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On the ψ-union of closed balls property

C. Nour a and J. Takche a

aDepartment of Computer Science and Mathematics, Lebanese American University, Byblos Campus,
P.O. Box 36, Byblos, Lebanon

Abstract

We provide a new analytical proof for a strengthened version of the variable radius form of the
union of closed balls conjecture introduced in [15]. We also introduce a strong version of this
conjecture and discuss its validity.

Key words: Exterior and interior sphere conditions, union of closed balls property, proximal analysis,

nonsmooth analysis.

1. Introduction

Let S ⊂ Rn be a nonempty closed set. The regularity of the minimal time function
associated to the target S, denoted here by T (·, S), is a widely studied topic in control
theory. It is known that under a suitable controllability assumption known as Petrov
condition, the function T (·, S) is locally Lipschitz continuous in its domain of definition.
On the other hand, simple examples show that T (·, S) fails to be everywhere differen-
tiable, in general. Differentiability results for T (·, S) have been proved for linear systems
if the boundary of S is smooth, while Hölder continuity results have been obtained under
weaker controllability assumptions. For more information about these results, see e.g. [2,
Chapter 4] and the references therein.

In the paper [5] (see also the book [6]), Cannarsa and Sinestrari were interested in the
semiconcavity property of the minimal time function which is an intermediate property
between Lipschitz continuity and continuous differentiability. More precisely, semiconcave
functions are essentially a C2-perturbation of concave functions and therefore inherit sev-
eral regularity properties from convexity, see [6] where several features of semiconcavity
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were thoroughly studied. After finding a connection between the dynamics and the tar-
get, Cannarsa and Sinestrari proved that if the target S satisfies a uniform interior
sphere condition and the dynamics is smooth enough, then T (·, S) is semiconcave. In [4],
Cannarsa and Frankowska generalized this semiconcavity result for the case where the
dynamics satisfies the uniform interior sphere condition and not necessarily the target S.
An analogous result was also found by Sinestrati in [17]. These regularity results are gen-
eralized to the non-Lipschitz case (that is, when the Petrov condition is not necessarily
satisfied) in [8–10].

In [4] (see also [1,3]), the authors used the following as a definition for the uniform
interior sphere condition (we follow this definition here): There exists r > 0 such that for
any boundary point x in S one can find yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S,

where B̄(yx; r) denotes the closed ball centered at yx with radius r. In this case we say
that S satisfies the interior r-sphere condition. On the other hand, in [5,6,17] the authors
used the following as definition: There exists r > 0 such that for all x ∈ S one can find
yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.

This means that S is the union of closed r-balls. Clearly, if S is the union of closed r-balls
then it satisfies the interior r-sphere condition. A simple example, see [14, Example 2],
proves that the reverse implication is not necessarily true and then the two definitions
(with same specific radius r) are not equivalent. More precisely, Nour, Stern and Takche
gave in [14, Example 2] a set S ⊂ Rn which satisfies the interior r-sphere condition but
fails to be the union of closed r′-balls for any r′ > nr

2
√
n2−1 (which is less than r). This

lead Nour, Stern and Takche to introduce in [11,12,14] the following two versions of the
union of uniform closed balls conjecture:

Conjecture 1 (Weak version) Suppose that S ⊂ Rn is a nonempty closed set satis-
fying the interior r-sphere condition. Then there exists r′ ≤ nr

2
√
n2−1 such that S is the

union of closed r′-balls.

Conjecture 2 (Strong version) Suppose that S ⊂ Rn is a nonempty closed set satis-
fying the interior r-sphere condition. Then S is the union of closed nr

2
√
n2−1 -balls.

