A Tabu Search Algorithm for Mapping Data to
Multicomputers

By
Kamal M. Diab

B.u.C. - LIBRARY

2 0 NOV 1897
RECEIVED

June 1997




A Tabu search algorithm for
mapping data to multicomputers

By
Kamal M. Diab

B.Sc., Lebanese American University

PROJECT

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science
at the Lebanese American University
June 1997

Signatures Redacted

Dr. Nashat Mafisoar (Advisor)

Assistant Professor of Computer Science
Lebanese American University

Signatures Redacted

Dr.4s5am Moughrabi
sistant Professor of Computer Science
Lebanese American University

Signatures Redacted

mzi Haraty
sistant Professor of Computer Science
Lebanese American University




Abstract

We present a Tabu Search algorithm for mapping data to multicomputer nodes,
assuming certain computation and multicomputer models. The experimental results

show that the Tabu algorithm offers both reasonable solution quality and mapping

time, which ranks about fourth in comparison with five other algorithms.
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Chapter 1

Introduction

Given an algorithm, ALGO, for solving a problem with an underlying data set,
DATA, the data mapping problem refers to mapping disjoint subsets of DATA4 to the
nodes of a multicomputer MCOMP, such that the execution time of ALGO, on
MCOMP is minimized. The development of data mapping algorithms that minimize
execution tiﬁe is important for cost-effective utilization of the computational

resources offered by the current and future multicomputer.

The assumptions made in this work are the following:

(a) MCOMP is a distributed-memory message-passing multicomputers whose nodes

are connected by a static point-to-point interconnection [Hwang 1993].

(b) The routing used in MCOMP is wormhole routing [Hwang 1993].

(¢) The computations model used is loosely synchronous cémputations model in
which nodes perform compute-communicate cycles in a SPMD (single program,

Multiple Data) scheme [Fox et al. 1988].

Under such assumptions, the execution time on MCOMP is determined by the

execution time of the slowest node. Thus, the data mapping problem is obviously an
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optimization problem, and achieving data-parallelism involves nearly-equal
distribution of computation workloads over the nodes of MCOMP, as well as the
minimization of the amount of their inter-node communication., The data mapping
problem is an NP-complete, and no optimal solutions can be found in reasonable
time. Instead, several methods have been proposed to find agceptab]e and near-

optimal solutions.

Data-parallelism is based on distributing data and associated computations among
the nodes [Hwang 1993]. With the single program multiple data programming
model, nodes execute the same program independently on the data subsets
distributed to them and communicate when non-local information is needed. Thus,
the minimization of the execution time of data-parallel programs requires equal
distribution of the work load associated with the data objects and the minimization
of the concurrency overheads, such as overheads due to the communication,

synchronization and other hardware and software factors.

For applications with regular and uniform data sets and certain multicomputer
architectures, optimal or near-optimal data mapping can be accomplished by
inspection or by simple techniques. However, optimal mapping of general and
irregular data sets to various multicomputer topologies is an intractable problem

[Tbaraki and Katoh 1988).

Several methods have been proposed for data mapping, such as greedy algorithms,

nearest neighbor mapping, clustering techniques, mincut-based heuristics, recursive
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bisection, geometry based mapping, block-based spatial decomposition, scattered
decomposition, neural network, simulated annealing and genetic algorithms [Berger
and Bokhari 1987; Fox 1988; Chnsochoides, Houstis, and Houstis 1991; Ercal,
1988; Farhat 1988; Kramer and Muhlenbein 1989; Fox and Furmanski 1988; Simon
199]; Williams 1991; Mansour and Fox 1990]. These algorithms have different
properties pertaining to their solution guality, execution time and general

applicability .

