
DISCRETE AND CONTINUOUS Website: www.AIMSciences.org
DYNAMICAL SYSTEMS
SUPPLEMENT 2007 pp. 779–783

CONSTRUCTION OF SOLUTIONS TO A GLOBAL EIKONAL
EQUATION

Chadi Nour

Computer Science and Mathematics Division
Lebanese American University

Byblos Campus, P. O. Box 36, Byblos, Lebanon

Abstract. We give a new and simple proof to the main result of [8] in which

we derived a geometric necessary and sufficient condition for the existence of

solutions to a global eikonal equation.

1. Introduction. We consider in this paper the following global eikonal equation:

1 + hC(∂P ϕ(x)) = 0 ∀x ∈ Rn, ϕ(S) = 0, (e)

where C ⊂ Rn is a convex body containing zero in its interior, S ⊂ Rn is a nonempty
compact set with an empty interior, hC(ξ) := min{〈ξ, c〉 : c ∈ C} is the lower
support function of C, and ∂P is the proximal subdifferential (see [3]). A solution of
(e) means a lower semicontinuous function ϕ : Rn −→ R∪{+∞} such that ϕ(S) = 0
and for every x ∈ Rn, for every ζ ∈ ∂P ϕ(x) (if any), we have 1 + hC(ζ) = 0. This
concept of solution is called proximal solution (see [2]) and coincides, in the context
of this paper, with the viscosity solution concepts (see [6]).

Now let gC be the (Minkowski) gauge function associated to the set C defined by
gC(x) := min{λ ≥ 0 : x

λ ∈ C}. It is well-known, using the value function method,
that if we replace Rn by Rn \ S in (e), then the function T (x) := mins∈S gC(x− s)
becomes a solution of (e) (we note the the function T (·) coincides with the well
known minimal time function if the dynamic is taken to be the set C, see [8]). But
the function T (·) can never be a solution of (e) (on S) since 0 ∈ ∂P T (x) for all
x ∈ S (global minimum at any points of S) and hC(0) = 0.

In [8], we studied (apparently for the first time) the existence of solutions to
the equation (e). Let us recall the main result of this paper. We begin with some
geometric definitions. Let A ⊂ Rn be a nonempty closed set and let α ∈ A. We
say that a vector v ∈ Rn is an exterior vector to A at α if the vector α + tv is not
in the interior of A for all t ≥ 0. The set of all exterior vectors is called exterior
cone to A at α and denoted by ExtA(α). We note that when α ∈ int A then we
set ExtA(α) := {0}. We say that the set S is an exterior set to C if for all α ∈ S
there exists β in the boundary of C such that (α− S) ⊂ ExtC(β) (see [8] for more
information about these definitions). Now we can state the main result of [8].
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Theorem 1 ([8], Theorem 14). The eikonal equation (e) admits a solution if and
only if S is an exterior set to C.

To prove the preceding theorem, we used the main results of [4] and [7] where
Clarke and Nour studied the Hamilton-Jacobi equation of the minimal time function
(for a nonlinear system) in a domain which contains the target set. The purpose
of this paper is to give a direct and more simple proof to Theorem 1. Our new
(and self-contained) proof uses the properties of the proximal subdifferential and
an analytical construction of solutions. The plan of the paper is as follows. In the
next section, we present our notations and hypotheses. The proof of Theorem 1 is
given in Section 3.

2. Notations and hypotheses. We denote by ‖ · ‖ the Euclidean norm and by
〈, 〉 the usual inner product. For ρ > 0 we denote by

B(0; ρ) := {x ∈ Rn : ‖x‖ < ρ} and B̄(0; ρ) := {x ∈ Rn : ‖x‖ ≤ ρ}.

The open (resp. closed) unit ball in Rn is denoted by B (resp. B̄). For a set
A ⊂ Rn, intA and bdryA are the interior and the boundary of A, respectively.

We assume throughout this paper that C is a convex body (and then compact
and convex) with 0 ∈ int C and that S is a compact set with intS = ∅. We note
that, to prove the existence of solutions to the equation (e), we must assume that
intS = ∅. This assumption is related to the nature of the semicontinuous solution
chosen here. Indeed, if intS 6= ∅, then a solution ϕ of (e) vanishes on intS and then
0 ∈ ∂P ϕ(x) for all x ∈ intS, which gives a contradiction since hC(0) = 0.