In [11, Corollary 4.2], Nour, Stern and Takche proved the validity of Conjecture 1 under
the assumption that S is wedged with compact boundary. Recall that a set S is said to be
wedged (or epi-Lipschitz) if near any boundary point, S can be viewed, after application
of an orthogonal transformation, as the epigraph of a Lipschitz continuous function.
The proof employed a more general result which asserts that under the wedgedness and
compactness hypotheses, proximal smoothness of (intS)c (the complement of the interior
of S) and the interior sphere condition of S coincide; see [11, Corollary 3.12]. A proof for
Conjecture 1 in the general case and for r′ = r

2 was given, apparently for the first time,
by the same authors in their recent paper [15]. We note that r

2 is the greatest radius r′

(independent from n) that works for all spaces Rn. Indeed, any such r′ must satisfy (due
to [14, Example 2]) the inequality r′ ≤ nr

2
√
n2−1 for all n, and lim

n−→+∞
nr

2
√
n2−1 = r

2 .
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The proof of Conjecture 1 given in [15] was a geometric proof that uses some results
from proximal analysis. Using this proof, Nour, Stern and Takche also presented in [15] a
generalization of Conjecture 1 to the case in which the radius of the balls can be taken to
be a continuous function, see [15, Theorem 3.1]. More precisely, Nour, Stern and Takche
introduced two geometric properties, the θ-interior sphere condition and the ψ-union of
closed balls property, that can be seen as a generalization to the variable radius case,
for the uniform interior sphere condition and the union of uniform closed balls property,
respectively. Then they showed that if S satisfies the θ-interior sphere condition then it
is the ψ-union of closed balls with a formula relating ψ to θ.

The goal of the present article is to provide a strengthened version of [15, Theorem
3.1] (by giving a smaller function ψ) with a direct and analytical proof. As corollary, we
deduce a new analytical proof for Conjecture 1. We also present a new conjecture that
can be seen as a strong version of [15, Theorem 3.1] by involving, as in Conjecture 2,
the dimension n in the formula of ψ. Moreover, we prove via counterexamples that the
method used in [15] to deduce the variable radius form from the constant radius form
does not work in the strong case. Therefore, a direct proof for the strong version of [15,
Theorem 3.1] is needed.

The layout of this article is as follows. In the next section, we present some preliminaries
from proximal analysis and provide new analytical characterizations for the θ-interior
sphere condition and the ψ-union of closed balls property defined in [15]. Using these
analytical characterizations, we give in Section 3 a new analytical proof for a strengthened
version of [15, Theorem 3.1]. Section 4 is devoted to the introduction of a strong version
of [15, Theorem 3.1] and to discuss its validity.

2. Preliminaries and some analytical characterizations

We denote by ‖ · ‖, 〈·, ·〉, B and B̄, the Euclidean norm, the usual inner product, the
open unit ball and the closed unit ball, respectively. For ρ > 0 and x ∈ Rn, we set
B(x; ρ) := x + ρB and B̄(x; ρ) := x + ρB̄. For a set S ⊂ Rn, Sc, intS, ∂S, and clS
are the complement (with respect to Rn), the interior, the boundary, and the closure
of S, respectively. We also denote by S′ the complement of the interior of S, that is,
S′ = (intS)c. The distance from a point x to a set S is denoted by dS(x), and proj S(x)
denotes the set of closest points in S to x, that is, the set of points s ∈ S satisfying
‖s− x‖ = dS(x).

Now we provide certain definitions from proximal analysis. Our general reference for
these constructs is Clarke, Ledyaev, Stern and Wolenski [7]; see also [16]. Let S be a
nonempty closed subset of Rn. For x ∈ S, a vector ζ ∈ Rn is said to be proximal normal
to S at x provided that there exists σ = σ(x, ζ) ≥ 0 such that

〈ζ, s− x〉 ≤ σ‖s− x‖2 ∀s ∈ S. (1)

The relation (1) is commonly referred to as the proximal normal inequality. No nonzero
ζ satisfying (1) exists if x ∈ intS, but this may also occur for x ∈ ∂S, as is the case when
S is the epigraph of the function f(z) = −|z| and x = (0, 0). For such point, the only
proximal normal is ζ = 0. In view of (1), the set of all proximal normals to S at x is a
convex cone, and we denote it by NP

S (x). Now let x ∈ ∂S, and suppose that 0 6= ζ ∈ Rn
and r > 0 are such that
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B

(
x+ r

ζ

‖ζ‖
; r

)
∩ S = ∅. (2)

Then ζ is a proximal normal to S at x and we say that ζ is realized by an r-sphere.
Note that ζ is then also realized by an r′-sphere for any 0 < r′ < r. One can show that
ζ being realized by an r-sphere is equivalent to the proximal normal inequality holding

with σ =
1

2r
; that is,〈

ζ

‖ζ‖
, s− x

〉
≤ 1

2r
‖s− x‖2 ∀s ∈ S. (3)

We proceed to define the ψ-union of closed balls property that can be seen as a gen-
eralization, to the variable radius case, of the uniform union of closed balls property.

