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ARTIFICIAL NEURAL NETWORK ALGORITHMS

ABSTRACT
by

Samer N. Ramadan

Inspired by the architecture of the biological brain, artificial neural networks were designed
to provide solutions for computationally demanding problems. Neural network architectures are
based on wide-scale parallel computing, a feature that promises an increased comput.ational power.
In this project, we implement a Boltzmann Machine neural network for solving the Traveling
Salesperson Problem (TSP), a constrained optimization problem. We also implement a Kohonen’s
Self-Organizing Map for solving the Character Recognition Problem, a pattern recognition
problem. The same problem is also solved by implementing an Adaptive Resonance Theory
network. Experimental results show that the execution time of a Boltzmann Machine network for
solving the TSP problem increases at a high rate as the number of cities increases. Moreover,
penalty and bonus parameter values have shown a limited effect on the network performance as’
long as the penalty parameter is greater than the bonus parameter, Experiments also show that
higher initial temperature values decrease the probability of the network converging to a feasible

solution,

Experimental work done on Kohonen’s Self-Organizing Map for character recognition
shows that using problem-related initial weight vectors rather than random values improves the

ability of the network to recognize characters accurately. Moreover, the topology of the cluster



units and the radius of learning also play key role in the network performance. In Adaptive
Resonance Theory network, experimental results demonstrate the ability of the user to control the
degree of similarity that allows patterns to be clustered on the same unit. Moreover, the order of the
input patterns and the number of output cluster units also proved to have an effect on the network’s

output.
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Chapter 1

Introduction

Traditional, sequential, and digital computing excels in many areas, but has been less
successful for other types of problems. The development of artificial neural networks began
approximately 50 years ago, motivated by a desire to try both to understand the brain and to
emulate some of its functions. Their introduction has added a new dimension to the capabilities of
computers and moved them from machines that can infinitely perform repetitive preprogrammed

tasks to machines capable of doing more complex and challenging ones.

Millions of the daily tasks performed “effortlessly” by the human brain are categorized as
“highly complex” tasks when measured by computer-capability scale. Things like recognizing an
old friend that has not been seen for a long time or differentiating between different handwritings .
or any kind of pattern classification are common things encountered almost daily. What makes it
casy for a human being to do these things and more difficult for a computer to do, in spite of the
fact that the switching time of the components in modern electronic computers are more than
seven orders of magnitude faster than the neurons of the human brain? [Veelenturf, 95]. The
answers to such a question are widely diversified and fall mainly beyond the scope of this report.
However, a major part of the answer lies within the difference in the architecture of computers
and that of the human brain. Where as the response time of the individual neural cells is typically
in the order of tens of milliseconds, the massive parallelism and interconnectivity observed in the

biological systems evidently account for the ability of the brain to perform



complex pattern recognition in a few hundred milliseconds. In many real-world applications,
computers are required to perform complex pattern recognition problems, such as the ones
described above. Until recently computers were based on the Von Neumann architecture. They
derived their performance from one or only a few central processors which carry out long
sequential programs at extremely high speed. Therefore, signal propagation time within the
computer has already begun to emerge as a limiting factor to further gains in speed [Veelenturf,
95]. A way out of this limitation is to abandon the Von Neumann architecture and instead apply a
large number of computational processors working in parallel. Features from the physiology of
the brain are therefore used as the basis of the new processing models. Hence, the technology has

come to be known as Artificial Neural Systems (ANS) or siniply neural networks.

1.1 Applications of Neural Networks

The study of neural networks is an interesting field, both in their development and in their
application. Regardless of the domain they are used in, neural-networks solutions are suitablé
when the problem to be solved can not be formulated explicitly. If no known algorithm is found to
solve a problem due to a noisy environment causing extreme non-uniformity, then solving thc;
problem by presenting it to a neural network wi.th a problem-specific architecture and training
algorithm is favorable. Many of the most complex problems in areas such as particle physics,
structures of organic molecules, spacecraft control, and other advanced areas are well-handled by
computers as long as the problems can be formulated. But when a problem is too elusive to be

formulated explicitly, other approaches are necessary [Chester, 93].



A brief overview of some of the areas in which neural networks are currently being applied
indicates their widespread use. The examples range from commercial successes to areas of active

research that show promise for the future.

There are many applications of neural networks in the general area of signal processing. One
of the first commercial applications is to suppress noise on a telephone line. The neural net used
for this purpose is a form of ADALINE. ADALINE is discussed briefly in the next chapter. The
need for adaptive echo cancelers has become more essential with the development of
transcontinental satellite links for long-distance telephone circuits. The switching involved in
conventional echo suppression is very disruptive with path delays of considerable length. Even in
the case of wire-based telephone transmission, the repeater amplifiers introduce echoes in the

signal [Aggarwal, 99].

The adaptive noise cancellation idea is quite simple. At the end of a long-distance line, the
incoming signal is appiied to both the telephone system component, the hybrid, and the adaptive
filter (the ADALINE type of neural net). The difference between the output of the hybrid and the
output of the ADALINE is the error. The error is used to adjust the weights on the ADALINE...
The ADALINE is trained to remove the noise, echo, from the hybrid's output signal [Aggarwal,

99].

