltustration of the complicated process of writing a record to the disk

-has involved many steps. You have seen the relative roles of the device driver, DOS,
and the BIOS. the interactions for all device drivers are similar to those in the
example. '

4.10 An Overview of the Device Driver

We will describe in the next section what you will need to know in order to
write code for these sections: "Device Header Required by DOS", " The STRATEGY
Procedure”, * The INTERRUPT Procedure”, " DOS Command Processing”, " Error
Exit", and " Common Exit".

4.10.1. The Device Header

The Device Header is the first piece of data that DOS sees, it defines to DOS
how to deal with the device. Figure 4-12 shows the five basic parts of the Device
Header.

Three of the five basic components of the Device Header deal with address
pointers. The first is a double-word pointer (offset and segment address) to the next
‘device driver in the file. When DOS loads the device driver into memory from a file,
other device drivers can be added to the same file. In fact the PC-DOS standard
device drivers for the console, floppy disk, printer, communications port, and clock are
contained in a single file named IBMBIO.COM. DOS uses the pointer to index past
the current device driver for the next device driver, if there is one. To signal to DOS
that there is not another device driver, place -1 in both words of this first field.

Pointer Next
Device Driver

Device Attributes

Pointer Strategy
Procedure

Pointer Interrupt
Procedure

Device Name

Figure 4-12: The five components of the Device Header,

The second and third pointers of the Device Header are used by DOS to locate
the driver's STRATEGY and INTERRUPT procedures. These fields contain the offset
addresses of these procedures; they are simply the labels that locate the procedures.

4.10.2 The Device Attribute Field

The second field of the Device Header is important for DOS. This field
describes to DOS the type of device your device driver is controlling, and, more

37

importantly, it defines the types of commands that must be implemented in the device
driver. In earlier versions of DOS, this field used bits to define the type of device. In
later versions, some of the bits were used to indicate for what types of commands the
device driver provided processing. Table 4-6 completely describes the Attribute word
of the Device Header[2].

Let's look at the purpose of each bit in detail.

Bit 15 and 14 Bit 15 defines to DOS whether the device driver controls a
block-oriented device (0) or a character-oriented device (1). This bit is crucial because
several of the following bits (13 and 0) have different meanings depending on whether
the device is a block or a character device. Also, the name field of the Device Header
(described later) will have different meanings depending on the type of device.

Bit 14 is used to tell DOS whether the device driver supports the I/O control
commands (IOCTL Input and IOCTL QOutput). Recall that /0 control is used to pass
control information to and from the driver. If this bit is set, you need to implement the
two JOCTL commands.

The Evelving Bit 13 Bit 13 has several meanings, depending on the device
type. If the device is block-oriented, setting this bit will indicate to DOS that the
device 1s a disk that contains a non-IBM-compatible format; feaving this bit off will tell
DOS that the device contains an IBM-compatible format. If the device is character-
oriented and the DOS wversion 3.0 or greater, setting this bit indicates that the device
driver can handle Qutput Till Busy commands.

The issue of whether a disk uses an IBM-compatible format has evolved from a
simple concept to a complex one. Recall that the FAT follows the Boot Record (also
known as the reserved area). On all IBM PC-DOS formatted diskettes, the FAT is
always the second sector of the diskette. This was the initial definition for bit 13 set to
0. This also meant that DOS used the Media Descriptor to identify diskettes. Instead
of using the Media Descriptor byte from the BIOS parameter Block, however, DOS
used the Media Descriptor byte from the first FAT entry. Thus, to identify the type of
diskette in use, DOS would have to read he FAT into memory and pick off the first’
FAT entry. DOS could not do this unless it could presume that the FAT was always
the same place on all diskettes. The inner workings of DOS to accomplish this task are
even more complicated. As we shall show you later, in the section on the GetBPB
command, the contents of the data-transfer area will depend on whether or not bit 13

" 18 set.

To make matters worse, the definition of bit 13 in later versions of DOS has
changed subtly. You may recall that if bit 13 is set to 1, the format of the disk need
not be IBM-compatible. This means that the FAT need not start at the second sector.
What DOS will do at this point is to use the BPB to locate the FAT, the File Directory,
and the user data area. This is the current definition of bit 13 as found in the manuals.
If bit 13 is not set, the device driver uses the Media Descriptor from the FAT to
determine the media type. Ifbit 13 is set, the device driver uses the BPB to determine’
the media type.

To try to make some sense of all this, keep in mind that, as we showed in the
chapter on disk fundamentals, the media descriptor is not a good mechanism to
determine the media type. Disks come in all different sizes and have different physical
characteristics, such as the number of tracks, cylinders, and heads. With different sizes

38

for the FAT, the number of FATs, and File Directory, it is impossible to fit all these
different combinations into a single media descriptor, particularly one that is limited to
eight combinations(F8h to FFh). This is made worse by the fact that disks can have
almost any media descriptor; there is nothing sacred about a given media descriptor
value.

In order to allow for all these possibilities, you can set bit 1 on, allowing DOS
[to use the BPB to determine where things are.

Bits 12 to 0

Bit 12 is undefined and should contain a value of 0.

Bit 11 is used to indicate whether the device driver supports the Davice Open,
the Device Close, and the Removable Media commands. Note that all three commands
are applicable to block-oriented devices, such as disk drives, and only the first two are
applicable to character-oriented devices such as screens.

Bit 10 Through 8 are undefined and should be set to 0.

Bit 7 is used by DOS 5.0 device drivers to allow user programs to quew
whether certain IOCTL functions are available for use.

Bit 6 is used only with device driver written for DOS version 3.2 or greater
and indicates whether the device driver supports the Get Logical Device command
(23) and the Set Logical Device command (24). For DOS versions 3.3 or greater this
bit, il set, indicates that the device driver supports Generic IOCTL commands for both
character and block devices.

Bit 5 is undefined and should be set to 0.

Bit 4 is the Special bit that is set if the device driver supports fast console 1/0O
by implementing interrupt 29h code.

Bit 3 is set if the device driver implements a clock device. If this bit is set,
DOS replaces the standard clock device driver with the current lock device driver.

Bit 2 is set if the device driver is the NUL: device. You cannot replace the
NUL: device driver, so this bit is not available for use. This bit is set for the standard
NUL:device driver and allows DOS to identify when it is being used.

Bit 1 is set if the current device driver is to be the standard output device (also
known as the screen or video output device). Set this bit to indicate that you are
replacing the standard console output device. If this is the case, then bit 0 should also
be set. For DOS version 4.0 or greater, setting this bit means that block device drivers
have the capability of using 32-bit sector addresses, thus supporting disks larger than
32MD.

Bit 0 has several meanings. For character-oriented devices, setting this bit
indicates that the DOS standard console input device is being replaced by the current
device driver. For DOS version 3.2 through 4.01, if the device is a block-oriented
device, setting this bit indicates to DOS that the device driver supports Generic I/0
Control through command 19.

39

Bit Value Description DOS Version

15 0 Device is block-oriented 2+
] Device is character-oriented
14 0 1/0 control is not supported 2+
1 I/O control is supported
13 0 IBM format block device 2+
1 Non-IBM format block device
1 Output Till Busy command 3+
Available for character devices
12 0 Undefined value should be 0)
1 0 Open/Close/Removable Media not supported 3+
I Open/Close/Removable Media supported
10 0 Undefined (value should be 0)
9 0 Undefined (value should be 0)
8 0 Undefined (value should be 0)
7 I 1I0CTL Query ' 5.0
0 1 Get/Set Logical Device(block device) 3.2+
1 Generic OCTL 3.3-50
5 0 Undefined (value should be 0)
4 1 Special bit for fast console I/0 2
3 1 Current clock device 2+
2 | Current NUL device 2+
I I Current standard output device 2+
I 32-bit sector addresses (block device) 4.0-5.0
0 I Current standard input device (character device) 2+
I Supports Generic I/O control (block device) 3.2-4.5x%

Table 4-6: The bit settings of the Attribute word.

Bottom-line Necessary Settings As we mentioned earlier, setting some of
the Attribute bits will trigger the possibility of DOS sending certain types of commands
to the device driver for processing. This is because some of the bits are used not just
for device definition but for command definition. Table 4-7 shows across index of
Attribute bits and commands that the device driver may encounter. Not shown in this
table are the commands that the device driver normally processes that are not triggered
by an Attribute bit being set. '

In summary, the Attribute word is a powerful feature that allows each driver to
identify itself to DOS. You can control the commands that DOS is allowed to send to
the device driver as well as replace the DOS standard devices. Table 4-8 summarizes
the Attribute words for various versions of DOS for the DOS standard devices.

4.10.3 The Device Header Name Field
The Device Name field is 8 bytes in length and has two meanings. For

character-oriented devices, this field contains the actual text name of the device. If
you replace any of the DOS standard devices, you must supply the name of the device

40

you replace: CON: PRN: etc. If you are not replacing a standard device, supply the
name you wish to use to identify the device. Be sure to choose a name that does not
normally interfere with file names that arein use. For example, if you use the name
BASIC for your driver, you can no longer refer to files named BASIC. Indeed, the
name that you supply for a driver's name becomes a reserved name and is no longer
available for use as a file name. The device name must be in upper-case characters. If
the device name is less than 8 bytes in length, you have to fill the rest of the field with
blanks.

Commands Bits Set
Triggered 1514131211 160987 6543 21090

Initialize
Media Check
Get BPB
IOCTL Input R
Input
ND Input
Input Status
Input Flush
Output
Output Verify
‘Qutput Status
Output Flush
IOCTL Output R
Device Open : R
Device Close R
Removable B
Output Til Busy C
Undefined
Undefined
Generic IOCTL R B
. Undefined
P Undefined
Undefined
Get Logical Device ' B
Set Logical Device B
IOCTL Query R

R = Required for both character and block devices
C = Character devices only
B = Block devices only

Table 4-7: Attribute bits setting that trigger device driver commands.

41

Device DOS Vendor Attribute Bits Set and
Name Version Word Description
NUL: All All 8004h 15 character device
2 NUL. device
CON: All Most 8013h 15 character device
4 Fast I/O
1 Standard Qutput
0 Standard Cutput
2.11 Vicior CO013h 15 character device
14 10CTL support
4 Fast 1/0O
1 Standard Output
0 Standard Output
AUX: All Most 8000h 15 character device
2.11 Victor C000h 15 character device
14 IOCTL support
PRN: 2 IBM 8000h 15 character device
LPTx: 211 Others 8000h 15 character device
2.11 Victor COo00h 15 character device
14 TOCTL support
30 IBM B800h 15 character device
11 Open/Close
31 IBM ADOOh 15 character device
13 Output Til Busy
3.2-4.01 IBM A040h 15 character device
13 Output Til Busy
6 Get/Set Logical device
5.0 Most AOCOh 15 character device
13 Output Til Busy
7TOCTL Query
, 6 Generic IOCTL
COMx: All Most 8000h 15 character device
2.11 Victor C000h 14 IOCTL support

Table 4-8: The various Attribute words found in various versions of DOS,

42

1

Device DOS Vendor Attribute Rits Set and
Name Version Word Description
CLOCKS$: All Most 8008h 15 character device
3 Clock device

2.11 Victor C008h 15 character device

14 TOCTL support
3 Clock device

Disk 2 IBM 0000h | - block device

All Victor 6000h | - block device

14 TOCTL support

I3 Non-IBM format

3.0,3.1 IBM . 0800h - block device .
11 Open/Close/Removable

o 32,33 1IBM 0840h - block device
H 11 Open/Close/Removable
6 Get/Set Logical device

* 4.XX Most 0842h - block device
4 11 Open/Close/Removable
6 Get/Set Logical Device
1 32-bit sector addresses

5.0 Most 08C2h - block device

11 Open/Close/Removable
7 10CTL Query
6 Get/Set Logical device
1 32-bit sector addresses

Table 4-8: (continued) The various Attribute words found in various versions of
DOS.

For block-oriented devices, this field does not specify the device name; instead,
the first byte of the field is used to specify the number of devices the device driver
controls. Because block devices are assumed to be disks, the number of disks already
installed by DOS will determine the drive letters with which a particular device driver
will start. If another disk-type device driver follows the current one, the sum of the
disks already instafled by DOS and the current number of units will determine the drive
letter for the following disk device driver.

43

4.10.4 DOS Command Processing

When DOS makes a request of the device driver, a command is sent to the
device driver in the form of a Request Header. DOS expects the device driver to
perform a function based on the command. There are 26 different commands available
to device drivers for processing.

No single device driver will have to process all 26 of these commands. Some
of the commands are not defined and are reserved for use by future versions of DOS;
some commands are only applicable for certain types of devices. The version of DOS
for which you write a device driver will determine the number of commands that are
applicable. Finally, you can simplify choose not to implement some commands.

Table 4-9 shows the list of DOS device driver commands with device-type and
DOS-version applicability.

Command Number | DOS version | Device Type Description

0 2+ Both Initialization

I 2+ Block Media Check

2 2+ Block Get BIOS Parameter Block

3 2+ Both I/O Control Input

4 2+ Both Input (from device)

5 2+ Character Non-Destructive Input
-6 2+ Character Input Status

7 2+ Character Input Flush

8 2+ Both Output(to device)

9 2+ Both Qutput(with verify)

10 2+ Character Qutput Status

11 2+ Character Qutput Flush

12 2+ Both 1/0 Control Output
13 3+ Both Device Open

14 3+ Both Device Close

15 3+ Block Removable Media

16 3+ Character QOutput Till Busy
17-18 3.2+ - Undefined

19 3.2+/3.3+ Block/Both ~ Generic I/O Control
20-22 3.2+ - Undefined :

23 3.2+ Block Get Logical device

24 3.2+ Block Set Logical device

25 5.0 Both _ JOCTL Query

Table 4-9: The DOS device driver commands, the DOS versions and the device
types with which they work.

The number of commands that a device driver needs to process will depend on
four factors: the operations permitted by a device the type of device being controlted,
the Attribute bits set, and the DOS version for which it is inteaded.

44

Drivers for output-only devices, such as printers, need only implement the
Output commands (Output, Output Verify, Output Status, Output Flush, Output Till
Busy). Character-oriented device will have a maximum of 14 applicable commands.
In addition, by not selting certain bits in the Attribute word, we can avoid having to
implement associated commands. For example, if bits 14 (I/0 Control) and 11 (Device
Open/ Device Close/Removable Media) are not set, up to five of the commands peed
not be implemented. Lastly, if we write device drivers for DOS version 2.0, we will be
dealing with only 13 commands.

In the following sections we will describe each of the commands and what they
do. We will use the corresponding Request Header structures as an aid to developing
the required responses for each command,

Command 0-INIT Command

This is the first command issued by a device driver at startup time. DOS issued
this command directly after loading the device driver into memory. This command is
issued once at loading time and never used after that.

The purpose of this command is to allow the device driver to prepare the
device for use by setting up values in various registers, data buffers, pointers, and
counters. Once the device driver has been initialized, DOS assumes that it is ready to
process other commands. '

Table 4-10 shows the structure of the Initialization command,

Offset Contents Length(bytes) Type
00H Length of packet 1 In
02H Command(00H) 1 In
03H Status word 2 Out
ODH Number of units 1 Out
OEH End of available memory* 4 In
0EH End address 4 Out
12H Pointer to command line 4 In
12H Pointer to table of BPB pointers 4 Out
16H Device number™** 1 In
17H Error message flag*** 1 Out

Table 4-10: The Request Header for the Initialization command.
-The steps required to process the Initialization command are listed below:

1. Initialize the device, data buffers, and counters.

2. Set the number of units for block devices.

3. Set the Break address.

4. Set the pointer to the table of BPB addresses for block devices.
5. Set the status word.

It is important to know that only in this command we can use some of the DOS
service routines which are prohibited in other device driver commands. Even this
feature, being allowed in driver initialization, is limited to DOS services 01h through
OCh, 30h, 25h, and 35h. Other services are not permitted, for DOS is still in the

45

process of initializing itself. We can use these services to determine the DOS version
and to display messages on the screen only during initialization. Table 4-11 lists the
allowed DOS services.

Service Description
01h Keyboard Input
02h ‘Display Output
03h Auxiliary Input
04h Auxiliary Output ,
05h Printer Qutput :
06h Direct Console I/0
07h Direct Console Input Without Echo
08h Console Input Without Echo
0%h Print String
0Ah Buffered Keyboard Input
0Bh Check Standard Input Status
0Ch Clear keyboard buffer
25h* Set Interrupt Vector
30h Get DOS Version Number
35h* Get Interrupt Vector

*=DOS 5.0

Table 4-11: The DOS service that device drivers may use when processing the
Initialization command.

Let's look at the structure used to define the dynamic part of the Request Header (refer
to Table 4-10). The byte variable at offset 0Dh, is set by the block device driver, and
indicates the number of units controlled. The device driver must return the number of
units. This number overrides the first byte of the Device Name field of the Device
Header.

The variable at offset OEh contains the break address, which signals the end
location in memory of the device driver. This address tells DOS where the next
available memory location is for loading other device drivers. We can use this feature
to our benefits because, the initialization code is used only once, we can place this
code at the end of our device driver and specify the beginning of this code as the Break
Address. This address is required for all device drivers.

The variables at offset 12h are the addresses (offset and segment, respectively)
of the BPB table that must be returned to DOS by block device drivers that control a
disk. DOS needs to know the types of disks the device driver can handle. We can
satisfy this requirement by building BPB for each type of disk the device driver can
handle. A table is created that contains the addresses of each of these BPBs, and it is
the address of this table that is returned to DOS. With this information, DOS and the
device driver can determine if disks have been removed or changed and where the
information is on each disk.

The address used by the BPB table pointer is also used by DOS to pass to the
device driver a pointer to the command ine in the CONFIG.SYS file. Recall that a
DEVICE= command specifies to DOS that a device driver is to be loaded. We can use
this pointer in both character and block device drivers to access the entire string
beyond the "=" character. Note that we cannot change the command line but we can

46

use this feature to specify run-time parameters that the device can use for special
configuration.

Note that the DEVICE= command string is terminated by an 0Ah when there
are no arguments. When there are arguments, the string is terminated with the
following sequence: 00h, 0Dh, OAh.

The variable at offset 016h contains the next available driver letter. This
variable is available for device drivers running under DOS versions 3.0 and greater.

Block device drivers can use this information to display the drive letters that
are controlled by the device driver. The drive letter is actually a number that
corresponds to the drive letter (0 means A:, 1 means B:, etc...). Finally, the Status
word, at offset 03h must be set before exiting from the device driver.

Command 1- Media Check

The Media Check command is valid only for block devices. This command is
sent by DOS to determmine whether the disk has changed. Among the three types of
disks: floppy disk, hard disk, and RAM disk. Only the floppy disk is capable of being
change. However, DOS plays it safe by always issuing a Media Check command
.before performing any reads or writes to any disk.

Offset Contents Length(bytes) Type
- O0H Length of packet I In
01H Unit number 1 In
02H Command(01H) 1 In
03H Status word 2 Out
0DH Media description | In
- OEH Media status 2 Out
OFH Pointer to volume name* 4 Out

Table 4-12: The Request Header of The Media Check command.
* Only returned when open/close/removable media bit is on and
media status = FFH(-1).

The structure for the Media Check command is shown in Table 4-12. The
sequence of events for determining whether the media has changed is shown below:

I. Retrieve the Media Descriptor byte.

2. Determine whether the disk has changed by checking the amount of time elapsad
since the last access, using hardware detection methods, or comparing disk
information,

. Set Media status.

4. Set the Status word of the Request Header.

o

Hard disk and RAM disk do not change, so we can simply indicaté this.
However, for floppy disks, determining whether the media has changed is a difficult
task. As shown above, three basic methods can be used to determine whether the

media has changed: a check for elapsed time, a check for hardware detected disk
change, and a check of disk information.

The first method involves keeping track of the time of last disk access
compared with the current time. From a practical point of view, changing floppy
drives takes a certain amount of time, at least two seconds. If we calculate that Jess
than two seconds have elapsed since the last access, we c¢an assume that the media has
not changed. If the last access was more than two seconds ago, however, we cannot
be sure whether the disk has changed or not, '

The second method is the best of the three. High-capacity (1.2Mb) diskette
drives send a signal when the drive door is opened, we can detect this and set the
media status accordingly. This signal is often called the changeline signal and is active
if the door has been opened. Unfortunately, this signal is not available from most other
disk drives.