In this thesis, we present an algorithm that adapts the Tabu search (TS) paradigm
[Glover 1989, 1990] for solving the data mapping problem. The TS algorithm is
guided by an objective function and does not make apriori assumptions about the
underlying data set or multicomputer model. The design decisions for the algorithm
components are made in a way to improve the mapping quality while not increasing
its execution time. The experimental results show that the TS algorithm yields good-
quality solutions which are comparable with those produced by other methods for a

number of test cases.

The main contributions of this thesis can be summarized as follows:
(a) Adaptation, for the first time, of Tabu Search algorithm to the data mapping

problem. The TS algorithm also serves as general paradigms for solving other

optimization problems.
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(b) Comparative performance evaluation of tabu search with other algorithms like
simulated annealing, genetic algorithm, neural networks, simulated tempering, and

mean field annéaling.

This thesis is organized as follows. In Chapter 2, the computation and
multicomputer models are defined. Chapter 3 contains a general overview of the
Tabu Search algorithm. In Chapter 4, we present the Tabu Search algorithm for data

mapping. Chapter 5 gives and discusses the experimental results. Chapter 6

concludes the paper.




Chapter 2

Data Mapping Problem

Let ALGO be an optimization algorithm intended to solve a given problem with an
associated data set, DATA, on multicomputer MCOMP. The data mapping problem
is the problem of partitioning DATA into mutually exclusive subsets, and mapping
each of these subsets to a node in MCOMP. The aim is minimizing the execution
time of ALGO on MCOMP. The execution time of the parallel program depends on
the algorithm itself, the underlying data set, the computation model, and the
multicomputer machine. In this chapter, we define the data mapping problem in

detail. We also presents our assumptions and the objective function used.

1. The Computation Model

To formulate objective functions for the mapping problem, a loosely synchronous
data parallel computation model [Fox, Johnson, Lyzenga, Otto, Salmon, and Walker
1988; Fox 1991] is assumed, where nodes run the same instructions and repeat

compute-communicate iterations. In every iteration, the nodes perform computations

on their allocated subgraphs and then communicate with other nodes to exchange
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boundary vertex information. For this model, the total parallel execution time is

determined by the slowest node [Mansour and Fox 1992, 1994a, 1994b].

2. Problem Definition

Let G, = (V, E.} and Gy = (V,, £, represent the computation graph and the
multicomputer graph, respectively. The vertex set, V. , represents the set of data
elements on which computations are to be performed. The edge set, E., represents
the computation dependencies among the data elements as specified by ALGO. The
vertices of the multicomputer graph, ¥, refer to the nodes, and the edges, E,,, refer

-

to the physical interconnections.

The data mapi)ing problem is an optimization problem that refers to determining an
onto (many-to-one ) function, AZ47 : ¥V, — V., such that an objective function,
associated with the execution time of ALGO is minimized. A solution that satisfies
the minimization criterion is an optimal mapping. Thus, mapping results in
partitioning the computation graph into subgraphs allocated to the nodes of the

multicomputer.

3. The Objective Function

The objective function, OFpyp, is a typical objective function corresponding to the
time taken by the slowest processor in computing and communicating in a loosely

synchronous computation model [Mansour and Fox 1992, 1994a, 1994b]. OFyp

simulates the execution time of the parallel ALGO, and is equal to the maximum
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combined workload of computation, #(#), and communication, C(n), for a node, n,

in a loosely synchronous iteration. That is,

OFtyp = max,., {W(n)+ C(n)} (1)

The computation workload, #(n), for a node, n, is given by

Win)= 2 w)d@,n) )
vel,

where
' 1 if v is mapped to n
JKV’H) “{0 otherwise

w(v) is the computation per vertex v. It is given by
w(v) = tﬂoat./‘t.t?(v) &)

where #;,,, is the time taken by a node to perform a floating point operation. Hence, it
is the smallest reasonable time of a machine operation. A is the number of
computation operations per an edge in £, in one iteration. &(v} is the degree of vertex
v in G, it represents the number of computation operations required for updating a
value for vertex v. Both A and 6(v) are determined by the particular algorithm used.