An example of a robotic application can be seen in robot arm control software. The problem
of controlling robotic arm is not an easy task when carried out by conventional software. The

complexity of the problem is evident from the fact that the placement of the robot's “hand” at a



particular location is not a single-solution problem. Various combinations of joint angles can get
the hand to the same location. To train a neural network to control a robotic arm is conceptually -
simple. The user simply inputs an end state (the location of an object to be grasped) and any set of

Joint angles that will put the arm into that end state.

For an arm having » degrees of freedom, the user presents the network with n + / examples
of this kind. From then on, the arm will generate the trajectory to take itself through any sequence
of endpoints the user specifies. In other words, from the examples it has been given, it maps the

geometry of the space [Fausett, 94].

Many interesting problems fall into the general area of pattern recognition. One specific area
in which many neural network applications have been developed is the automatic recognition of
handwritten characters. The large variation in sizes, positions, and styles of writing makes this a
difficult problem for traditional techniques [Freeman, 91]. It is a goc;d exampie, however, of the

type of information processing that humans can perform relatively easily.

General-purpose multi-layer neural networks, such as the backpropagation net described in
chapter 6, have been used for recognizing handwritten zip codes. Even when an application is
based on a standard training algorithm, it is quite common to customize the architecture to
improve the performance of the application. An alternative approach to the problem of
recognizing handwritten characters is the “neocognitron™ approach described briefly in the next

chapter.



One of many examples of the application of neural networks to medicine was developed by
Anderson in the mid 80s. It has been called the “Instant Physician,” The idea behind this
application is to train an auto associative memory neural network to store a large number of
medical records, each of which includes information on symptoms, diagnosis, and treatment for a
particular case. After training, the net can be presented with input consisting of a set of symptoms;

it will then find the full stored pattern that represents the “best” diagnosis and treatment.

The net performs surprisingly well, given its simple structure. When a particular set of
symptoms occurs frequently in the training set, together with a unique diagnosis and treatment,
the net will usually give the same diagnosis and treatment. In cases where there are ambiguities in
the training data, the net will give the most common diagnosis and treatment. In novel situations,
the net will prescribe a treatment corresponding to the symptom(s) it has seen before, regardless

of the other symptoms that are present [Freeman, 91].

Learning to read English text aloud is a difficult task, because the correct phonetic
pronunciation of a letter depends on the context in which the letter appears. A traditional approach
to the problem would typically involve constructing a set of rules for the standard pronunciation.

of various groups of letters, together with a look-up table for the exceptions.

One of the most widely known examples of a neural network approach to the problem of
speech production is NETalk. Instead of rules and look-up tables, NETalk only require a set of

examples of the written input together with the correct pronunciation of it [Freeman, 91].



Progress is being made in the area of speaker-independent recognition of speech. A number
of useful systems now have a limited vocabulary or grammar or require retraining for different
speakers. Several types of neural networks have been used for speech recognition, including
multi-layer networks. One net that is of particular interest, both because of its level of
development toward a practical system and because of its design, was developed by Kohonen
using the Self-Organizing Map, discussed in chapter 4. He calls his net a “phonetic type-writer”
[Ritter, 92]. The output units for a Self-Organizing Map are arranged in a two-dimensional array.
The input to the net is based on short segments of the speech waveform. As the net groups similar
inputs, the clusters that are formed are positioned so that different examples of the same phoneme

occur on output units that are close together in the output array.

After the speech input signals are mapped to the appropriate clusters, the output units can be

connected to the appropriate typewriter key to construct the phonetic typewriter [Ritter, 92].

Neural networks are being applied in a number of business settings. The mortgage assessment
work by Nestor, Inc. is only one of many examples. Although it may be thought that the rules.
which form the basis for mortgage funding are well-understood, it is difficult to specify
completely the process by which experts make decisions in some cases. The basic idea behind the
neural network approach to mortgage risk assessment is to use past experience to train the net to
provide more consistent and reliable evaluation of mortgage applications. Using data from several
experienced mortgage evaluators, neural networks were trained to screen mortgage applicants.

The training input includes information on the applicant's years of employment, number of



dependents, current income, as well as features related to the mortgage itself. The target output
from the net is an "accept" or "reject” response. The neural networks achieved a high level of

agreement with the human experts [Ritter, 92].

1.2 Objectives and Scdpe of the Report

The objective behind this work is to simulate some of the widely known neural networks
with different architectures for solving real-world problems. Three programs were written to
simulate a Boltzmann Machine Network, a Kohonen’s Self-Organizing Map, and an Adaptive

. Resonance Theory Network. The programs were developed with Microsoft Visual Basic 5.0
Professional Edition, which operates under Windows95/98 environment. They have graphical
user interface and have the full look and feel of a Windows environment. Each program is made

up of a main form and other auxiliary forms, depending on the particular program needs.