The last method is most complex, requiring the disk device driver to save
information on the disk with each access. The information saved includes the media
descriptor byte, the volume ID, and the BPB. If any of these parameters changes
between the last disk access and the current one, we can assume that the disk has
changed. However, this method is not always reliable. For example, comparing the
media descriptor byte from the Request Header with the media descriptor of the
current disk does not reliably indicates a disk change. If they are different, the disk has
changed. If we changed disks using two similarly formatted diskettes whose media
descriptor bytes would be identical, this method could erroneously assume that the
disk has not changed. This would also be the case if we compared the BPBs or the
volume IDs.

However there s a way around the problem of determining disk changes As
shown in Table 4-13, the media change status allows or three conditions:"media has
changed”, "media has not changed ," and "don't know whether media has changed". 1f
we cannot determine whether the disk has changed, then we set the media status word)
at offset OEh, to 0, which indicates "do not know if the media has changed.”

Value Deseription
-1 Media has changed
0 Don't know if media has changed
+1 , Media has not changed

Table 4-13: The three values for the media change status word.

The media status word should be set to -1{media has changed) for all disk
types on the first Media Check command. This is true for the very first access of RAM
disks and hard disks as well as floppy disks, because DOS does not have accurate.
information on the disk. Subsequent Media Check commands for hard disks and RAM
disk should have the media status word set to I{media has not been changed).

If the disk device driver has set bit 11 (Open/Close/Removable Media) of the
Attribute word in the Device Header, there is an additional programming
consideration. If the disk device driver sets the variable at offset OEh to -1 (media has
changed), then the variable at offset OFh must be set to the offset and segment address

48

of the previous volume ID. This presumes that the device driver has saved the volume
ID of the previous disk. If the device driver has not been programmed to save the
volume ID, these variables should point to a field containing a volume ID of NO
NAME, followed by four spaces and 00h. This is the signal that tells DOS that there
should be no checking of the volume ID.

DOS uses the volume ID information on a disk change if the previous disk
needs to be reinserted. This allows DOS to update the disk that was prematurely
removed.

Lastly, the Status word of the Request Header must be set before exiting the
device driver. If there is an error in reading the disk for media information, the error
bit and error code should be set with the number of the error that was encountered.

- - Command 2 - Get BPB

The Get BIOS Parameter Block (BPB) command is valid for block device
. drivers only. DOS sends this command to the device driver when it needs to know
i more about the current disk. This occurs under two conditions: if the Media Check
command returns a status of -1{media has changed) or if the Media Check command

returns a status of 0 (don't know) and there are no dirty buffers for the disk.

Before any reads or writes to the disk, DOS need to check if the disk has bees
changed or not. Aslong as there is data to be written to the disk, DOS asdumes that
the disk has not been changed, and this buffered data is called dirty bufTers. If there is
no dirty buffers, and the media check returns O {don't know); then DOS assumes that
the disk has been changed. This solves the problem of disk change that was discussed
in the previous section. The reason of this works is simple: If there are any buffers to
be written out, DOS will do so at the earliest possible time. This ensures that disks can
be changed at any time without having to perform an action to write out data. Thus; if
a time period has been exceeded or if the device driver cannot determine a disk change,
DOS assumes that the disk has been changed. This causes DOS to assume that the
disk is new and that new disk information will be recejved.

The GET BPB command accesses the disk and returns to DOS the BPB. This
information allows DOS to locate the File Allocation Table (FAT), the File Directory,
and the user data area for the new disk. The steps needed to process the Get BPB
command are shown below:

1- Determine where the Boot Record is on the new disk.

2- Read the Boot record into memory.

3- Retrieve the BPB from the Boot Record.

4- Return a pointer to the new BPB.

5- If bit 11 of the Attribute word is set, determine where the File Directory begins,
search the File Directory for the volume ID, save the old volume ID, and save the
new volune 1D.

6~ Set the Status word of the Request Header.

The device driver is responsible for reading the BPB from the disk. A pointer
to the new BPB is then returned to DOS through the Request Header variable at offset
012h. The Get BPB structure is shown in Table 4-14.

49

Offset Contents Length(bytes) Type

_O0H Length of packet | In
01H Unit number 1 In
02H Command (02h) 1 In
03H Status word 2 Out
0DH Media description a | in
OEH Pointer to FAT b 4 In
12H Pointer to BPB 4 Qut

Table 4-14: The Request Header for the Get BPB command.

a Tlus value is of little use. The new BPB's media description value supersedes this
one.

b If don-IBM bit is set, this field points to a temporary buffer. If the bit is clear, the
field points to the old disk's FAT - do not modify the old disk's FAT.

The BPB is located in the Boot Record (also known as the reserved area). For
‘floppy disks, this is the first sector of the disk; for hard disks, this is the first sector of
the logical disk drive. = Recall that a hard disk may be partitioned into several logical
drives. It is up to the device driver to determine the start of the logical drive
(partition) relative to the first physical sector of the hard disk. Obviously, many
calculations are necessary to find the bard disk BPB. Table 4-15 describes the BPB.
The buffer address specified by the variable at offset OEh has different
meanings depending on the DOS version and the setting of bit 13 of the Attribute
word of the Device Header. Bit 13 is set to indicate that the disk format is not IBM-
compatible. This specifies to the device driver that the buffer can be used for anything.
Otherwise, the buffer contains the initial FAT sector (with the first entry being the
media descriptor byte)} and must be not alerted for all versions of DOS. For DOS
version 3.2, we can use this buffer even if bit 13 is not set. We need not concern
ourselves with this, for the BPB contains all the information that DOS needs about the
new disk.

Name Starting Location Length Description
SS 0 2 Sector Size in bytes
AU 2 1 Allocation Unit size (sectors per cluster)
RS 3 2 Number of reserved Sectors ‘
NF 5 1 Number of FATSs on this disk
DS 6 2 Directory Size (number of files) _
TS 8 2 Number of Total Sectors
MD 10 1 Media Descriptor
ES 11 2 FAT Sectors (each FAT)
ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads
HS 17 2/4* Number of Hidden Sectors
LS 21 4* Number of Large Sectors

(*=DOS .0+

Table 4-15: The fields that comprise the BPB.

50

Finally, because DOS assumes that there is a new disk, the device driver can
read the new volume ID off the new disk and save the old volume ID. This involves
determining where the File Directory is on the new disk and searching through it for
the volume ID entry. Onoe the volume ID is found and stored in a variable, the other
command processing sections can return the old volume ID in the event of an illegal
disk change. For example, the Media Check command returns this old volume ID if
the disk has changed.

Command 3 - 1/0 Control Input

Command 3, 1/O Control Input, is valid for block and character device drivers
if the I/O Control Support bit (14) of the Attribute word is set. Recall that the
attribute word of the Device Header allows DOS to pass I/O control strings to and
from the device driver. 1/0 control strings are data passed between a program and the
device driver. The data is not intended to be sent to the device; these strings are
merely a means of communicating with the device driver.

We can use I/O control strings in two ways. The DOS service IOCTL Qutput
is used to send control information to the device driver. When control information
from the device driver isrequired, the IOCTL Input DOS service is used. The DOS
044h services call provides I0CTL functions. Table 4-16 shows the IOCTL Input

structure.

Offset Contents Length(bytes) | Type
00H Length of packet ' I In
02H Command (03H) 1 In
03H Status word 2 Out
O0EH Pointer to buffer 4 In
12H | Transfer count (sectors for block, bytes for character) 2 1/0
14H Start sector number (block devices only) 2 1/0

Table 4-16: The Request Header for the IOCTL Input command

The steps required to process the IOCTL Input command are listed below:
I. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Store the I/O control string in the data-transfer area.

4. Return the transfer count.

5. Set the Status word of the Request Header.

The /O control string data that is passed to the device driver in the data
transfer area need not to be moved into a buffer inside the device driver. The device
driver simply use a pointer to access the data.

The format for the /O control string information must be agreed upon between

(1 the program and the device driver. Otherwise, the program sends data that the device
driver does not understand. This data can be binary, ASCII, or a combination of both.
A command code should be set up for each function desired.

51

Then, within the application program using IOCTL functions, we should decide
how to interact with the user to determine which of the command codes to send to the
device driver. Within the device driver, we must add code to recognize these
command codes and process them accordingly.

The transfer-count variable at offset 12h is an important part of the common
/O control string format. This transfer count determines if the data transferred is
correct. Because both sides must agree on the format, the number of bytes (or
sectors) to be transferred can also be confirmed.

Using the variable at offset OEh as a pointer, the device driver can read or write
an I/O control string in the data-transfer area. For the IOCTL Input command, the
device driver is instructed to return I/O control string to DOS. DOS. in turn returns it
to the program requesting I/0 control information.

Once an I/O control string is stored in the data-transfer area, the device driver
sets the variable 012h to indicate the number of bytes in the data transfer area. Next,
the Status word of the Request Header is set to indicate the appropriate status; the
device driver then exits back to DOS.

Command 4 - Input

The Input command is used by all device drivers to send data from the device
back to DOS. The steps for processing this command are shown below:

1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Read the requested amount of information from the device.
4. Return the transfer count.

5. Set Status word of the Request Header.

The Input command reads data from the device into the data-transfer address
specified by the variable at offset OEh. The count is contained in the variable at offset
12h. For character devices the count is the number of bytes to be transferred. For
block devices the count is the number of sectors to be transferred. In addition, the
variable at offset 14h indicates the start sector number for the block device if it is less
than 65,535, For disks larger than 32Mb the sector number may be larger. If so, offset
14h will have OFFFFh and the 32-bit starting sector number will be found in variable at
offset 1Ah.

Once the transfer is complete, the device driver specifies the number of bytes or
sectors transferred in the same variable, at offset 12h. This variable does not have to
be updated if the transfer was successful, this variable must be changed to indicate the
number of bytes or sectors transferred. This tells DOS that the data was only pm tially
transferred.

For block device drivers that implement the Open/Close/Removable Media bit
(I'1) of the Device Header Attribute word, there is an additional programming
consideration. In fact we have seen in the Get BPB command section that disks can
be changed even though DOS still has data for the disk. If the device driver receives
an Input command and determines that the wrong disk in the unit, the device driver
aborts the Input command and return an error to DOS. This type of error is detected
by timing the last disk access or by monitoring a disk-changed signal from the

52

hardware. Ifit is determined that the Input command is for the wrong disk, the device
drivers returns an error (OFh - illegal disk change) and the old volume ID. This allows
DOS to ask the user to reinsert the disk that has the old volume TD. This allows DOS
to ask the user to reinsert the disk that has the old volume ID. Note that this feature is
for DOS versions 3.0 or greater. 7

The Status word in the Request Header is set to indicate DONE and any erross
before the device driver exits back to DOS. This is partially important if we have
encountered an error. Table 4-17 shows the Input command structure.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Command (04h) 1 In
03H Status word 2 Qut
0DH Media description 1 In

" OEH Pointer to buffer 4 In
12H Transfer count 2 1/0
14H Starting sector a 2 In
16H Pointer to volume name b 4 Qut
1AH Long starting sector a 4 In

Table 4-17 : The Request Header for the Input command.

a With DOS 4.0 and above, if the field at offset 14H contains FFFFH, the
starting sector is in the field at offset 16H.

b Returned only when invalid disk change error occurs (DOS 3.0 and above)

Command 5 - Nondestructive Input

The Nondestructive Tnput command is valid for character devices only. The
applications program using the DOS service Get Input Status (0Bh) causes DOS to
send this command to the device driver, asking to ook ahead one character. DOS
assumes that character devices have an input buffer in which characters are stored.
The device driver requests the next character in this buffer. Some devices have the
ability to retrieve a character from the buffer without removing the character. Other
devices require the character to be removed from the buffer. The term nondestructive
means that the character will still be available for the next Input conumand.

Not all devices have a data buffer. For devices that do not, the device driver
must actually do a read of one character. This character is saved for the next Input
command as well as being passed back to DOS to satisfy the Nondestructive Input
command. Device drivers also store characters for keyboard devices. Keyboard input
using the ROM BIOS interrupt 16h returns two bytes. The device driver returns one
byte and saves the other. The Nondestructive Input command would simply retrieve
the stored character. If the device driver did not have a character saved, the device
driver would request the next character.

The steps required to process the Nondestructive Input command are listed
below:

53

1. Retrieve a byte from the device.
2. Set the Status word of the Request Header.

The device driver retrieves a byte from the device and stores it in the variable at
offset ODh. If there is no character in the device buffer, the device driver sets the
BUSY it of the Status word to indicate that the device buffer is empty. The status
word of the Request Header is set before exiting from the device driver. The Scheme
for the Nondestructive Input structure is shown in Table 4-18.

Offset Contents Length(bytes) Type
00H . Length of packet 1 In
03H Command(05I1) 1 In
03H Status word 2 Out
0DH Character returned | Qut

Table 4-18: The request Header for the Noendestructive Input command.

Command 6 - Input Status

The Input Status command is valid for character devices only. This command
returns the status of the character-device input buffer, telling DOS whether there are
any characters in the device buffer ready to be input. Table 4-19 shows the structure
for the Input Status command. The steps involved in processing the Input Status
command are shown below:

I. Retrieve the status from the device.
2. Set the BUSY bit of the Status word:
0 If there are characters in the device buffer or if the device doesn't have a
buffer
1 If there are no characters in the buffer
3. Set Status word of the Request Header,

Offset . Contents Length(bytes) | Type
O0H Length of packet 1 In
01H Unit number 1 In
02H Command (06H) 1 In
03H Status word 2 Out
0SH Reserved 4
09H Reserved 4

Table 4-19: The Request Header for the Inpaut Status command.

The device driver processes this command by retrieving the status from the
device. If the device has characters in the buffer, the BUSY bit is not set. Ifthe
device does not have characters in the buffer, the BUSY bit is set.

For devices that do not have a data buffer, the BUSY bit is not set. This is
contrary to what we might expect based on the preceding descriptions. The logic

54

behind this is that DOS will wait for the device buffer to fill if the BUSY bit is set. On
the other hand, if the BUSY bit is not set, DOS will issue an Input command
immediately. This will result in an actual read. and DOS will not have to wait for
nonexistent buffer to fill.

Command 7- Input Flush

The Input Flush command is valid for character devices only. This command
empties the character device buffer. Table 4-20 shows the scheme for the Input Flush
structure. The steps required to process the Input Flush command are listed below:

1. Flush the character device buffer.
2. Set Status word of the Request Header.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
0IH Unit number 1 In
0ZH Command (07H) i In
03H Status word 2 Qut
05H Reserved 4
09H Reserved 4

Table 4-20: The Request Header for the Input flush command.

To process this command, execute instructions that cause the device buffer to
be empty. Most devices do not accept control information that causes the buffer to
drain. Instead, the device driver simply reads characters from the device until the
device status indicates that there are no more characters in the buffer. The device
driver sets the Status word in the Request Header before exiting,

Command 8 - Qutput

The Output command is used by all device drivers to send data to the device.
Table 4-21 shows the structure to be used to process the Qutput command.

The steps taken to process the Qutput command are listed below:

1. Retrieve the address of the data transfer area.

2. Retrieve the transfer count from the Request Header,

3. Write the requested amount of information in the data transfer area to the
device.

4. Return the transfer count.

5. Set the Status word of the Request Header.

55

old volume ID. When DOS receives the OFh error, DOS will prompt the user with the
old volume 1D, requesting a reinsertion of the old disk.

Command 9- Qutput With Verify

The Output With Verify command is valid for both character and block
devices. This command is used much as the Qutput command except that, we should
build our driver to read back the data after it is written to the device. We should use
this command to ensure that the data has been written to the device correctly. The
structure for the Output With Verify command is shown in Table 4-22.

Offset Contents Length(bytes) Type
00H Length of packet 1 In -
01H Unit number 1 In
02H Cominand (09H) 1 In
03H Status word 2 Qut
O0DH Media description 1 In
OEH Pointer to buffer 4 In
12H Transfer count 2 1/0
14H Starting sector a 2 In

- 16H Pointer to volume name b 4 Qut
1AH Long starting sector _ a 4 In

Table 4-22: The request Header for the QOutput with Verify command.

a With DOS 4.0 and above, if the field at offset 14H contains OFFFFH,
the starting sector is in the field at offset 016H.

b Returned only when invalid disk change error occurs (DOS 3.0 and
above)

The steps required to process this command are shown below:

1. For devices that cannot read data just written, jump to the Output routine.

2. For devices that can read data just written, set a flag to indicate a read.
Next, jump to the Output routine and modify it to read the data back in i
the flag is set.

The VERIFY command is used to set the verify flag within DOS. If this flag is
set, all writes to the device will appear in the device driver as Output With Verify
commands instead of Qutput commands.

For devices that cannot read data just written, this command should: be
processed by including a jump instruction to the Qutput routine. If the device can read
data just written(as disks can), a flag should be set to indicate that we want to validate
the data by reading it back in; then jump to a modified Output routine. The Qutput
routine will write the data to the device and, if the flag is set, will read the data back in.
This method uses both the Output and the Input routines to process the Output With
Verify command. '

57

Command 10 - Qutput Status

The Output Status command is valid for character devices only, Thig
command is used to return the status of the device output to DOS. Devices that are
output one only, such as printers, have buffers that contain characters waiting to be
output. This command is used to Check the status of this buffer. The structure for the
Output Status command is shown in Table 4-23.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Command (0AH) 1 In
03H Status word 2 Qut
0SH Reserved 4
09H Reserved 4

Table 4-23: The Request Header for the Qutput Status command.

The steps required for processing this command are shown below:
1. Retrieve the status from the device.
2. Set the BUSY bit of the status word:
0 If the device is idle or the buffer is not full
1 If the device is busy or the buffer is full
3. Set the Status word of the Request Header.

When DOS needs to write to a device, an Qutput Status command is first
issued to the device driver. This tells DOS whether to send the Output command
immediately or to wait and issue another Output Status command.

To process this command, the BUSY bit of the Request Header Status word is
set. If the device is ready for output, the device driver does not set the BUSY bit. If
the device is not ready, the driver sets the BUSY bit.

Command 11 - Qutput Flush

The Output Flush command is valid for character devices only. This command
is used to empty the output device's buffer. The structure for the Output Flush
command is shown in Table 4-24.

The steps for processing this command are listed below:
1. For devices that have an output buffer, execute instructions to empty the
buffer.
2. Set the Status word of the Request Header.

58

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Command (0BH) 1 In
03H Status word 2 Qutput
05H Reserved 4
09H Reserved 4

Table 4-24: The Request Header or the Output Flush command.

To process the Output Flush command, the device driver executes instructions
that empty the output device's data buffer. If the output device does not have a buffer,
the device driver simply does nothing. Before the device driver exits, the Status word
in the Request Header should be set.

- Command 12 - I/0 Control Output

The 17O Control Output command is valid for character and block devices if
the Device Header Attribute bit 14 is set, indicating that IO Control is supported.
This command is used to send control information from a program directly to the
device driver. Data that is passed to the device driver is not meant for the device but
for controliing the device. The device driver may use this information in any fashion.
The format of the control information must be agreed ‘upon by both the program
issuing IOCTL service calls and the device driver. The structure for the 10CTL
command is shown in Table 4-25.

Offset Contents Length(bytes) | Type
00H Length of packet 1 In
02H Command(0CH) 1 In
03H Status word 2 Out
OEH Pointer to buffer 4 In
12H Transfer count(sectors for block, bytes 2 /0

for character)
14H Start sector number(block devices only) 2 1/0

Table 4-25: The Request Header for the IQCTL Output command.

The steps required to process the IOCTL OQutput command are listed below:
1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Decode the 1/0 control string contained in the data-transfer area.

4. Set the Status word of the Request Header.

The device driver processes this command by retrieving the address of the
data-transfer area in the variable at offset O0Eh. The length of the 1/O control string to
be processed is contained at offset 12h. This count allows the device driver to
determine if the I/O control string has been properly constructed. As we discussed in

59

the IOCTL Input section, the length of the transfer is important in ensuring that the
format if the I/O control string is correct.

The device driver then processes the I/O control string by performing the
functions requested. These functions will vary depending on the type of device being
controlled and the actions desired.

If there are any errors, the device driver sets the Request Header Status word
accordingly.

Command 13 - Device Open

The Device Open command is available to both character and block devices
under DOS version 3.0 or greater if the Device Header Attribute bit
11{Open/Close/Removable Media) is set. This command is sent by DOS each time the
device as been opened. Used in conjunction with the Device Close command, this
command can enable us to determine if devices are being accessed properly. For
example, if we want the device to be accessed only by one user at a time, we can reject
new opens for our device if we have not received a close command for the previous
open. The structure for the Device Open command is shown in Table 4-26.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Command (0DH) I In
03H Status word 2 Out
05SH Reserved 4
09H ‘ Reserved 4

Table 4-26: The Request Header for the Device Open command.