A is a constant expressing the number of values updated for a data element in an

iteration. Substituting equation 3 in equation 2 yields
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W(n) =t goap-h T, 0().6(v.m) @)

ver,

If we define Sv (n) = X 8(v).d(v,n) to denote the number of edges in £, which
velV
¢

are mapped to node n, then (4) becomes

W(n)=t ASy (n) (5)

float

The amount of communication for a node, », is difficult to express accurately. It
depends on several hardware and software components of a multicomputer, which
varies from one machine to another and some of them might be impossible to
quantify. We use C(n) = 5, ¢(n) so that all parameters can be normalized with
respect to fy, and simulate the multicomputer’s communication cost using the

mode! [Bokhari 1990]:

¢(n)= X[pB(n,m)+ o + tH(n,m)]sgn(B(n,m)) (©)

meV yy

where

1 if x>0
sz’gn(x)={0 i x=0

£ 18 the machine time for communicating one word. It is given by the number of

“faoa S (i.€., it is divided by #,, ) required to communicate a word. ¢ is the message
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OFtyp is the basis for evaluating the solution qualities of mapping algorithms. The
solution quality is represented by the concurrent efficiency of the parallel ALGO,
which corresponds to a mapping configuration. Using the models defined in

equations 1-5, efficiency is given by

> W (n)

neV,,

" ,loF,

A, S, (n)

nel

" 7yl max, (1S, + {(n)}

(8)

However, it is unfeasible to use OFpyp because both W(n) and C(n) correspond to
conflicting requirements. In other words, minimizing OF, ryp gives rise to a min-max
criterion which is computationally expensive, because the calculation of a new
OFpyp caused by an incremental change in the mapping of data objects to nodes
may require-the calculation of the loads of all nodes. We will circumvent this
problem by using a quadratic objective function, OF, , which is considered to be a
good approximation of OFtyp [Mansour and Fox 1992, 1994a, 1994b; Fox et

al.1988 .

OF,,,, =A* 2, S} (n)+u X {(n) ©)

nely, ne¥y,

10
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where 4 is a scaling factor expressing the relative importance of the communication

term with respect to the computation term. It is given by

223 6(n)
400 NP Wl - 1B, 7,

ﬂ = ﬂuser (1 0)

The derivation of # is given in [Mansour 1992]. u y¢er and Ep Vp are user-defined

parameters selected based on experience.

The main advantages of the quadratic objective function, OF,,, , are its smoothness,
its locality property, and that it is cheaper to parallelize. Smoothness makes it more
suitable for optimization methods, that is cheaper. Locality means that a change in
the cost due to change in the mapping of data objects to nodes is determined by the
remapped objects and the relevant nodes only. Specifically, the change in OF,,, due

to remapping of object v from node » to node m is given by

AOF. = 2/126(v)[9(v) +8.(n) -8, (m )] + p[ac] (11)

appr

The use of OF,,, is essential to most optimization algorithms because they employ

vertex remapping extensively.

11




Chapter 3

Tabu Search

The Tabu Search paradigm [Glover 1989] aims for finding a good suboptimal
solution in a complex solution space based on two strategies: freeing the search by
functions of short-term memory and aspiration levels, aﬁd constraining the search
by classifying certain moves as forbidden ( i.e. Tabu). Tabu Search is a higher
level heuristic procedure for solving optimization problems, designed to escape the
trap of local optimality. This algorithm can be used to guide any process that
employs a set of moves for transforming one solution (or solution state) into another
and that provides an evaluation function for measuring the attractiveness of these
moves. The form of the guidance provided by tabu search is highly flexible and
often motivates the creation of new types of moves and evaluation criteria to take

advantage of its adaptability to different problem structures and strategic goals.

Figure 1 presents the general Tabu Search algorithm. 7§ starts with a random initial
solution and then generates a candidate list of moves, S . A candidate move is that
which can be applied to the current solution to generate a new solution. Different
problems would impose different constraints on the size of S and how its elements

are determined. In Chapter 4 we discuss the set S for the data mapping problem.