Definition 3 A nonempty closed set S ⊂ Rn is said to be the ψ-union of closed balls if
there exists a function ψ : S −→ [0,+∞[ such that:

(i) ψ is upper semicontinuous on S and continuous on ∂S.
(ii) For all x ∈ S there exists yx ∈ S such that:

• x ∈ B̄
(
yx; 1

2ψ(x)

)
⊂ S, if ψ(x) > 0.

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if ψ(x) = 0.

If ψ ≡ ψ0 is a positive constant then the ψ0-union of closed balls property coincides with
the union of closed 1

2ψ0
-balls property. The following is a new analytical characterization

for this property.

Proposition 4 A nonempty closed set S ⊂ Rn is the ψ-union of closed balls if and only
if there exists a function ψ : S −→ [0,+∞[ such that:

(i) ψ is upper semicontinuous on S and continuous on ∂S.
(ii) For all x ∈ S, one can find a unit vector ζx satisfying:

• There exists t ∈
[
0, 1

2ψ(x)

]
such that 〈ζx, z − x + tζx〉 ≤ ψ(x)‖z − x + tζx‖2 for

all z ∈ S′, if ψ(x) > 0.
• 〈ζx, z − x〉 ≤ 0 for all z ∈ S′, if ψ(x) = 0.

Proof. Let x ∈ S and consider the following two cases:

Case 1: ψ(x) > 0.

Then we need to prove the equivalence between the existence of yx ∈ S satisfying

x ∈ B̄
(
yx;

1

2ψ(x)

)
⊂ S,

and the existence of a unit vector ζx and t ∈
[
0, 1

2ψ(x)

]
satisfying

〈ζx, z − x+ tζx〉 ≤ ψ(x)‖z − x+ tζx‖2 for all z ∈ S′.

For the first implication, assume that x ∈ B̄
(
yx; 1

2ψ(x)

)
⊂ S for some yx ∈ S. We define
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t :=
1

2ψ(x)
− ‖yx − x‖, and ζx :=

yx − x
‖yx − x‖

if yx 6= x and any unit vector if yx = x.

Clearly we have t ∈
[
0, 1

2ψ(x)

]
and yx = x +

(
1

2ψ(x) − t
)
ζx. On the other hand, for

every z ∈ S′, we have z 6∈ intS and then

z 6∈ B
(
yx;

1

2ψ(x)

)
= B

(
(x− tζx) +

1

2ψ(x)
ζx;

1

2ψ(x)

)
.

Now using the proximal normal inequality we get that

〈ζx, z − x+ tζx〉 ≤ ψ(x)‖z − x+ tζx‖2.

For the converse implication, let t ∈
[
0, 1

2ψ(x)

]
and let ζx be a unit vector such that:

〈ζx, z − x+ tζx〉 ≤ ψ(x)‖z − x+ tζx‖2 for all z ∈ S′

Then z 6∈ B
(

(x− tζx) + 1
2ψ(x)ζx; 1

2ψ(x)

)
for all z ∈ S′ and this implies that

B

(
x− tζx +

1

2ψ(x)
ζx;

1

2ψ(x)

)
⊂ intS.

Now if we define yx := x +
(

1
2ψ(x) − t

)
ζx then we obtain that B̄

(
yx; 1

2ψ(x)

)
⊂ S.

Moreover, x ∈ B̄
(
yx; 1

2ψ(x)

)
since

‖yx − x‖ =

∣∣∣∣ 1

2ψ(x)
− t
∣∣∣∣ ≤ 1

2ψ(x)
.

Case 2: ψ(x) = 0.

Then we need to prove the equivalence between the existence of yx ∈ S satisfying

x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0,

and the existence of a unit vector ζx satisfying

〈ζx, z − x〉 ≤ 0 for all z ∈ S′.