For character devices, the Device Open command is used to initialize the
device. For example, we can initialize printers by sending a'command that sets the. top.
of form or loads a standard font. ,

For block devices, we can use the device open counter in a different manner.
Recall that setting the Attribute bit 11 requires the block device driver to determiné
whether there is an illegal disk change. We can use the device open counter for thig
purpose. Disks can be changed when the device open counter is 0 (which means that
there are no open files for the disk). As long as the counter is not 0, disks cannot be
changed, because there are files opened for the disk.

Command 14 - Device Close

The Device Close command is available to character and block devices running,
under DOS version 3.0 or greater if the Device Header Attribute bit 11
(Open/Close/Removable Media) is set. This command is sent by DOS each time the
device is closed by a program. Use this command to track the number of times a.
device has been opened. Used with the Device Open command just described, this

60

command can enable us to determine if devices are being accessed properly. The
structure for the Device Close command is shown in Table 4-27.

Offset Contents Length(bytes) Type
~ 0oH Length of packet 1 In
01H Unit number I In
02H Command (0EH)] In
03H Status word 2 QOut
05H Reserved 4
09H Reserved 4

Table 4-27: The Request Header for the Device Close command.

The steps required to process this command are listed below:
1. Decrement a (Device Open) counter.
2. Set the Status word of the Request Header.

To process this command, the counter within the device driver that was
incremented by a Device Open command is decremented. When the count is 0, we will
know that there are no outstanding opens for this device: the device is free.

For character devices, the Device Close command is used to send an optional
string to the device. For example, we can send a form feed command to finish a print
job. Note that the CON:, AUX:, and PRN: devices are never closed.

As we have just seen for the Device Open command, we can use this device
open counter differently for block devices. Ifthe device open counter is 0, the disk
may be changed. Therefore, if a GET BPB command is received by the device driver,
the disk change is legal. However, if the device open counter is not 0 and the device
driver receives a GET BPB command, the disk change is in error.

Command 15 - Removable Media

The Removable Media command is valid for block devices running under DOS
version 3.0 ‘or greater that have the Device Header Attribute bit 11
(Open/Close/Removable Media) set. This command is sent by DOS when a program
issues an JOCTL service call (44h) asking whether the media is removable (08h),
“Programs use this command to determine whether the disk is changeable. The
structure for Removable Media command is shown in Table 4-28.

Offset Contents Length(bytes) | Type
00H Length of packet 1 In

~OIH |, Unit number 1 In
02H Command (0FH) 1 In
03H Status word 2 Out
05H Reserved 4

. 09H Reserved 4

Table 4-28: The Request Header for the Removable Media command.

61

The steps required to process this command are shown below:
I. Set the BUSY bit of the Status word:

0 Media is removable

I Media is not removable
2. Set the Status word of the Request Header.

To Process this command, the BUSY bit is returned in the Request Header
‘Status word, indicating the media status. The BUSY bit should be set if the media is
not removable; it should not be set if the media is removable.

Programs that request this information through the TOCTL service call can
decide whether to prompt the user to change disks. For example, the FORMAT
program uses this information to prompt the user for floppy disks but not for hard
disks.

Command 16 - Qutput Till Busy

The Output Till Busy comnand is valid for character devices running under
DOS version 3.0 or greater that have the Device Header Attribute bit 13 set (Output
Till Busy supported). This command is used by print spoolers to output data to a
character device until the device signals busy.

The structure for the Output Till Busy command is shown in Table 4-29. The
steps required to process this command are listed below:

1. Retrieve the address of the data-transfer area.

2. Retrieve the transfer count from the Request Header.

3. Write the requested amount of information in the data-transfer ared to the
device until the device signals busy.

4. Return the transfer count.

5. Set the Status word of the Request Header.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
0IH Unit number 1 In
02H Command (0DH) 1 In
03H Status word 2 - Out
ODH | . Media Description 1 In
O0EH Pointer to Data transfer area 4 In
12H Byte count 2 /O

Table 4-29: The Request Header for the Qutput Till Busy command.

To process this command, the pointer is first retrieved to data-transfer area.
The variable at offset OEh contains the offset and segment address at which the data
resides. The transfer count is then retrieved at offset 12h, which is the number of bytes
to write.

62

The device driver writes characters from the data-transfer area to the device
until all the characters are written or until the device signals busy. If all the characters
were not written, the number actually written is returned at offset 12h. The device
driver sets the Request Header Status word upon exit.

Commands 17 and 18
Commands 17 and 18 are undefined; they are reserved for use by future

versions of DOS. Tor the sake of completeness, the Request Header structures for
both commands are shown in Table 4-30.

Offset Contents Length(bytes) Type

00H Length of packet 1 In
O1H Unit number i In
02H Command (11H or 12H) 1 In
03H Status word 2 Out
05H . Reserved 4

09H . Reserved 4

Table 4-30: The Request iTeader for commands 17 and 18,

Command 19- Generic 1/Q Control

The Generic I/O Contro! command is valid for block devices running under
DOS version 3.2 or greater that have the Device Header Attribute bit O set (Generic
17O Control supported). DOS 3.3 or greater allows Generic I/O Control commands
for character devices. This command is used by programs that issue an IOCTL service
call (44h) specifying Generic 1/0 Control functions (0Dh). The structure for the
Generic 1/0 Control command is shown in Table 4-31.

Offset Contents Length(bytes) | Type
00H Length of packet | In
01H Unit nuber ! In
02H Command (13H) 1 In
03H Status word 2 Out
ODH Major] In
OEH Minor 1 In
OFH SI Register 2 In
11H DI Register 2 In
13H Pointer to IOCTL request 4 Out

Table 4-31: The Request Header for the Generic IOCTL command.

The steps required to process this command are listed below:

]. Retrieve the Major and Minor function codes.
2. Process the Minor function request.

3. Return the transfer count.

4. Set the Status word of the Request Header.

The purpose of this command is to provide a standard I/O control service for
block-oriented devices. Beginning with version 3.2, DOS defines a more standard
approach to controlling block devices. The Minor function codes define operations
that were not truly a part of DOS. For example, formatting a disk was an operation
performed by utility programs. ‘

To process this command, first the Major and Minor function codes that are
contained in the variables at offset ODh and OEh are retrieved. Next, it should be
verified that the Major function code is correct. The Major codes are shown in Table
4-32. The Minor codes and their meanings are shown in Tables 4-33 and 4-34.

Value Description
01H Sertal device
03H Console
05H Parallel printer
08H Disk

Table 4-32: The Major function codes for Generic I/O Control.

Yalue Description

45H Set iteration Count

4AH Select Code page

4CH Start Code -page prepare
4DH End Code-page prepare
65H Get Iteration Count
6AH Query Selected Code Page
6BH Query Code-Page Prepare List

Table 4-33: The Minor function codes for character devices.

Value Description
40H Set Device Parameters
60H Get Device Parameters
41H _ Write logical drive track
6l1H Read logical drive track
42H Format and verify logical track
62H Verify logical drive track
46H ' Set Media ID
66H Get Media Id
68H Sense Media type

Table 4-34: The Minor function codes for the block devices.

64

The Request Header contains additional information that assists the device
driver in processing the Generic I/0 Control command.
Commands 20, 21, and 22

Commands 20, 21, and 22 are undefined; they are reserved for future DOS
versions. The Request Header structure for these commands is shown in Table 4-35 .

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Commard (14H or 15H or 16H) 1 In
03H Status word 2 Out
05H Reserved 4
09H Reserved 4

Table 4-35: The Request Header for the commands 20, 21, 22.

Command 23 - Get Logical Device

The Get Logical Device command is available for block device running under
DOS version 3.2 or greater that have the Device Header Attribute bit 6 set (Get/Set
Logical Device supported). DOS 3.2 or, greater allows the user to specify multiple
drive letters for a device unit.

For Example, the second disk unit, normally accessed as logical drive letter B,
can also be accessed with the logical drive letter E:. Table 4-36 shows the structure
for the Get Logical Device command. The steps required to process this comumand are
listed below:

1. Retrieve the input unit code.
2. Return the last device referenced.
3. Set the Status word of the Request Header.

Offset Contents Length(bytes) Type
O0H Length of packet] In
01H Unit number 1 In
02H Command(17H) 1 In
03H Status word 2 Out
ODH Unit Code 1 In
0DH Last Device 1 Out
O0EH Command Code 1
OFH Status 2
11H Reserved 4

Table 4-36: The Request Header for the Get Logical Device command.

65

This command is processed by retrieving the logical unit specified in the
variable at offset ODh. The device driver will determine if there is another fogical drive
assigned to the same fogical unit. If there is no other logical drive assigned, the device
driver returns a 0 at offset ODh. Otherwise, the device driver returns the logical drive
that was last relerenced. The values contained at offset ODh are 1 for drive A:, 2 for
drive B:, etc. Confusing as this sounds, this command is asking the device driver what
other drive letter was used to access the same physical device unit..

Command 24 - Set Logical Device

The Set Logical Device command is available for block devices running under
DOS version 3.2 or greater that have the Device Header Attribute bit 6 set (Get/Set
Logical Device supported). This command allows DOS 3.2 (or greater) users to
specify multiple drive letters for a logical drive. Table 4-37 shows the structure for the
Set Logical Device command. The steps required to process this command are listed
below:

1. Retrieve the input unit code.
-2. Save the unit code.
3. Set the Status word of the Request Header.

Offset Contents Length(bytes) Type
00H Length of packet | In
O01H Unit number 1 In

. 02H Command(18H) 1 In
03H Status word 2 Out
0DH Unit Code I In
0DH Last Device 1 Out
OEH Command Code |
OFIH Status 2
1H Reserved 4

‘Table 4-37: The Request Header for the Set Logical Device command.

This command is processed by retrieving and saving the logical unit specified in
the variable at offset ODh. If the device driver does not recognize this drive letter as an
alternate drive letter for the units controlled, a 0 is returned at offset 0Dh. The drive
letters are numbered starting with 1, where 1 represents a:, 2 represents B:, etc.

Assigning alternate drive letters is accomplished through the use of the
DRIVER.SYS device driver supplied with DOS versions 3.2 through 5.0. Arguments
on the DEVICE command for this device driver specify additional drive letters for the
unit specified. '

Programs make use of this feature by using the DOS IOCTL service call (44h)
to get and set logical drives.

66

Command 25 - TOCTL Query

The TOCTL Query command is valid for both character and block devices
running under DOS version 5.0 that have the Device Header Attribute bit 7 set
(IOCTL Query supported). This command is used by programs to query device
drivers to determine whether the device driver supports a specific generic IOCTL
function. These are the Minor codes as shown in Table 4-33 for character devices and
Table 4-34 for block devices.

The structure for the IOCTL Query command is shown in Table 4-38. The
steps required to process this command are listed below:

1. Retrieve the Minor function code,

2. Set the DONE bit of the Status word if the Minor function code is supported
by the device driver.

3. Set the Status word of the Request Header.

Offset Contents Length(bytes) Type
00H Length of packet 1 In
01H Unit number 1 In
02H Command (13H) ! In
03H Status word 2 QOut
ODH Major 1 In
0EH Minor 1 In
OFH SI Register 2 In
I11H DI Register 2 In
13H Pointer to IOCTL request 4 Out

Table 4-38: The Request Header for the IOCTL Query command.

Th:s command is processed by retrieving the minor code passed to the device
driver in variables at offsets ODh and OEh. If the device driver supports the Minor
code, then the DONE bit of the Status word is to be set. Otherwise, the ERROR bit of
the Status word is set and the ERROR_CODE field is set to 3 for Unknown command.

Programs can make IOCTL Queries of device drivers through the use of the
DOS Query IOCTL Handle (4410h) or Query IOCTL Device (441 1h) service calls.

4.10.5 Exiting from the Device Driver

| When device drivers exit to DOS, the Status word in the Request Header must
be set. There are four items about which we need to be concerned. The DONE bit is
always set upon exit from the device driver. This indicates to DOS that the command
was properly processed. Next, certain commands (Input Status, Output Status,
Removable Media, and Output Till Busy) will set the BUSY bit. The ERROR bit is
set if the device driver determines that an error has occurred; in addition, the

07

ERROR_CODE field must contain a code indicating the error. Table 4-39 lists the
appropriate error codes for use by the device driver.

Hex Code Description of ERROR. CODE
Write protect violation

Unknown unit

Drive not ready

Unknown command

CRC error

Bad drive request structure Jength
Seek error

Unknown media

Sector not found

Printer out of paper

Write fault

Read fault

General failure

Reserved (DOS 3+)
Reserved (DOS 3+)
Invalid disk change (DOS 3+)

zvilesd lwl il lvvi o0 IV 0 I-0-F NNCY o N S BN RUCR FNCY U VTN

Table 4-39: The standard error codes for DOS device drivers.

The code that executes when exiting from a device driver sets the Request
Header Status word and restores the registers that were saved on entry.

4.10.6 The Status Word for Unimplemented commmands

When we write device drivers for new devices, we may often be puzzled by
what bits in the Request Header Status word to set. We have found that there is no
easy formula, Table 4-40 shows bits that should be set for each command upon exit.

68

Status Word

Command

Initialization DONE

Media Check DONE

Get BPB DONE

IOCTL Input DONE, ERROR, ERROR CODE = 3
Input Non-Destructive DONE

Input DONE, BUSY

Input Status DONE

Input Flush DONE

Output DONE

Output With Verify DONE

Output Status DONE

QOutput Flush DONE

[IOCTL Output DONE, ERROR, ERROR CODE =3
Device Open DONE

Device Close

DONE

Removable Media

DONE, ERROR, ERROR CODE =3

Qutput Till Busy

DONE, ERROR, ERROR_CODE =3

Generic IOCTL

DONE, ERROR, ERROR CODE = 3

Get Logical Device

DONE, ERROR, ERROR CODE =3

Set Logical Device

DONE, ERROR, ERROR_CODE =3

IOCTL Query

DONE, ERROR, ERROR CODE =3

Table 4-40: The Request Header Status word for commands that are not

implemented in device drivers.

After understanding the device driver structure, DOS-device driver protocol,
and device driver interaction .with BIOS an disks, it is time for creating a client that

interacts with the already presented server.

69

Chapter 5

Client/Server Operations

5.1 Development Languages

Selecting the development language is one of the most important tasks for the
developer. You can find a variety of programming languages which varies from the
fow level one, such as Assembly, fo the high level language, such as C. Each of these
languages have its own advantages and drawbacks. So, you need to evaluate each
language before writing the code if it fits your needs, therefore, you must take into
consideration the code length, time, speed, skills, parameters passing, etc. So, as you
see, it is not a matter of taste rather, it is a matter of logic, and design.

There is no existence for the word good or bad for a programming language, rather
there is good or bad selection for the language which will affect our way of
implementation.

Device drivers are not an accounting or stocks programs which can be written
in 4th generation language, rather they are part of the DOS operating system which
needs to be written in a technical language that control every register, stack, segments,
and devices. So, we had to choose between two languages, Assembly or C, and 1
selected C for several reasons, and 1 will show you in the following sections the
advantages and disadvantages of both concerning device drivers development.

5.1.E Advantages of High-Level Languages

In Assembly, you spend half of your time explaining the code, in order not to

forget the exact job being done, and in order to create a simple function that performs
a read or a write, you need to write several lines of code, while you can just do it
simply in C with just one function call.
Also, we must not forgel the time spent to make sure that the registers contain the
correct information. We also, expend a lot of effort reinventing the wheel every time
we need a routine to convert numbers from one base to another, or to add numbers
larger than can be contained in a single register. In addition, we must pay attention to
‘the order of registers pushed in the stack in order to pop them up in the same order.

So, writing device driver in a high language seems very appealing because, it
will free us from the tedium task of managing all small, but critical details, and let us
concentrate more on the algorithms needed for the task at hand. Besides being easier
to write in C, the compactness of the code makes it considerably easier to comprehend
and trace than several pages of assembly language.

However writing a device driver in high level language has also its drawbacks.

70

-3.1.2 Disadvantages of High-Level Languages

In general, all things being equal, assembly language programs tend to be faster
and more controlled, and due to the fact that device driver are very hardware otiented,
they require skills that is not normally associated with writing in C.

Let's take a [ook to the requirements needed for wrltmg device driver in a high
level language. -

Driver Loading and Code Organizing

The foremost requirement of a device driver is that the Device Header must be
at the very beginning of the file and be first loaded into memory. This is unlike the
case with most programs, where the program code is usually found at the beginning of
the executable file. In addition, because device drivers are not normal DOS programs,
they do not need to allocate space for the Program Segment Prefix (PSP) that precedes
the program code. This forces the program code to load at an offset of 100 héx
relative to the start of the executable file.

There are two problems here. First, programs written in a high level language
such as C do not have any control over where the code is loaded. During the linking
phase, the linker decides where and how to load the program code and data as well as
the stack and heap. Therefore, we must find a way to load the Device Header at the
beginning of our device driver file.

The second problem is that most of C compilers by default generate several
segments of program code and data. There will be different segments for code, data,
and stack. We will need to order these into the same single segment. By combining all
seginents into a single segment group, we can minimize the amount of memory used
and eliminate the need to use far references, which are slower in execution,

C Expertise Required

By their very nature, device drivers require more programming expeitise than
other, more "normal” types of programs. Pointers are used to access data that resides
outside the device driver program-typically to pass data back and forth to DOS.
Structures are used to define the Request Headers specific to each device driver
command. As well as, pointers are also used to reference structures and structure
members.

The segmented Intel processor architecture forces the use of memory models in
C compilers for the PC. Both Microsoft and Borland C support six memory models:
tiny (one 64K segment for both code and data), small (one 64K code segment, and
one GAK data segment), compact (one 64K code segment and one or more 64K data
segments), mediim (one 64K data segment and one or more 64K code segments),
farge (one or more 64K segments for either code or data), /ige (same as large but a
data item in the data segment may be as large as a 64K segment). Device drivers are
usually -built as tiny or small model programs. This type of memory segmentation use
near references for both code and data since they reside in the same segment.

However not only there is a need to understand memory models in terms of the
code generated, but we also need to master the techniques used in referring to data

71

objects outside of the immediate memory segment: the far keyword is often required
to complete the memory reference. Thus, each time we read or write data they may
require inspecting the data item to see if it is #ear or for references.

Finally, we need also to mention that writing device drivers in C requires a
good understanding of the requirement of the assembly language for writing device
drivers. Since, in C language we can use the assembly directive to write assembly code
in our C programs. So, we must understand the use of registers to pass data back and
forth between assembly and C, also we need to know how to access C variables using
assembly language.

C programming Barriers

The first barrier for writing device drivers in C is that we must be extremely
careful when using C library calls in our program. Many library calls translate to DOS
calls which, when executed from device driver, would crash DOS because DOS is not
reentrant. One useful trick is to avoid the use of either stdio.h or dos.h header files.

The second barrier that C needs to overcome is the problem of the stack.
There's not a lot of space on the default stack that is active when control is passed to a
device dtiver; there is only enough room for about 20 pushes. This may not be enough
stack space for passing large amounts of data from one routine to another, or when
there is frequent nesting of routine calls. Another use of the already small stack by C
programs is for local variables used by each routine.

There are two solutions for the small DOS stack problem. The first solution is
to live with the existing stack by minimizing the use of the stack. Variables are made
global, which eliminates the need to pass data between routines. This also means that
no local variables are used unless absolutely necessary, However, large numbers of
global variables is generally regarded as poor programming practice.

The second solution , which is more recommended, is to switch to a larger
stack upon entry to the device driver and before calling any C routines. This solution
gives us the ability to control stack usage;, we can declare a large enough stack for the
waorst-case usage of local variables as well as nested routine calls.

Compiler Complications

There are number - of compiler-dependent complications that arise when
developing device drivers in C. First, the compiler should be able to compile the C
device driver using the tiny memory model, which forces the code and data into a
single 64K segment. Most C compilers today provide this capability.

Another complication is that some C compilers add code at the beginning of
each routine that checks for potential stack overflow. This added codeis a callto
routine that calculates whether there is enough space to allocate the routine's local
variables on the stack. Unfortunately, the side effects of all this is that a stack segiment
is also declared. With a stack segment, which is not needed for the C device driver,
EXE2BIN will not convert the EXE file format to a COM file format. There's an
added benefit of removing stack checking: programs are tighter and have faster
running code.

