THE LEBANESE AMERICAN UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of

Sﬂ.‘ LA ”MQDUQL\

candidate for the Master of Science
degree in Computer Science.”

Date “QY§\ 3' qa’

“'We also certify that written approval has been obtained
for any proprietary material contained therein.

I grant to the Lebanese American University the right to use this
work, irrespective of any copyright, for the University's own purposes
without cost to the University or to its students, agents and
employees. I further agree that the University may reproduce and
provide single copies of the work, in any format other than in or from
microforms, to the public for the cost of reproduction.

AN APPROACH TO REDESIGN FOR
TESTABILITY AT THE RT LEVEL USING
BIST TECHNIQUES

SALAM S. HARFOUCHE

Submitted in partial fulfillment of the requirements for the
Degree of Master of Science

Thesis Advisor; Dr. Haidar M. Harmanani

Department of Computer Science
Lebanese American University—Byblos
“June 1997

An Approach to Redesign for Testability at the RT Level Using
BIST Techniques

ABSTRACT

by
SALAM S. HARFOUCHE

The increasing density in VLSI chips complicates the design as well as it
complicates the testability problem. This thesis proposes a new approach to
redesign for testability at the Register Transfer Level (RTL). GivenanRTL
description of a data path, the purpose of the redesign process is to improve its
testability with a minimal cost by: 1) inserting additional registers, if necessary; 2)
Converting already existing registers into test registers so that they can be
configured as TPGRs, MISRs, or BILBOs during test mode. In order to reduce
test penalty, and insure the data path structural testability, it is necessary to
automate the BIST Insertion process. BIST registers are chosen so that to
minimize test and time overhead, by using Randomness and Transparency metrics

of the combinational logic.

ii

To my parents

iii

ACKNOWLEGMENTS

I would like to thank my thesis advisor Dr. Haidar Harmanani for his guidance.
Also, T would like to thank Dr. W. Keirouz and Dr. G. E. Nasr for being on my
thesis committee.

I would like to thank my friends at the Lebanese American University for all their
support during my studies.

Finally, I would like to thank my family for their support, and to extand my
gratitude to the Hariri Foundation and to the Lebanese American University who
helped me financially to accomplish this work.

iv

TABLE OF CONTENTS

CHAPTER I: INTRODUCTION .veoreene 1
1.1 THE ABSTRACTION LEVELS rovsvressssessrmssessssssssssmsessssssssssimsssssss s o s 1
13 EGH LEVEL SYNTHESIS osasrerrsssssssssstarsssssissssssssstssssssasss s ssemisssss s e 3

1.3.1 High Level SyRtHesis SIEPS.......cwrwewssmmsssss s sssmiss s e 3
1.4 DESIGNFORTESTABILITY 6
141 SCan TECHIIGUE o crsvrcarirmmssssiemssssnssss s b sy 7
142 BIST TECHIIGUE .ovvevcerceversrnrsssisssssssissssssssssss st s s s s 8
1.5 PROBLEMDEFINITIONANDTHESIS OUTLINE sevevevessesessessassssssssssenssansassmsassasssmssssasissyssesesssss 9

CHAPTER 2: LITERATURE REVIEW coousnssorssrssssermmsssssssassnsamsssionsess g1
31 ADEPT covvooesesssessessesseress st s b 11
5% SYNTEST reevessvesesssssisessssssass s s 12
.3 BREUER’S BILBO METHODOLOGY iossscsrerrssssssssssisressesssesssmmensississs s e 13
9.4 A BEHAVIORAL LEVEL SYNTHESIS FOR TESTABILITY SYSTEM woovvereiarrsssnmmrinsmsassensrsssnseass i5
7 5 AUTOMATIC INSERTION OF BIST HARDWARE(AIBH)IG

CHAPTER 3:REDESIGN FOR TESTABILITY. . - e 19
3.1 THE DIFFERENT TESTING CONSIDERATIONS cvvvesecssarrassssresesssassassessassissssmmssessassassssesmisssrssssss 21
3.2 TEST POINT MINIMIZATION 1.csossssessssssssssssssrasssssssassssspamisssss st e 24
3.3 THE SELECTION PROCESS..ovrvssessssssssssrsesssssssssssssss s smsss st sy 27
7 A THE SCHEDULING PROCESS .orevsssesssersssssssossisesssnsssss st s sttt s s s 34

CHAPTER 4: RESULTS covsvussrossssonsersussssrmsonsossssasenssssosssstasssnsscssss 36
A1 EXAMPLE Loonoervesseesesssssseesssssesssssessssassassssssssmss s s s st o 38
£2 FXAMPLE 2 vvevverse212805144805555444450 014G 39
4.3 EXAMPLE 3uvevervesssorsresssssssssesssstssesssmsssass s s s s s s s s s 41
A8 BXAMPLE &..eovenresssersssssssmissssrasssiesssans sy st s s s st s 43
4.5 EXAMPLE Seeeeeereesseresssessasessosssssssbisissssssssas st s s s s s 45
5.6 CONCLUSION vversesssesseressonssorsssasssssbsssssb s 8 R S 46

v

LIST OF FIGURES

FIGURE 1.1 : THE ABSTRACTION LEVELS.coviuvessssessemmisssmssssssmssss s sssmm s esins s 2
FIGURE 1.2 : THE STEPS OF HIGH-LEVEL SYNTHESIS woovuvusivssiesresmsssssssaners sy 5
Figure 1.3 ;: THE HiGH LEVEL SYNTHESIS TASK +veveseenseosssassessesesessssanstassasasshanansnasissansnassssassessioss 6
TFiGURE 1.4 1 A SAMPLE SCAN BASED TDESIGN +vrvenemererressssearenessssansasssseneanmembasarasiansisusssnsmsusssissesssss 8
FIGURE 1.5 © A SIMPLE DATA PATH covrvusncrinimssssrsessimisisssssisssss s s s s s 9
FIGURE 2.1 : GENERAL ORGANIZATION OF THE SYNTEST ENVIRONMENT .oierverssessinnssassesssnsansancas 13
Figure 2.2 1 AN OVERVIEW OF THE BILBO DESIGN SYSTEM..ciiieeismieanssmrmssnimsssnsssssasasaes 14
FIGURE2.3 : AN INTEGRATED SYSTEM FOR BEHAVIORAL SYNTHESIS FOR TESTABILITY -cevveesresens 16
FIGURE 3.1 ¢ THE RETEST SYSTEM w.ooucuriuierisimmssssssrmsssssssis st es i sas s sess s s 20
FIGURE 3.2 : A TESTABLE FUNCTIONAL BLOCK cevtreeersesrasossrassasssssssnssasassssnsanesarasesssasannaseasat oo 21
FIGURE 3.3 ;: TEST INSERTION BETWEEN TWO ALUS +ooteteeeemeneiarsssemsanssssssmsssssisrassssansases eassaasassss 21

Figurg 3.4 : TEST INSERTION WITH SELF-ADJACENCY overriassesmeresssnssnssnsiansensassasanss
FIGURE 3.5 : TEST INSERTION WITH MULTIPLEXER AT INPUT PORT .coverminnsnnnssnsiarennns

FIGURE 3.6 : EXAMPLES OF NON-TESTABLE ALUS WiTH MUXS AT THE OUTPUT -ocrvinisniannsess

-
veererens 23

........ 24
FIGURE 3.7 : THE ALGORITHM OF THE TEST INSERTION w.cvuuiussensrnssansasrmsauseromssansssass s s 25
FIGURE 3.8 : EXAMPLE DATA PATH 26
FIGURE 3.9 1 EXAMPLE DIESIGN ..ovvvansersesecssssmmsmsrsssssssammssssssasisamsssssssssasim st s e 0t 27
FIGURE 3.10 : THE SELECTION ALGORITHM ... vunmesssrsessssmmsmsssssressssnasiassesmisssmas s 32
FIGURE3.11 1 RANDOMNESS CHECK .ereescosssmmmsssssssssissasissismsisriasesmas s ssssssesmsssssssssmss st s sennss 33
FIGURE 3.12 : TRANSPARENCY CHECK -ccreunorimsarssssssmsussssmmsssssmssiomissssssssisss st sssssy sy 33

FiGure 3.13: THE GREEDY SET COVER IMPLEMENTATION .. cvanurancssesssasssrsessesismssasansssassensassnansass