For the first implication, let yx ∈ S such that x ∈ B̄(x + t(yx − x); t) ⊂ S for all t > 0.
We claim that ζx := yx − x is a unit vector. Indeed, ‖ζx‖ ≤ 1 since x ∈ B̄(x + tζx; t).
Now assume that ‖ζx‖ < 1. We shall derive a contradiction. For s ∈ proj∂S(x), we define

t0 :=
1 + ‖x− s‖

1− ‖ζx‖
> 0. (4)

Since s is a boundary point, we have that s 6∈ B(x+ t0ζx; t0) ⊂ S. Then

t0 ≤ ‖s− x− t0ζx‖ ≤ ‖s− x‖+ t0‖ζx‖. (5)

If we combine (4) and (5) we get that t0 ≤ t0 − 1 which gives the desired contradiction.
Now for every z ∈ S′, we have z 6∈ intS and then z 6∈ B(x+ tζx; t) for every t > 0. This
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implies that 〈ζx, z − x〉 ≤ 1
2t‖z − x‖

2 for every t > 0. Therefore 〈ζx, z − x〉 ≤ 0. The first
implication follows. For the converse implication, assume that there exists a unit vector
ζx satisfying

〈ζx, z − x〉 ≤ 0 for all z ∈ S′. (6)

Let yx := x + ζx. Then 〈ζx, yx − x〉 = 〈ζx, ζx〉 = 1 > 0. This gives, using (6), that
yx ∈ intS ⊂ S. Now for t > 0, let z ∈ B(x+ tζx; t). Then

〈ζx, z − x〉 >
1

2t
‖z − x‖2 > 0.

By (6) we deduce that z ∈ intS. Hence

B(x+ tζx; t) ⊂ intS,

which gives that

x ∈ B̄(x+ t(yx − x); t) ⊂ S.

Therefore

x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0.

This terminates the proof of the converse implication and then the proof of the proposi-
tion.

Next we introduce the θ-interior sphere condition. For more information about this
property, we invite the reader to see [13] where the θ-interior sphere condition and its
relation to ϕ-convexity were studied. We can also find in [13] some regularity results
concerning Lipschitz continuous functions with epigraphs satisfying the θ-interior sphere
condition. The non-Lipschitz case, with application to minimal time function, was stud-
ied in [10].

Definition 5 A nonempty closed set S ⊂ Rn is said to satisfy the θ-interior sphere
condition if there exists a continuous function θ : ∂S −→ [0,+∞[ such that for all
x ∈ ∂S one can find a point yx ∈ S satisfying:

• x ∈ B̄
(
yx; 1

2θ(x)

)
⊂ S, if θ(x) > 0.

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if θ(x) = 0.

Clearly the θ0-interior sphere condition (θ0 > 0) coincides with the interior 1
2θ0

-sphere
condition. The following is an analytical characterization for this property.

Proposition 6 A nonempty closed set S ⊂ Rn satisfies the θ-interior sphere condition
if and only if there exists a continuous function θ : ∂S −→ [0,+∞[ such that for all
x ∈ ∂S one can find a unit vector ζx such that

〈ζx, z − x〉 ≤ θ(x)‖z − x‖2 ∀z ∈ S′ = (intS)c. (7)

Proof. Let x ∈ ∂S. As in the proof of the preceding proposition there are two cases.
The case θ(x) > 0 follows directly from the proximal normal inequality, and the case
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θ(x) = 0 is similar to the case ψ(x) = 0 of the proof of Proposition 4. The details are
left to the reader.

3. Main result

We begin this section by recalling the main result of [15, Section 3] which is an equiv-
alence between the θ-interior sphere condition and the ψ-union of closed balls property.
Clearly if S is the ψ-union of closed balls then it satisfies the θ-interior sphere condition
with θ = ψ (on ∂S). The following is [15, Theorem 3.1] which proves that the converse
implication holds with a relation relating ψ to θ.

Theorem 7 [15, Theorem 3.1] Let S ⊂ Rn be a nonempty closed set which satisfies the

θ-interior sphere condition. Then S is the ψ̂-union of closed balls where ψ̂(·) is defined
by

ψ̂(x) := 2 max{θ(s) : s ∈ proj∂S (x)} ∀x ∈ S.