12




Chapter 3 Tabu Search
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1- Begin with a starting current solution.

{Obtain the solution from initialization or from intermediate or long-term memory}
2-Create a candidate list of moves

{if applied, each move would generate a new solution from the current solution}
3-Choose the best admissible candidate

{Admissibility is based on the Tabu restrictions and aspiration criteria.) Designate the
solution obtained as the new current solution. Record it as the new best solution if it
improves on the previous best}.

4-1f a chosen number of iterations has elapsed in total or since the last best solution
was found then stop by either terminating globally or transfer.

{A transfer initiates an intensification or diversification phase embodied in an
intermediate or long-term memory component}.

else

Update admissibility conditions and go to step 2.

{Update tabu restrictions and aspiration criteria}.

Figure 1. Tabu Search Algorithm

If certain number of iterations has elapsed, the algorithm would either terminate
globally or initiates an intensification or diversification phase embodied in an
intermediate or long term-memory component. Otherwise, admissibility conditions

would be updated, and the algorithms restart for other number of iterations.

7S5 uses intermediate- and long-term memory functions to achieve local
intensification and global diversification of the search. The long-term memory
function employs principles that are roughly the reverse of those for intermediate-

term memory. Instead of inducing the search to focus more intensively on regions

13
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that contain good solutions previously found, the long term-memory function guides

the search to regions that contrast with those examined thus far.

Figure 2 outlines the features of selecting the best admissible move. The algorithm
searches all elements (moves) of the candidate list S, and selects the best one. If the
move is not tabu, the move would be considered as admissible. Otherwise, that is if
the move is tabu, it will not be disregard but it takes another chance to be admissible

by checking it against aspiration criteria.

14
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algorithm

Examine another movel

{Admissibility recorded)

Figure 2. Selecting the Best Admissible Candidate

A fundamental feature of the 7S is the construction of a list of Tabu moves
that are not allowed at the current step. The objective is to exclude moves which
bring the search back to a previously visited point, which might trap it at a local
minimum. In fact, Tabu moves are recorded in this list, for a specified number of

iterations and then are removed, freeing them from their Tabu status, This short-

15




Chapter 3 Tabu Search
algorithm '

termn memory function of 7S is customarily handled by treating the Tabu list as a

circular list.

TS incorporates aspiration level functions which provide added flexibility to choose
good moves by allowing the Tabu status of a move to be overridden if the aspiration
level 1s attained. In fact, the Tabu restrictions and aspiration level function play a
dual role in constraining and guiding the search process. Tabu restrictions allow a
move to be regarded as admissible if they do not apply, while aspiration criteria

allow a move to be regarded as admissible if they do apply.

16




Chapter 4
Tabu Search Algorithm Applied to

Data Mapping Problem

The Tabu Search paradigm has been applied to graph partitioning [Tao, Zao, Guo,
Thulasiramon, and Swamy 1991; Tao and Zao 1993] and to graph coloring [Hertz
ana DeWerra 1987], but not to data mapping which involves different requirements
and constraints. Adapting Tabu Search to data mapping (Figure 3) requires design
decision concerning the candidate list of moves, move selection, Tabu lists,
aspiration levels, and techniques for intensifying and diversifying the search, and
convergence. 15 starts with a random initial solution and then generates a candidate
list of moves, S. A candidate move is that move which can be applied to the current
solution to generate a new solution. The best move is usually selected from S and
checking Tabu status is the first step in screening for admissibility. Admissibility is
based on the Tabu restrictions and aspiration criteria. That is, if the move is not
Tabu, it is immediately admitted; otherwise, the aspiration criteria are given an

opportunity to override the Tabu status, providing the move a second chance to

17




Chapter 4 Tabu Search algorithm applied to data mapping problem

qualify as admissible. If this fails, the next best non-Tabu move is selected from S
and will be admitted. Therefore, at each iteration the algorithm must select two
moves: the best move and the second non-Tabu best one; otherwise, if the
admissible selected move is Tabu, and does not improve the solution, the aspiration

criteria would not be satisfied leaving the algorithm in an infinite loop.