The report falls into six chapters and an appendix. Chapter 2 discusses the Boltzmann
Machine for solving the Traveling Salesperson Problem. Chapter 3 discusses Kohonen’s Self-
Organizing Maps for the Character Recognition Problem. The same problem is also handled ir;__
chapter 4 but using Adaptive Resonance Theory. Backpropagation neural networks are discussed
in chapter 5. The Appendix, at the end of the report, contains the high-level code design of the

implemented algorithms.




Chapter 2

Neural Networks

2.1.  Neural-Networks Concepts

This section highlights the features of biological and artificial neural networks. It also sheds

light on the common features found in both kinds of networks.

2.1.1. Biological Neural Networks

In addition to being the original inspiration for artificial networks, biological neural
systems suggest features that have distinct computational advantages. There is a close
analogy between the structure of a biological neuron (i.e., brain or nerve cell) and the
processing element (or artificial neuron). A biological neuron has three types of components
that are of particular interest in understanding an artificial neuron: Dendrites, Soma, andﬁ
Axon. Figure 2.1 shows a simplified représentation of a neuron. The Dendrites receive
signals from other neurons. Each neuron can receive up to 10,000 signals from other
neurons. The signals are electric impulses that are transmitted across a synaptic gap by
means of a chemical process. The action of the chemical transmitter modifies the incoming
signal (typically, by adjusting the frequency of the signals that are received) in a manner

similar to the action of the weights in an artificial neural network [Ritter, 92].



The Soma, or cell body, sums the incoming signals. When sufficient input is received, the
cell fires; that is, it transmits a signal over its axon to other cells. It is often supposed that a cell
either fires or does not at any instant of time. Therefore, the transmitted signals can be treated as
binary. The transmission of the signal from a particular neuron is accomplished by an action
potential resulting from differential concentrations of ions on either side of the neuron's axon
sheath (the brain's "white matter"). The ions directly involved are potassium, sodium, and

chloride [Veelenturf, 95].

Dendrites

Axon

Figure 2.1: A Biological Neuron

2.1.2. Artificial Neural Networks

An artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks. A neural net
consists of a large number of simple processing elements called neurons, units, cells, or
nodes. Each neuron is connected to other neurons by means of directed communication

links, each with an associated weight. The weights represent information being used by the
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net to solve a problem. Neural networks can be applied to a wide variety of problems, such
as storing and recalling data or patterns, classifying patterns, performing general mappings
from input patterns to output patterns, grouping similar patterns, or finding solutions to

constrained optimization problems.

Each ncuron has an internal state, called its activation or activity level, which is a
function of the inputs it has received. Typically, a neuron sends its activation as a signal to
several other neutrons. It is important to note that a neuron can send only one signal at a

time, although that signal 1s broadcast to several other neurons [Chester, 93].

The neuron Y, illustrated in Figure 2.2, receives inputs from neurons X1, X2, X3, and
X4. The activations (output signals) of these neurons are x1, x2, x3, and x4 respectively.
The weights on the connections from X1, X2, X3, and X4 to neuron Y are wl, w2, w3, and
w4, respectively. The net input, y-in, to neuron Y is the sum of the weighted signals from

neurons X1, X2, X3 and X4, i.e., Y-in = wix1 + w2x2 + w3x3 + wdx4

Figure 2.2: An Artificial Neuron
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Artificial neural networks have been developed as generalizations of mathematical

models of human cognition or neural biology, based on the assumptions that:

1.

2.

Information processing occurs at many simple elements called neurons.

Signals are passed between neurons over connection links.

Each connection link has an associated weight, which, in a typical neural net, multiplies
the signal transmitted.

Each neuron applies an activation function (usually nonlinear) to its net input (sum of

weighted input signals) to determine its output signal [Freeman, 91].

Several key features of the processing elements of artificial neural networks are

suggested by the properties of biological neurons:

1.

2.

The processing element receives many signals.

Signals may be modified by a weight at the receiving synapses. The processing element
sums the weighted inputs.

Under appropriate circumstances (sufficient input), the neuron transmits a single output.
The output from a particular neuron may go to many other neurons (the axon branches).
Information processing is local (although other means of transmission, such as the
action of hormones, may suggest means of overall process control).

Memory is distributed:

a. Long-term memory resides in the neurons' synapses or weights.

b. Short-term memory corresponds to the signals sent by the neurons. A synapse's
strength may be modified by experience.

Neurotransmitters for synapses may be excitatory or inhibitory [Freeman, 91}.
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Another important characteristic that artificial neural networks share with biological neural
systems is fault tolerance. Biological neural systems are fault tolerant in two respects. First,
humans are able to recognize many input signals that are somewhat different from any signal
they have seen before. An example of this is our ability to recognize a person in a picture we
have not seen before. Second, humans are able to tolerate damage to the neural system itself,
Humans are born with as many as 100 billion neurons. Most of these are in the brain, and most
are not replaced when they die. In spite of the continuous loss of neurons, we continue to learn

fChester, 93].