Figurg 3.14: THE SCHEDULING ALGORITHM36
FIGURE 4.1 EXPERIMENTAL PROCEDURE .. covuarssesssersssssinssasmrissssssssstansasscsmssassasrsmss s o 37
FIGURE 4.2: EXAMPLE DESIGN. civortanressessssssssssssmsssersssinassamssssstansssssiassmussss s sss s st 39
FiGURE4.3: FAULT COVERAGE OF THE EXAMPLE DESIGN wvocsecuserrsssanasseensecmssamssssnsinmmssssmasssnsnsens 40
FiGURE 4.4: DATAPATHOFLYRA AND ARYL EXAMPLE41
Figure 4.5: FAULT COVERAGE OF LYRA AND ARYL EXAMPLE cveveceressramessnsransossaniesonsiansssiarasss 42
FIGURE 4.6: THEHAL DATAPATH 43
Figure4.7: FAULT COVERAGE OF THE HAL DATAPATH «veuverenseersssenisssamssnsasssssassasiassariansacranenes 44
FIGURE 4.8; DATAPATH OF THE DIFFERENTIAL EQUATION EXAMPLE ..vcovsusuniarassensemmmsnsssanssmanseseess 44
FiGURE 4.9: FAULT COVERAGE OF THE DIFFERENTIAL BQUATION EXAMPLE. ...cccvrsusuneansassanssassnsesees 46
FiGURE 4.10: DATAPATH OF THE TMS32010 EXAMPLE «cvvveescservrsssmsresrorssssessmsrssssssarmassssassmssisssess 47
Figure 4.11; FAULT COVERAGE OF THE TMS32010 EXAMPLE ..corevevismesranmisesnisnsarssssssinrsasasssaress 48
vi

LIST OF TABLES

TABLE 3.1: INITIAL LIST OF TEST MAPPINGS FOR EXAMPLE OF FIGURE 3.9 28

TABLE 3.2: TEST MAPPINGS OF EXAMPLE OF FIG. 3.9 AFTER RANDOMNESS CHECK ..covriasearissansnines 29
TABLE 3.3: TEST MAPPINGS OF ExaMPLE (FiG 3.9) AFTER TRANSPARENCY CHECK venisrnsarsaneanenss 30
TaBLE 3.4: LIST OF SORTED REGISTERS e veseassssecsssssassesassasrassssssessstaniaspassssss sy osmsas s s 31
TABLE 3.5: THEFINAL SELECTION LisT OF EXAMPLE OF FIGURE 3932
TapLE4.1: FAULT COVERAGE OF [INDIVIDUAL COMPONENTS vverssnnisssssessssssnsssissssrssssierssssssassiess 38
TABLE4.2: SCHEDULE TABLE OF THE RUNNING EXAMPLE ocvorsssesrescsssmnsasesssemssssessasssmsssesemssssnsss 39
TABLE4.3: SCHEDULE TABLE OF ARYL AND LYRA EXAMPLE 1ovusevessasrammsemsssmrssmessemmssssser e 41
TARLE4.4: SCHEDULE TABLE OF HAL EXAMPLE «.vvveresssaressessariamsammmsinssmasasserassaassnssss s as st 43
TABLE4.5: SCHEDULE TABLE OF DifF. EQ. EXAMPLE 45
TABLE 4.6: SCHEDULE TABLE OF THE TMS32010 EXAMPLE couovuvemsenssrssseresssmsssuasansmissssensesssensenss 47
vii

Chapter 1

Introduction

The move to VLSI (Very Large Scale Integration) design has increased cir-
cuits complexity and led to a complexity in the design process. Thus, manual de-
signs became very costly in terms of manufacturing and turnaround time. Synthesis
tools were proposed in order to shorten the design cycle, and facilitate the design

proess.

On the other hand, the increase in chips density made the access to chips'
internals a harder task. This in turn complicated the testing process as well.
Therefore, testing had to be taken into consideration early in the design cycle in
order to create testable chips with a minimal area and time overhead. Different
techniques were proposed to solve the testing problem in an efficient manner,
mainly Design For Testability techniques (DFT).

In discussing the future of Digital Signal Processing (DSP) CAD tools, Pau-
lin [Paul92] indicates the need for high level synthesis tools and clarifies the real
importance of verification and test tools. His observations were a result of a sur-
vey conducted at Bell Northern Research, summarizing the opinions of DSP d -

signers.

1.1 The Abstraction Levels

The design process can be modeled at different levels of abstraction, from the
layout level to the system level (Fig 1.1).

System level designs are described as algorithms written in a High Level
Language (HLL) such as C or any Hardware Description Language (HDL) such as
VHDL (behavioral) or Verilog. Register Transfer (RT) level designs are described

as independent components connected together through buses and other intercon-
nections. Gate level designs are specified as an interconnection of gates specified
in a given technology. Finally, the layout level designs are specified as a network of
transistors.

A variety of CAD tools have been proposed at the layout and gate levels.
Layout level CAD tools are synthesis tools that synthesize the gate level descri tion
and generate a corresponding layout description. Logic Level CAD tools translate
an RTL description into a gate level description.

Silicon Compilers are tools that transform a design through the abstraction
level to get the final layout of the chip.

System Level

Register Transfer Level (RTL)

Logic (Gate) Level

Layout Level

Figure 1.1: The Abstraction Levels

However, the increasing density of chips made gate and layout level CAD
tools insufficient in a competitive and fast moving market. CAD tools had to ad-
dress the RT and behavioral levels and thus High level synthesis tools emerged.
High Level Synthesis transforms a behavior described into a data path described at
the RT level.

1.2 Testing

Testing deals with revealing physical defects in circuits by applying test pa -
terns to the circuit under test and verifying test responses. The VLSI testing
problem has two facets: Test Generation and Fault Simulation.

Test Generation is the process of generating test patterns to test the work of
the circuit under different inputs. As circuits grow in size, the test generation
problem becomes more and more difficult.

The other facet of the testing problem is fault simulation that consists of de-
termining the fault coverage for a specific set of input test patterns. The fault cov-
erage shows the testability of the circuit through determining its capability to detect
faults. At the end of the fault simulation process, faults detected by a specific pat -
tern set are listed. Fault simulation is a very time consuming and expensive proc-

€88,

1.3 High Level Synthesis

As was mentioned earlier, High Level Synthesis is the process of trans-
forming a behavioral level design into an RTL design (a behavior into a data path
and a controller) subject to a set of constraints. The controller is generated using a
Finite State Machine (FSM) description. Along with the behavior, a set of con-
straints needs to be fulfilled. These constraints include, among others, the number

of components, area, available resources, latency, and recently power corsumption.

1.3.1 High Level Synthesis Steps

The High Level Synthesis steps as shown in Figure 1.2 starts with a front
end tool that parses an algorithm to create an intermediate format, a Control Data
Flow Graph (CDFG). The CDFG consists of nodes representing algorithmic op-
crations such as additions and multiplications, and edges representing data transfers

and indicate operation precedence.

The second step in High Level Synthesis is scheduling the CDFG into con
trol steps to determine which operation should be executed at which time step.
‘While preserving operator precedence, scheduling should meet the design con
straints while minimizing the length of the schedule (latency) and minimizing the
number of resources. A variety of scheduling techniques have been proposed;
they all attempt to minimize costs such as area and delay costs.

The final step is allocation where the data path is created. During the all -
cation phase, the number of functional units, registers and busses is determined,
and operations are mapped to FUs, variables to registers, and data transfers to and
from busses are defined. Various allocation techniques have also been proposed
and they all aim at minimizing area and delay costs. The output of this phase is a
datapath and a controller, usually modeled in a hardware description language.

Figure 1.3 gives an example illustrating the High level Synthesis task.

Algorithm in HLL or HDL

DFG

Scheduler

Scheduled DFG

Data Path
Allocator

Data Path

Figure 1.2: The Steps of High-level Synthesis

Initial Behavior
entity example is
port(a,b:out bit;
¢,e.f in bit;
vdd,vss: in bit)
end example;
architecture behavior of example is
Begin
b<=e+f
a<=b+c;
end;
Figure 1.3a: VHDL description of a simple circuit.

o
e}
w
L

Data Flow Graph (DEG)

a b
Scheduled DFG
b /c
a e\~ /f
b
Data Path Allocation

Figure 1.3b: The High Level Synthesis Task

1.4 Design For Testability

There are two main issues in Design For Testability (DFT): controllability
and olservability.

Controllability means that the input terminals or devices of the component under
test can control the output, while observability means that the circuit under test can
be observed at some output terminals or devices.

Design For Testability techniques present ways of approaching test genera-
tion and fault simulation in order to reduce the overall testing cost and to produce
a high quality product. A lot of different approaches are followed by DFT tech-
niques. These approaches fall into two major categories: the adhoc techniques
solve a problem for a given design and are not generally applicable. The structured
technigues are generally applicable and better automated since they aim at reducing
the sequential complexity of a system to aid the test generation and fault simulation
Processes.

The two most commonly employed structured techniques are Scan and BIST.

1.4.1 Scan Technique

In the scan method, individual latches are connected to form a big chain of
shift registers. The chip has two modes: a normal and a fest mode controlled by an
input/output pin. In normal mode, the circuit performs its intended function.
However, in scan mode, the latches are chained together to form shift registers,
and thus control as well as observe circuits’ internals. The chip contains two extra
pins: a scan-in pin is used to shift in test patterns. With the patterns shifted in, the
circuit is then converted to normal mode and tested. Afterwards, the circuit is
switched back to scan mode and the resulting values are shifted out through the
second extra pin: the scan-out pin (Figure 1.4 [WiPa83]).