The last complication we may find is that most C programs expect a main
function to which control is passed when the program is executed. The code for using
main may be generated or included directly by the C compiler or indirectly by the use
of certain runtime library functions. This will result in errors during the link phase
because the reference will remain unresolved. Device drivers do not have normal entry
points because access to the device driver is through the Strategy and Interrupt address
definitions of the device header. To solve this problem, we can simply add a definition -
for the unresolved item in assembly file and declare it public.

Linker Madness

The link phase is not without its share of problems. One or more of the
problems that may be encountered are described below.

First, most assemblers generate external references in uppercase. This conflicts
with C's case-sensitive nature when the linker tries to match the uppercase Externs
generated for the assembly file with the lower case C routine names. Both Microsoft's
MASM and Borland's Turbo Assembler provide a switch to keep public and external
symbols case sensitive.

The Linker may be able to produce a COM file directly, thus eliminating the
need to use EXE2BIN utility. This requires specifying the tiny memory model to the
Linker through a switch plus compiling the C modules using the tiny memory model.
In addition, there cannot be a stack segment defined. :

Lastly, several warnings from the Linker could be seen. The first warning will
indicate no stack segment which is not needed for the C device driver. Second, there
could be a warning that indicates that our program has no start address. Again, it is

not needed for device drivers.

5.2 A Closer Look at Tiny Model Program

The best way to understand what a tiny model program means is to ¢reate one,
then inspect the output of the compiler. The following program, first ¢, uses a mimber
of features of the C programming language that we will use later in developing our
DOS device driver. '

/* PROGRAM First ¥
* */
/* REMARKS . First is a program that is designed to be %/
* compiled in TINY model by the TURBO C Version 2.0 */

/* compiler. Once compiled the assembler output is i

/* reviewed to identify the structure and problems that */
/* will be encountered when developing a DOS device */
* driver in this language. */

73

#include <stdio.h>

* Y
/* Global Data Required For This Program */
o */

unsigned int global int;
unsigned char global byte;

. /* Function:. FUNCTION ¥
' A ¥
' ; /* REMARKS: Function is a fiinction responsible for ~ * #/
/¥ accessing the supplied parameters and assigning ~ */
* - this global data variables to the current values of the */
/* parameters, */

Function (int Param_int, char Param_byte)

{
:i global_int = param_int;
global byte =Param_byte;
}
/* REMARKS : main is the main program function that is */
/* responsible for initializing its local data variables */
* and then calling Function with them as parameters. */
/* */
.void main (void)
{ |
int local func int,
char local func byte;
local_func int =0,
local_func _byte =0;
Function (local_func_int, local func byte);
}

The program first . ¢ declares two global variables that are visible to the entire
program. It contains function main and another function Function, which has two
formal parameters.

You will notice that even though first.c is a very small and simple C program,
it performs the following types of operations:

* Global variable access

* Local (stack) variable access

* Parameter passing to a function

* Function parameter access

* Function invocation.

Each of the above operations is critical to the operation of a C program.

Therefore, an understanding of these items is important in the development of DOS
device drivers written in the C programming language. ‘

‘ first . ¢ was compiled with TURBO.C version 2.0. We used the following
command to compile the program:

tce -mt -y -M first.c

This command requests the TURBO C compiler to generate a tiny model

-program (-mt) that includes line number information (-y) and a link/load map (-M).

The following is the link/load map created from this compilation:
Start Stop Length Name Class

00000H 00659H 0065AH TEXT CODE
00660H 007E7H 00188H DATA DATA -
007E8H 007ES8H 00004H EMUSEG DATA
007ECH 007EDH 00002H CRTSEG DATA
007EEH 007EEH 00000H CVTSEG DATA
007EEH 007EEH 00000H SCNSEG DATA
007EEH 00837H 0004AH BSS BSS
00838H 00838H 00000H BSSEND STACK

75

Address

0000:02D6
0000:07CF
0000:07D3
0000:07C8

- 0000:07D1

0000:0785
0000:06F5
0000:07C5
0000:07C1

0000:07D5
0000:07C9
0000:07CD
0000:07D9
0000:02C0
0000:046F
0000:063A
0000;06CF
0000:06D8
0000:0305

0000:02D8
0000:07EE
0000:07EF
0000:02E9
0000:0574
0000:0648

0000:06DD
0000:06C8
0000:06CD
- 0000:07E6
0000:07F2
0000:06ED
0000:06D1
0000:06D3
0000:06D5

0000:0220

 0000:07DC
0000:07DE
0000:Q7E0
0000:06E9
0000:07E2
0000:06F |

0000:0688

0000:068F

0000:06C3

0000:06C7
0000:06D9
0000:06DA

Publics by Name

DGROUP@
emws_adjust
emws BPsafe
emws_control
emws_fixSeg
emws_initial SP
emws_limitSP
emws_nmiVector
emws_saveVector
emws stamp
emws_status
emws_T0S
emws_version
_abort

_atexit

brk
_environ
_ermo

_exit
_Function
_global byte
_global int
_main

_malloe
sbrk

8087

__arge

_argy
atexitcnt

_atexittbl

__brkivl
__envlng
__envseg
__envSize
_exit
__exitbuf
__exitfopen
__exilopen
__heapbase
__heaplen
__heaptop

_ IntOVector
__Int4Vector
__Int5Vector
__Int6Vector
__osmajor
__osminor

0000:06D7
0000:07EE
0000:0283
0000:07EE
0000:033A
0000:0425
0000:06DF
0000:07E4
0000:06D9
0000:05E2
0000:06E5
0000:0836

0000:06E3.

0000:06E7
0000:0832
0000:0495
0000:0834
0000:0606

__psp

_RealCvtVector

__restorezero
__ScanTodVector
___setargv
___setenvp
__StartTime
__stklen
__version

. _brk

~_brklvl

_ first
_heapbase
__heaptop
__last ,
_ Pull free block
__rover

___sbrk

Address Publics by Value

0000:0220 _ exit
0000:0283 _ restorezero
0000:02C0 _abort
0000:02D6 DGRDUOP@
0000:02D8 Function
0000:02E9 main
0000:0305 _exit
0000:033A _ setargv
0000:0425 setenvp
0000:046F _atexit
0000:0495 - pull free block
0000:0574 malloc
0000:05E2 _ brk
0000:0606 sbrk
0000:063A brk
0000:0648 sbrk
0000:0688 IntOVector
0000:068F _ Int4Vector
0000.06C3 Int5Vector
0000:06C7 Int6Vector
0000:06C8 __ arpc
0000:06CD _ argv
0000:06CF _environ
0000:06D1 envl.ng
0000:06D3 envseg
0000:06D5 envSize
0000:06D7 _ psp
0000:06D9 version
0000:06D9 osmajor
0000:06DA _ osminor
0000:06D8 _errno
0000:06DD BO87
0000:06DF __ StartTime

0000:06E3 heapbase
0000:06ES brklvl
0000:06E7 __ heaptop

0000:06E9 heapbase
0000:06ED __ brkivl
0000:06F1 heaptop

- 0000:00F5 emws_limitSP

78

0000:0785 emws_initialSP
0000:07C1 emws_saveVector
0000:07C5 emws_nmiVector
0000:07C9 emws_status

- 0000:07C8 emws_control

0000:07CD emws_TOS
0000:07CF emws_adjust
0000:07D1 emws_fixSeg
0000:07D3 emws BPsafe
0000:07D5 emws_stamp
0000:07D9 emws_version
0000:07DC __ exitbuf
0000:07DE exitfopen
0000:07E0 __ exitopen
0000:07E2 __ heaplen
0000:07E4 _ stklen
000:07E6 atexitent
0000:07EE ~__ ScanTodVecto
0000:07EE _ RealCvtVector
0000:07EE _global byte
0000:07EF _global int
0000:07F2 _ atexittbl
0000:0832 __ last
0000:0834 rover
0000:0836 first

r

79

Line numbers for first.obj(first.c) segment TEXT

41 0000:02D8 44 0000:02D8 45 0000:02E1 46 0000:02E7
59 0000:02E9 64 0000:02F0 65 0000:02F2 67 0000:02F6
68 0000.02FF

Program entry point at 0000:0100
Warning: no stack

You can see from this link/load map that the compiler includes a number
of functions and variables that are not present in the original source code. The majority
of these inclusions come directly from the start-up module that the compiler links to
your C programs.

The linker produces the message Warning : no stack. This is a normal !
message for a tiny model program. '

Now, let's analyze the structure of this simple C program.: The following
lines from the link_load map indicate that the output from the compiler begins with the
code segment, TEXT, which starts at hex location CO00 and continues until liex
location 0659 with a length of hex 065A.

Start Stop Length Name Class

00000H 00659H 0065AH TEXT CODE
00660H 007E7H 00188H DATA DATA
007ESH 007E8H 00004H EMUSEG DATA
007ECH 007EDH 00002H CRTSEG DATA
007EEH 007EEH 00000H CVTSEG DATA
007EEH 007EEH 00000H SCNSEG DATA
007EEH 00837H 0004AH BSS BSS
00838H 00838H 00000H BSSEND STACK

The code segment is followed by the data segment, DATA. DATA contains
the initialized data values for the program. first.c does not contain any initialized
global variables, but you will find that the C start-up module does.

The segment named BSS is the segment containing the uninitialized global
variables. This is where the two global variables from first.c can be found. Following
the _BSS segment, you will find the BSSEND segment, which identifies where the
stack can be placed without declaring a specific STACK segment.

From this brief analysis, you can see that a problem exists in the ordering of
the segments produced by the compiler. Specifically, the data must precede the code in
a DOS device driver.

A structural problem with the output from the compiler indicates the

likelihood of a number of problems with the more detailed aspects of the code and
data generated by the compiler as well. The only way to determine whether this

~statement is true is to have the compiler produce assembler language output, then
. inspect that output for instances that might conflict with the guidelines specified for

DOS device drivers.

first.c must be recompiled with the options iequned to produce assembler
language output. The following command is sufficient to accomplish this task:

tce -mt -y -c -S first.c

This command requests TURBO C to generate a tiny model program
(-mt) that includes line number information (-y), compile it only {-¢), and produce an
assembler [anguage listing (-S). The assembler language listing will be in first.asm.

We edited first.asm to remove various debugging statements produced by the
compiler, and we have reformatted portions of the assembler language program for
readability.

, A group named DGROUP is defined as being the data segment, DATA,
followed by the uninitialized data segment BSS. However, the code segment TEXT
is not contained in this group even though the program can grow only to a maximum
size of ‘one segment (64K). Furthermore, all named variable references are preceded
with the name of the group (DGROUP) to calculate correctly the offset of the variable
within the program. . However, this is not the case when references are made to
locations within the code segment (_ TEXT) as indicated by the cali to _Function. '

Although this might seem like alot of double-talk, it is really important that
you understand some basic concepts concerning just how the compiler is generating
code from your C program. The main reason for doing this exercise is to demonstrate
that the data segment must be relocated to the beginning of the object file, as we will
explain in the next section. Once this has been accomplished, the references to the
code segment will be incorrect because the compiler assumes the code segment will
always begin at location zero. Theref’ore we must take corrective action to resolve this
problem as well.

5.3 Data Segment Preceding Code Segment

if we are conform to the specification of a DOS device driver, we niust change
the order of the segments generated by the compiler. In other words, the data segment
must be relocated to the beginning of the output file, and the code must be moved to
the end of the output file.

The following changes to the assembler output are sufficient to accomplish the
desired results:

" DGROUP group _DATA, BSS, TEXT
assume ds:DGROUP ss:DGROUP,cs: DGROUP

The changes are simple. First, the code segment (TEXT) was included in the data -
group (DGROUP). Second, the assembler is instructed that the code segment register
(CS) is assumed to be relative to the data group (DGROUP).

You can make these changes with your favorite editor. However, this type of
operation is prone to errors. That's why we developed a utility called arrange, which
performs these maodifications.

arrange also modifies the code references to include that the DGROUP prefix
rather than maintaining the compiler's assumption that the code segment always begins
at location zero.

5.4 C Stack and Data

The stack a C program uses during execution is established by the start-up
module that is linked with the program's object module. Because the DOS device
driver is not linked with the C start-up module, some provision must be made to
support 'a stack during program execution. One of the best ways to address this
problem is to view it as Interrupt Service Routine (ISR) that must save all registers on
entry and establish its own operating environment every time it is executed, and this
routine is calied DOS_Setup(). :

We will establish a stack for program execution each time the DOS device
driver is executed. The stack size will be determined by the setup code contained
within the DOS device driver. Typically, a DOS device driver attempts to minimize
the usage of resident memory. Therefore the amount of stack space allocated from
within a DOS device driver varies from a few hundred bytes as much as one kilobyte.

The stack size can be thought of as a very limited resource. It would be nice to
understand just what type of operations require space on this stack. In C any time we
make a function call, we use a stack space to record the return address and the
parameters being passed to the function. The stack is also used when a function
declares any local variables. These variables are allocated on the stack unless we use
the static keyword to promote thein to a global allocation level. Remember, if you run

- out of stack space within a DOS device driver anything can happen!

5.5 The C Run-Time Libraries

DOS device drivers are not allowed to use DOS functions or services. The
reason for this is that when a DOS device driver is executing, an application has
already request a specific DOS function or service to be performed. DOS is
attempting to accomplish the specified DOS operation by invoking the appropriate
DOS device driver. If that device driver were to request a DOS function or service to
be performed, then DOS would have to be reentrant, which is not. Therefore, DOS
device drivers are not allowed to use any DOS functions or services.

The problem encountered in DOS device drivers written in C that use the
supplied - C: run-time routines is that those routines might attempt to issue a DOS
request. As mentioned above, this is not allowed because DOS is not a reentrant
operating system. Therefore the use of C run-time routines must be limited to those
functions that do not require DOS intervention. Here is a short list of some of these
routines:

* String functions (strepy, ...)

¥ Memory movement (memmove, ...)

* Direct console /0 (cprintf, cput, ...}

As a general rule, the list of C run time routines that can be used safely is
provided with the documentation for the C compiler. This list will change from
compiler to compiler[2]. ' S

82

5.6 DOS Device Driver Header

A DOS device driver is a memory-image file, . COM, that contains all the logic

required to realize the device attachment or implementation. Although the device
driver file is a standard type of file, it does have one main difference. Typically, .COM
files are required to start at hexadecimal location 100. This requirement allows DOS
to create a 256-byte Program Segment Prefix (PSP) in memory prior to Joading the
.COM file itself. If the .COM file were to start at location zero, then when DOS
loaded the file it would write over the PSP and the program would not be able to
operate. '
DOS device drivers do not start at location 0x100. Instead, DOS device drivers start
at location zero. Because DOS device drivers represents an extension to the DOS
kernel they statt at location zero. Therefore DOS has allocated memory and specific
internal data structures to manage the location and operation of each device driver in
the system. Furthermore, once DOS device drivers are being loaded into memory,
their memory addresses do not change. However, .COM files are constantly beinhg
loaded into memory, executed, and then removed from memory.

All DOS device drivers must have a DOS device driver header located at
location zero. The DOS device header is analogous to the PSP for .COM files. DOS
uses the device driver header to link all device drivers into a singly-linked list of device
drivers. Therefore, if we were to find the head of the list of DOS device drivers we
shouid be able to see all of the devices in our system.

The DOS device driver header has a specific format. The following C structure
describes the format.

struct DDH_ struct

{
~struct DDH_struct far *next_ DDH;
unsigned int ddh_attribute;
unsigned int ddh_strategy;
unsigned int ddh_interrupt;
unsigned char ddh_name[8];
Y

As you can see, the DOS device driver header contains five fields, which were
explained in details in chapter 4.

Getting a pointer to the first device in the linked list is shown in the following
code:

struct DOS_struct far *dos .ptr;
-~ _AX = 0x5200;

- geninterrupt (0x21);
dos_ptr = MK_FP (_ES, BX):;

83

DOS _struct has the following format:
struct DOS_struct
{
- unsigned char reserved [34],
struct DDH_struct far *ddh_ptr;

X

The DOS_stiuct defined in the above structure contains a far pointer to the
‘beginning of the list of device driver headers, ddh ptr. Therefore, it easy to obtain a
pointer t6 the DOS_struct from DOS, then traverse the linked list and visit each device
driver header. This is done by loading 0X0052 in AX, and performing interrupt 21h.
DOS returns the address of the first device driver in the linked list in ES, and BX
respectively. The macro MK_FP takes the contents of these registers and builds a far
pointer that is usable by C programs.

5.7 DOS Device Driver Requests

In the latest version of DOS, the interface between DOS and the device driver
supports twenty six commands. Each of these DOS device driver requests or
commands has a specific request format associated with it. However, a portion of the
DOS device driver request is common to all twenty six. This common portion is
referied to as the DOS device driver request header. The following C structure
describes the contents of the common portion of the DOS device request header.

struct REQ _struct

{
unsigned char length;
unsigned char unit;
unsigned char command;
unsigned int status;
unsigned char reserved[8];
}

The length is always 13 (3 bytes unsigned char, 2 bytes unsigned int, 8 bytes unsigned
char). The second field in REQ struct is used for accessing specific units of a block
device driver. The third field is the command number shown above. The fourth field
indicates the result of the request DOS command. The high-order bit of the status
word indicates whether an error occurred. If an error occurred, then the low order
byte of the status word contains one of the following error codes.

Whenever there is a return from the device driver command after a DOS call,
the status word in the request header is set (for more information on the return code
see chapter 4).

84

5.8 DOS Device Driver Components

5.8.1 The Required Utilities

a The tools that is needed to write, compile, and link a device driver is shown in

| Table 5-1.
Tool Description

Editor A word processor or text editor program which allows entering
source code into a file and save it. Tt is also used to modify the text
file. '

Assembler A utility used to convert the source assembly language program into
relocatable object modules.

Compiler A utility used to convert source code programs into relocatable
object modules »

Linker A linker is a utility which combines one or more relocatable object
modules into an executable file.

EXE2BIN A utility program that converts normal executable files into mermory
image files. Memory image files are known as COM files and are
required for device drivers. , ‘

Arrange A utility program found on the supplied media, used to arrange the
code and the data segments of the .asm files,

Table 5-1: The required tools for writing a DOS device driver.,

5.8.2 Segment Headers

DOS device drivers require that the data segment be at location zero in the file,
and if it is not at this Jocation we used to move it around. For completeness a header
file is included, drvr hdr.asm the file rearrange the segments in the link file, and this
file contains assembler language pseudo-operations and no assembler language
instructions. Also, it groups all the segments in one group.

5.8.3 Definitions

The file drvr_dd.h contains the C structure and definitions that describe the
entire DOS device driver environment.

struct DEVICE_HEADER _struct

{
. struct DEVICE_HEADER_struct far *next_hdr;

1 unsigned int attribute; M*device driver attribute */
unsigned int dev_strat; /¥pointer to strategy code */
unsigned int dev_int; /*pointer to interrupt routine */
unsigned char name_unit[8] /*Name/Unit field - ¥

} .

85

it contains also the REQ struct which represents the DOS device driver
command interface to pass commands around in a device driver. Each command has a
unique structure in the variable portion of the DOS request structure

struct REQ_struct
{ .
unsigned char length;
unsigned char unit ;
unsigned char command;
unsigned char status;
unsighed char reserved{8];

union

{ .
struct INIT_struct ' init _req;
struct MEDIA _CHECK struct media_check_req;
struct BUILD BPB_struct build_bpb_req;
struct I O struct i o req; :
struct INPUT _NO WAIT struct input_no_wait_req;
struct IOCTL_struct ioctl_req;
struct I, D MAP_struct } d map req;

jreq_type;

|

Also,. it includes the file mydef.h which contains definitions for TCP/IP
functions value.

5.8.4 Global Data

One of the most important aspects of a DOS device driver is the DOS device
driver header. This header must be at location zero in the .sys file and it must be
initialized for the device driver to operate correctly. The file drvr_da.c allocates and
injtializes the device driver header, it contains also all globally allocated data. Note,
that the template based DOS device driver is initialized as a block device driver.