1- Begin with random initial mapping, MAP[], and empty list of Tabu moves, T;
2- Generate a candidate list of moves, 5}
3- Select the best move from S}
4- If the move is Tabu then If it satisfies aspiration criteria
then admit it
else reject it and admit the
next best move in .5 which is not Tabu
else admit it;

5- If converged, stop. Otherwise, update T and return to step 2;

Figure 3. Tabu Search algorithm Applied to Data Mapping.

1. Candidate List of Moves and Objective Function

We use the array MAP with D data elements ( D=|V(| ) to represent a mapping
configuration, where the value of MAP[i] represents the multicomputer node » to
which the ith data element is mapped. A move consists of remapping / from n to

node m. Thus, the candidate list, S, consists of all moves produced by remapping

18




Chapter 4 Tabu Search algorithm applied to data mapping problem

every data element to a2 new node. For N nodes (N={V)]) and D data elements, the

size of S is equal to D*(N-1).

A move is evaluated by computing the objective function value (Equation 1}). This is .
not an expensive operation, since it is based on the change produced in the objective
function. In Step 4 of the 7S algorithm, a move is usually selected from .S such that

it corresponds to the best change (greatest decrease) in the objective function.

2. The Tabu List

We use a Tabu list, 7, of length 7 to save the 7 most recent moves, which are then
removed, frec;,ing them from their Tabu status. This short-memory function of 7.8
can be accomplished by making 7 a circular list. Each item in the list has three
attributes: the data element number, its old node, and its new one. T is used to
prevent cycling or repetition of moves by rendering the attributes of these seven
moves forbidden (Tabu). This would permit the search to go beyond points of local

optimality while still making good quality moves at each step.
3. The Aspiration Criteria
Another important feature incorporated in 7S is the aspiration level functions which

provide added flexibility to choose good moves by allowing the Tabu status of a

move to be overridden if the aspiration level is attained. In fact, the Tabu restrictions

19




Chapter 4 Tabu Search algorithm applied to data mapping problem

and aspiration level function play a dual role in constraining and guiding the search
process. We use three types of aspiration levels:

i) First aspiration level is to accept a Tabu move if it offers an improvement in the
current objective function.

ii) Second level is to accept a Tabu move from node » to node m if node # is
allocated 20 or more data elements than node m.

1i1) Third level is to accept a Tabu move for a data element depending on the
mapping of its neighboring data elements. Specifically, we allow remapping an

element if the majority of its neighbors are mapped to the target node.

If the best move selected from S is Tabu, one or more of these aspiration criteria is
used to override the Tabu status, otherwise the next best non-Tabu move is

admitted.

4. Intensifying and Diversifying the Search

For data mapping, we employ a simple function to achieve both local
intensification and global diversification. This function is based on two types of
moves. The first type consists of remapping the selected data element to the best
target node. The second type consists of remapping the data element and all its
neighborhood to the best target node. The first type is the normal move and would
intensify the search. The second type is applied every 100 moves for IO moves and

is meant to diversify the search.

20
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5. Convc;,rgence

The mtenstfication and diversification features of 7S make it possible to avoid
trapping at a local minimum because they always guide thé search to different
regions. Moreover, the short-term memory of 7S prevent cycling in any region. We
did make use of these two facts to implement the concept of convergence by making

the algorithm converge every 100 iteration.

6. Complexity

The complexity of TS is of the order of ( Num of passes* [V *|V,l), where
Num_of passes is the maximum number of iterations, |V and |V, represent the
sizes of the computation and multicomputer graphs respectively. Therefore, the
execution time of TS is directly proportional to the number of multicomputer. nodes,

and the number of the computation nodes.