Combi-

national ’v;i> Outputs

logics Scan Out

inputs

SRLs i SRL: Shift Register Latch

Clock

Scan in

L

L
Figure 1.4 : A Sample Scan Based Design

Designers attempted to minimize the additional cost of transforming a circuit
into a scan circuit. They introduced the idea of partial scan in which only a subset
of the registers in the circuit are transformed into scan registers. Different meth-
odologies were devised to achieve an optimum selection of scan registers in order

to minimize the test overhead.

1.4.2 BIST Technique

The second technique is the Built-In Self Test (BIST) technique where each
module is controlled by Test Pattern Generators (TPGRs) at its inputs, and a
Multi-Input Signature Register (MISR) is placed at its output to observe output
sequences. Many BIST techniques are known such as BILBO (Built-In Logic
Block Observer), Syndrome testing, testing by verifying walsh testing coefficients
and autonomous testing. Among all these techniques the BILBO technique has
been widely used. A BILBO register is a register that can be configured as a
TPGR and an MISR but in different test sessions. Designers aim at minimizing the
number of BIST registers in the circuit while keeping a high fault coverage at a
relatively low test time.

In complex systems, there are usually some conflicts between two modules’
input/output registers for which different treatments are devised. In Figure 1.5, if
all the functional units are to be tested at the same time, there will be a problem at

R5 and R6. These registers will have to be a TPGR and an MISR in the same test
session (i.e. RS has to be an MISR for FUl and a TPGR for FU3 and R6 has to be
an MISR for FU2 and a TPGR for FU3). BILBO cannot support this operation
and the solution in this case is to configure the register as Concurrent BILBOs or
CBILBOs. However, CBILBOs are very costly in terms of area and delay over -
head.

Scheduling the test of operations into test sessions determines the test se-
quence and may, in some cases, decrease the need for CBILBOs. In Fig 1.4, two
test sessions is the optimum number of fest sessions, where FU1 and FU2 are
tested during the first test session and FU3 is tested during the second. Thus, R3
and R6 are configured as BILBOs and used as MISRs in the first session, and as
TPGRs in the second, while R7 is an MISR and the rest are TPGRs. The number
of test sessions affects the test time: The smaller the number of test sessions, the
shorter the test time.

One advantage of the BIST technique is that some FUs are tested in parallel
(ex: FU1 and FU2), thus reducing the overall testing time. Another advantage is
that BIST can run at normal operation clock. However one disadvantage to the
BIST technique is due to the insertion of extra hardware that requires an overhead

in area.

Figure 1.5: A Simple Data path

10

1.5 Problem Definition and Thesis Outline

The system implemented in this thesis addresses the problem of redesign for
testability. It identifies parts of the design that are hard to test, and inserts registers
(normal) where needed. Afterwards, a test selection process is applied to the re-
sulting design to select TPGRs and MISRs of the different components. During
the selection process, the randomness and transparency metrics are considered to
minimize the number of test points selected. The final step is the scheduling proe
ess in which the test of the components is distributed to different test sessions.
The scheduling process tries to minimize the test time by minimizing the number of
test sessions needed. The input to the system is a VHDL description which is
parsed and a simple flattened netlist is generated. The output of the system is a
VHDL description of the testable data path. The output can be fed to any layout
synthesis tool in order to generate the necessary chip layout.

Chapter 2 presents a literature review, while chapter 3 introduces the prolem

and discusses the system implementation. Chapter 4 presents results and corludes

outlining future directions.

i1

Chapter 2

Literature Review

A lot of High level synthesis tools have been proposed with some that include
testability considerations. Furthermore, Several stand-alone test insertion and
analysis tools were proposed . In this chapter, we will review some High Level
Synthesis and Testability tools.

The five systems that will be presented in this chapter attempt to provide solutions
to the testing problem.

2.1 ADEPT

ADEPT [CLPa92] is a DFT tool that has been proposed at the center for re
liable and high performance computing at the university of Illinois at Urbana-
Champaign. It is based on the partial scan method in order to improve the test -
ability of a given circuit.

The input to this tool is a high level description of the circuits specified in
VHDL. ADEPT converts the VHDL specification into an Execution Flow Graph
(EFG) which is a compact representation of the data and control flow suitable for
extracting testability information. A node in the EFG is either a register node, a
combinational node or afannode. The directed arcs represent the control orders
which transfer data from the source node to the destination node.

A testability measure defined as Testability Sequence Range (TSR) is then
derived for the nodes of the EFG. The TSR is the summation of two basic con-
trollability and observability measures namely the Controllability Sequence Range
(CSR) and the Observability Sequence Range (OSR). The EFG for each module of

12

the circuit is extracted independently and the TSRs for this Primitive EFG (PEFG)
are calculated.

Each PEFG is combined next with the PEFGs that interact with it and the
TSRs are updated accordingly to give finally the Global EFG (GEFG). The TSRs
are then scaled by certain weight factors to give values appropriate for calculating
profit functions for each scan register. The profit functions are a measure of the
improvement in testability achieved by converting a register to a scan register.

Given a cost function for converting a register to a scan register and a profit
function, the scan selection problem reduces to an optimization problem. The o -
jective of this optimization problem is to choose the most profitable combination of

profit and cost that has a determined maximum cost.

2.2 SYNTEST

The SYNTEST system [HPCN92] is a system that integrates both synthesis
and test at the system level. The input to this system is a behavioral description
that describes the function to be performed and the output is a testable datapath
and a controller. There are two key aspects on which SYNTEST bases its testabil-
ity approach: the structural testability model and the functional testability model
(Fig 2.1).

SYNTEST uses the BIST technique in order to make its datapath testable.

It uses the concept of Testable Functional Blocks (TFB) and focuses on the prob-

lem of testing data paths using TFBs that do not contain self loops using the con-

ventional BIST techniques. Later, the authors proposed an improved structural

testability model based on Extended TFBs or XTFBs that have more than one out -
put register, one of which can act as an MISR.

SYNTEST improves the functional testability by minimizing the number of

test registers. The idea is that the need for a TPGR is to produce random patterns.

If a register can still provide enough random patterns, it doesnot need to bea

TPGR. On the other hand, if the output of a module can be observed at an observ-

13

able point through intermediate modules, the register at the output of that module

need not be an MISR.

Thus, SYNTEST uses two testability metrics, namely randomness and tran -

parency to minimize test points. The randomness metric gives the probability of a

register to produce random patterns (a randomness of one means a perfect pattern

generator). The transparency metric gives the probability that an error at a point

can be observed at an observable point. This way the test area overhead can be

further reduced by being able of removing unnecessary test points. However, this

may reduce fault coverage. Therefore, SYNTEST allows a tradeoff between test

area overhead and fault coverage.

- ____ Behavioral VHDL

+
DFG Generator .
Scheduler i

Component Cost Testable
Estimation Allocator

Test Tradeoff
Estimator

[

Layout/Delay
Estimator

RTL Netlist
Generaior

Figure 2.1: General Organization of the Syntest Environment.

!

Commercial Tools
(Structural VHDL)

Technology

Libra

14

2.3 Breuer’s BILBO Methodology

A group lead by Professor Melvin Breuer at USC propo sed a design system
based on the BILBO methodology [LNBr93}. It aims at providing the designer
with the option of makinga tradeoff between test time and area overhead. Figure
2.2 shows an overview of this BILBO design system.

The input to the system is represented in the Cbase (an object oriented data
base developed by the USC test group). The first step is to determine I-paths that
are the datapaths between input and output ports through which data can be tran -
ferred unchanged.

Second, from the I-paths embeddings for each kernel can be constructed. In
the system, an embedding is the structure formed of a kernel and its associated
Pseudorandom Pattern Generators PRPGs and Signature Analyzer SA. Thus, in
complex circuits, there may be more than one embedding for a single kernel.

During the third step, the compatibility between each two embeddings is ob
tained. Two embeddings are compatible if they do not have resource conflicts and

can be executed concurrently.

I-path
Identification
Embedding
Construction
Compatibilty
Analysis

Design Space

| Explorer I

Figure 2.2 : An Overview of the BILBO Design System

15

Afterwards, a design space explorer is used to generate representative designs
for the testable design space using a branch and bound procedure. A representative
design is one of the designs that the designer may choose. During this step, a test
scheduler is used to determine the minimal time each design will need to execute a
complete test. Each representative design has its own test time and area overhead

and the designer uses these data to choose between representative designs.

A Self Adaptive Expert Selection System (SAESS) has been implemented to
help a designer in making a good selection. Once the designer makes his selection,
a modification process is carried out to add the test hardware to the circuit under
test.