3. Proof of Theorem 1. First we recall some usual properties of gC .

Proposition 1. The gauge function gC satisfies the following:

(i) The gauge gC is positively homogeneous, that is, gC(rx) = rgC(x) for all
x ∈ Rn and r ≥ 0.

(ii) The gauge gC is subadditive, that is, gC(x + y) ≤ gC(x) + gC(y) for all x, y ∈
Rn.

(iii) We have
• gC(x) = 0 if and only if x = 0.
• x ∈ C if and only if gC(x) ≤ 1.
• x ∈bdry C if and only if gC(x) = 1.
• x ∈ intC if and only if gC(x) < 1.

(iv) The gauge function is globally Lipschitz on Rn.

Proof. See [1] and [5].

In the following lemma, we prove that any solution to the equation (e) is globally
Lipschitz on Rn.

Lemma 1. Let ϕ : Rn −→ R∪{+∞} be a lower semicontinuous function such that
ϕ(S) = 0.

(i) If ϕ is a solution to the equation (e) then ϕ is globally Lipschitz on Rn.
(ii) The function ϕ is a solution to the equation (e) if and only if it is a solution

to the equation (e) by replacing the proximal subdifferential ∂P by the limiting
subdifferential ∂L (see [3] for the definition).
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Proof. (i) It is sufficient to prove, using [3, Theorem 1.7.3], the existence of a
constant K > 0 such that

∀α ∈ Rn ∀ζ ∈ ∂P ϕ(α) ‖ζ‖ ≤ K.

Using the fact that 0 ∈ intC we get the existence of a K > 0 such that B̄(0, 1
K ) ⊂ C.

Since ϕ is a solution to the equation (e) we have

∀α ∈ Rn ∀ζ ∈ ∂P ϕ(α) min
v∈C

〈ζ, v〉 = −1.

Taking v := −ζ
K‖ζ‖ we get that

∀α ∈ Rn ∀ζ ∈ ∂P ϕ(α) ‖ζ‖ ≤ K.

(ii) Follows from the continuity of hC and from the fact that ∂L is constructed from
∂P by a limiting process.

The following lemma gives necessary and sufficient condition for a given globally
Lipschitz function ϕ to be a solution to the equation (e).

Lemma 2. Let ϕ : Rn −→ R be a globally Lipschitz function such that ϕ(S) = 0.
Then ϕ is a solution of (e) if and only if
(C1) ∀α ∈ Rn ∀v ∈ C we have

ϕ(α + sv) + s ≤ ϕ(α + tv) + t ∀s ≤ t ∈ [0,+∞[.

(C2) ∀α ∈ Rn ∃v ∈ bdry C such that

ϕ(α) ≥ ϕ(α + tv) + t ∀t ∈ [0,+∞[.

Proof. It is sufficient to prove that
• (C1) ⇐⇒ 1 + hC(∂P (ϕ(x)) ≥ 0 for all x ∈ Rn, and
• (C2) ⇐⇒ 1 + hC(∂P (ϕ(x)) ≤ 0 for all x ∈ Rn.

The preceding two equivalences follows from the definition of hC , the preceding
lemma (to replace ∂P by ∂L and then use the chain rule of ∂L, see [3, Chapter
1]) and using the characterization of the monotonicity of a real function by the
proximal subdifferential (see [3, Chapter 1]). The details are left to the reader.

Now we begin the proof of the necessary condition of Theorem 1. We assume
that the equation (e) has a solution ϕ (which is globally Lipschitz by Lemma 1).
We need to prove that S is an exterior set to C. Let α ∈ S. By Lemma 2, there
exists v ∈bdryC such that

ϕ(α + tv) + t = 0 ∀t ∈ [0,+∞[. (1)

We claim that α−S ⊂ ExtC(v). Indeed, let α′ ∈ S. By (C1) and using the realtion
α + tv = α′ + gC(α + tv − α′) α+tv−α′

gC(α+tv−α′) , we get that

0 = ϕ(α′) ≤ ϕ(α + tv) + gC(α + tv − α′). (2)

Combining (1) and (2), we find that

gC(α + tv − α′) ≥ t ∀t ∈ [0,+∞[.