21




Chapter 5

Experimental Results

In this chapter, we present the experimental results of the TS algorithm, using the
simulated models presented in Chapter 4. We also compare the TS algorithm with

simulated annealing (SA), genetic algorithm (GA), neural network {NN), mean field
annealing (MFA), simulated tempering (ST) using the results reported in [Kawash
1994; Aghazarian 1996]. We conduct our experiments on an AViiON 5000 UNIX
machine. The values used for the parameters of the simulated computational and
multicomputer models are given in Table 1, assuming an NCUBE-2 hypercube

multicomputer [Berrenderf, and Helin 1992],

A p G T
7 15 325 100

Table 1. Simulation parameters.

1. Results for Published Test Cases.

In this section, we use three test cases used in the published literature [Kawash,

Manour, and Diab 1995; Chrisochoides, Mansour, and Fox 1994], which are

22




Chapter 6 Experimental Results

referred to as TCASE1,TCASE2, and TCASE3. These test cases are depicted in

Figure 4 and their properties are given in Table 2, where D=| V|and N = | V|

represent the sizes of the computation graph and the multicomputer graph

respectively.

Vb e Sddosgsive e
‘ﬂ.l.ﬂ"'“.’:nzg
SISV IPRE RPN D o0
betbdtadddd T 2T
b e d it ddblots ]
brtaded MESM0ed
IR 11171
it
i
o ...ﬂ‘:
L& dadd
$he,,, rsmesesees
b daddd ] b be bt dl]
bt bttt dced]
GHREDIOLS SISO
EIETH L
.“...“'..":‘:r'.'..

(a)} 301 Vertices

(c) 1266 Vertices
Figure 4. Shapes of Test Cases. (a) TCASEL. (b) TCASE2. (¢) TCASE3.

23




Chapter 6 Experimental Results

D N Avg. Vertex Degree Figure
TCASEI 301 4 3 Figure 4(a)
TCASE2 545 8 11.5 Figure 4(b)
TCASE3 1266 16 5.5 Figure 4(c)
Table 2. Test Cases

In Table 3, we present the execution time, t,,,. in seconds, and the solution guality, 1)
{Equation 4) for the six mapping algorithms. These results show that for TCASE]1,
the six algorithms give close solution quality (59.7% TS - 65.2% SA), whereas t,,,,
differs significantly: 2 seconds for NN to 211 seconds for SA. TS has the fourth
execution time. For TCASE2, 1 varies between 52.3% (NN) and 59.3% (GA) but
the difference in t,,., is again considerable (5 seconds for NN, 1652 seconds for
GA). TS has again the fourth t,,,., but the second best n. For TCASE3, the margin
is larger for n (46.5% TS - 58.8% GA) but still NN has the fastest t,,.. (8 seconds)

compared to GA (940 seconds); TS gives the least n and the fourth t,,.

TCASE 1 TCASE 2 TCASE 3
n Toxe M Coxee n L
SA 65.2% 211 57.2% 1095 54.2% 560
GA 61.9% 83 59.3% 1652 58.8% 940
NN 60.3% 2 52.3% 5 49.3% 8
MFA 63.7% 47 55.9% 122 53.5% 585
ST 60.3% 17 35.2% 132 50.0% 51
TS 59.7% 61 57.3% 413 46.5% 556

Table 3. Result of Mapping Algorithms for TCASE1, TCASE2, and TCASE3

Figures 5 through 10 show the solution qualities and execution time for
TCASE1,TCASE2, and TCASE3.

24
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SA GA NN MFA ST T8

Figure 5. Solution Quality for TCASEL.

60

57.5 4

52.5 -

50 4
SA GA NN MFA ST TS

Figure 6. Solution Quality for TCASE2.