Finally, the testable version of the original design is stored back in the data-

base for future processing or layout.

2.4 A Behavioral Level Synthesis for Testability System

Chen and Saab presented a system that considers testability at a higher level
of abstraction [ChSa92]. By determining Hard To Detect arcas (HTD) and by in
serting statements in the behavior of a circuit, this system tries to resolve the test-
ability problem of a given circuit. This system can be integrated into a high level
synthesis system as a pre-scheduling step (see figure 2.3).

The input to the system is a behavioral description of the circuit that has a
special intermediate format, consisting of a symbol table and a statement list. The
symbol table describes the variables defined in the circuit. On the other hand, the
statement list is a list of control, assignment, logical, and user defined statements.
This intermediate format is fed to a behavioral testability analyzer called BETA. Tt
produces a control flow graph where a node corresponds to a statement in the
statement list and an edge determines the flow of execution of the statements.
Then, a procedure is followed to determine HTD areas and the reasons which make
each point HTD. HTD areas are the areas that are not identified as Completely
Controliable (CC) or Completely Observable (CO). Since the goal of the selection

16

process is to find the minimum number of test points needed to remove all HTD
points, then the problem becomes NP-hard. Thus, a heuristic is devised to over -
come this problem.

Finally, after test points have been determined, Test Statement Insertion
(TSD) is done. During TSI, a test statement is inserted such that it assumes the
original statement at the normal mode but is able of making a completely controll -

ble design at test mode.
VHDL (ot C)
A R
| |
! :
! Compiler :
: |
i !
i i
] 1
! I
: Optimizer ! e b ,
: S0 [Testabiity | |
t
| AR T .. ol
] i 1] 1
: M | ;o ¥ i
i A Selection !
i Scheduler al’ld | 1 ! Process |
| Allocator . | ; :
: o TSI]
I St ‘
L ___ { ______ 1 I |
Behavioral Level Synthesis Tool Testability Modifier

Figure 2.3: An Integrated System for Behavioral Synthesis for Testability

2.5 Automatic Insertion of BIST Hardware (AIBH)

The department of electrical engineering at Virginia Polytechnic Institute and
State University proposed a system that automatically inserts BIST hardware to a
circuit [KTHa88]. The input to the system is a structural description of the non-
testable circuit written in VHDIL. AIBH is implemented under the BILBO design

17

methodology, and it uses an algorithmic and rule based approach to insert BILBO
registers.
The tasks of AIBH are summarized in five steps:

1. Translation of VHDL description into Prolog description.

2. Allocation of PRPG and MISR for each Combinational Logic
Block (CLB) in a design.

3. Scan-path Organization.

4. Test Scheduling.

5. Distribution of register control signals.

The first step parses the VHDL code and transforms it into Prolog represe -
tation which can be processed by a rule based system. The representation is in
form of facts describing the individual modules in the design. The predicates repre -
sent the name of the module, and the arguments represent the type of the module,
its inputs, and its outputs. The inputs and outputs contain a lot of details such as
the name of the input port, the name of the block connected to the input port and
the name of its output port, the type of signal at the port, and the size of data path
width of the port.

The second step consists of the allocation of the PRPGs and the MISRs.
This is done by first searching all paths from registers to CLBs and from CLBs to
registers. Then, each CLB is allocated PRPGs and MISR from the existing regis-
ters. A covering table shows, for every CLB, the registers that can be configured
as PRPGs and as MISRs. The selection process is done using a set covering algo-
rithm in order to minimize the number of PRPGs and MISRs. However, the set
covering algorithm is not sufficient to solve the allocation problem. Two problems
arose : some CLBs are not covered at all due to lack of registers, while others face
the problem of having the same register as their PRPG and MISR at the same time.
Therefore, a heuristic has been developed to solve these two problems. This heu-
ristic was implemented using a rule based system.

The third step is the scan-path organization. During this step the registers are
to be configured as a single shift register chain. Therefore, an optimal order of the

registers should be found in order to minimize the wire length of a scan-path. The

18

problem is formulated as a graph and the all-pairs shortest path algorithm is used to
solve it.

The fourth step is the test scheduling. AIBH uses the scheduling scheme rep
resented by Kime and Saluja. The CLBs are represented by nodes in a Test Com
patibility Graph (TCG). The edges between the nodes represent the compatibility
of these two CLBs (i.e. if they can be tested during the same test session). This
depends on the sharing of resources such as MUXes and Data Buses.

The last step deals with control signal distribution. It tries to minimize the
number of control signals needed to control the test registers. This reduction is
performed using the procedure proposed by Kalinowki et al .

The AIBH system solves the testing problem using the BILBO test insertion
scheme. However, it’s not a pure register insertion scheme (i.e. not only BIST

registers are inserted); in some cases, in order to reduce the area overhead MUXs

may be inserted instead in order to use existing test registers.

19

Chapter 3
Redesign for Testability

Many high level synthesis systems with test considerations have emerged in
the last decade. Some integrate testing at an early stage of the synthesis process,
trying to reduce the test overhead by trading off design and test cost.

However, there are a lot of existing High Level Synthesis systems without
test considerations. In order to test such systems, test insertion must be used. Test
insertion may involve inserting new registers or just modifying existing registers to
support additional test mode. Test points are important since they provide addi -
tional control to the data path internals by providing patterns and compressing sig-
natures. Many test insertion schemes have been developed; however, they did not
fully take advantage of the ALUs’ functional features, namely randomness and
transparency.

In this chapter, a test insertion scheme based on the BIST methodology is
presented. It guarantees data path testability, by inserting appropriate test regis-
ters. Initially, inserted registers are considered as normal registers, the randomness
and transparency metrics are used later to minimize the number of test points. The
inserted normal registers that are not selected as test points will be removed from
the data path. Figure 3.1 describes our redesign for testability approach (ReTest).

A data path, expressed in structural VHDL is fed to our system. Each
module is described with a behavioral logic level model. The VHDL code is parsed

and components information are collected.

20

Structural RTL VHDL

Test Insertion)

h 4

[Test Points Selection j

Cl'estable VHDL Datapat

Figure 3.1 : The ReTest System

Such information include, among others, components type, bit-width, irputs
and outputs. The design is next analyzed, in order to insert and select test points,
taking into consideration randomness and transparency metrics. Test scheduling is
accomplished next in in order to determine the necessary test ses sions, Finally,
The resulting data path corresponds to the testable redesigned data path and a
VHDL. description of it is generated.

The next section introduces the different problems that make a test point
insertion necessary, and presents the test insertion' scheme used. Section two
claborates on the randomness and transparency measures and their usefulness in
minimizing test point selection. Section 3 presents the selection of test registers
and the heuristics used to implement the selection process and to apply randomness

and transparency considerations. Section 4 presents the scheduling process.

21

3.1 The different testing considerations

The testing scheme presented in this Thesis is based essentially on the notion
of Data path Structural Testability using Testable Functional Blocks (TFB). A
functional block is considered a TFB if its combinational unit is controlled at its in-
puts by TPGRs and is observed at its output through an MISR {see Fig3.2). A
circuit that is based on TFBs is structurally testable. Based on the notion of strue
tural testability, There are three general cases in which a test insertion becomes

necesary.

Fig 3.3a: A Nontestable Datapath : Fig 3.3b: Testable Datapath After
Register Insertion

Figure 3.3 ; Test Insertion Between two ALUs

In the first case, a register insertion is necessary if the ALU output is imme-

diately used as an input to one or more ALUs (Fig. 3.3). The inserted register

22

may work as an MISR for FUL and as a TPGR for FU2 and FU3, before consi -
ering the randomness and transparency measures. However, if the output of the
ALU is also fed to a register, the ALU is then considered testable and there is no
need to insert any more registers.

The second case results due to register self-adjacency problem. A register
is self-adjacent if an output of this register foeds back into itself through combina-
tional logic. Figure 3.4a depicts such a situation. This creates a testing problem,
and can be solved if the self-adjacent register is configured as a CBILBO which is
very costly in terms of area and delay [HaPa93].

This problem in this case is solved by inserting a register between the com-
binational logic and the self-adjacent register as shown in Figure 3.4b. However,
not all self-adjacent registers create a testing problem as shown in Figure 3.4c. If
an ALU has 2 or more output registers, one of which is a self-adjacent register,
then the self-adjacent register may be configured as a TPGR to the ALU and one
of the other output registers would be configured as an MISR.