The main result of this section is the following strengthened version of Theorem 7. We
provide a function ψ smaller than the function given in Theorem 7, see Remark 11 and
Example 12. We also provide a direct and analytical proof for this theorem that uses the
analytical characterizations of Section 2.

Theorem 8 Let S ⊂ Rn be a nonempty closed set satisfying the θ-interior sphere con-
dition. Then S is the ψ̃-union of closed balls where ψ̃(·) is defined by:

ψ̃(x) := min

 1

2d∂S(x)
,

ψ̂(x)√
1 + ψ̂(x)2d∂S(x)2

 ∀x ∈ S.

Here 1
2d∂S(x) is taken to be ∞ whenever x belongs to ∂S and ψ̂(·) is the function defined

in Theorem 7.

Proof. Since ψ̃(·) = ψ̂(·) = 2θ(·) on ∂S, we have that ψ̃(·) is continuous on ∂S. On the

other hand, the upper semicontinuity of ψ̃(·) on S follows directly from the continuity

of d∂S(·), the upper semicontinuity of ψ̂(·) and the fact that the function t√
1+t2d2

is an

increasing function with respect to t. The details are left to the reader.

Lemma 9 For x ∈ intS and s ∈ proj∂S(x), there exists a unit vector ζs ∈ NP
S′(s) such

that
(i) 〈ζs, z − s〉 ≤ θ(s)‖z − s‖2 ∀z ∈ S′, and

(ii) 〈ζs, x− s〉 ≥ 0.

In order to prove this lemma, we first remark that for every integer m ≥ 1 we have

B̄
(
s; ‖x−s‖2m

)
6⊂ S. Then for zm ∈ B̄

(
s; ‖x−s‖2m

)
∩ Sc the segment joining the point x ∈ S

to the point zm 6∈ S intersects ∂S at a point sm. Let ζm := sm−x
‖sm−x‖ = zm−x

‖zm−x‖ , then

sm = x+ t1ζm and zm = x+ t2ζm,

7



where ‖x− s‖ ≤ t1 < t2 ≤ ‖x− s‖+ ‖x−s‖
2m . We claim that

‖sm − s‖ ≤ ‖zm − s‖ ≤
‖x− s‖

2m
. (8)

Indeed,

‖sm − s‖2 − ‖zm − s‖2 ≤ 0

⇐⇒ 〈(sm − s)− (zm − s), (sm − s) + (zm − s)〉 ≤ 0

⇐⇒ 〈sm − zm, sm + zm − 2s〉 ≤ 0

⇐⇒ 〈(t1 − t2)ζm, (t1 + t2)ζm + 2x− 2s〉 ≤ 0

⇐⇒ 〈ζm, (t1 + t2)ζm + 2x− 2s〉 ≥ 0

⇐⇒ t1 + t2 + 〈ζm, 2x− 2s〉 ≥ 0,

which holds since

t1 + t2 + 〈ζm, 2x− 2s〉 ≥ ‖x− s‖+ ‖x− s‖+ 2〈ζm, x− s〉
≥ 2|x− s‖ − 2‖x− s‖ = 0.

Since S satisfies the θ-interior condition and sm is a boundary point, there exists a unit
vector ζsm ∈ NP

S′(sm) such that

〈ζsm , z − sm〉 ≤ θ(sm)‖z − sm‖2 ∀z ∈ S′. (9)

Clearly we can assume that the sequence ζsm is convergent to a certain unit vector ζs.
Now by (9) and using the fact that zm ∈ S′ we deduce that

〈ζsm , zm − sm〉 ≤ θ(sm)‖zm − sm‖2 ∀m.

Therefore

〈ζs, x− s〉 = − lim
m−→∞

〈ζsm , sm − x〉=− lim
m−→∞

‖sm − x‖〈ζsm , ζm〉

=− lim
m−→∞

‖sm − x‖
〈
ζsm ,

zm − sm
‖zm − sm‖

〉
≥− lim

m−→∞
‖sm − x‖θ(sm)‖zm − sm‖

= 0,

where the sequences sm and zm both converge to s due to (8). To prove (i), it is sufficient
to take m −→∞ in (9). This completes the proof of the lemma.

Lemma 10 For every x ∈ intS, we have: ψ̂(x)d∂S(x) ≥ 1√
3
⇐⇒ ψ̃(x) = 1

2d∂S(x) .