5.8.5 C Environment

The most critical portion of code is found in divr_ev.c file, this file contains

the routires that is called directly by DOS whenever a DOS request must be processed
by a device driver.
The code in the drvr_ev.c file is critical because it receives the DOS requests and
transforms the current DOS environment, typically assembly languages into a usable C
environment, DOS_Setup() accomplishes this task. The Strategy and Interrupt
functions call DOS_Setup() as soon as they receive a DOS request. DOS_Setup()
then saves the current operating environment and creates a new C environment,
complete with its own local stack. DOS_Setap() function is the reason why the tiny
model is used. DOS_Setup() will not work properly if another compiler model is
used. '

86

5.8.6 Commands

The drvr_dr.c file contains all the functions for the DOS device driver
commands. Al functions have the same input parameter: a far pointer to the DOS
request structure. Each function in the file performs the specified operations, then sets
the appropriate return code in the status word of the DOS request structure, the
Init_cmd() function corresponds to the DOS INIT request command which, checks
only the number of local drives, and does not any communication procedure because it
is executed when DOS is loading config sys drivers, that is, before TCP/IP batch file is
being executed by autoexec.bat. It also points to the end of the device driver code, so
that DOS can load another driver starting from this location. The media_check ()
which corresponds to the MEDIA CHECK command, the Build_ BPB() which
corresponds to BUILD BPB command, etc. But, with these functions we can use the
TCP communication functions to send and receive data from the server. All DOS
device driver commands are implemented as functions into the file drvr_dr.c.

N.B. All DOS device drivers must respond to the DOS INIT commands to be
functional.

3.8.7 Ending Marker

When DOS issues the INIT request the device driver must respond with its
ending address. The code segment follows the data segment because they are
rearranged by the arrange utility. Therefore, the ending address of the device driver is
located somewhere within the code segment. drvr_en.c contains C function named

‘End_code(). This file is linked last and truly becomes the end of the code segment.

It is nothing more than a place holder that Init. cmd() uses to determine the end of
the template-based DOS device driver, and the function code is described below:

unsignéd char end_data;
void End_code(void)

{
}

5.8.8 Template Overview

Table 5-2 shows the main components of the client device driver.

File Description |
drvr_hdr.asm Header file in the device driver that
rearranges the segments in the link file.
drvr_da.c next_hdr
attribute

dev_strat(Strategy function offset)
dev_int(Interrupt function-offset)
name_unit

remaining drvr -da.c data

drvr_ev.c drvr_ev.c data
dos_Setup function
Strategy function
Interrupt function

drvr drc functions to support DOS requests
drvr_en¢ function to mark end of device driver
code

Table 5-2: Device driver components.

5.9 Creating and Loading the Device Driver

The Make Utility
the make utility uses a makefile, and the makefile contains a list of commands
and dependencies to build an executable program. The makefile is named drvr.mak.
Usually, a directory is being created and all files that are used by the makefile
are copied into it. The make command syntax is:

make -f drvr.mak

More information about the makefile can be found in different books. The output of
the drvr.mak is a .sys file, which is the extension of the device driver.

The Arrange Utility

The arrange utility expects three arguments:
¢ the file name that contains the substitute commands
e the input file
e the output file

Below, is an example of the arrange utility which is used in drvr.mak:

arrange drvr.arr drvr_da.asm m2.asm

88

to arrange the segments in drvr_da.asm. The file drvr.arr contains the data to be
modified in the input file drvr da.asm. m2.asm contains the final output modified file.

Loading the Device Driver

The DOS_DRVR.SYS is like any other DOS device driver. To install a device
- driver you must have an entry defined in the config.sys file in your system.
The command that is of interest for the device driver in the config sys file is the
-DEVICE= command; this command informs DOS at initialization time to load and
initialize this new device driver. The following entry is added into config.sys using any
'DOS editor:

DEVICE = DOS DRVR.SYS /E
the /E means to start mapping drive from E and above. This option is in order not to
get confused on the clients side which drives are the server's drives but, in this case
there will be a lost drives, for example, drive D: if there is only one hard disk on the
client machine, :

5.10 Putting Client/Server into Work

The program that should be run on a client in order to open a communication
line with the server is login.exe. The source code is found in h_login.c. The job of this
program is first, to check the DOS version if itis greater or equal to 3.1, Then it
checks if the DOS drvr.sys is loaded in config.sys, otherwise, it gives an errof
message. The second part is to check if TCP/IP is loaded and determines the
TCPIP_INT for the TCP TSR. A point to mention here, that ssocket () and sconnect
() were used first in h_login.c to open communication with the server, then set the fd
in the device driver data by getting a pointer to the header of the device driver, and add
to it the:exact value of bytes to reach the variable fd in the data segment. But, later on
this code was implemented in drvr_en.c where it is executed by the first command
issued by DOS other than INIT command, then a flag is set in order not to execute it
again.

Now, the question is how to map every cormmand issued by DOS to the server
device driver? The answer to this question is explained in
Table 5-3 which represents exactly how DOS gets the answer from the server driver
through the client driver.

&9

Client Server

DOS | | BIOS i
| A DOS command request | A
\L 'I I\/ |I
| DOS drvrsys | [iBMBIO.COM |
PoA A
[P
v | |V
Media _check() | <e--—mommmmmmmm e > Media_check()
Build_BPB() Lo e o> Build BPB()
| Dev Close() > | Dev Close()]

Table 5-3: Commands exchange between client and server device drivers.

After running the login program successfully, the server drives can be accessed
if a communication link is established with the server. Once, it is done, every
command issued by DOS to DOS_drvr.sys will go first, into Strategy() routine than
through the Interrupt () routine which call DOS_Setup() (function explained before)

‘which in its turn depending on the number of command issued by DOS, call the
~ equivalent routine

(Media_check(), Build_BPB(), etc.). Each of these routines or commands maps to
the same command on the server. So, all the data given by DOS through the request
header is sent to one of the client commands procedure, which sends it to the same

command procedure on the server, and on its turn inquires information from the server

device driver IBMBIO.COM, and returns it back to the client command procedure
which returns it to DOS. :
It seems a bit confusing, isn't it? and you are wondering how the server is
implemented and how it works? After the server initializes itself it listens for
incoming connection from the clients. Once a connection is established with a client,
the server reads the incoming data coming on the form of packet, that contains the
command code to be executed on the server, the data length, and finally the data. The
server directs this packet to the correct command procedure which retrieves this data,
and issues a-call to the device driver through the call_dd() routine. Then it gets the
answer back from the device driver, and returns it to the client and loop back again.

5.11 Layers Global View

If we take a look at the client, and server architecture we found that they aré
made of different layers. Each layer adds some modifications to the packet received
from the upper layer, and sends it to the lower layer until it reaches the physical layer
which, and sent across the line to the server. The server receives the packet through
the physical layer and starts taking out the data specific for each layer and sends the

90

packet to the upper layer. Table 5-4 shows the different layers used by the client and
the server.

Application | - Int21h Physical Media(disk)
DOS Service Manager BIOS
DOS DRVR.SYS IBMBIOQ.COM
Communication Stub SERVER EXE
Communication Stub .
TCP | UDp TCP | uDP
P , 1P
Physical layer B Physical layer -

Table 5-4: Client and server different layers.

what happens when a command is issued by DOS, till this later received the answer is
explained below:

1- User type any DOS command at the DOS prompt, or use int 21h to access the
server's drives.

2- DOS dissects this command into several requests, and calls the device driver
DOS_DRVR.SYS for each of these requests.

3- DOS_DRVR.SYS gets each request from DOS, and transforms it to the
appropriate DOS command function, which passes it to the communication stub.

4- The communication stub adds some data to the received packet, and makes the
necessary modifications before calling the TCP APIs.

5- TCP APIs adds the necessary header to the packet, and passes it to IP.

6- The IP on its turn adds some data to the packet, such as destination, and takes care
of the routing, and pass it to the physical layer to be sent across the network line.

7- The server receives this packet through the physical layer which passes it to the IP
layer, which checks it and takes out the necessary data and gives it to the upper
layer.

8- The TCP layer does what ever is required with the packet such as error checking,
synchronizing, etc. and passes it to the communication stub.

9- The Communication stub reads the necessary data, and puts it in a form
understandable by the device driver.

10- The server.exe program calls the device driver after setting the BX register, and

ES segment to contain the ordered data.
11- The IBMBIG.COM calls the BIOS to perform the real work which contacts the
physical media.

After the 1BMBIO.COM gets the required information, it passes it all the way
down through the layers, and send it back to the client who extracts the necessary data
from the packet and passes it from layer to layer until it returns to DOS.

All this work can be described as if the DOS issues command on a client that is
really executed on the server, and the answer is returned back to the client '

91

Chapter g

Conclusion

The DOS client/server, DOS-client protocol, and client-server protocol were
analyzed. Different server hard disks, multiple clients connections and applicability
regarding network topologies were considered.

The client program was tested carefully regarding DOS commands handling, packet
transferring, and errors detection. On the other hand, the server program was playing
the role of DOS in issuing commands to the device driver and receiving answers.
TCP/IP have provided a logical link between clients and server. In addition, TCP/IP
proved to be reliable in controfling multiple clients connections, packets generation,
and errors detection.

Furthermore, different applications and designs can be applied to the presented model
such as new security establishment, client-client communication, files sharing, hard
disks and external devices accessing, and printing queues generation .., and much more
applications that are classified under the client-server model.

Finally, the presented client-server model acts as a guideline for students whé wants to
work on client/server and develop different applications for this model. It is a <;[mp!e
model that is easy to understand and modify to satisfy different needs.

92

Appendix A

Disk/Diskette Internals

In order to learn how to write a disk device driver, you should review the topic of
disk internals. DOS supports a variety of disks , with storage capacities ranging from a
hundred thousand bytes to hundred of megabytes . In this chapter, we will describe how
DOS manages different types of disk storage.

Starting with basic definitions, we will show how data is written to a disk (disk here
~ “means both hard [fixed] disk aund floppies), how DOS organizes the data on the disks,
and how DOS determines the disk type. We will distinguish between floppy and hard
disk drives and look at some of the special features of hard disk drives. Lastly, we will
describe the internal jnformation that is contained on each disk drive and how disk device

drivers interact with DOS to access disks.

The Physical Side of Disks

Disks are storage devices that are based on a rdtating disk with magnetically
alterable surfaces. The surfaces store digital information. Read/Write heads are built into
the disk drive to retrieve and store data to the disk drive. Disk drives are also known as
random access devices, because you can independently position the read / write head to
" any spot on the disk.

Disk drives come in two different forms. Floppy disks are those types of disks that

- can be removed from the drive unit. Hard disk drives are fixed and cannot be removed.

Disk Types

Floppy disks are built using flexible materials and are usually made in three sizés:
3 1/2 inches, 5 1/4 inches, and 8 inches in diameter. Information is both recorded on both

surfaces; most floppy disks use both surfaces.

A-1

Hatd disks are built with one or more platters mounted on a spindle driven by a
small motor. Each of the platters is magnetically coated on both sides for storing
information . A read / write head is assigned to each surface of a platter. These disk
heads are mounted on arms that move together and are controlled by another motor.
Connected to every disk drive through a cable is a disk controller; a PC add-on
circujt board that provides electrical signals to control the disk and read/write head, The
disk - controller board is inserted in a slot on the PC’s motherboard, which connects it (o
the main bus and allows the board to receive instructions from the CPU. The controllet is
responsible for transferring data to and from the PC and for positioning the read/write

head to a desired position on the disk.

Organizing Data on Disk Drives

In this section, we will examine organizing data on disks, storage capacities,

sector sizing and numbering , and formatting.
Tracks on a Disk

Each surface of a disk is divided into tracks on which information is recorded.
The read/write head assigned to a disk surface is positioned to one of these {racks before
a read or write is performed.

" Most 5 1/4 - inch floppy disks have either 40 or 80 tracks. There's also another
standard format based on 3 [/2 -inch disks. Disks that contain 40 tracks are commonly
called double density disks. Historically, the original disks for the PC could record at half
this density and were called single density disks. With improving technology, the density
has increased to 80 tracks; such disks are known as high density disks.

Because the surfaces are rigid and easier to control to tighter tolerance, hard disks
can have many times the number of tracks on a floppy disk. A 10-MB fixed disk for the
IBM PC typically has 305 tracks. When there are two or more platters in a disk drive (ihe
spinning surface is called a platter), the term cylinder issued to refer to all tracks that are
identically numbered.

Tracks are numbered from 0 to the highest track number for the disk. Each

recording sutface of the disk is also numbered in this manner.

Raw Storage Calculations

Often you need to calculate just how much capacity there in on a disk. Several
specifications can be used to determine the amount of storage. First, you will need the
amount of data that can be recorded in one track, which is usually specified in bytes per
track. Next, you will need the number of tracks, which is determined by the track density
(usually specified as tracks per inch, or tpi) multiplied by the circumference of the
recording surface that contains tracks. Finally, you will need the number of recording
surfaces. This is usuvally [for asingle- sided disk and two for a double-sided one. For
hard disks, this number is usually twice the number of pIzltlel's.' _

The total amount of “raw” storage on a disk is calculated with the following

formula:
Total storage = storage / track * tracks / surface * surfaces

Not all of this storage area is available for your use, because the overhead needed
to manage the data stored on the disk is not taken into consideration in this calculation.
Overhead is a lerm used to describe the additional information recorded onto the
individual tracks that is required for the disk controller to find each track.

Disk tracks are further subdivided into sectors for ease of management; we will
describe why this is done shortly. Table A-1 summarizes the various lypes of disks and

the amount of data that can be stored.

Size 312 31/2 5 1/4 5144 51/4 51/4
Type floppy {loppy floppy floppy floppy hard
Density Type o o double double quad o
Density 135 35 48 48 96 720
(Tracks/Inch) '

Tracks/Surface 80 80 40 40 80 305
Surfaces 2 2 I 2 2 4
Byles/track 5,120 10,240 5,120 5,120 5.120 10,416

Total Storage Size 800K 1.6Mb 200K 400K 800K [ZMb

Table A-1: The amount of raw storage available for dilferent types of disks.

A-3

Organizing Data into Sectors

Sectors are subdivisions of a circular track; they form the basic unit of storage for
disk drives. Using sectors allows you to use a common method for storing data for disk
drives of varying sizes.

Whenever a disk is called upon to pass data back to the CPU, the read/write head
of the disk is first positioned to a particular track. Then, as the track rotates under the
head, the disk controller will scan the sectors that pass by, searching for the desired
sector. Once the desired sector is found, the disk controller reads the contents of the
sector and returns the data.

The number of sectors in a track sometimes varies. This number depends on the
amount of data that can be stored on a track. Version 1.0 of PC-DOS supported only
floppy disks, and these were formatted for 8 sectors per track. PC-DOS version 3.0
allows 8,9, and 15 sectors per track for floppy disks. Some machines , such as the Victor
9000, have formats that put more sectors per outer track than per inner tracks. This is

- because the larger outer tracks can contain more data than the smaller inner tracks.

For hard disks, the standard number of sectors per track is 17. However, as you
will see in the section on the BIOS Parameter Block, DOS can handle just about any
number of sectors per track.

Sector Numbering and Sizing

In general, for both PC-DOS, the physical-sector numbering slarts at 1. Therefore,
for a disk with 9 sectors per track, the sectors are numbered from | through 9; for a hard

disk with 17 sectors per track, the sectors are numbered from | to 17,

Caution: Physical sectors are numbered starting af 1. This scheme is used when the
disk BIOS routines are used to format, read, or write sectors. DOS uses a different
scheme that numbers sectors beginning with 0. You will see this later, in the section
on the BIOS Parameter Block.

As you saw above, the amount of data stored in each sector depends on the
amount of storage per track and the number of sectors per track (assuming a fixed
density for all the tracks). Because the amount of storage per track is fixed, the sector
size can be varied by varying the number of sectors per track, Usvally, the sector size is
fixed at so many bytes per sector, and the number of sectors per track is calculated by
dividing the amount of storage per track by the desired sector size (plus some overhead).
When a track is divided into sectors, some storage is lost in defining management and
tocation overhead for each of the sectors. Defining sectors on a track is performed by the
formatting process. The formatting information, or overficad, reduces the amount of
storage available for your use,

The DOS Standard lor Sector Sizing

The DOS standard sector size is 512 bytes; however, DOS disk support allows
sector sizes of 128, 256, 512, and 1,024 bytes per sector. Sector sizes other than 512
bytes are rare. Because many parts of DOS have been written to assumne a sector size of
5172 bytes, other sector sizes may not be used under all conditions without modifying
DOS. Table A-2 shows the number of sectors for the typical disk types that are supported
by DOS. ‘

Formatting Disks

A special program is used to create tracks and sectors within tacks on a disk. This
program is known as FORMAT. COM, and it performs a number of additional tasks. The
first task is to create a number of sectors on a track. This is repeated for all the tracks of a
disk. The second task is to test each sector to ensure that data can be written to and read
from the sector. The FORMAT. COM program will create a table for DOS that identifies
which sectors are good or bad, so that bad sectors can be ignored. You will see more of
this later in the section on File Allocation Tables.

Size 3172 3172 51/4 514 51/4 51/4
Type floppy floppy floppy floppy floppy hard
Density Type e --- double double quad e
Raw Storage 800K [.6Mb 200K 400K 800K
Bytes/Sector 512 512 512 512 512 512
Sectors/Track 9 9 9 9 8 17
Tracks/Surlace 20 - 80 40 40 80 320
Surlaces 2 2 i 2 2 6
Total Sectors 1,440 2,880 360 720 1,440 83,640
Formatted Storage 720K 144 Mb 1BOK 360K 720K 40,84
Mb

Table A-2 : Some of the disk formats supported by DOS.

When the data is organized by sectors, the overhead of identi fying each sector
results in a small loss of total storage. Typically, this is about 10 percent.

Technical Details of DOS Disk Support

In this section, we will discuss how DOS accesses the various parts of a disk, the
File Allocation Tables and File Directory, and the parametlers in the Boot Record that
describe the disk to DOS. '

Disks Supperted by DOS

The earliest versions of DOS (1.0) supported only single-sided disks. The next
version (1.1) supported double-sided floppy disks. Hard-disk support began with MS-
DOS version 1.25 and PC-DOS version 2.00. Prior to these versions, hard-disk support

was largely a matter of the disk manufacturer providing custom software routines to
access the hard disk. Today, hard disks of all sizes may be added to IBM and TBM-
compatible PCs without requiring special software. The use of drivers facilitates the task
of adding support for alarge number of disks. Table A-3 summarizes the types of digks
supported by PC-DOS for the IBM PC, ‘
Special mention should be made of disk types supported by other vendors for non- IBM
PCs. MS-DOS can be tailored to just about any machine that uses an 8086/8088
microprocessor, so the number of disk types for non-IBM compatible

DOS Single Double Hard Hard

Version Side Side 1.2Mb Disk Disk
51/4 S1/4 31/2 Floppy 10 Mb Size

1.0 X

1.] X X

2.0 X X X

2.1 X X X

3.0 X X X X FOMb+

3.1 X X X X 10Mb+

3.2 X X X X X 10Mb+

3.3-50 X X X X X [OMb+

Table A-3: The types of disks supported by the various versions of PC-DOS.

PC ‘ Disk Type Size Description

HP 150 3 172 floppy 270K Single-sided disks

Tandy 2000 5 1/4 floppy 720K Double-sided 96 tpi disks
DEC Rainbow 5 /4 floppy 720K 2 single-sided 96 tpi disks
Victor 9000 5 1/4 floppy 1.2 Mb Double-sided 96 tpi disks

Table A-4 : Disk sizes for other types of PCs using MS-DOS.

machines is large. Table A-4 shows other types of PCs and the disk types
supported by MS-DOS.

How Disks Are Organized

DOS is capable of supporting more than one type of disk. This is made possible
by requiring that information regarding a disk’s specific area defined by DOS.

Each disk must also have additional information stored on it indicating the

amount of storage currently used, names of existing files, and other information réquired
for managing the files and disk space. This information is invisible to the user but is a
necessary component of all disks. _
DOS expects the information on the disk to defined in a certain sequence; therefore, all
DOS disks are organized in auntform fashion. This allows DOS to ebtain information
about the use of the disk, how space is to be allocated on the disk, and the files in use on
the disk.

User data area File directory
containg the dala grouped in files contains entrieg
“« describing
files.

volume
names,
and

First Sestor sub-directoriag

of Disk

Second File Allocation Table

BIOS - Boot copy of the first FAT

Jump Vend(‘}r' . Parameter
Code | ldentification Block Code

L T & N = T ' T N e
3 8 19 482 First File Allocation Table .
bytes bytes byies byles contains irformation on space used in
the user data area

Figure A-1: The relative positions of the four components of a typical formatted
disk. :

There are four components to a disk layout. The first is the reserved area
commonly referred to as the boot record. The second component is the File Allocation
Table (FAT), which is used to indicate the usage of space on the disk. The third
component is the File Directory, which is used to store the size, location, date, and tiime
information about files on the disk. Finally, the last component is the user data area, in

A-T

which the user files are actually stored. The relationships among these four components
are shown in Figure A-1.