Fig 3.4b: Self-Adjacency
solved

Fig 3.4a: An example of self-
adjacency

1 1
! |
1 |
| 1
| |
£ |
t |
§ !
1 1
i |
1 |
1 b
| |
1 '
| {
| 1
| |

fig 3.4c: Self-Adjacency not
creating a testing problem

Figure 3.4: Test Insertion with Self-Adjacency

In the third case, if the input to the ALU is a MUX, then in order to test the
ALU, the MUX inputs need to be checked. If the MUX inputs include a register
(ie. its inputs are not only outputs of other MUXes or ALUs), then the ALU is
considered testable. For example, in Figure 3.5 we need to check the testability of

23

ALU1 whose inputs are the output of MUXI. In this case, the inputs to MUX1
need to be checked.

outputs of Al Us outputs of ALUs

[RI]

Fig 3.5a: An example of non-
testable datapath with MUX

Fig 3.5b: non-testable due to
self-adjacency

outputs of ALUs
outputs of ALUS P

Fig 3.5d: Example of Self-Adjacency

Fig 3.5¢: Self-Adjacenc,
800 sobved ! 4 not creating a testing problem

Figure 3.5: Test insertion with Multiplexer at Input Port.

Figure 3.5a shows a case where ALU1 is not testable. In this case, none of
the inputs to the MUX1 are registers outputs (i.e. they are all output ports of other
ALUs). The problem here is solved automatically by solving the problem of the
ALUs that are input to MUXI. The output ports of these ALUs are observed by
register insertion. This register insertion transformed the input to MUX1 to be
formed of registers, and therefore the ALU becomes testable. Figure 3.5b shows a
non-testable combinational block, even though one of the inputsto MUX1 isa
register. This is the self-adjacency case presented in case two; it is also resolved by
inserting a register between the multiplexer and the ALU1 (see Figure 3.5c). Fur-
thermore, if the output of the combinational logic feeds into more than one output
register, one of which is a self-adjacent register, then the self-adjacency does not

create a testing problem (see Figure3.5d).

24

On the other hand, if the output of the ALU feeds directly into a MUX,
then in order for the ALU to be testable, then the output of the MUX needs to feed
into a register, otherwise a register has to be inserted. Moreover, if the output of
this MUX feeds into a register that is self-adjacent, then there is also a need to in

sert a register. Figure 3.6 depicts several examples illustrating this case.

|
|
|
|
|
1
|
|
I
l
1
!
i
|
!
|
b
f
L
f
t
f

Fig 3.6a: non-testable,

. Fig 3.6¢: non-testable due to
datapath with MUX |

self-adjacency

Fig 3.6b: non-testable due to
self-adjacency

Figure 3.6: Examples of non-testable ALUs with MUXs at the output

The test insertion scheme implemented in this thesis tries to resolve all the
problems listed in the three cases described above. It does so using a heuristic that
checks all these cases and inserts registers accordingly. Figure 3.7 shows the algo-
rithm for the test insertion problem. The order of this algorithm in the worst case is

O(n’) where n is the number of components in the input circuit.

3.2 Test point minimization

A certain module is considered testable when it can yield a high fault cover-
age when tested. Under the BIST methodology, a given circuit is tested by sup-
plying random patterns at the modules inputs, and analyzing faults at their outputs.

25

Read Input file.
Create a list of all the ALUs and determine their arguments.
For every ALU check its arguments;
For every argument check its type
(whether it's a register, a multiplexer or another ALU).
If the argument is a register:
If this register is an output register and there is no other output register
If this register is also an input register to the ALU
(self-adjacency case)
Insert a register;

If the argument is an ALL:
if the ALU is at the input port
insert a register between the two ALUs.
If the ALU is at the output port
If the main ALU has other outputs which are registers
If the registers create a self adjacency problem
Insert a register

else
Insert a register

if the argument is a MUX:
If the MUX is at the input port of the ALU
If the inputs of the MUX do not include registers
insert a register
if the inputs to the MUX include only one register
if this register is an output of the ALU
(seif-adjacency case)
insert a register
If the MUX is at the output port of the ALU
If the ALU under consideration has a register at its output port
if the register is also an input register
(self-adjacency case)
insert a register
If the ALU has no registers at its output port
If at the output of the MUX there is a register
If this register is an input register of the ALU
insert a register
If there is no registers at the output of the MUX
insert a register
During the insertian three lists are created, they contain respectively pairs of ALUs and
the TPGRs at the first input port, pairs of ALUs and TPGRs at the second input port, and
pairs of ALUs and MISRs.

Figure 3.7: The Test Insertion Algorithm.

26

Thus, the input registers need to be configured as TPGRs that generate
random patterns, while output registers need to be configured as MISRs to analyze
the outputs of the modules.

In Figure 3.8, ifthe output of module A is random, then the output of re -
ister r can be fed into module B with random enough patterns and it needs not be a
TPGR. Such a case depends on the “randomness” of module A. On the other
hand, if the fault generated at the output of A can propagate through B and be ob
served at R2, then r need not be an MISR. This case depends on the
“transparency” of module B.

The probability of module A providing random output patterns is calculated
and defined as randomness of module A. The probability of module B propagating
a fault from its input to its output register is also calculated as the transparency of
module B. This work will not address the generation of the randomness and trans-
parency measures, and will assume that they were derived directly from the system
library To have more details about their calculation, refer to [ChPa91].

Figure 3.8 : Example Data Path

The randomness and transparency metrics are applied in the selection proc-

ess. Their use will result in fewer BIST registers and thus, a decrease in the area

27

overhead and in the hardware cost. This feature will help in the aim of this thesis

namely to make a tradeoff between area overhead and testability improvement.

3.3 The selection process

The selection of test points for the data path ALUs is the next step, after the
test insertion process. Several conditions have to be taken into consideration dur-
ing the selection process. Each ALU must have TPGRs feeding each of its input
ports and an MISR fed by the output port of the ALU. The two conditions that
have to be checked always during the selection process are the following:

1 The TPGRs at the input ports of a single ALU cannot be the same due to cor-
relation problems.
2.A TPGR camnot be used as an MISR for the same ALU in order to avoid the

self-adjacency problem.

Figure 3.9: Example Design

Different ALUs may share the same TPGRs or MISR. By applying the
randomness and transparency metrics, the MISR of a transparent ALU may be s -
lected as an MISR of the AL Us that are connected to it at its input ports. For ex-
ample in Figure 3.9, ALUS3 is transparent, therefore its MISR, namely REG6 may

28

be selected as an MISR of ALU1 connected to it through its first input port. On
the other hand, if an ALU is random, then its TPGRs May be selected as TPGRs of
the ALUs connected to it through its output port. In the example of Figre 3.8,
ALU1 is random, therefore its TPGRs, namely REG1 and REG2 may be selected
as TPGRs of ALU3 connected to ALUL at its output port. This feature helps

minimizing the number of test points selected to ensure the testability of the circuit.

The selection process is divided into two main phases. In the first phase we
generate mappings of the data path ALUs with the different possible TPGRs and
MISRs . In the second phase, we select one of the initial different mappings for
every ALU.

The selection process begins by determining which registers cover the ports
of each ALU. A list of test mappings is generated in which every ALU is assigned
the direct registers at its ports as test points. For the example of figure 3.9, the
initial list of test mappings is the following.

ALUI1 REGI REG2 REG4
ALU2 REG2 REG3 REGII
ALU3 REG4 REGS5 REG6
ALU4 REGS REGI1 REG7

Table 3.1 : initial list of test mappings for example of Figure 3.9,

Next, randomness and transparency metrics are applied. Every ALU, ac -
cording to its function, may be random (randommness = 1) or not (randomness = 0).
Furthermore, it may be transparent (transparency = 1) or not (transparency = 0). If
an ALU is random, it can provide random enough patterns; thus, this ALU can act
as a random pattern generator for all the ALUs connected to it at its output port.

For example, in Figure 3.9, ALUI can act as a random pattern generator for ALU3

and ALU2 can act as a random pattern generator for ALU4 . Under a different
perspective, this means that the possible TPGRs of the ALU may be TPGRs of any

29

combinational logic connected to this ALU through an intermediate port or regis-
ter. For the example of Figure 3.9, ALU1 is random and its TPGRs are REG1 and
REG2. Since ALU1 is random, it can generate enough random patterns that can
be fed into ALU3, and thus, the input register REG4 of ALU3 does not necessarily
need 10 be a TPGR. In other words the TPGR of ALU3 at this port may be the
registers REG1 or REG2 the TPGRs of ALUL Therefore, mappings of the two
TPGRs with ALU3 is done. The same logic goes for ALU2 of Figure 3.9. The list

of mappings becomes after the randomness check as shown in Table 3.2.