A neural network is characterized by (1) its pattern of connections between the neurons
(called its architecture), (2) its method of determining the weights on the connections (called its

training, or learning algorithmy), and (3) its activation {unction [Veelenturf, 95].

2.2, Evolution of Neural Networks

This section presents a brief summary of the history of neural networks, in terms of the
development of architectures and algorithms that are widely used today. Researchers such as
McCulloch and Pitts started working in this field in the 40s and researchers continue to developh
new architectures and training algorithms. Fﬁture progress in this fieid is certain as more

research funds are being allocated for development in this field.
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2.2.1. The Beginning of Neural Networks (40s)

The first ideas about neural networks date back to the decade that witnessed the birth
of computers. Significant progress has been made in the early years. The credit for this

progress goes back to many researchers such as McCulloch, Pitts, and Hebb.

The first artificial neural networks were designed in the 1940s by McCulloch and
Walter Pitts. They recognized that combining many simple neurons into neural systems was
the source of increased computational power [Ritter, 92]. The weights on McCulloch-Pitts
neuron are set so that the neuron performs a particular simple logic function, with different
neurons performing different functions. The neurohs could be arranged to produce é.ny

output that can be represented as a combination of logic functions.

The idea of a threshold such that if the net input to a neuron is greater than the
threshold then the unit ﬁfes is one feature of McCulloch-Pitts neuron that is used in many
artificial neurons today. McCulioch and Pitts’ subsequent work addressed issues that are
still important research areas today. These include translation and rotation invariant pattern

recognition [Veelenturf, 95].

Donald Hebb, a psychologist at McGill University, designed the first learning law for
artificial neural networks. His premise was that if two neurons were active simultaneously,
then the strength of the connection should be increased. Kohonen and Andersen

subsequently made refinements to this concept.
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2.2.2. The First Golden Age of Neural Networks (50s and 60s)

The introduction of the perceptrons and ADALINE in the 50s and 60s added new
dimensions to artificial neural networks and led researchers to name that era the golden age

of artificial neural networks.

Together with other researchers, Frank Rosenblatt introduced and developed a large
class of artificial neural networks called perceptrons. The most typical perceptron consisted
of an input layer (the retina) connected by paths with fixed weights to associator neurons;
the weights on the connection paths were adqutable. The perceptron learning rule uses an
iterative weight adjustment that is more powerful than the Hebb rule. Perceptron learning
can be proved to converge to the correct weights if there are weights that will solve the
problem at hand. Like the neurons developed by McCulloch and Pitts and by Hebb,

perceptrons use a threshold output function [Chester, 93].

Bemard Widrow and Marcian Hoff developed a learning rule, the Delta Rule or the
least mean squares, that is closely related to the perceptron learning rule. The perceptron
rule adjusts the connection weights to a unit whenever the response of the unit is incorrect:
The Delta Rule adjusts the weights to redﬁce the difference between the net input to the
output unit and the desired output. This results in the smallest mean squared error. The
Widrow.leaming rule for a single-layer network is the basis of the backpropagation rule for
multi-layer networks [Veelenturf, 95]. The name ADALINE, ADAptive LINEar neurons,

was often given to networks developed by Widrow and his students.



13

2.2.3. Continued Progress (70s)

Many of the current leaders in the field began to publish their work during the 70s.
Kohonen, Andersen, and Grossberg were among the most famous researchers during the

70s.

The early work of Teuvo Kohonen, of Helsinki University of Technology, dealt with
associative memory neural networks [Freeman, 91]. His most recent work has been the
development of Self-Organizing Maps that use the topological structure for the cluster units.
These networks have been applied to speech recognition, the solution of the Traveling Sales

Man Problem, and musical composition.

James Andersen works with associative memory networks. He developed these ideas
into his “Brain-State-in-a-Box”, which truncates the linear output of earlier models to
prevent the output from becoming too large as the net iterates to find a stable solution
[Fausett, 94]. Among the areas of application for these networks are medical diagnosis and

learning multiplication tables.

Together with Stephen Grossberg, Gail Carpenter developed a theory of Self-
Organizing neural networks called Adaptive Resonance Theory (ART). Details about this

theory will follow later in the report.
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2.2.4. New Techniques

New techniques were introduced during the 80s. Multi-layer networks training

algorithms were used. Backpropagation networks were the distinctive features of this era.

The 1970s are sometimes referred to as the "quiet years" due to the failure of single-
layer perceptrons to be able to solve some problems and the lack of a general method of
training a multi-layer net. A method for propagating information about errors at the output
units back to the hidden units had been discovered in this decade. Neural networks that

employed this method were called backpropagation neural networks.

Another key player in the domain of neural networks is Nobel Prize winner (in physics)
John Hopfield, of the California Institute of Technology. Together with David Tank, a
researcher at AT&T, Hopfield has developed a number of neural networks based on fixed
weights and adaptive activations. These networks can serve as associative memory
networks and can be used to solve constraint satisfaction problems such as the Traveling

Salesperson Problem [Chester, 93].