The Boot/Reserved Area, FAT, and Clusters

The boot or reserved area in the first section on the disk. Because disks vary in
their number of sides, tracks, and sectors, DOS needs to delermine these disk
characteristics the first time it accesses a disk.

DOS assumes that this information describing the disk is always in acértain
physical location, usually track 0, surface 0, and sector [-- the first sector of the disk.
Although the boot area is usually only one sector in length, it can be larger. For this
reason, this area is now more generally referred to as the reserved sectors area.

Figure A-1 shows the boot area’s four parts: a jump code instruction, the vendor
identification code, the BIOS Parameter Block, and the boot code area.

The [irst part of the boot area contains a jump (jmp) instruction. If the disk is a
DOS system disk, booting it causes the PC to load the data in the boot area into memory
and to execute this jump instruction, which skips over the vendor identification and BIOS
Parameter Block areas directly to the boot code.

The second part of the boot area is an 8-byte {ield that contains the vendor
identification. This field is not used or required by DOS. Normally, a PC manufacturer
will fill this field with the name of the vendor plus the DOS version on the dmk
Examples of vendor identification fields are:

IBM 3.1 PC-DOS supplied by IBM

PSA 1.04 MS-DOS supplied by ATT (6300)

PC88 2.0 MS-DOS supplied by popular clone manufacturer
ccc 21 MS-DOS supplied by Compaq

MSDOS 5.0 MS-DOS supplied by Microsoft

The third part of the boot area is the BIOS Parameter Block. This is table of
special disk parameters that DOS requires to determine the size of the disk and the
relative locations of the FAT and the File Directory. The BIOS Parameter Block is often
called the BPB and is always present on every disk. We will describe the contents of the

‘BPB later in this chapter.

The fourth and last part of the reserved boot area is called the boot code area because it
contains the actual code for the bootstrap program that starts the PC. This bootstrap

program has the job of “pulling itself up by the bootstraps™; in the case of DOS, this

means gelting DOS to bring itself into memory. Although this bootstrap code is always
present in the reserved boot area, regardless of whether the disk contains the DOS system
files, it is meaningful only when the disk has been set up as a system disk.

Typically, a system disk is created by the FORMAT program supplied with MS-
DOS. I the FORMAT command is executed with a special command switch usual ly/S),
two additional files will be copied to the disk. These files (typically 10.SYS and

A-8

MSDOS.SYS) contain the code for the MS-DOS operating system and are hidden from
you; they do not appear in a directory listing of the disk. However, the bootstrap program
knows they are there and will load them into memory when the disk is accessed at system
slart-up time. When a disk has been set up to make it possible to boot from that disk, the
disk is referred to as a system disk.

Whenever any disk is formatted for use by the DOS FORMAT program, the four
sections comprising the boot area are written to the reserved area of the disk, which
always begins at the first sector of the disk.

Clusters as the Unit of Storage for a File

Before we describe the File Allocation Table, you need to know how sectors are
used to hold data. When your progrant writes new data to a disk file, DOS needs to find
an unused sector on the disk in which to store the new data. Cénversely, when your
program treads from a disk file, DOS needs (o locate the sector on the disk in which the
data is stored. DOS requires each disk to have a File Allocation Table in order to keep
track of where sectors for a file are located.

Disk Type Sectors per Cluster

3 1/2 double-sided floppy
5 1/4 single-sided floppy

5 1/4 double sided-floppy
LOMb hard disk

20Mb hard disk (AT)

A0 b =

Table A-5: The typical cluster sizes for different types of disks.

Keeping track of files on a sector-by-sector basis can be inefficient, however. For
example, a 10Mb hard disk has more than 20,000 sectors, and keeping the Jocation of
each would make the File Allocation Table very large. Searching this table would take a
telatively long time. If the File Allocation Table were smaller, the searches would be
faster, and, as a result, the file accesses would be faster. A better solution would be to
group sectors together in a pool so that when a new space on the disk is required, a group
of sectors is allocated for the file. This concept of grouping is called clustering sectors; it
allows DOS to be more efficient in terms of the memory required to manage the File
Allocation Table. A cluster is simply a fixed number of sectors; clusters add a second
layer of organization and make access easier.

Whenever a file requires disk space, DOS allocates a single cluster and marks the File
Allocation Table to indicate this. Clusters (also called allocation units) are the basic units
of storage for disk files. The number of sectors per cluster is determined by the disk type
and is established by the FORMAT program when the disk is formatted. Table A-5
shows the cluster sizes for different disk types.

The File Allocation Table

Let’s learn how the File Allocation Table works.

The File Allocation Table (FAT) is the section of the disk that stores information
on disk-file space usage. This table contains information on all the clusters that are
unassigned (free for allocating to files), assigned (those that are in use by a particular
disk file), or marked as bad (not usable because of media effects).

Note that although the FAT records information on disk space used by your files, the
boot area, the two FATSs, and the File Directory areas are not themselves represented by
clusters in the FAT, _

Within the FAT there is an entry for each available cluster on the disk, A {loppy
‘might have over 700 clusters. These entries indicate whether the cluster is in use, free, or
bad. Bad clusters are found through the FORMAT program some good sectors are less.

As we said earlier, there are two identical copies of the FAT. The second copy
provides some insurance against the possibility of the first copy being damaged. This is
an old trick that has been borrowed {rom other operating systems. However, DOS doesn’t
- use the second copy to fix the first if it is damaged.

Récording Chusters in the File AHocation Table

As you saw earfier in this chapter, when a disk file grows, DOS allocates space on
the disk in clusters rather than one sector at a time. This causes the FAT to be updated'to
indicate that a previously free cluster is now in use. Conveleeiy, when a file is deleted, |
the clusters once occupied by data are marked in the FAT as being free again. :

As afile grows, DOS allocates clusters of disk space, and the use of these clusters
is marked in the FAT. The list of clusters that form the disk space used by the file is
called a chain, because of the way that DOS stores the cluster information in the FAT,
You will see more of this shortly.

FAT entries contain a value to indicate the status of each cluster. the cluster may
be reserved for use by DOS, free for allocation, bad, or in use. A cluster is in use when it
is part of a chain. The values of the FAT entries are listed in Table A 6.

For disk sizes of 10Mb or smaller, the size of the FAT entry is 12 bits in the
length, or 3 hex digits. For disks larger than 10Mb, the FAT entry is 16 bits long, or 4
hex digits. o
The first available space in the user-data area of the disk is the first cluster, which
is assigned a cluster number of 2. The reason it is not called 0 or [is that the first two
entries in the FAT, normally cluster 0 and 1, are reserved for a media descriptor. A'media
descriptor is a value that uniquely identifies a particular type of disk and allows DOS to
distinguish a single-sided 5 1/4 -inch disk from a double-sided one. You will see more of
this media descriptor in the section on the BIOS Parameter Block. Figure A-2 shows the
entries in the FAT that point to or represent the clusters in the user-data area.

A-10

12-bit Entry

16-bit Entry

Cluster Description

000h

0000h

Free

001 h-fefh 0001 h-fleflr In- use
fIOh-ff6h tffOh-fTfoh Reserved
ff7h fff7h Bad
ff8h-ffth fff8h-ffffth

End of cluster chain

Table A-6: The various FAT entries and what they mean .

FAT eniry 0

Figure A-2: The relationship between FAT entry and cluster. Each cluster is
assigned a position in the FAT and will indicate whether the cluster is part of the

chain (in use), free, bad, or reserved. Note that the clusters are numbered starting

at 2.

Clusters, Chains, and the FAT

Suppose a file were large enough to require two clusters of disk space. DOS could
simply mark each of two entries in the FAT with a value to indicate which clusters were
in use, but this wouldn’t allow DOS to determine which cluster was first and which was

A-11

second in the table. It would also be difficult to distinguish this particular file’s use of
the disk from that of another file. It follows that just marking used clusters via the FAT
is -insufficient for keeping track or what files exist where on the disk; we need a belter

method.

Considér the following: when the first cluster is allocated to the file, we could store
the cluster number outside the FAT, in the file directory. (We will explain later in this
chapter what the exact format of the File Directory entry is for each file, but let it suffice
now to say that the disk directory will maintain, for each file on the disk, information
about the file, including its name and starting cluster number.) Then, as the file grows
and the second cluster is allocated, we could use the FAT entry for the first cluster to note
which clusler was assigned at the second cluster. For example, if the file used clusters 5
and 10, we would note { outside the FAT) that the file’s first cluster was cluster 5; then
in the fifth entry of the FAT, we would store the number 10 to indicate that the nex(
cluster in the [ile was cluster 10. 1t follows that if the file grew larger, thus requiring
another cluster, we would find a fee (unallocated)cluster in the FAT and store its
number in the 10th entry of the FAT. This could continue indefinitely , or at least until
there were no more available clusters to be found. 1n all cases, the last cluster allocated
lo the file would always have a special value in it to indicate that there were no more

- clusters following it. This value would represent the end of the file.

The concept of having each cluster essentially point (o the next cluster in use by a
file is called a cluster chain. The idea is that the contents of each FAT entry in use
contains a value (also called a pointer) that points to the next cluster, unless the FAT
entry represents the last cluster for afile, in which case it would contain an end-of-file
indicator. The only thing we would then have to know for a file to find all its sectors is
the number of the first cluster assigned to it.

As mentioned earlier, the first cluster assigned to a file is stored in the most
sensible place: the File Directory.

Figure A-3 shows how each FAT entry poiats to the next, thus forming a chain.
The start of the chain, or the first cluster, is kept in the file Directory with the entry for
the file myfile . It contains the value of 4, which means that the first cluster of the file in
the FAT is cluster number 4. The entry in the fourth FAT position contains the value 5,
which indicates that the next cluster is cluster nurnber 5. At the entry of cluster number 5
we find the value 6, which points to cluster number 6 as the next cluster. Finally , at
entry number 6, we find it contains an fffh. This marks the end of the clusters allocated
for myfile. Thus, myfile is composed of clusters 4, 5, and 6 and is three clusters in length .

The Number of FATs Is (Almost) Always Two

The number of FATs is normally two, as shown in figure A-3. When DOS
updates the FAT, the first copy is updated, and then the second copy. As we said earlier,

. using a second identical copy of the FAT provides insurance against the first copy being

damaged. The theory is that if the first copy is bad, then the operating

A-12

E\f\‘;@;ﬁb _ Cluster:3

(&%
O o

-, 3
G 2 Gﬁ‘
AT gy T ”
FAT#2 1 Fue Divector
: AT #2 File U =
File Following the FAT Chain
Directory mvfi :
Entry yrite l 004 Q

FAT 005(005| 1 l . Q

Figure A-3: The clusters used by myfile.

system will use the second copy. Without this mechanism, a damaged FAT would render
the disk inaccessible. In practice, however, with a PC, if the first copy of the FAT is
damaged, DOS doesn’t use the second copy of the FAT to access file information, and
the entire disk is not usable. The authors of DOS simply forgot to implement a means to
fix the FATs.

Because DOS really uses only one FAT, disks can be built with only one of them.
To build disks with only one FAT, you cannot use the standard DOS FORMAT program,
which build two FATs on each disk to be formaited. You wiil need to write a special
FORMAT program to build oltly one FAT on each disk.

The specification of the number of FATSs is defined in the BIOS Parameter Block.
The overhead of a second copy and the necessity of always updating this second copy can
be eliminated if you specify only one copy of the FAT.

The FATs are built for each disk during the formatting process using the
FORMAT program. Each entry in the FAT is set to 0if the corresponding cluster is
available for data storage. A FAT entry is marked bad if the corresponding cluster has
one or more sectors that are not usable. This occurs when read or write errors are found
during the formatting of the disk.

A-13

The File Directory

As shown in figure A-3, the File Directory follows the boot area and the FAT and
contains the names for all disk files, names for subdirectories, and the volume label.

The file Directory itself is a variable number of entries specified for the disk.
Hvery File Directory entry requires 32 bytes; thus, a 512-byte sector will have 16 such
directory enfries. ‘The exact number of directory sectors in the number of sectors is 0.
Thus, the number of files a File Directory can have is dependent on the type of disk used.
Table A-7 lists the disk types and the number of file entries possible. Popular double-
sided disks allow 112 entries in the directory, and the hard disk allows 512,

The fields for each File Directory Entry are described in table A-8

Filename The filename field contains a file name that is up to 8 bytes (or characters) in
length and is left-justified in the field. DOS expects file names that are less than 8 bytes
to be filled out with blanks. It a file has been deleted, the first byte of its filename field is
changed to ahex E5. This signifies to DOS that the entry is available for reuse. When a
directory entry has never been used, the first byte of the file name field will contain a hex
00.

The distinction between a deleted file name entry and an unused enfry is that
during directory searches DOS will stop when it encounters the first hex 00 in the first
byte of any filename field but continues when it encounters a hex E5, which is merely a
deleted entry. If a deleted entry contained a hex 00 in the first

Directory Directory

Entries Sectors Description

64 4 Single-sided disks
112 7 Double-sided disks
224 14 AT high-density disks

512 _ 32 Hard disks

Table A-7 : The number of File Directory entries and the number of directory
sectors for each type of disk.

i

Position, DOS would have to search all the directory sectors, because it could not
distinguish between a deleted file and a entry that had never been used.

Filename Extension The filename exlension is an optional field; files may or may not
have extensions. Filename extensions are up to 3 bytes in length and, like the filename
field, must be left-justified in the field and right-filled with spaces.

A-14

Length Description

8 File name

3 File name extension
File attribute

0 DOS reserved
Time of last update or creation
Date of last update or creation
Initial allocation unit/cluster
File size

26
28

EEN SRS R e

Table A-8 : the File Directory entry consists of eight fields.

File Atiributes File attributes tell what kind of file this is: read/write, read—:only,
hidden, elc. Table A-9 describes each of the attributes that are possible for a File
Directory entry. '

Value Description

00h Normal read/write file
0lh - Read-Only file

02h Hidden

04h System file

08h | Volume label

[0h Subdirectory

20h Archive bit

Table A-9: The various attribute hits that can exist for File Directory entries.

Setting the attribute for read-only prevents a modification of the file through DOS
standard {ile write calls. The hidden attribute will prevent a display of the entry when the
DIR command is issued. The attribute for system file is sét for the special DOS files that
reside on a system disk (IO.SYS and MSDOS.SYS). These two files are broughit into
memory during a boot of the PC. The attribute for volume label indicates to DOS that the
File Directory entry is not a filename but a volume name. The atiribute for subdirectory
indicates that the file name and extension entry is the name of asubdirectory. The
archive bit indicates to DOS that when the BACKUP.COM utility is used to off-load files
from the disk, the contents of this particular entry are to be written out. Once of the file
is backed up, the archive bit is turned off.

A-15

Field Hex ' Decimal Bits within Offset

Offset Offset
Hours 17h 23 7 through 3
Minutes 17h 23 2 through O
16h 22 7 through 5
Seconds 16h 22 4 through 0

Byte < =23 > < 22>
Bits I 11

3 10 54 0
Yalue hhhbhhmmmimmmsssss

Table A-10: How to decode the 2-byte time field.

Time of Last Update or Creation Whenever a file is created, the time of creation of
- the file is entered into the File Directory entry. This includes all directory entries, such as
file mames, subdirectories, and the volume label. I a file has been updated, this file
directory will be updated to reflect the time of the last update. This is not true for
subdirectory entries; additions within the subdirectory do not cause an update of the timme
for the entry. The 2-byte time field is described in table A-10.

Date of Last Update or Creation The date of last updﬁte or creation is set with the
file-creation date or the date of the last modification. This 2-byte field is similar 1o the
time field except for the date. Table A-11 describes the 2-byte date field.

Field Hex Decimal Bits within Offset
‘ Offset Offset
Year 19H 25 7 through 1
Month I9H 25 0
I8H 24 7 through 5
Day 18H 24 4 through 0

Byte <= 25— > <24 >
Bits |

5 98 65 0
Value yyyyyyymmmmddddd
* Year is years since 1980

Table A-11: How to decode the 2-byte date field.

Initial Allocation Unit/Cluster The initial allocation unit or cluster field
contains the cluster number of the first cluster allocated to the file. For subdirectories,

A-16

this is the cluster that will contain the File Directory for the entries in the subdirectory.
Table A-12 indicates the format for the start cluster number.

File Size The file-size field contains the size of the file in bytes. It is a double-word
entry with -the words reserved and the bytes within each word reserved. This double
word allows file sizes of up to 32 bits, which is much larger than the DOS limit of 32MB.
You will see why DOS has this limit in a later section of this chapter. Table A-13
describes the file-size field.

Hex Decimal

Offset Offset Description
1AH 26 Least significant
IBH ' 27 Most significant
Byte <=27-> <-26->

Hex value 0X XX

Table A-12: How to interpret the start cluster number for the File.

Hex Decimal
Offset Offset Description
ca 28 Low-order word
Least-significant byte
DH 29 Low-order word
Most-significant byte
EH 30 High-order word
J Least-significant byte
1FH 31 High-order word
- Most significant byte
Byte <-31-> <30—> <29> <28>

Hex value XX XX XX XX

Table A-13: The d4-byte file-size field. Note that the bytes are reserved in each ficld
and the words are reserved, '

- Disk Sizing

In previous sections of this chapter, you have seen the different sections that
- comprise a DOS disk. We will now cover the various aspects of DOS disk sizing,
including 12- or 16-hit FAT entries. Then we will see how to calculate the number of
clusters for a disk. Lastly, you will see how DOS limits the size of disks.

- A-17

FAT Entries: 12 or 16 hits?

As we saw earlier, FAT entries are either 12 or 16 bits in length. That length
will depend on two factors: the capacity of the disk and the cluster size. You will need
the size of the disk in sectors and the cluster size in number of sectors per allocation unit.

Disks will use 12-bit FAT entries until it is no longer possible to store cluster
~ numbers in a 12-bit quantity. FAT entries of 12 bits can contain a number up to 4,096 (0
to fffh). Subtracting the 16 values that constitute reserved, bad, and end-of-file indicators
(see table A-6) yields a maximum of 4,080 clusters. Because clusters are numbered from
2, this results in a range of 2 to 4,080 or 4,079 clusters. If the number of clusters exceeds
4079, 16-bit FAT entries are used to mark each cluster.

For example , if a disk used 8 sectors of 512 bytes each per cluster, and the
maximum number of clusters is 4,079, the largest disk using 12-bit FATs would be 16Mb
{ 512bytes * 8 sectors/cluster * 4079 clusters). Therefore, to make life easier, disks larger
than 10Mb use [6-bit FATs.

Note that, whether 12-or 16-bit FATs are used, the FAT, File Directory, and the
Boot Record are not counted in the total number of clusters available. See table A-14 for
a summary of the typical cluster and overhead values for various types of disks.

Disk size 5 1/4 51/4 5174 51/4

Disk Type Floppy Floppy Hard Hard
Surfaces 1 2 Varies Varies
Disk Capacity 180K 360K 10Mb 20Mb
Total # sectors 360 720 20K 40K
Sectors/cluster | 2 8 4
Maximum clusters 360 360 2560 10k
12/16-bit FATs 12 12 I6 16
Boot area sectors 1 I l {
FAT sectors 2 2 8 40
#EFATs 2 2 2 2
Total FAT sectors 4 4 16 80
Directory entries 64 112 512 512
Ditectory sectors 4 7 32 32
Overhead sectors 9 12 49 113

Table A-14: The various calculations for determining the size of the FAT entries
and the amount of overhead the disks can have.

DOS Disk Size Limits

PCs have grown in every way, and disk storage is no exception. The original hard
disks of 10Mb have given way to 420- and 540Mb drives as standard equipment. DOS is
extremely versatile in its handling of disks, but there are some limits built irito the
software.

The critical number that limits the amount of disk storage per disk drive is:the
total number of sectors per drive. This number is contained in a singe word that allows
for a maximum of 64K sectors. With a sector size of 512 bytes, this yields a maximum
disk size of 32Mb.