REGI1 REG2 REG4
ALU2 REG2 REG3 REGI1
ALU3 REG4 REGS REG6
ALU4 REGS REGI1 REG7
ALU3 REG! REGS REG6
ALU3 REG2 REGS REG6
ALU4 REGS REG2 REG7
ALU4 REGS REG3 REG7

Table 3.2 : Test Mappings of Example of Figure 3.9 after Randomness check

On the other hand, if an ALU is transparent, then it can pass the results
genetated from the ALUs at its input port to its MISR and these results can be ob
served at that register. In other words, the MISR of the transparent ALU may be
an MISR of any combinational logic connected to the ALU through any of its two
input ports. For the example of Figure 3.9, ALU3 is transparent and its MISR is
REG6. Thus ALUI connected to this ALU through one of its input ports may
have REG6 as an MISR. Therefore additional mappings of ALU1 are added to
the list of test mappings. These mappings are a duplicate of all the previous map-
pings of ALU1 with the MISR changed. In this case only one mapping is added.
Table 3.3 shows the list of test mappings after the transparency check.

30

ALU1 REGI1 REG2 REG4
ALU2 REG2 REG3 REGI1
ALU3 REG4 REGS REG6
ALU4 REGS REGI1 REG7
ALU3 REG1 REGS5 REG6
ALU3 REG2 REGS REG6
ALU4 REGS REG2 REG7
ALU4 REGS REG3 REG7
ALU1 REGI REG2 REG6

Table 3.3 : Test Mappings of Example (Fig 3.9) after Transparency Check

The additional mappings increase the probability that the register which
does not need to be a TPGR and the one which does not need to be an MISR will
not be picked during the selection process. After applying the randomness and
transparency metrics the two conditions listed above are checked and violating
mappings are removed.

The selection process is implemented as a set covering problem since we are
trying to minimize the number of TPGRs and MISRs. However, the set covering
problem is NP-complete, therefore a near optimal approach is used in which the set
covering algorithm is implemented in a greedy approach. A list of all the registers
is derived, and they are sorted in a descending order according to the number of
times they are used in the mappings derived during the first step of the selection.
For the example of Figure 3.9, the sorted list of registers is shown in Table 3.4.

31

REG2

REGS5
REG6
REG1
REG7
REG3
REG4
REGI1 2
Table 3.4: List of sorted Registers

| B W] W] el LA LA

Then, the mappings are selected according to this sorting in order to min -
mize the number of test registers. First, the first register is selected; the mappings
are checked, and the mappings for every different ALU containing this register is
picked. Ifthere are more than one mapping for the same ALU containing this reg
ister, then the weights of the registers are added; The mapping that results in the
highest weight is selected. For the example of Figure 3.9, the highest weighted
register is REG2, thus the following mappings are picked.

ALU1 REGI REG2 REG4
ALU2 REG2 REG3 REGI1
ALU3 REG2 REGS5 REG6
ALU4 REGS REG2 REG7
ALU1 REGI1 REG2 REG6

ALU2, ALU3 and ALU4 have each a single mapping picked, therefore this map -
ping will remain, However, ALU] has two mappings, only one should remain.
However, in the first mapping [ALU1,REG1,REG2,REG4] the sum of the weights
of the registers is 3+5+2=10, while the sum of the weights in the second mapping
[ALU1,REG]1,REG2,REG6] is 3+5+4=12 greater than the sum of the weights of

32

the registers of the first mapping; thus, the second mapping is picked. In this ex-
ample, the selection stopped here since all the ALUs have been picked, if else a -
other register would have been picked and the mappings of the remaining ALUs
checked. The final list of selected mappings is shown in Table 3.5, notice that

REG4 remained a normal register and was not picked as a test point.

ALU2 REG2 REG3

ALU3 REG2 REGS REG6
ALU4 REGS REG2 REGT
ALUI REGI REG2 REG6

Table 3.5: The Final Selection List of Example of Figure 3.9

Fig 3.10,3.11,3.12, and 3.13 present the algorithms of the different steps of
the selection problem. The running time of the total selection algorithm is in the
worst case equal to O(a’r”) where a is the number of ALUs in the input circuit and

I is the number of registers in the initial circuit.

read the selection lists generated from the insertion algorithm

Merge these lists to get a new tist that gives all possible combinations of

[ALU, TPGR1 ,TPGR2,MISR]

Remove all entries that may violate the selection conditions. (i.e. If TPGR1 = TPGR2 or
if TPGR1=MISR or if TPGR2 = MISR)

add to the new list two more integer elements that will be used during the scheduiing
process; Initialize these two elements to zero.

For every ALU check its randomness and transparency from the library of components.
if the ALU is random apply the randomness check (Figure 3.11)

if the ALU is transparent apply the transparency check (Figure 3.12)

Apply the greedy set covering algorithm to do the selection (Figure 3.13)

Figure 3.10: The Selection Algorithm

33

For every different ALU in the list created during the selection process
Pick the MISR of the ALU
For every other ALU check their TPGRs
if TPGR1 of the second ALU is equal to the MISR picked (these two AlLUs are con -
nected through this register and the TPGRs of the first are TPGRs of the second)
Add two new entries to the selection list where the ALU is the second, the
TPGR1 is in the first entry the TPGR1 of the first ALU, and in the second the TPGR2 of
the first ALU, the TPGR2 is the TPGR2 of the second ALU, and the MISR is the MISR of
the second ALU.
if TPGR2 of the second ALU is equal to the MISR picked (these two ALUs are
connected through this register and the TPGRs of the first are TPGRs of the second)
Add two new entries to the selection list where the ALU is the second, the
TPGR1 Is the TPGR1 of the second ALU, the TPGR2 is in the first entry the TPGR1 of
the first ALU, and in the second the TPGR2 of the first ALU and the MISR is the MISR of
the second ALU.

Figure 3.11: The Randomness Check

For every different ALU in the list created during the selection process

Pick the TPGRs of the ALU

For every other ALU check their MISR

if MISR of the second ALU is equal to one of the TPGRs picked (these two ALUs are

connected through this register and the MISR of the firstis an MISR of the second)
Add a new entry to the selection list where the ALU is the second, the TPGR1 is
the TPGR1 of the second ALU, the TPGR? is the TPGR2 of the second ALU,
and the MISR is the MISR of the first ALU.

Figure 3.12: The Transparency Check

Put all the registers in an array and sort them descending according to their occurrence
in the selection list.
Pick the first register (the register that occurs the most)
(1): In the selection list pick the first mapping that contains the register at any one of its
input ports
for all the mappings of the same ALU that contain this register
add the weights of the selection points.
Pick the highest weighted mapping.
Put it into a new list
Set the weight and session of the mapping to be 0 (these two items are needed
in the scheduling process.
pick the ALU of the mapping.
In the selection list remove all the other mappings that contain this ALU.
Pick the next register and go to Label.
Continue until there are no registers left in the array.

Figure 3.13: The Greedy Set Cover Implementation

34

3.4 The Scheduling Process

In chapter one, a conflict problem has been discussed concerning the use of
a register as an MISR and as a TPGR at the same time. The solution presented
was either the use of CBILBOs or scheduling the conflicting ALUs to different test
sessions. In this section, The scheduling problem and the scheduling scheme used
in this thesis are presented. The goal of this step is to determine how many test
sessions are needed to test all the ALUs and to minimize the number of test ses-
sions. To minimize this number, we should maximize the number of ALUs to be
tested during the same test session. However, there are conditions which restrict
two ALUs from being tested at the same time. Such ALUs have to be tested in
different test cycles. These conditions are:

e If two ALUs have the same MISR, then they cannot be tested at the
same time, they have to be applied to different test sessions.

o Ifan ALU’s MISR is another ALU’s TPGR then these two ALUs cannot
be tested at the same time, unless the register in concern is a CBILBO which is not
permitted in this system. Therefore, these two ALUs have to be scheduled into
two different test sessions.

The scheduling process has been provento be NP complete; therefore, a
heuristic has been used to derive a sub-optimal solution to it.

The scheduling process is divided into two main steps that resolve respec-
tively the first and the second condition. In the first step, the ALUs which have the
same MISR are attached to different test sessions, each ALU is weighted to the
number of times its MISR is used by other ALUs. For the mappings of table 3.5,
ALU1 and ALU3 have the same MISR, they are assigned to different test sessions,
and they are assigned a weight of two. ALU2 and ALU4 are assigned to the first
test session and their weights are one. So, after this step, there are two test ses-

sions and the ALUs are assigned to them as following:

35

Session 1: ALU3,ALU2, ALU4

Session 2: ALU1

The second step deals with the second condition. In this step, in the same
session, every ALU’s TPGRs are compared to every other ALU’s MISR; if they
consist of the same register, then one of the two ALUs has to be moved to another
test session. The ALU that has the minimal weight is the one to be moved. For
our running example, ALUL’s TPGRs does not match with ALU2’s and ALU#4’s
MISRs, and so it goes for the rest of the ALUs; therefore, these three can remain
in the same test session. However, assume that ALU1 had a TPGR that is the
same register used as an MISR for ALU4. Then, these two ALUs may not be te -
tes during the same test session, and thus, one of them should be moved to another
test session. ALU1 has a weight of 2 and ALUA4 has a weight of 1. Insuch a case,
ALU4 would have been moved; It is moved to the second test session, and no
more additional sessions would be needed. Notice here the use of the weight at-
tribute; according to the weight the lowest weighted is moved. If we have to move
the highest weighted, then an additional test session would be required because al-
ready, ALU1 conflicts with the ALU scheduled in the second test session, namely
ALU3. This approach to scheduling attempts at minimizing the number of test se -
sions required, and thus minimizing the overall test time. Fig 3.14 shows the alge
rithm for the scheduling process. The running time of the scheduling algorithm is
in the worst case equal to O(a’) where a is the number of ALUs in the input cir -

cuit.