The proof of this lemma follows directly from the definition of ψ̃(·). The details are left
the reader.

8



We proceed with the proof of Theorem 8 and we consider x ∈ S.

Case 1: x ∈ ∂S.

Then ψ̃(x) = ψ̂(x) = 2θ(x). Since S satisfies the θ-interior sphere condition there exists
a unit vector ζx ∈ NP

S′(x) satisfying 〈ζx, z − x〉 ≤ θ(x)‖z − x‖2 for all z ∈ S′. Now if

ψ̃(x) = 0 then θ(x) = 0 and therefore 〈ζx, z − x〉 ≤ 0 for all z ∈ S′. If ψ̃(x) > 0 then

θ(s) < ψ̃(x) and hence

〈ζx, z − x〉 ≤ θ(x)‖z − x‖2 ≤ ψ̃(x)‖z − x‖2 ∀z ∈ S′.

Taking t := 0 we get that

〈ζx, z − x+ tζx〉 ≤ ψ̃(x)‖z − x+ tζx‖2 ∀z ∈ S′.

Case 2: x ∈ intS.

Let s ∈ proj∂S(x) such that ψ̂(x) = 2θ(s).

Case 2.1: ψ̂(x)d∂S(x) ≥ 1√
3
.

Then by Lemma 10 we get that ψ̃(x) = 1
2d∂S(x) . Now for t := 1

2ψ̃(x)
and ζx := x−s

‖x−s‖ we

can easily get using the proximal normal inequality and the fact that z− x+ tζx = z− s
that

〈ζx, z − x+ tζx〉 ≤ ψ̃(x)‖z − x+ tζx‖2 ∀z ∈ S′.

Case 2.2: ψ̂(x)d∂S(x) < 1√
3
.

Then by Lemma 10 we get that

ψ̃(x) =
ψ̂(x)√

1 + ψ̂(x)2d∂S(x)2
, and then ψ̃(x) ≥

√
3

2
ψ̂(x) =

√
3 θ(s).

By Lemma 9, there exists ζs ∈ NP
S′(s) such that

〈ζs, x− s〉 ≥ 0 and < ζs, z − s〉 ≤ θ(s)‖z − s‖2 ∀z ∈ S′. (10)

Now if ψ̃(x) = 0 then ψ̂(x) = 2θ(s) = 0. Hence for z ∈ S′ we get, using (10), that

〈ζs, z − x〉 = 〈ζs, z − s〉 − 〈ζs, x− s〉 ≤ 0.

So taking ζx := ζs we find the desired inequality.
Now we assume that ψ̃(x) > 0. This gives that ψ̂(x) > 0 and then one can define
cs := s+ ζs

ψ̂(x)
. We claim that ‖cs − x‖ ≤ 1

ψ̃(x)
. Indeed,

‖cs − x‖2 =

∥∥∥∥∥s− x+
ζs

ψ̂(x)

∥∥∥∥∥
2

9



= ‖s− x‖2 +
1

ψ̂(x)2
+

2

ψ̂(x)
〈ζs, s− x〉

≤ d∂S(x)2 +
1

ψ̂(x)2
(using (10))

=
1

ψ̃(x)2
.

If ‖cs − x‖ ≤ 1

2ψ̃(x)
, then we define t := 1

2ψ̃(x)
− ‖cs − x‖ and ζx := cs−x

‖cs−x‖ . For z ∈ S′,
we can prove that

z − x+ tζx = z − cs +
1

2ψ̃(x)
ζx.

Therefore

‖z − x+ tζx ‖2 −
1

ψ̃(x)
〈ζx, z − x+ tζx)〉

=

∥∥∥∥∥z − cs +
1

2ψ̃(x)
ζx

∥∥∥∥∥
2

− 1

ψ̃(x)

〈
ζx, z − cs +

1

2ψ̃(x)
ζx

〉

= ‖z − cs‖2 +
1

4ψ̃(x)2
− 1

2ψ̃(x)2

≥ ‖z − cs‖2 −
1

ψ̂(x)2

(
since ψ̃(x) >

√
3

2
ψ̂(x)

)

=

〈
z − cs −

1

ψ̂(x)
ζs, z − cs +

1

ψ̂(x)
ζs

〉
=

〈
z − s− 2

ψ̂(x)
ζs, z − s

〉

= ‖z − s‖2 − 1

θ(s)
〈ζs, z − s〉 ≥ 0,

where the last inequality follows directly from Lemma 9.