Kunihiko Fukushima and his colleagues at NHK Laboratories in Tokyo have
developed a series of specialized neural networks for character recognition [Chester, 93].
One example of such a net is called a neocognitron. An earlier Self-Organizing network,
called the cognitron, failed to recognize position or rotation-distorted characters. This

deficiency was corrected in the neocognitron.
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A number of researchers have been involved in the development of non-deterministic neural
network in which weights or activations are changed on the basis of probability density
function. These networks incorporate classical ideas such as simulated annealing and

Bayesian Decision Theory.

A major reason for the interest in neural networks is improved computational
capabilities. Optical neural networks and VLSI implementations are being developed. Leon
Cooper introduced one of the first multi-layer networks, the “reduced coulomb energy
network”. Robert Hecht-Nielsen and Todd Gutschow developed several digital

- neurocomputers at TRW Inc. during 1983-1985 [Veelenturf, 95].

2.3. Architectures of Artificial Neural Networks

Often, it is convenient to visualize neurons as arranged in layers. Typically, neurons in
the same layer behave in the same manner. Key factors in determining the behavior of a neuron
are its activation function and the pattern of weighted connections over which it sends and
receives signals. Within each layer, neurons usually have the same activation function and the
same pattern of connections to other neurons. In many neural networks, the neurons within a
layer are either fully interconnected or not interconnected at all. If any neuron in a layer is
connected to a neuron in another layer then each neuron in that layer is connected to every

neuron in the other layer.
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The arrangement of neurons into layer and the connection patterns within and between
layers is called the net architecture [Freeman, 91]. Many neural networks have an input layer in
which the activation of each unit is equal to an external input signal. Neural networks are often
classified as single-layer or multi layer. In determining the number of layers, the input units are
not counted as a layer, because they perform no computation. Equivalently, the number of
layers in the net can be defined to be the number of layers of weighted interconnected links
between the blocks of neurons. This view is motivated by the fact that the weights in a net
contain extremely important information. Two classes of neural networks are the feed forward

and recurrent networks. These classes could be either single-layer or multi-layer networks.

2.3.1. Single-layer Networks

A single-layer net has one layer of connection weights. Often the units can be
distinguisheci as input units, which receive signals from the outside world, and output units
from which the response of the net can be read. In the single-layer net the input units are
fully connected to output units but are not connected to other input units and the output
units are not connected to other output units. For pattern classification each output unit-
corresponds to a particular category to which an input vector may or may not belong. For
pattern association the same architecture can be used, but now the overall pattern of output
signals gives the response pattern associated with the input signal that caused it to be
produced. The same network architecture can be used for different problems, depending on
the interpretation of the response of the net. Figure 2.3 shows one possible architecture of a

single-layer network.
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Figure 2.3: A Single-layer Network

2.3.2. Multi-layer Network

A multi-layer network is a net with one or more layers of nodes (hidden units) between
the input units and the output units. Typically, there is a layer of weights between two
adjacent levels of units. Multi-layer networks can solve more complicated problems than

can single-layer networks. Figure 2.4 shows an example of a multi-layer network.

Figure 2.4: A Multi-layer Network
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24, Training Neural Networks

The method of setting the values of weights is an important characteristic of different
neural networks. Two types of training are used, supervised and unsupervised. Some networks
do not need training since their weights do not change. Many of the tasks that neural networks
can be trained to perform fall into the areas of mapping, clustering, and constrained

optimization. The following two subsections give details about each of the training methods.

2.4.1. Supervised Training

In most of the typical neural networks’ setting, training is performed by presenting a
sequence of training vectors or patterns, each with an associated target output vector. The
weights are then adjusted according to a learning algorithm. This process is known as

supervised training {Freeman, 21].

Some of the simplest neural networks are designed to perform pattern classification,
(i.e., to classify an input vector as either belonging or not belonging to a given category). In
this type of neural networks, the output is binary. These networks are trained using a
supervised algorithm. For more difficult classification problems, a multi-layer network such
as that trained by backpropagation algorithm is more adequate. Paftern association is
another special form of a mapping problem, one in which the desired output is not just a
“yes” or “no”, but rather a pattern. A neural network that is trained to associate a set of

input vectors with a corresponding set of output vector is called an associative memory.
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After training, an associative memory can recall a stored pattern when it is given an output

vector that is sufficiently similar to a vector it has learned [Ritter, 92].

2.4.2. Unsupervised Training

Self-Organizing neural networks group similar input vectors together without the use of
training data to specify what a typical member of each group looks like or to which group
cach vector belong. A sequence of input vectors is provided, but no target vectors are
specified. The network modifies the weights so that the most similar input vectors are
assigned to the same output or cluster unit. The network will produce an exemplar or

representative vector for each cluster formed.



Chapter 3

Boltzmann Machine for the Travelling Salesperson Problem

There are many interesting variants on neural network paradigms, involving aspects such as
probabilistic models and mixed architectures of various kinds that take selected elements from two
or more existing paradigms. This chapter describes the use of neural networké -c'oup'l'eid with
simulated annealing paradigm. The network is used for solving the Traveling Salesperson Problem,

which is a well-known constrained optimization problem.