36

Pick the first mapping X in the selection list
/*Two ALUs that have the same MISR may not be scheduled in the same session*/
(1) Set its sessionto 1
For every other mapping Y
If the MISR of Y is the same MISR of X
increment the session
Set the session of Y to the new session value
adjust the weight of all the mappings whose session has been changed to the greatest
session.
For the rest of the mappings whose session has not been changed from 0 yet go to (1).

Two ALUs with the TPGRs of the one is an MISR of the other may not be scheduied in
the same session"/
For every mapping X check
for every other mapping Y that follows X in the list check
If X and Y are scheduled in the same session
If one of the TPGRs of X is equal to the MISRof Y or
If one of the TPGRs of Y is equal to the MISR of X
If the weight of X is less than the weight of Y
(it has less conflicts with other mappings)
set the session of X to be the weight of X+1.
ELSE
set the session of Y to be the weight of Y+ 1.

Figure 3.14: The scheduling algorithm

37

Chapter 4

Results

The purpose of Redesign for Testability is to improve the testability of de-
signs through insertion of additional registers and selection of appropriate test
points. The system attempts to balance between area overhead and fault coverage
while preserving a minimum test time.

Since the goal of ReTest is to improve designs’ testability, this chapter ap-
plies the redesign for testability on some designs to show the improvement in the
fault coverage. We used a fault simulator, hope, in order to determine the fault
coverage of the designs before and after redesign. Figure 4.1 shows a flowchart

of the steps traversed to get fault simulation.

@stable VHDL Datapa@‘”'

Logic Synthesis of
individual modules

Structural Gate Level
VHDL Datapath Design

Transformation to
ISCAS Format

r

[Fault Simulation j :

Figure 4.1: Experimental Procedure

38

The resulting testable VHDL design is then synthesized at the logic level
using ALLIANCE and a gate level description of the design is generated. Note
that at this stage a transistor level layout of the design may be generated by a sili-
con compiler. The gate level description is then transformed to [ISCAS format.
Finally, the ISCAS design is parsed by a fault simulation tool, hope, in order to
fault grade the design. Design’s fault coverage is determined before and after the
redesign for testability process. The resulting fault coverages are then compared

to validate our approach by showing the improvement in the design testability. The

fault coverage of individual components is presented in Table 4.1.

Adder 100 0.083
Subtractor 97.78 0.117
Muitiplier 98.026 0.133
equality checker 84.906 0.083
greater 76.190 0.1
less 97.778 0.083
+ - 9.770 0.367
barrel shifter 100 0.1

2 to 1 multiplexer 100 0.05
3 to 1 multiplexer 100 0.067
4 to 1 multiplexer 88.776 0.083

Table 4.1: Fault Coverage of individual Components

This chapter presents five designs. The data path of each design is pre-
sented distinguishing between the inserted registers and other registers and shoving
TPGRs, MISRs and BILBOs. Then, the fault coverage of each designis de-
termined before and after insertion; and these coverages are mapped together to

show the improvement in test ability.

4.1 Example 1

The first example is the running example of figure 3.9 of chapter 3. Figure
4.2 shows its datapath along with the selected test points and their types. Notice
the benefits of applying the randomness and transparency metrics. REG4 remained
a normal register, while otherwise it would have been selected as a BILBO.
REGI1, as well was selected only as an MISR, while otherwise, it would have been
selected as a BILBO too.
decreased the area overhead required by testing. It also decreased the number of
test sessions; ALU2 and ALU4 are scheduled in the same test session while othe -

Therefore, randomness and transparency application

39

wise they would be scheduled in different test sessions.

The schedule of this example consists of two test sessions and is shown in

Table 4.2:

Figure 4.2: Example Design

REG6

1 ALU3 REGS5

1 ALU4 REG2 REGS REG7
1 ALU2 REG3 REG2 REGI1
2 ALU1 REG2 REG1 REG6

Table 4.2: Schedule Table of the Ranning Example.

40

The fault coverage of the redesigned circuit is 99.125%, while the fault
coverage of the non-testable circuit is 98.729% with an improvement of 0.396%.
The improvement of fault simulation time is from 1.5 secs to 1.383 secs. Figure
4.3 shows the fault coverage inprovement chart.

— After Insertion
Coverage
——— Before Insertion
Cowverage
100
-~ 98
£ 961
o 94
;E 92
> 204
3 88
£ 89
5 84
82
80

1

28838878 B
Nbr of Test Patterns

Figure 4.3: Fault Coverage of Example one

4.2 Example 2

The second example is ARYL and LYRA’s[]. Figure 4.4 shows the

data path of the example along with the selected test registers.

41

1

F
@)

(ALU5(<))
1

Figure 4.4 :Data path of LYRA and ARYL’s example

Notice that only one register was inserted in order to improve the testability of

ALU1(-). The inserted register breaks a self-adjacency and improves the testability

of the overall datapath. The components are scheduled to three test sessions. Ta-
ble 4.3 shows the schedule of LYRA and ARYL’s datapath.

REG7 REGI REG2
i ALUS REGO REG7 REGI10
2 ALUI REG7 REGI REGI
2 ALU3 REG3 REG7 REG2
3 ALU4 REG7 REG3 REGI1

Table 4.3: Schedule Table of ARYL and LYRA’s Example.

The schedule of the LYRA and ARYL example is not an optimum one.

However, it is the nearest to optimal. Remember that the scheduling problem is

NP-Complete.
The fault coverage of the redesigned circuit is 98.711%, versus 87.792%

fault coverage for the non-testable circuit with an improvement of 10.919%. The

42

fault simulation time improved by 3.066 secs from 9.733 secs to 6.667 secs.
Figure 4.5 shows the fault coverage improvement.

—gfter-insertion
coverage
— before-insertion
coverage

8
i

fault coverage (%}
3

60 1 ; ; f
2 8 8 8 8 8 8
~— - o™ (3] o
nbr of test pafterns

Figure 4.5: Fault Coverage of the ARYL and LYRA’s Datapath

4.3 Example 3

The third example is HAL’s differential equation] 1. Figure 4.6 shows

the datapath of the design along with the selected test points.

Figure 4.6: The HAL Data Path

One register was also inserted. The schedule of the HAL example is shown
in Table 4.4.

1 ALU3 REG6 REGII REG2
I ALUS REG10 REG6 REGI1
2 ALU1 REG3 REG6 REG2
3 ALU4 REG3 REG4 REG6
3 ALU2 REG3 REG4 REG6

Table 4.4: Schedule Table of HAL’s Example.

The improvement in fault coverage was of 3.246%, from 92.164% to 96.410%.
The improvement in fault simulation time is 0.6 secs, from 7.983 secs to 7.383

secs. Figure 4.7 shows the fault coverage inprovement chart.

44

— after-insertion
coverage
~—— before-insertion
coverage

fault coverage %
SREITECLEE

s —
N 5 3
r ms

nbr of

& 2501 1

R
test pal

Figure 4.7: Fault Coverage of the HAL Datapath
4.4 Example 4

The fourth example is also a differential equation data path generated by
another high level synthesis tool [ChPa91]. Figure 4.8 shows the datapath of the

design and the test points sdected.

mul{ mul2
mul3

muld regs
- TPAR

mul5

sub1

sub2

Figure 4.8: Differential Equation Data Path

One register insertion is needed. However, it substantially improves the testability

of the design since it improved the testability of three components. The improve
ment in fault coverage is 58.539 % from 39.571% to 98.110%. The improvement
in fault simulation time is 35.283 secs from 39.700 secs to 4.417 secs Table 4.5
shows the diff. Eq. Schedule and Figure 4.9 shows the fault cover age.

45

"REGL6

1 SUB2 REG19

1 MUL2 REG14 REG2 REG8

1 CMP REG14 REG13 REG18
1 MUL3 REG17 REG3 REGI10
2 MULL1 REGI1 REG1 REG7
2 MUL4 REG8 REGI1 REG19
2 ADD2 REGI11 REGI1 REG17
2 ADDI] REG6 REGS REG14
3 MUL6 REGI! REG4 REG17
3 SUB1 REGI1 REGIS5 REG19
4 MULS REG17 REG9Y REGIL

Table 4.5: Schedule Table of Diff. Eq. Example.