If ‖cs − x‖ > 1

2ψ̃(x)
then let us define t := 0 and ζx := cs−x

‖cs−x‖ . We need to prove

that

〈ζx, z − x〉 ≤ ψ̃(x)‖z − x‖2 ∀z ∈ S′.

The inequalities ‖cs − x‖ ≤ 1

ψ̃(x)
and ψ̂(x)d∂S(x) < 1√

3
< 1 clearly give that(

‖cs − x‖ −
1

ψ̃(x)

)(
‖cs − x‖+ ψ̃(x)

(
1

ψ̂(x)2
− d∂S(x)2

))
≤ 0.

This gives, after expanding the product, that

‖cs − x‖2 −
1

ψ̂(x)2
≤ ψ̃(x)‖cs − x‖

(
−1

ψ̂(x)2
+ d∂S(x)2 +

1

ψ̃(x)2

)
− d∂S(x)2

≤ d∂S(x)2(2ψ̃(x)‖cs − x‖ − 1).
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Now for z ∈ S′ we get that

‖cs − x‖2 −
1

ψ̂(x)2
≤ ‖z − x‖2(2ψ̃(x)‖cs − x‖ − 1),

and then

‖z − x‖2 + ‖cs − x‖2 −
1

ψ̂(x)2
≤ 2ψ̃(x)‖z − x‖2‖cs − x‖. (11)

On the other hand

2〈z − x, cs − x〉= ‖z − x‖2 + ‖cs − x‖2 − ‖z − cs‖2

= ‖z − x‖2 + ‖cs − x‖2 −

∥∥∥∥∥z − s− 1

ψ̂(x)
ζs

∥∥∥∥∥
2

= ‖z − x‖2 + ‖cs − x‖2 − ‖z − s‖2 −
1

ψ̂(x)2
+

2

ψ̂(x)
〈ζs, z − s〉

≤ ‖z − x‖2 + ‖cs − x‖2 −
1

ψ̂(x)2
(Lemma 9)

≤ 2ψ̃(x)‖z − x‖2‖cs − x‖. (from (11))

Then 〈ζx, z − x〉 ≤ ψ̃(x)‖z − x‖2 which completes the proof of Theorem 8.

Remark 11 We can easily prove that Conjecture 1 is a direct consequence of Theorem
8. Indeed, if S satisfies the interior r-sphere condition then it satisfies the θ0-interior
sphere condition with θ0 = 1

2r . Then by Theorem 8 we get that S is the ψ̃-union of
closed balls with

ψ̃(x) := min

{
1

2d∂S(x)
,

2θ0√
1 + 4θ20d∂S(x)2

}
∀x ∈ S.

Now it is sufficient to remark that ψ̃(·) ≤ 2θ0 to deduce that S is the union of closed
r
2 -balls. On the other hand, it is true that Conjecture 1 is also a direct consequence of
[15, Theorem 3.1] but here we obtain a better result. Indeed, we obtain that S is the
union of closed balls with variable radius (upper semicontinous function) which is always
greater than or equal to r

2 . This can be seen in the following example that also shows

that the function ψ̃(·) is less than ψ̂(·).

Example 12 We consider the set S of [11, Example 4.1], that is, S is the closed region
inside the three unit circles of Figure 1. Clearly this set satisfies the θ-interior sphere
condition with θ = 1. Now if we calculate the functions ψ̂(·) and ψ̃(·) then we find that:

• ψ̂(x) = 1 for all x ∈ S, and

• ψ̃(x) = min

{
1

2d∂S(x) ,
1√

1+d∂S(x)2

}
for all x ∈ S.

Clearly both functions coincide on ∂S but ψ̃(x) < ψ̂(x) for all x ∈ intS. For example:

• At the point
(

1
2
√
3
, 0
)

we have ψ̃
(

1
2
√
3
, 0
)

=
√

12
13 < 1 = ψ̂

(
1

2
√
3
, 0
)

.
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Fig. 1. Example 12

• At the origin, we have ψ̃(0, 0) =
√
3
2 < 1 = ψ̂(0, 0). Notice that at the origin the

function ψ̃(·) gives the largest possible radius of a closed ball in S containing it.