DOS can provide support for disks that are larger than 32Mb in two waysi The
first way is to use larger sector size. For example, using a sector size of 1,024 bytes
moves the disk size limit up to 6dMb. However, this requires special software that
changes the DOS system files to override the default 512 bytes per sector. The second
method is much more easier. DOS offers the capability to divide the hard disk into one
or more partitions. Each partition of the disk is treated as if it were a separate and
distinct physical drive. Thus, you can have multiple 32Mb partitions on one disk.

Beginning with DOS 4, the maximum size of a disk partition is no longer limited
to 32 Mb. The location within the BIOS Parameter Block specifying the number of
sectors per disk was expanded from a single word to a double word, thus allowing disk
partitions in excess of 500Mb. You will see more of the disk partition in the next
sections.

Critical Disk Parameter

With a large variety of disks to support, DOS needs a mechanism to determine the
logical and physical characteristic of each disk in the PC. These disk parameters must be
recorded on the disk and ready by DOS before the first access. The best location is within

-the Boot.Record, because it is common to all disks and it is always at the beginning of the

disk.
We will examine the disk parameters stored on each disk by taking a closer look
at the Boot Record.

The Boot Area Revisited

As you may recall, the boot area is the first part of a disk or, in the case of a
partitioned hard disk, the ficst area in the partition. As we discussed earlier, the boot area
contains a 3-byte jump instruction, the vendor 1dent:f1callon the BIOS Parameter Block,
and the boot code (see figure A-1). =

The BIOS Parameter Block

~ The 19 bytes that make up the BIOS Parameter Block (BPB) contain more
information that allows DOS to understand how the disk has been buill. The BPB
contains physical information about the disk media, as well as the Jocation and sizes of

the FATs, the File Directory, and the user data area.
Table A-15 shows the format of the BPB. Names or labels are assigned to each

field lo make it easier to refer to these fields.

- Name Start Length Description

SS 0 2 Sector Size in byles
AU 2] Allocation Unit size (sectors
RS 3 2 Number of Reserved Seclors
NI 5 i Number of FA'T's on 1his disk
DS 6 2 Directory Size (nuinber of fil
TS 8 2 Number of Total Sectors
MD 10 1 Media Descriptor
FS 11 2 FAT Sectors (each FAT)
ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads
HS 17 2/4 * Number of Hidden Sectors
LS 2] 4% Large Sector Count

*=DOS 4.0-5.0

Table A-15: The fields that comprise the BIOS Parameter Block (BPB).

The BPB is read off each disk by DOS before the very first access. As you will see,
the values of the BPB allow DOS to translate physical to logical sectors and vice versa.
Additionally, the FATs, File Directory, and the user data can be found using the BPB.

Let’s examine each of these fields one at a time.

Sector Size (SS) The sector size field contains the number of bytes per sector for this
media. Although possible sector sizes are 128, 256, 512, and 1024 bytes per sector, DOS
doesn’t make full use of this parameter. There are numerous places in the BIOS itself
that assume sector sizes are 512 bytes per seclor.

Allocation Unit Size (AU) As we mentioned above, a cluster, or allocation unit, is the
basic unit of DOS disk storage and represents a certain number of sectors.

A-20

Reserved Sectors (RS) This field contains the number of reserved sectors for the disk.
Recall that each floppy disk or hard- disk partition or a reserved or boot area. This
parameter specifies To DOS how many sectors are reserved as the boot area. This field
generally contains a value of | and is always at the beginning of the disk or the partition.
An important point to note here is that in DOS, sectors are numbered starting at 0.
You may recall that the BIOS routines use a sector- numbering scheme that starts at 1.
You will see how DOS uses sector numbering in the section called “Hidden Sectors.”

Number of FATs (NF) The number of FATSs for a disk, usually two, is contained in this
fField.

Directory Size (DS) This field contains the maximum number of files in the File
Directory. The size of the File Directory in sectors will be dependent on the number of
{iles and the size of each sector. Because each file requires a 32-byte entry in the File
Directory, and because the number of bytes per sector is contained int the sector size (SS)
field, dividing the sector size by 32 gives the number of directory entries per sector.
Then dividing the directory size by the number of directdry entries per sector will give
the number of directory sectors. This number is rounded up if necessary. ,

Normally, 512-byte sectors are used, so 16 directory entries are available per
directory sector.

" Total Sectors (TS) = The number of total sectors is the total size of the disk in seclors.
This number must include the sectors in the boot or reserved area, the two FATSs, the File
Directory, and the user data area. Because this word can contain a number equal to 64K,
the largest disk that DOS can support is 32Mb using 512-byte sectors. For hard disks, this -
number is the same as the number that appears in the partition table as the last entry.

For disks larger than 32Mb, using DOS version 4.0 or greater, this field is set to 0
and the actual sector count is specified in the large sector (LS) field.

Media Descriptor (MD) The media descriptor field is a single byte that describes the
~ disk for DOS. Table A-16 explains the various media descriptor bytes.

IFAT Sectors (FS) The FAT sectors {ield contains the number of sectors in each FAT.
DOS will use this number to calculate the total number of sectors occupied by lhe
reserved sectors (boot area) and the FATSs to determine the start of the File Directory.

Sectors per Track (ST) This field contains the number of sectors per track for a disk.
For Hoppy disks, this number is 8,9,15, or 16. For hard disks , this number is usually 17.

Number of Heads (NH) This field contains the number of heads or usable recording
surfaces for the disk. This value is 1 for single-sided disks and 2 for double -sided disks.

A-21

Hex Value Description

f8h Hard disk

[9h Double- sided 5 1/4 - inch disk (15 sector HD)
Double -sided 3 1/2 - inch disk

fah RAM disk (used by columbia Data Products)

fch Single -sided 5 1/4 - inch disk (single density)

fdh Double -sided 5 1/4 -inch disk { 9 sector)

feh . Single -sided 5 1/4 - inch disk (8 sector)

Single -sided 8 - inch disk (single density)
Single - sided 8-inch disk (double density)
fth Double -sided 5 1/4- inch disk { 8 sector)

Table A-16 : The various values for the media descriptor field.

The value for hard disks will vary depending the hard-disk drive. Typical values range
from 2 to 6.

Hidden Sectors (HS) The field that contains the number of hidden sectors for the disk
typically is used for partitioning hard disks. Hard disks have the ability to be partitioned
into several independent logical drives. In order for DOS to locate the start of a partition,
it needs ‘to know the number of sectors from the beginning of the disk to (he stast of the
partition that is being used. The sectors preceding the active partition are known as the
hidden sectors, because they are invisible to the active partition. The number of hidden
sectors is an offset that is added to the number that is calculated for file operations that
are within the active partition to derive the precise physical location on the disk. This is
shown in figure A-4.

Each of the partitions is treated by DOS as a contiguous block of sectors starting
with sector 0, even thought it is not the absolute Oth sector. Do not confuse this with the
physical sector scheme, in which sectors are numbered starting at 1, repeating the sector
numbering for each track. DOS partitions start at sector O and do not repeat any the
sector numbers.

The number of hidden sectors is always 0 for floppy disks, because there is no
pattition. For hard disks, the number of hidden sectors for each partition will depend on
the size of the preceding partitions { each partition has its own BPB). The first partition
will generally have 17 hidden sectors, because the first track is occupied by the partition
sector and the first must start on a track boundary; therefore, the existence of the partition
sector forces the {irst partition to be on the second track, or'17 sectors from the beginning
of the disk.

This field is 2 bytes long for DOS versions up to 4.0. To accommodate lzu ger
disks, DOS 4.0 and 5.0 extend this field to 4 bytes.

Partiticn
Sector

Partition|Partition| Pariition
2 3 q

Hidden Sectors for the Partitions on a Hard Disk
Partiticn

h N
-+—hidden sectors for partition 4 —=

hidden saclors

for partition 3 1
_‘hidden sectors

for partition 2 =~

——hidden sectors for partition 1

less than 32Mb

Figure A-4: The number of hidden sectors for the four partitions of a hard disk
Large Sectors (I.S) This field is used by DOS version 4.0 or greater to specify the total

Boot Avea] FAT &1

number of disk sectors if the disk is larger than 32Mb. In addition, if this field is used
then the total sector (TS) field must be set to 0. This field is set to 0 when the disk size is

FAT %2 |Fiie Diresiory [User Data Are?\\
~FS om - FG -
-+ N e—
Start of: Formula for sector numbex
Boot Area Sector (0
FAT #1: Sector RS
FAT #2: Sector (RS + FS)
File
Directory: Sector (RS + (NF*FS)
User Data
Area: Sector (RS + (NF*ES) + (DS/(SS/32))
Where:
RS is the ntumber of hidden sectors
EFS is the Fat Size in sectors
NFE is the number of FATs
DS ist
SS
32

is the number of files in the File directory
1s the number of bytes per sector

15 the size of each File Directory entry
and the User Data Area.

Figure A-5: DOS calculations of the start sectors for the FATs, the File Dlrectory,

A-23

Using the BPB to Find Information

The BPB that must exist on each disk allows DOS to find the important and
necessary parameters about the physical characteristics of the disk. For example, DOS
can divide the total sector count (TS) by the number of sectors per track (ST) to
- determine the total number of tracks for the disk or partition.

In addition, the BPB contains enough information for DOS to deterinine whele
the FATs, the File Directory, and the user data area are located. Because the sizes of
each of these sections of the disk can be found in the BPB or calculated, it is a simple
matter for DOS to add up the space occupied by the user data area, “This is shown id
figure A-5.

Table A-17 shows typical values that are found in the vendor identification and
the BPB for a 5 1/4 inch single-sided disk.

DOS Disk Device Drivers

You are probably wondering why we have gone to such detail in describing the
FATs, BPBs, and so on. This detail is required to help you understand how DOS
interacts with a disk media, so that our disk driver will make sense. It is also necessary to
laok at the other side of the disk interface, from DOS and the device driver. This is done
in the next sections. i

DOS and the Disk Device Driver

Whenever DOS needs to read or write to the disk, the standard disk device driver
(the one that is loaded into memory with DOS) is called. In addition to read or write
calls, DOS makes some calls to the disk device driver to get answers o questions about
the disk.

Which Disk Is It?

DOS recognizes that disks fall into two categories: those that are removable and
those that are not. Removable disks are the familiar floppy disks that can be removed
and replaced easily. Nonremovable disks are, for the most part, hard or fixed disks.
Another type of nonremovable disk is a RAM disk. A RAM disk uses memory to store
data.

During disk operation, DOS always checks to see whether the disk has been changed.
For nonremovable disk, there are fewer checks than for disk units that contain removable
disks. DOS perform this check through a call to the DOS Media Check function. :Recall
from the previous sections of this chapter that all disks have a media descriptor. DOS
uses to identify the disk and to check whether the disk has changed. For example, if you
have been using a single-sided disk, the media descriptor would be FCh. Then, if you

A-24

swapped a double- sided disk for a single-sided disk, DOS would update the media
descriptor and it would contain FDh,

Field , Typical Value

Vendor ldentification MSDOS 5.0

BIOS Parameter Block (BPB)

Sector Size in Bytes (SS) 512
Allocation Unit size (AU) 4
Number of Reserved Sectors (RS) 1
Number of FATs (NF) 2
Directory Size in files (DS) 512
Total Sectors for disk (TS) 0
Media Descriptor (MD) I8
FAT Size in sectors (FS) 81
Sectors per Track (ST) 17
Number of Heads (NH) 5
Number of Hidden Sectors (HS) 17
Large Sectors (1.S) 82943

Table A-17: The typical values found in the vendor identification field and the
BIOS Parameter Block for a 40Mb hard disk.

However, this is not full-proof method of determining if the disk has changed-- you
could fool DOS by changing to another single-sided disk! Therefore, you cannot rely on
the media descriptor as the only method of determining whether a disk has changed.

The only place to determine whether a disk has changed is within the disk device
driver. DOS will pass the media descriptor of the disk it has worked on to the disk
device driver. The disk device driver, in turn, will determine whether the disk has
changed by comparing the particular disk parametess; it then will return this information

to DOS. .
E If the disk has been changed, DOS cannot assume that the FATS, the Tile
Directory, and the user data area are still in the same relative Jocations. Recall that single-
and double-sided disks have different number of sectors for the FATs and (he File
Directory. Thus, another function of the disk device driver is to return to DOS the BPB
for any newly inserted disk. This allows DOS to calculate the positions of the FATs and
File Directory for the new disk. ' |

In shott, each disk access by an application can cause DOS to perform a media
check on the disk. If the disk has changed, DOS will request the BPB for the new disk
from the disk device driver so that it can know where everythin g 18 stored. '

A-25

At this point, a real-life example might help illustrate what happens between
DOS and the disk device driver. Let’s assume that you have inserted into the B: drive a
disk that has just been formatted. Then you issue the following DOS command:

DIR
Here is the output that appears on the screen:
A>DIR b:

Volume in drive B has no label
Directory of B :\
File not found

A>

Even for this tiny amount of information, DOS has to perform many steps.
After the DIR command is issued, DOS has to check whether the disk in drive B: was
accessed. Then DOS has (o read the directory sectors for the volume label and the file
information. Note that the File Directory sectors may be read twice; pass 1 searches for -
the volume label, which doesn’t have to be in the first directory sector; pass 2 refrieves
the file names. Lastly, DOS reads the FAT for the amount of space used on the disk. This
process is shown in Figure A-0.

DiR —

NO Has the YES
disk changed?
\/ el the new -
105 Parameler Block :

Read the Directory sectors |
untif a label is found

Display the Volume label
if present an the disk

Read the Directory sectors |-
and disptay filenames

Read the FAT and calculate
{ha disk space used

1

Display the number of files
and free space

Figure A-6: The steps DOS takes to display the contents of the disk ona DIR
command.

DOS

Disk Device Driver

- Media Check Has the disk change ?

____________ >
Yes Newly formatted disk in B: therefore the disk has changed.

& e
Get BPB DOS needs the new B1OS Parameter Block for the new disk to
——————————— - > determine where the Directory starts.
Read DOS requests the first Directory sector in order to find the
———————————— > volume label.
Media Check DOS may make these requests several times depending on the
Get BPB amount of memoty DOS has available o store information on
———————————— > the disk.
Read - Read the Directory sector for the file Name and size information.
—— e >
Media Check Retrieve the current BPB if needed for calculating where the
Get BPB File Directory is.
____________ >
Read Read the Directory sector for calculating number of files on the
———————————— > disk.
Media Check Retrieve the current BPB if needed for delenmmng where the
Get BPB FAT resides.
____________ >
Read Read the FAT sector 1o calculate the amount of space available
e on the disk.

Table A-18: The typical called DOS makes to the disk device driver in order to
process the DIR command on a newly formatted disk.

So far, the simple DIR command has DOS reading many sectors of the disk. What other

calls can the disk device driver expect? Recall that DOS always checks to determine
whether the disk has changed. This is reflected in the fact that each disk read 1cquesled
of the disk device driver is preceded by a Media Check call.

Let’s take the example above the DIR of a freshly formatted disk and expand the
steps DOS has to take to arrive at the message “file not found”. The typical calls that
DOS makes to the disk device driver (o perform this task and I,he responses it receives are
shown in table A-18.

" Note that, in table A-18, there are a lot of Media Check and Get BPB ca]ls (o
ensure that the disk has not been changed. There are generally fewer of these calls for
hard disks. This is because the disk device driver knows that the hard disk is non
removable and can tell DOS the media has not changed. Therefore, DOS will not request
the BPB except when the hard disk is initially accessed. '

A-27

Now that we have covered the amount of work that a disk device driver has (o do
on request from DOS, we can review the commands that a device driver has to perform.
This will help us understand what is expected of our Disk Device Driver.

Disk Device Driver Commands

As you have learned, when DOS requires a service from a device driver, the
packet of data that is passed to the device driver with the call is referred to as the Request
Header. Contained within this packet of data is a command number that corresponds to
the service required by DOS. This command number instructs the device duvm (o
perform a certain action.

There aré 26 commands for device drivers in DOS version 5.0. We will now
describe each of these commands and what is required to write code especially for disk
device drivers. The list of applicable commands is shown in table A-19.

The Initialization Command

The Initialization command is the first command issued to the disk device driver
after it has been loaded into memory. This call is issued because DOS needs several
pieces of information from the device driver, The first is how many disk drive units this
particular disk device driver will be supporting. For disks, this number is usually read
through switches set on the PC motherboard.

The next piece of information that the device driver must return to DOS is the
Break Address, which is the next available memory location after the driver. Because the
driver knows its location, it can easily return this information. DOS then knows where to
load the next device driver, if there is one; if not, DOS continues loading other routines. -

The next item returned to DOS is the address of a table of BPBs. For 5 1/4- inch
floppy disk units there are five types of disks : single -sided disks of 8 or 9 sectors per
track, and special double-sided (high capacity) disks of 15 sectors per track. These five
types of disks will have five different types of BPBs, varying in media descriptors,
number of heads, FAT sectors, and File Directory entries. DOS needs to access this table
of BPBs to determine the various sector sizes of each type of disk supported. The steps
Jinvolved in finding the address of the BPB table are shown in figure A-7.

A-28

Number Command Description

0. Initialization
| Media Check
P Get BPB
3 1OCTL Input
4 Input
5-7 Not Applicable
8 QOutput
9 Output With Verify
o 10-11 Not Applicable
a 12 JOCTL Output
13 Device Open
14 Device Close
15 Removable Media
16 Not Applicable
17-18 Undefined
19 Generic /O Control
20-22 - Undefined
23 Get Logical Device
24 Set Logical Device
25 IOCTL Query

Table A-19: All of the applicable commands for block device drivers.
The Media Check Command

The Media check Command in table A-19 is always called before disk reads and
writes for other than file I/ O operations. When directory or FAT information is accessed,
Media Check is called to determine whether the disk has changed. If so, DOS must read
in new information on the disk.

DOS passes the media descriptor for the current disk in a particular disk drive,
and the device driver can use this to determine if the disk has changed. Normally, as you
saw earlier, this is not sufficient information because two similar types of disks { both
single-sided, for example) will have the same media descriptor.

The device driver can return an indication of one of three possible conditions.
The first condition is the media has not changed. This will be the case for nonremovable
hard disks and RAM disks. The second condition is that the device driver has
determined that the media has changed. The driver could determine this by checking to
see if a disk door open signal has been received from the disk controller or by simply
calculating the time since the last access of the drive. If the Media check is sent to the

A-29

driver within a very short time interval since the last access, it is not likely that a disk has
been changed. '

The last Media Check condition occurs when the device driver does not know if
the media has changed. For example, if the time since the last access of the drive has
exceeded a short predetermined time interval, the device driver assumes that a disk .
change could have occurred and returns a "don't know" condition.

A i 1
REQUEST | e
HEADER address of
HEADER | | BCoamaw
; able 3 Parameter
. Blocik

disk typa 2

BIOS
. : : Parameter
o . Block

—

address of BPB 1

disk type 3

. . addrass of BPB 2 <
- able o

| A o BIOS

- BPB address of BPB3 - Parameter

pointers -
address of BPB 4 52 Block

address of BPB § EROe
' R ERI IR disk type 4

S Blos
Parameter
Block

o

disk type 5

BIOS
) Parametar
Bleclk

A pyoe

Figuré A-7: The Initialization command requirement to return the address of the
BIOS Parameter Block Table.

The GetBPB Command

The GetPBP Command is requested of the device driver whenever a media is
changed condition is returned to DOS from a Media Check call. GetBPB is called for
hard disks only once.

When the Media Check command returns a :don't know” condition, the GetBPB
command is called only if DOS bas no dirty buffers. Dirty buffers are those buffers that
contains modified data for the disk that needs to be written. DOS assumes that if there
are dirty buffers (modified data waiting to be written to disk), the disk has not changed.

If the device driver receives a GetBPB command, it will have to read the reserved
or boot sector from the disk to access the BPB at offset 11 (decimal} of the boot sector.
The BPB will end up in DOS's work area, and the device driver will return a pointer to
this BPB to DOS. 'DOS can then use the BPB to calculate where the FATs and Tile
Directory are on the disk.