46

—post_insertion
coverage

—=pre_insertion
coverage

fault coverage (%)
3

30 +
20 |
10 4

3

2 8 B 8 B
Nbr of test patterns

1001 +

Figure 4.9: Fault Coverage of the Differential Equation Datapath

4.5 Example 5

The fifth example is the TMS32010 [KTHa88]. The datapath of this exam

ple is shown in Figure 4.10. The insertion of two registers was needed. The first
register (REGI1) broke the self-adjacency of REGS5 and increased the testability of
ALU2. The second inserted register REGI2 works as an MISR for the third ALU
the Barrel shifter. The selected registers are also shown in this datapath.

The ALUs are scheduled in two test sessions. Table 4.6 shows the schedule gener-

ated.

47

Figure 4.10: The datapath of the TMS32010 example.

1 ALU1 REGS REGS REG4
1 ALUZ REG3 REG3 REGII
1 ALU3 REGS i REG2
2 ALU4 REGS _ REG3

Table 4.6: Schedule Table of the TMS32010 Example.

provement in fault cover age.

A noticeable increase in the fault coverage is deduced. The fault coverage
increased by 71.240% from 5.970% to 77.210%. The fault simulation time im
proved by 18.05 secs from 22.817 secs to 4.767 secs. Figure 4.11 shows the im

48

— After Insertion
Coverage
— Before Insertion
Coverage
100 - -
)
s 80 f
g 80
2
8 40 |
=
E 20
0 o

3501 +

Nbr of Test Patterns
Figure 4.11: Fault Coverage of the TMS320190

4.6 Conclusion

The problem of non-testable designs is solved in this thesis by inserting ad-
ditional registers. This thesis also introduces sub-optimal solutions to the selection
and scheduling problems. The system improves the fault coverage of the designs.
The results presented in this chapter show an improvement in the fault coverage of
circuits after redesign. The area overhead is made minimal by applying randomness
and transparency metrics and minimizing the number of test points. On the other
hand, as shown in the graphs of fault coverages, redesigned circuits require fewer
test patterns and thus demand smaller test time. The usefulness of such redesign
for testability system is to improve the performance of designs. The area overhead
is not very mmportant due to the decreasing cost of silicon. The tradeoff achieved
by ReTest between fault coverage and area overhead can lead to future improve-
ments on the system in which user interaction plays a major role. In ReTest, all the
steps are done by the system and the best estimations it could find on the number
of additional registers needed and on the test points selected are applied to the de-
sign. As future work, the system can be further improved by allowing the designer
to attempt his/her own estimations. The data path can be presented in a graphical

format and the user may be allowed to work on it interactively. More specifically,

49

after the system has inserted its additional registers, the designer may want to insert
additional registers. The designer may also want to select different test points.

When the user makes a change on the design, everything is re-processed. The re-

sulting fault coverage, area overhead and test time are re-computed and presented

to the designer. Then, the designer (or the system) can compare different cases

and plot them to show the advantages of each design.

50

Bibliography

[AvMc94]

[ChPa%1]

[ChSa92]

[ChSa93]

[CLPa92]

[GiCa93]

[HaPa93]

[HPCN92]

[JPPe89]

[KTHa88]

[LNBr93]

L. J. Avra, and E. J. Mcluskey, “High Level Synthesis of Testable
Designs: An Overview of University Systems,” International Test
Conference, 1994.

S. Chiu, and C. A. Papachristou, “A Design for Testability Scheme
with Applications to Data Path Synthesis,” 28" ACM/IEEE Design
Automation Conference, 1991,pp. 271-277.

C-H. Chen, and D.G. Saab, “Structural Behavioral Synthesis for
Testability Techniques ,” Technical Report, University of Illinois, June
1992,

C. H. Chen, and D. G. Saab, “A Novel Behavioral Testability
Measure,” IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, Vol. 12, No. 12, 1993, pp.1960-1970.

V. Chickermane, J. Lee, and J.H. Patel, “Design for Testability Using
Architectural Descriptions,” International Test Conference, 1992,
pp.752 - 761.

E. Girczyc, and S. Carlson, “Increasing Design Quality and Engineering
Productivity through Design Reuse,” 30°th ACM/IEEE Design
automation conference, 1993, pp. 48 - 53.

H. Harmanani, and C. Papachristou, “An Improved Method for RTL
Synthesis with Testability Tradeoffs,” Proceedings of the International
Conference on Computer-aided Design, November 1993,

H. Harmanani, C. Papachristou, S. Chiu, and M. Nourani, “Syntest: An
Environment for System Level Design for Test,” Proceedings of the
European Design Automation Conference, Sep 1992.

W-B Jone, C. A. Papachristou, and M. Pereira, “A Scheme for
Overlaying Concurrent Testing of VLSI Circuits,” 26" ACM/IEEE
Design Automation Conference, 1989, pp. 531-536.

K. Kim, J. G. Tront, and D. S. Ha, “Automatic Insertion of BIST
Hardware Using VHDL,” 25" ACM/IEEE Design Automation
Conference, 1988, pp. 9-15.

S. Lin, C.A. Njinda, and M.A., Breuer, “Generating a Family of
Testable Designs Using the BILBO Methodology,” Journal of
Electronic Testing: Theory and applications, V. 4, pp. 71 - 89, 1993,

[MaCa%0]

[NBDa92]

[PaCa95]

[PaKn89]

[PauK89]

[Paul92]

[PHMo094]
[RaGa92]
[RAKa93]

[Rude96]
[SeAg85]
[SCMa93]
[Stro88]

[ViAb92]

51

H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen,
S. Note, and J. Huisken, “Architecture-driven Synthesis Techniques for
VLSI Implementation of DSP Algorithms,” Proceedings of the IEEE,
Vol. 78, No. 2, February 1990, pp. 319 - 334.

V. Nagasamy, N. Berry, and C. Dangelo, “Specification, Planning and
Synthesis in a VHDL Design Environment,” IEEE Design and Test of
Computers, 1992, pp. 58-68.

C. Papachristou, and J. Carletta, “Test Synthesis in the Behavioral
Domain,” International Test Conference, 1995, pp. 693-702.

P. G. Paulin, J. P. Knight, “Force-Directed Scheduling for the
Behavioral synthesis of ASIC’s,” Transactions on Computer Aided
Design, Vol. 8, No. 6, June 1989.

P. G. Paulin, J. P. Knight, “Algorithms for High Level Synthesis,”
IEEE Design and Test of Computers, 1989, pp. 18 - 31.

P. Paulin, “DSP Design Tool Requirements for the Nineties: An
Industrial Perspective,” Sixth Intl. Workshop on High-Level Synthesis,
Laguna Niguel, CA, Nov. 1992.

C. Papachristou, H. Harmanani, and M. Nourani, “An Approach for
Redesigning in Data Path Synthesis,” Technicat report, Department of
Computer Engineering, Case Western University, 1994..

L. Ramachandran, and D. Gajski, “Architectural Tradeoffs in Synthesis
of Pipelined Controls,” Technical Report, University of
California/Irvine, November 1992.

S. R. Rao, J. R. Armstrong, And S. Kapoor, “On Hierarchical Test
Generation for VHDL Behavioral Models,” Technical Report , Virginia
Polytechnic Institute, November 1993.

R. Rudell, “Tutorial: Design of a Logic Synthesis System,” 33" Design
Automation Conference, 1996.

S. C. Seth, and V. D, Agrawal, “Cutting Chip-testing Costs,” IEEE
Spectrum, April 1985, pp. 38-45.

J. Steensma, F. Catthoot, and H. De Man, “Partial Scna at the Register
Transfer Level,” International Test Conference, 1993, pp. 488 - 497.

C. E. Stroud, “Automated BIST for Sequential Logic Synthesis,” JEEE
Design & Test of Computers, 1988, pp. 22 - 32,

P. Vishakantaiah, and J. Abraham, “ATKET for High Level Testability
Analysis,” Technical Report, University of Texas/Austin, July 1992.

[VisA92]

[VTAA93]

[WePa92]

[WiDe96]

[WiPa83]

52

P Vishakantaiah, and J. Abraham, “High Level Testability Analysis
Using VHDL Descriptions,” Technical Report, University of
Texas/Austin, December 1992,

P. Vishakantaiah, T. Thomas, J. A. Abraham, and M. S. Abadir,
“AMBIANT: Automatic Generation of Behavioral Modifications for
Testability,” Technical Report, University of Texas/Austin, May 1993,

J-P Weng, and A. C. Parker, “CSG: Control Path Synthesis in the
Adam System,” Technical Report, University of Southern California,
April 1992.

K. D. Wagner, and S. Dey, “High Level Synthesis for Testability: A
Survey and Perspective,” 33™ Design Automation Conference, 1996.

T.W. Williams, and K.P. Parker, “Design for Testability - Survey,”
Proceedings of the IEEE, Volume 71, Number 1, pp. 98 - 112, January
1983.