4. Strong version and its validity

The goal of this section is to introduce a strong version of Theorem 8. More precisely,
we will introduce as in Conjecture 2 the dimension n in the formula of ψ̃(·). The idea
is that when x is close to the boundary of S then it is better to use the closed ball of
Conjecture 2 of radius nr

2
√
n2−1 . Then we obtain the following new conjecture:

Conjecture 13 Let S ⊂ Rn be a nonempty closed set satisfying the θ0-interior sphere
condition. Then S is the ψ̃n-union of closed balls where ψ̃n(·) is defined by:

ψ̃n(x) := min

{
1

2d∂S(x)
,

2θ0√
1 + 4θ20 d∂S(x)2

,
2θ0
√
n2 − 1

n

}
∀x ∈ S.

Here 1
2d∂S(x) is taken to be ∞ whenever x belongs to ∂S.

Remark 14 In this remark we will prove that Conjecture 13 is in fact equivalent to
Conjecture 2. The first implication follows directly from the fact that

ψ̃n(x) ≤ 2θ0
√
n2 − 1

n
=

√
n2 − 1

rn
.

For the converse implication, it is sufficient to remark that

ψ̃n(x) =



2θ0
√
n2 − 1

n
if d∂S(x) ≤ 1

2θ0
√
n2 − 1

2θ0√
1 + 4θ20 d∂S(x)2

if
1

2θ0
√
n2 − 1

≤ d∂S(x) ≤ 1

2θ0
√

3

1

2d∂S(x)
if d∂S(x) ≥ 1

2θ0
√

3

12
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As we mentioned in the introduction, Nour, Stern and Takche used the proof of Conjec-
ture 1 to prove [15, Theorem 3.1]. More precisely, the following geometric lemma, which
is also the key lemma for the poof of Conjecture 1, played the central role in their proof.

Lemma 15 Let S ⊂ Rn be a nonempty closed set and let x ∈ intS. Assume that for an
r > 0 there exist s ∈ proj∂S(x) and ρ > 0 such that for all s′ ∈ B(s; ρ) ∩ ∂S, S′ has a
proximal normal vector at s′ realized by an r-sphere. Then there exists yx ∈ S such that

x ∈ B̄
(
yx;

r

2

)
⊂ S and ‖x− yx‖ =

r

2
.

Therefore we have the following diagram:

Lemma 15 =⇒ Conjecture 1
Lemma 15

======⇒ [15, Theorem 3.1] (12)

A natural question follows:

Do we have a strong version of diagram (12)? That is, can we find a strong version
of Lemma 15 ?

The following example proves that the preceding question has a negative answer. In
fact, we provide a set S and a point x ∈ intS satisfying the following:

• There exist s ∈ proj∂S(x) and ρ > 0 such that for all s′ ∈ B(s; ρ) ∩ ∂S, S′ has a
proximal normal at s′ realized by an 1-sphere.

• We cannot find a closed ball inside S of radius 1√
3

containing x.

Hence to prove Conjecture 2 (and then Conjecture 13), it is not sufficient to use the
projections of an interior point x onto ∂S as in the proof of Conjecture 1. This will be,
with finding a version of Conjecture 13 in which θ is not necessarily constant, a topic of
future research.
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Example 16 Let S be the union of the three balls: B̄((0, 0); s) and B̄((s,±1); 1) where
s < 1√

3
, see Figure 2. For ε > 0, we consider x = (ε, 0). Clearly (s, 0) is the unique

projection of x onto the boundary of S. Moreover, one can easily see the existence of
a neighborhood O for (s, 0) such that at any point s′ ∈ O ∩ ∂S, S′ has a proximal
normal vector at s′ realized by a 1-sphere. On the other hand, the largest closed ball in
S containing x is the dashed ball in Figure 2 with radius

r′ =
1

2

√(
1 +

ε

d+ ε

)2

+ d2,

where d = s− ε is the distance from x to the ∂S. For ε sufficiently small, we can easily
prove that r′ < 1√

3
.
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