3.1 Description of the Travelling Salesperson Problem

In the classic constrained optimization problem known as the Traveling Salesperson
Problem (TSP), the salesperson is required to visit each of a given set of cities once and only
once, returning to the starting city at the end of his tour. The tour of minimum distance is desired.
The TSP becomes computationally vast as the number of cities increases. For # cities, there are n!
possible arrangements. But because the solution is a closed loop, it does not matter which city is
chosen as a starting point (this divides the number of independent solutions by ), nor does the
direction of traversing the loop matter (which divides the number of solutions by two). Thus the

number of independent solutions becomes n!/2n = (n-1)!/2 [Chester, 93].

22
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3.2 Neural-Networks’ Approach to Constrained Optimization

In neural networks that are designed for constrained optimization, each unit represents a
hypothesis, with the unit “on” if the hypothesis is true, or “off” if the hypothesis is false. The
weights are fixed to represent both the constraints of the problem and the function to be
optimized. The solution of the problem corresponds to the minimum of an energy function or the
maximum of a consensus function for the network. The activity level of each unit is adjusted so

that the network will find the desired maximum or minimum value.

Neurai networks have several potential advantages over traditional techniques for certain
types of optimization problems. They can find near optimal solutions quickly for large problems.
They can also handle situations in which some constraints are weak (desirable but not absolutely
required). For example, in the TSP, it is physically impossible to visit two cities simultaneously,
but it may be desirable to visit each city only once. The difference in these types of constraints
could be reflected by making the penalty for having two units in the same column “on”
simultaneously larger than the penalty for having two units in the same row “on” simultaneously.
If it is more important to visit some cities than others, these cities can be given larger self-"
connection weights. The idea of obtaining a solution that could be tailored according to our needs

makes neural network solutions favorable ones.
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3.3 Boltzmann Machine Network

For n cities, #° units arranged in a square array are used. A valid tour is represented by
exactly one unit being “on” in each row and in each column. Two units being “on” in a row
indicates that the corresponding city was visited twice; two units being “on” in a column shows that
the salesperson was in two cities at the same time. The units in each row are fully interconnected;
similarly, the units in each column are fully interconnected. The weights are set so that units within
the same row or within the same column will tend not to be “on” at the same time. In addition,
there are connections between units in adjacent columns and between unit; in the first and last

columns, corresponding to distances between cities.

The bi-directional nature of the connection is often represented as wi; = wj. A unit may also
have a self-connection wy;. The state x; of unit X; is either 1 (*on™) or 0 (“off”). The objective of
the neural net is to maximize the consensus function

C = Zi[ Zje=i Wy xi].

The net finds this maximum (or at least a local maximum) by letting each unit attempt to
change its state (from “on” to “off” or vice versa). The attempts may be made either sequentially
or in parallel. The change in consensus if unit X; were to change its state from 1 to 0 or from 0 to
lis

AC(1) = (1 - 2xi)*(wy + Zigg WiXi)
where x; is the current state of unit X;. The coefficient (1 - 2x;) will be + 1 if unit Xi is currently

“off” and - 1 if unit X 1s currently “on” [Fausett, 94].
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If unit X; were to change its activation, the resulting change in consensus can be computed
from information that is local to unit X; (i.e., from weights on connections and activations of units

to which unit X is connected, with wy = 0 if unit Xj is not connected to unit Xj).

However, unit X; does not necessarily change its state, even if doing so would increase the

consensus of the net. The probability of the net accepting a change in state for unit X is
AGT)= 1/ (1+e260M

The control parameter 7 (called the temperature) is gradually reduced as the net searches for
a maximal consensus. Lower values of 7 make it more likely that the net will accept a change of
state that increases its consensus and less likely that it will accept a change that reduces its
consensus. The use of a probabilistic update procedure for the activations, with the control
parameter decreasing as the net searches for the optimal solution to the problem represented by its

weights, reduces the chances of the net getting stuck in a local maximum [Fausett, 94].

This process of gradually reducing the temperature is called simulated annealing, It is
analogous to the physical annealing process used to produce a strong metal (with a regular
crystalline structure). During annealing, a molten metal is cooled gradually in order to avoid

imperfections in the crystalline structure of the metal due to freezing [Freeman, 91].



26

3.3.1 Architecture

The Bolizmann machine network consists of units arranged in a two-dimensional atray.
The units within each row are fully interconnected. Similarly, the units within each column
are also fully interconnected. The weights on each of the connections is -p (where p > 0). In
addition, each unit has a self-connection, with weight b > 0. The connections shown in the
figure will form a portion of the Boltzmann machine to solve the Traveling Salesperson

Problem.

Figure 3.1: Boltzmann Neural Network for Solving TSP
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3.3.2 Weight Setting

The weights for a Boltzmann machine are fixed so that the net will tend to make state
transitions toward a maximum of the consensus function defined earlier. If the net is to have
exactly one unit “on” in each row and in each column, the values of the weights p and » must

be chosen so that improving the configuration corresponds to increasing the consensus.