SA GA NN MFA ST TS
Figure 7. Solution Quality for TCASE3.
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BTS
MST
BMFA
NN
HGA
HSA

o 22 44 66 88 110 132 154 176 198 220

texec

Figure 8. Execution Time for TCASE].

BTs
MST
OMFA
OONN
HGA
ESA

0 20 40 60 80 100 120 140 160

texec™10

Figure 9. Execution Time for TCASE2.

aTs
ST
OMFA
ONN
EGA
BSA

-

1} 10 20 30 40 50 60 70 80 20 100

texec™10

Figure 10. Execution Time for TCASE3.
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2. Results for Random Graphs

In this section we present the results for eleven selected test cases (SCASEs)
mapped to different numbers of nodes. The test cases, with different sizes and vertex
degrees, were generated using a random graph generator and their characteristics are
given in Table 4. The experimental results for these test cases, presented in Tables
5-15, show that NN is the fastest algorithm and that GA gives the best solution
quality. The execution time of TS is always the fourth, whereas its solution quality

ranges from third to sixth.

D N Avg. Vertex
Degree
SCASE]1 300 4 3
SCASE2 450 4 3
SCASE3 500 4 4
SCASE4 500 8 4
SCASES 750 8 6
SCASE6 1000 8 5
SCASE7 1000 16 5
SCASES 1500 8 12
SCASE9 1500 16 12
SCASE10 2000 8
SCASE 11 2000 16
Table 4. Randoinly Generated Test Cases
SA GA NN MFA ST TS
n 45.1% | 46.6% (43.5% |43.5% |43.7% |38.3%
toee | 325 153 2 45 19 67

Table 5. SCASE1
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SA GA NN MFA ST TS
! 49.5% | 52.6% | 47.6% | 50.3% | 49.3% 49.3%
tw |362 |722 4 32 23 155
Table 6. SCASE2
SA GA NN MFA ST TS
n 46.2% | 53.9% | 46.7% | 45.7% | 43.9% 46.7%
t | 589 | 886 2 18 47 101
Table 7. SCASE3
SA GA NN MFA ST TS
| 27.9% | 29.1% | 26.2% | 21.7% | 27.5% 27.3%
t | 731 | 765 4 59 52 257
Table 8. SCASE4
SA GA NN MFA ST T8
n 36.2% | 37.5% | 32.3% | 30.0% | 33.3% | 29.5%
.. | 1714 | 6345 8 100 140 515
Table 9. SCASES
SA GA NN MFA ST TS
n 33.7% | 385% | 32.1% | 38.0% | 32.5% | 28.1%
tw. | 1713 | 2717 12 396 131 483
Table 10. SCASE6
SA GA NN MFA ST TS
n 18.0% | 18.3% | 16.0% | 13.6% | 17.6% | 17.7%
t.. | 2037 | 2372 17 637 161 | 1146
Table 11. SCASE7
SA GA NN ST TS
- n 40.8% 46.1% 34.9% 34.6% 40.3%
to 4798 | 10845 26 448 1300

Table 12, SCASES
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SA GA NN ST TS
n 26.0% | 26.9% | 21.1% | 25.5% | 25.8%
T 5240 | 4460 37 482 3056

Table 13. SCASE9

SA GA NN ST TS
n 31.7% | 47.7% | 358% | 23.7% | 22.4%
t 5885 | 13171 40 644 4076

Table 14. SCASE1(

SA GA NN ST TS

n 40.8% | 46.1% 204% | 20.6%
t 4798 | 10845 976 3610

Table 15. SCASE11
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Chapter 6

Conclusions

We have presented a Tabu Search algorithm for data mapping, assuming loosely
synchronous computational algorithms and Equations 1-4 for the computational and
multicomputer models. We have also given experimental results for various test
cases. These results show that in comparison with other five mapping algorithms,
the 7S algorithm ranks fourth in terms of execution time and, on average, close to

fourth in terms of solution quality.
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