" The JOCTL Input Command

The 10CTL Input Command stands for /O Control. This command is used by
the device driver to return control information to the program regarding the device. For
ex*tmple if the device is a printer you can have the device driver return status
informatjon, such as the baud rate at which the printer device 1is set {o recetve data.
When the driver returns 1/O control information to the program, it is called ifput.
Alihough this is quite useful, it is not a normal feature of the device drivers. There aie
many reasons for this. The first is that there is only one DOS call that allows 1/0 control
- DOS service 44h. Most programs do not use this DOS service, because they do not
expect n device driver to return this type of information. The second reason.is that
adding T/O control to a device driver is not easy; the device driver does not know. what
type of information to return. For 1/O control to work properly, both the progrant issuing
an IOCTL call and the device driver accepting JOCTL calls must agree on the
information to be passed back and forth. For block devices, this does not have much
meaning,

The Input Command

The Input command is sent to the device driver whenever DOS needs to read data
from the disk. DOS will pass to the driver the number of sectors to read, the starting
sector number, and the address of the data-transfer area in which the data is to be placed.
DOS will have previously read in the FAT and File Directory and used these to calculate
the heeded sectors. '

The starting sector number is numbered from 0 to the highest sector number for
the disk and is relative to the start of the partition if it js a hard disk. For floppy disks, the
start sector is always the reserved or the boot sector. It is up to the device driver to -

A-31

translate this starting sector number into the appropriate track, head, and sector for the
actual physical unit.

‘The Output Command

The Output command tells the device driver to write one or more sectors onto the
disk. As it does for the Input command, DOS passes the starting sector number, the
number of sectors to write, and the data-transfer address from which to write. The driver
is responsible for translating this logical sector address to a physical disk address.

The OQutput With Verify Command

The Output With Verify Command is the same as the Output Command except
that after the data is written out, the device driver is responsible for reading the data back
“in. This insures that the data has been properly written to the disk.
The VERIFY command in COMMAND.COM is used to set VERIFY ON or
OFF. If it is set ON, all writes to the disk are passes as Output With Verify commands to
the device driver. _
The device driver can set a variable to indicate that VERIFY is ON. After writing
o the disk, the driver can jump to the Input routine to read back in the previously written
data and ensure that it is valid. '

- The IOCTL Output Command

o The IOCTL Output command is similar to the IOCTI, Input command, but the
- direction of data transferred is reserved. This command allows the program to pass an
L 1/0 coniro] string to the device driver. ;

~ Again, the disk device driver can use this feature to implement just about

anything. The /O control string is not treated as normal data to be written out to the disk

: - butis information that device drivers do not normally get. Without /O control strings, it

I would be impossible to communicate with the device driver. The device driver would

only get data to be written to the disk or read from the disk.

For instance, we could use IO control strings to suspend disk operations

"+ lemporarily and perform some maintenance diagnostics. However, this would involve a
large amount of programming.

A-32

The Device Open Command

This disk driver command is new for DOS version 3.0 and is designed to signal
the device driver that a file open for the disk has occurred. The device driver could keep
counts of file opens to ensure that any reads and writes to the disk were preceded by file
open commands. 1If not, we could be writing to the disk when there is no file opened.
This would be the situation if a disk were removed before the file that was opened was
properly closed.

In order to be able to receive Device Open and Device Close commands, the
device driver must set the Open/Close/Removable bit in the Attribute word of the Device
Header. - Recall that the device Header is the table that occupies the first memory
locations in the device driver.

The Device Close Command

The Device Close command is sent to the device driver whenever a program has
closed the device. For disks, this happens when a file is closed on the disk. '

The disk device driver, in conjunction with Device Open commands, could keep a
counter of open files. When a Device Open command is sent, the driver would increment
the counter. When a Device Close command is sent, the device driver would decrement

-this same counter. Then whenever a read (Input command) or a write {output command)
~i8' sent to the driver, we could check to see whether a file hds been opened for the device.

If not, we'could djsaliow any I/O to the disk until files are properly opened or closed:

Unfoitunately, this approach to enforcing proper disk'usage is not very practical,
Let's assume that a user has removed a disk before properly closing the file. The counter
is set at 1, because the file is opened, so it will ndt disallow reads and writes to the disk.
In other words, the problem has alieady occurred and thére is no practical way , of
calching and remedying the situation.

- The Removable Media Command

- Removable Media is another command that is available for DOS version 3.0 or
greater. This command is sent to the device driver only if the Open/Close/Removable bit
ts set in the Attribute word in the Device Header. With this command, a program
could ask the device driver whether the media is removable. This could save time within
a program, because if the media is not removable. - This could save time within a
program, because if the media is not removable, the program could assume that there
would not be any disk changes. When the device driver is sent a Remoyable Media
command, it will return an indication that the media is either removable or
nonremovable, P

A-33

Appendix B

Network Protocols & Communication

IEEE Standard 802 for Local Area Networks

IEEE produced several standards of LAN known as 1IEEE 802, include
CSMA/CD, token bus, and Token Ring. They differ at the physical layer and MAC,
and compatible in Data Link layer. These 802 standards are divided into parts:

802.1 : standard gives an introduction and defines the interface primitives.
802.2 : standard describes the upper data link layer.
802.3 ---> 802.5 : describes CSMA/CD, Token Bus, and Token Ring.

IEEE standard 802.3 and Ethernet

802.3 is for 1 persistant CSMA/CD LAN. When a station wants to transmit it
listen to the cable, if the cable is busy the station waits until it goes idle, otherwise it
transmits immediately, if two or more stations simultaneously begin transmitting on
an idle cable, they will collide. Any station detecting a collision abort its transmission

" and send a signal burst to warn all other stations to terminates their transmission, wait

a random time, and repeat the whole process again. It can use coaxial cable, or twisted
pairs for transmission. All 802.3 use Manchester encoding, the presence of 1 bit in the
middle enables the receiver to synchronize with the sender.

IEEE standard 802.4: Token Bus

for 802.3 a station due to a bad luck must wait a lopg period, and 802.3 flames
have no priorities, so it is unsuited for the real time systems. A simple system is a

~ Ring in which the station take turns in sending frames, it is a good idea, but if one

station goes down the whole systems goes down. So they create a corbination of
Ring and Bus called Token Bus.

Physically, the Token Bus is linear or tree shaped cable into which the station
knowing the address of its left and right stations. At initialization, the highest station
send the first frame, and after it is done, it passes permission fto its neighbor by
seiiding a control frame called token, only the token holder being permitted ‘to

~ transmit frames, collision do not oceur.

B-1

IEEE standard 8(}2.5:. Token Ring:

A ring is not really a broadcast medium, but a collection of individual point-to-
point links that happen to form a circle, it can run on twisted pair, coaxial, and fiber
optic. Each bit arriving at an interface is copied into a one bit buffer and then copied
out onto the ring again, in the buffer the bit can be modified, and expected before
being written out, this copy introduce a 1 bit delay in each interface.
ln a Token Ring a bit pattern, called the token circulates around the ring whenever aIl
stations are idle. When a station wants to transmit must seize the token and remove it
from the ring. After the station transmits what it has, it must wait for the data to
come back compare it, and remove it, and regenerates a new token and go back to
listen mode. The problem of cable breaks in Token Ring is solved by center wiring;

" We have different types of Ring:

-Slotted Rings: (is not part of 802) it is slotted into fixed size frames, each frame
contains a bit that tell if it is full or empty, when a station wants to transmit, it simply
waits for an empty frame to come around, marks it as full and puts its dat'l in the
frame. -
-Register Insertion Rings: The interface contains two registers, a shift register, and
output buffer, when a station has a frame to transmit, it loads it into the output buffer,
frames maybe of variable length up to the size of the output buffer. :

Compadrison of LAN

A-802.3:
Advantages:
- most widely used.
- the algorithm is simple.
- station can be installed in the fly without taking the network down.
- a passive cable is used and modems not required.
- delay is zero, station do not have to wait for a token, they just transmit
immediately.

Disadvantages:
- each station has to be able to detect the signal of tlie weaked other station.
- collision.
- overhead because frame size at least 64 bytes.
- nondeterministic.
- it has no priorities.
- cable length is limited to 2.5km.
- CSMA/CD is inefficient at high speed.
- at high speed presence of collision becomes a major problem.
- 802.3 is not well suited to fiber optics due to the difficulty of installing taps.

B- 802.4:
Advantages:
- - uses highly reliable cable television equipment.

B-2

- it is more deterministic than 802.3.
- it can handles short minimum frames.
- it supports priorities.
- it can be configured to provide a guaranteed fraction of the bandwidth to
high priority traffic.
- it has excelient throughput and efficiency at high load.
- broaband cable can support multiple channels not only for data but also for
voice and televisions.
Disadvantages:
- broaband systems use a lot of analog engineering,
- include modems and wideband amplifiers.
- the protocol is extremely complex and has substantial delay at low [oad.
- it is poorly suited for fiber optic implementation.
C-802.5: .
Advantages: ‘
- priorities are possible.
- short frames are possible .
- large ones are possible also, limited only by the token holding time.
- the throughput and efficiency at high load are excellent. like the
token bus and unlike 802.3.
Disadvantages:
- the presence of centralized monitor function, eventhou gh a dead one can
be replaced, a sick one can cause headaches.
- there is some delay at low load because the sender must wait for the token.

D-ISDN PBXes versus LAN:
Advantages:
- PBX can be used to connect all the stations in a building.
- it can use external telephone wiring.
- it can also carry voice and data over the same network.
- it can connect station not only to local stations but also to those far away
in a totally transparent way. '
-the total throughput exceeds 500 Mbs.
Disadvantages:
- they do everything in a big way,
- the minuscule 64Kbps bandwidth on each ISDN channel.
- trying to page virtual memory to a remote disk over 64Kbps channel
would be slow.
- trying to read a file at remote file server at 8000 bytes/sec would be stow.
- they are circuit switched, which is fine for continuous traffic but terrible at
bursty traffic that computers generates. '
- it is highly complex, ceatralized components.

B-3

Fiber Optic Networks

Fiber has a high bandwidth thin, and lightweight, it is not affected by
electromagnetic interface, power surges, or lightming, and has excellent security.
Fiber is important not only for WAN point to point, but also for metropolitan and
LAN.

FDDI

It is a high performance fiber optic Token Ring LAN, 100Mbps over distances
up to 200km with up to 1000 stations connected. It used the same way as in 802,
another common use is a backbone to connect copper LAN, it uses multimode fibers,
and LED rather than lasers. FDDI cabling consists of two fiber rings, one transmitting
clockwise and the sécond transmitting counter clockwise, if either one is broken the
second one can be used as backup. The basic FDDI protocols are closely modeled on
the 802.5 protocol.

Fibernet II

~ Fiber LAN compatible with Ethernet at the transceiver interface so stations can
be plugged into it using existing transceivers cable. Schmidt et Al used an active star
instead of passive one, each transceiver has 2 point (o point fibers running to the
- central star, one for input, and one for output.

S/NET

It is a Fiber Optic network with an active start for switching, each computer
has 20Mbps, fiber running to the switch one for input and one for output, the fiber
terminates in a Bib(bus interface board). When a word is writfen to that device
register, the interface board in the CPU transmits the bits serially lo the Bib, where
they are reassembled in Bib memory, the CPU writes the command to another /O
device register to cause the switch to copy the frame to the memory of the destination
Bib and interrupt the destination CPU.
IFastnet & Expressnet: F

Fastent is a high performance network suitable for LAN, MAN, it uses 2
linear unidirectional buses, each station can send or receive on either one. When a
station warits to send a frame to a higher numbered station it transmits on bus A, when
it wants to transmit to a lower station it transmits on bus B,

Expressnet uses a single folded bus, each station attaches to the bus in 2
places, one on the outbound portion for transmission, and one for the inhound portion
for reception.

DataKit

It is a single integrated network to be used as LAN, MAN, WAN, it allows
coppet and fiber to be intermixed in arbitrary ways. It contains switches; each with
various kinds of line coming out of it, it is multiple interconnected stars rather than a
bus or a ring, as various cards can be plugged into it. S

B-4

Satellite Networks

Satellite have dozen of transponders, each has a beam that covers some portion
of the earth below it. Stations within the beam areas can send frames to the satellite
on the uplink frequency. The satellite shifts these frames to the downlink frequency
and rebroadcast them. Transponders allocation is the major problem, carrier sensing
can't work due to 270 msec propagation delay.

SPADE

used for telephone connection, we have two methods.

FDM: is the simplest; each transponder channel is divided into disjoint subchannels
at different frequencies, which guard bands between subchannels to keep two adjacent
channels from interfering. When a telephone call requiring a satellite channel is
placed and deallocated when the call ends.

TDM: Satellite channel is not divided into subchannels by frequency, but by time.
The channel is divided into slots; which are grouped into frames, for digital telephony
a frame would be 125 micro sec, when acall is place, a free slots is allocated and
dedicated to the call in every frame until the call is finished.

Packet Radio Networks

Broadcasting packet differ from satellite packet. Because stations have limited
range, introducing the idea of radio repeaters, if 2 stations are faraway they can't hear
each other's transmission. Thus making CSMA impossible; there is no common clock
as in satellite for synchronization. All communication is either from a station to the
computer center, or otherwise. They use 2 bands in the UHF, and they use 9600bps.

B-5

Appendix C

The OSI Layers

OSI Layers Description

The OSI model is shown in table C-1, and the role of each layer is described

below:

7 Application
6 Presentation
5 Session

4 Transport
3 Network
2 Data Link
t Physical

Table C-1: OSI Layers

Physical Layer

The Physical layer is the most fundamental layer in the OST model. It is the
interface to the physical medium and provides standards for electrical, mechanical,
and functional transmission parameters.

Data Link Layer

The Data Link layer provides services to the network layer. It deals with
procedures and services related to the transfer of data from node to node. Its main
purpose is o ensure eiror-free delivery of data packets from point-to-point network
viewpoint. Hence, it is concerned with such problems as error detection, error
correction, and retransmission. However, since the data fink layer is hi ghly dependent
upon the physical medium, there is not a universal protocol at this level. Individual
protocols include HDLC for point-to-point and multipoint connections, as well as
IEEE 802.2 with Media Access Control (MAC) and/or Logical Link Control (LLC)
for Local Area Network (LAN).

C-1

Network Layer

The network layer ensures that a packet generated at the source arrives atits
destination in a reasonable amount of time. Therefore, this layer handles routing
procedures as well as flow control functions. Tt hides the physical implementation of
the network fromy the upper layers that need not know whether fiber optics, twisted
pair, or satellite communications are used. Hence, it creates a media-independent
transmission from the point of view of the upper layers.

Transport Layer

The task of the Transport layer is to provide reliable, end-to-end data transfer
for users of the transport layer. It establishes a connection between two endpoints,
and it negotiates the parameters during connection establishment. It concerns also,
with retransmission, multiplexing, time-out, and flow control.

Session Layer

The Session layer controls communication between applications. Tt provides
services to the session above it such as, session establishment and session release.
Another-service that can be provided by the session layer is dialog management. This
feature provides a half-duplex, flip-flop form of data exchange.

Presentation Layer

The presentation layer is concerned with the representation of the data that is
being exchanged. This can include conversion of the dala between different formats (
ASCII, EBCDIC, binary), data compression , and encryption. Additionally, the
presentation layer must make the services of the session layer available to the
application.

Application Layer

The Application layer is the only one that does not provide any service to
another layer, it deals with the user applications and handles communication at a
semantics level. The application layer is concerned with problems such as
interprocess communication, file transfer, virtual terminal and manipulation services,
and job transfer and broadcast communication.

C-2

Appendix D

Glossary

BIOS : (Basic Input/Output System) a set of programs, usually.in firmware, that
enables each computer's central processing unit to communicate with printers,
disks, keyboard, consoles, and other attached input and output devices.

Client : A workstation that boots with DOS and gains access to the network. With
DOS client software, users can perform networking tasks, such as, mapping
drives, capturing printer ports, etc.

DASD : (Direct Access Storage Device) The primary storage device e.g. disk drives.

DOS : (Disk Operating System) it contains information that ROM-BIOS uses to
determine which device to boot from. The boot record can be on either a
floppy diskette, a local hard disk, or a remote boot chip. ROM-BIOS Then
runs a short program from the boot record to determine disk format and
location of system files and directories. Using this information, ROM-BIOS
loads the system files (including two hidden files, IBMBIQ.COM and
IBMDOS.COM) and the command processor (COMMAND.COM).

FAT : (File Allocation Table) The FAT is the mechanism DOS uses to manage \
DASD space. DOS allocates non-contiguous space for a file in a sequence of
clusters, or allocation units (AU). Each AU in the FAT has the index of
the next AU for the file. The Last AU contains OxFEFF when DOS uses 16-bit
cluster numbers.

- Print Server : A computer that takes print jobs out of a print queue and sends them to

a network printer.
Reentrancy : The ability for a second function call to successfully complete before a
previous call to the same function has finished.

Server : A computer that regulates communications among personal computers
altached to it and to manages shared resources such as printers., hard disks.

D-1

TCP/IP : (Transmission Control Protocol / Internet Protocol) an industry suite of
networking protocols, enabling nodes in a heterogeneous environment (o
communicate with on another. TCP/IP is built upon four layers that roughly

- correspond to the seven layer OSI model. The TCP/IP layers are:
Process/application '
Host to host
Internet
Network access

IPX : (Internetwork Packet eXchange) A Novell communication protocol that sends
- data packet to requested destinations (workstations, servers, etc.). IPX
addresses and routes oulgoing data packets across a network. If reads the
. assigned address of returning data and directs the data to the proper area within
' : the workstation's or Netware Server's operating sys‘teifn. IPX 1s closely linked
' ' with other programs and routines that help in the network data-transmission
process.

D-2

References

[1] Lai, S.R., Writing MS-DOS Device Drivers (Second Edition), Addisson Wesley
1992, pp 20-23-29-30.

[2] Adams, M. P, and Tondo, L.C., Writing DOS Device Drivers in C, Printice Hall
1990, pp 28-33-34-38-92.

(3] Williams, AL, DOS 5. A Developer's Guide, Advanced Programing Guide to
DOS, 1989, pp 22.

[4] Schildt, H., Turbo C/C++ The Complete Reference, Osborne, McGraw-Hill,
1988,

[5] Halsall, F., Data Communications, Computer Networks & OS], 1988,
[6] Stevens,W R.,UNIX Network Programming, pp 6-15.

[7] Keringham, B. W. and Ritchie, D. M., The C programming Language,
Prentice Hall, Englewood Cliffs, N.J., 1984,

[B] Postel, 1. ed. 1981c¢, "Transmission Control Protocol,” RFC. 793, 85 pages, Sept.
1981, pp 6. '

[9] PC/TCP Development Kit, System Call Reference, Rel, june, 1991 Version 2.05
~ for DOS, FTP Software, Inc. Wakefield, MA.

[10] Novell Netware 4.0 Concepts, NetWare Network Computing Products, pp2.
[11] The Waite Group's Turbo Assembler Bible, Gary Syck, SAMS,

[12] Giles, B.W_, and Giles M. M., Assembly Language Programming for the Intel
80XXX Family, International Editions 1991

1 -
[13] Williams, AL, DOS 6: A Developper's Guide, Advanced Programming Guide to
DOS, 1990,

(14] Comer, D.E,, Internetworking with TCP/IP: Principles, Protocols, and
Architecture, Prentice Hall, Englewood Cliffs, N.J., 1988, rp 3.

[15] Mogul, J. and Postel, J. 1985, "Internet Standard Subnetting, Procedure,”" REC -
950, 18 pages Aug. 1985 pp 7.

[16] Novelt 1986, LAN Evaluation Report, Novell, Inc., Provo, Utah, 1986

[17] Postel, J. 1980, "Internet Protocol”, RFC 791, 45 pages, Sept. 1981.

B-1

[18]
(19]

‘z [20]

[21]

[22]

[23]

[24]

Postel, I. ed. 1981c, "Transmission Control Protocol,” RFC 793, 85 pages, Sept.

1981,

Rose, M.T. 1990, The Open Book: A Practical Perspective on OS], Prentice
Hall, Englewood Cliffs, N.J. 1990, pp 8.

Stallings, w. Mockapetris, P., McLeod, S., and Michel, T., Handbook of
Computer Communications Standards, Volume 3:Department of Defense

(DOD)Protocol Standards, Macmillar, New York, 1988, pp 5.

Tanenbaum, A. 8., Computer Networks, Second EdltIOil Prentice Hall,
Englewood Cliffs, N.J., 1989, pp 5-6.

Louis A. Delzompo, NFS and RPC, chap. 4, Sun Microsystems, lnc, pp 2.

Croft, W. and Gilmore, j. 1985, "Bootstrap Protocol (BOOTP)," RFC 951, 12 .

. pages, Sept. 1985,

Finlayson, R. 1984, "Bootstrap Loading using TFTP,“ RFC 906, 4 pages, june
1984,

E-2