Each unit is connected to every other unit in the same row with weight —p (p > 0);
similarly, each unit is connected to every other unit in the same column with wéight —p.
These weights afe penalties for violating the condition that at most one unit be “on” in each
row and each column. In addition, each unit has a self-connection, of weight b > 0. The self-
connection weight is an incentive to encourage a unit to turn “on” if it can do so without

causing more than one unit to be on in a row or column.

If p > b, the net will function as desired. The correct choice of weights to ensure that
the net functions as desired can be deduced by considering the effect on the consensus of the .

net in the following two situations.

If unit U is “off ”, i.e., u; = 0, and none of the units connected to Ujj 1s on, then
changing the status of Uj; to “on” will increase the consensus of the net by the amount 4. This
is a desirable change; since it corresponds to an increase in consensus. The network will be
more likely to accept it than to reject it. On the other hand, if one of the units in row 7 or in

columnj (say, Ui+ is already “on”), attempting to turn unit Uy “on” would result in a change
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of consensus by the amount & - p. Thus, for b - p <0 ,ie., p > b, the effect would be to

decrease the consensus. The network will tend to reject this unfavorable change [Fausett, 94].

Bonus and penaity connections, with p > b, will be used in the network for the TSP to

represent the constraints for a valid tour.

The desired neural network will be constructed in two steps. First, a neural network will
be formed for which the maximum consensus occurs whenever the constraints of the problem
are satisfied (i.e., when exactly one .unit 15 “on” in each row and in each column). Second,
weighted connections will be added to represent the distances between the cities. In order to
treat the problem as a maximum consensus problem, the weights representing distances will

be negative [Fausett, 94].

To complete the formulation of a Boltzmann neural net for the TSP, weighted
connections representing distances must be included. In addition to the weights described
before (which represent the constraints), a typical unit Uy is connected to the units Uy;.; and
Uy (for all k # i) by weights that represent the distances between city 7 and city . Units in..
the last column are connected to units in the first column by connections representing the
appropriate distances. However, units in a particular column are not connected to units in

columns other than those immediately adjacent to the said column.
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3.3.3 Nomenclature

The following is a list of names used in the algorithm:
N: Number of cities in the tour
i: Index designating a city
j:  Index designating position in tour, mod n; so if j= n+1 then j gets 1
Uit Unit representing the hypothesis that the i city is visited at the j*

step of the tour

w2 Activation of unit Ui;; u;j= 1 if the hypothesis is true, 0 if it is false
d;x: Distance between city 7 and city &, k # i.

d: Maximum distance between any two cities

3.3.4 Algorithm
The implemented algorithm is taken from [Fausett,94]. Its steps are as follows:

Initialize weights to represent the constraints of the problem.

Initialize the control parameter (temperature) 7.

Initialize activations of units (random binary values).

While stopping condition is false, do

Do #° times. (This coﬁstitutes an epoch.)
Begin

Choose integers / and .J at random between 1 and #.
(Unit Uy is the current candidate to change its state.)
Compute the change in consensus that would result:

AC = [1 - 2up)*[W(LJ;LI+ ZjenZ wiij; L]
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Compute the probability of acceptance of the change:
A(T)= 1/(1+e4M
Determine whether or not to accept the change:
Let R be a random number between 0 and 1
If R<A, accept the change:
u;= 1- uy (This changes the state of unit Uy ;)
Else Reject the proposed Change
End {Do #’ times}
Reduce the control parameter:
T(new)=0.95T(old)

Test Stopping Condition

3.4 Xixperimental Results and Conclusions

The program that implements the above algorithm runs under Windows95/98 and has the full
feel and look of 2 Windows environment. The user is required to deploy the cities either manually
or allow the program to deploy them randomly. Initial and final temperatures should also bé
specified for the program. The program produces four types of output:

* A graphical and animated graph showing the order of cities the salesperson should take;
* Tabulated results of each city name and its corresponding turn in the visit;
* The distance traveled at each instance of time; and

* The time taken by the algorithm to finish execution
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Table 3.1 below shows the results obtained from running the above algorithm on 10, 20,

30, 40, 50, and 90 cites. In each scenario, cities were deployed randomly in 10 different initial

configurations and only the minimal path obtained is documented in the table below. The

cooling schedule is such that T(new) = T{old) * 0.9.

Temperature Minimum Distance
Number Execution Time Number of Failures
Covered on the Unit
Of Cities | Initial | Final in Minutes Before Convergence
Square
10 20 5 0.066 3.91 0
20 20 5 0.416 11.01 0
30 20 5 2.9 13.19 0
40 20 5 41 19.21 6
50 20 5 63 26.33 6
90 20 5 306.2 56.17 11

Table 3.1: Effect of Increasing the Number of Cities on the Execution Time
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Figure 3.2: Execution Time vs City Number

Figure 3.2 shows the relationship between the number of cities and the exccution time of the
algorithm.