Then
gC(v + t(α− α′)) ≥ 1 ∀t ∈ [0,+∞[,

which gives by Proposition 1 that

v + t(α− α′)) 6∈ intC ∀t ∈ [0,+∞[.

Therefore, S is an exterior set to C. The necessary condition follows.
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For the sufficient condition, assume that S is an exterior set to C. We need to
prove that the equation (e) has a solution. We consider the function ϕ defined on
Rn by

ϕ(α) := lim inf
t−→+∞
v∈bdry C

[t− min
α′∈S

gC(α + tv − α′)].

We claim that ϕ is a solution to the equation (e). Using the inequality (follows by
the subadditivity of gC)

− min
α′∈S

gC(α− α′) ≤ t− min
α′∈S

gC(α + tv − α′) ≤ min
α′∈S

gC(α′ − α)

we get that

• ϕ(S) ≥ 0 and
• ϕ(α) is finite for all α ∈ Rn.

To prove that ϕ(S) ≤ 0, we consider α ∈ S. Since S is an exterior set to C, there
exists vα ∈ bdry C such that (α − S) ⊂ ExtC(vα) and then (by Proposition 1)
gC(α + tvα −α′) ≥ t for all α′ ∈ S. This gives that ϕ(α) ≤ 0. Therefore, ϕ(S) = 0.
Now we prove that ϕ is globally Lipschitz on Rn. Using the subadditivity of gC we
can easily prove that

ϕ(α) ≤ ϕ(β) + gC(β − α) ∀α, β ∈ Rn.

then (K is the Lipschitz constant of gC)

−K‖α− β‖ ≤ −gC(α− β) ≤ ϕ(α)− ϕ(β) ≤ gC(β − α) ≤ K‖α− β‖,

which gives that ϕ is globally Lipschitz on Rn. Let us show that ϕ satisfies the
conditions (C1) and (C2). We begin by (C2).
Let α ∈ Rn. By the definition of ϕ(α) there exist two sequences ti > 0 and
vi ∈ bdry C such that ti −→ +∞ and

ϕ(α) = lim
i−→+∞

[ti − min
α′∈S

gC(α + tivi − α′)].

We can assume that the sequence vi converges to a vector v ∈ bdryC. For t ≥ 0
we have

ϕ(α + tv) ≤ lim
i−→+∞

[(ti − t)− min
α′∈S

gC(α + tv + (ti − t)vi − α′)]

= lim
i−→+∞

[ti − min
α′∈S

gC(α + t(v − vi) + tivi − α′)]− t

= lim
i−→+∞

[ti − min
α′∈S

gC(α + tivi − α′)]− t

= ϕ(α)− t.

Therefore,

ϕ(α + tv) + t ≤ ϕ(α) ∀t ≥ 0.

The condition (C2) follows.
For the condition (C1), let α ∈ Rn, v ∈ bdryC and s ≤ t ∈ [0,+∞[. We need to
prove that ϕ(α + sv)+ s ≤ ϕ(α + tv)+ t. By the definition of ϕ(α + tv), there exist
two sequences ti > 0 and vi ∈ bdry C such that ti −→ +∞ and

ϕ(α + tv) = lim
i−→+∞

[ti − min
α′∈S

gC(α + +tv + tivi − α′)].
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We have

ϕ(α + tv) = lim
i−→+∞

[ti − min
α′∈S

gC(α + +tv + tivi − α′)]

= lim
i−→+∞

[ti − min
α′∈S

gC(α + tv + tivi − α′ + sv − sv)]

≥ lim
i−→+∞

[ti − min
α′∈S

gC(α + sv + tivi − α′)− gC((t− s)v)]

= lim
i−→+∞

[ti − min
α′∈S

gC(α + sv + tivi − α′)]− t + s

≥ ϕ(α + sv)− t + s.

The condition (C1) follows. This ends the proof of the theorem.
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