In Table 3.2 the same city configuration is generated each time for testing the effect of
choosing initial values for the temperature parameter on the performance of the network. This is
done by calling the Visual Basic Function Rud(number) with a negative number just before using

the Randomize function.
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Number Of Temperature | Execution Time Number of Failures
' Distance Covered

Cities Initial | Final in Minutes Before Convergence
30 20 5 2.1 12.45 0
30 21 5 2.2 15.66 0
30 22 5 2.2 15.66 0
30 23 5 12.0 14.14 6
30 24 5 2 14.90 1
30 25 5 9.5 1429 3
30 30 5 5.00 15.47 2
30 35 5 7.1 14.17 2

Table 3.2: Effect of Changing the Value for the Initial Temperature Value

Yet another set of parameters worth considering are the constraint parameters p and b.

Choosing large bonus and penalty weights (i.e., 5=60 and p=70) with initial temperature 7=20 and’

a cooling schedule such that T(new)= 0.9 T{old) produced valid tours for 30 different initial 30-city

problem configuration. Typically, valid tours were generated in 10 or fewer epochs. An epoch

consists of each unit attempting to change its state. Choosing smaller values for b and p (=30,

p=35), again 30 valid tours were found. However, none of the tours were was shorter than their

corresponding ones in the previous experiment. Using still smaller values for p and b, the network

failed to find valid tours.
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New adaptive neural structures such as the Guilty Net presented by [Burkee, 92], utilizes a
straight forward competitive learning algorithm with fixed neighbors to automatically generate
valid, short tours in only a few hundred iterations. Results shown in [Burkee, 92} indicate shorter
tours and shorter running time for the proposed Guilty Net algorithm when compared with other

approaches. Table 3.3 below is taken as is from [Burkee, 92].

Method Number of Cities
10 30 50 90
' Theoretically Optimal 2.43 421 5.43 7.68
Simulated Annealing 2.74 4.75 6.13 8.40
Space Filling Curve 3.14 5.45 7.03 9.56
Hopfield 2.92 5.12 6.64 -
Elastic Net 2.45 451 5.58 8.23 |
Guilty Net 2.78 4.81 6.21 8.81

Table 3.3: Comparison between Different Optimization Methods for the TSP Problem

Four main conclusions may be drawn based on the above discussions and results:
1. As the number of cities to be visited increases linearly, the running time of the algorithm
increases at much higher rate. This fact is justifiable since the algorithm has a polynomial

complexity O(r) = n’, where # is the number of cities to be visited.
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2. Relatively lower initial temperatures tend to allow the network to converge to a valid solution
faster. The network fails to converge at least once for initial temperature greater than 22.

3. Penalty and bonus weights (p and ) do not have direct effect on the performance of the
network as long as they are greater than a certain problem-specific threshold. As explained
previously, p must be greater than b so than the network functions as desired.

4. The Boltzmann Machine for solving the TSP is not the best neural network approach for such a
solution. Although it offers some kind of flexibility, it proved to be computationally demanding
and less efficient when compared with other competition based neural network approaches such

as the Guilty Net.



Chapter 4

Kohonen’s Self-Organizing Maps for Character Recognition

This chapter discusses one type of competition-based neural networks, Kohonen’s Self-
Organizing Maps. In this type of unsupervised training networks, clusters compete among one
another and the winning cluster has the chance to update its weight vector. An algorithm to solve
the Character Recognition Problem is discussed and implemented. Neural networks developed by
Kohonen have been applied to an interesting variety of problems. One recent development of his is
a neural network approach to computer-generated music. Angeniol, Vaubois, and Le Texier have

also applied Kohonen Self-Organizing Maps to the solution of the Traveling Salesperson Problem.

4.1 Competition-Based Networks

Some neural networks that are used for pattern classification may respond by associating a
certain input pattern with more than one output pattern. In circumstances in which only one of"
several neurons should respond, additional structure could be included in the network so that the
network is forced to make a decision as to which one unit will respond. The mechanism by which
this is achieved is called competition. Competition ensures that a pattern is associated with only one
exemplar (or representative). The most extreme form of competition among a group of neurons is
called the “Winner Take All.” As the name suggests, only one neuron in the competing group will

have a non-zero output signal when the competition is completed [Freeman, 91].

36
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Neural network learning is not restricted to supervised learning, where training pairs are
provided, as with the pattern classification and pattern association problems. A second major type
of learning for neural networks is unsupervised learning, in which the network seeks to find
patterns in the input data. Self-Organizing Maps, developed by Kohonen, groups the input data into
clusters, a common use for unsupervised learning. Adaptive Resonance Theory networks, the
subject of the next chapter, are also clustering networks. The term “pattern classification” is applied
to these networks too, but the use of it is reserved for situations in which the learning is supervised

and target classifications are provided during training.

In a’clustering network, there are as many input units as an input vector has components.
Since each output unit represents a cluster, the number of output units will limit the number of

clusters that can be formed.

The weight vector for an output unit in a clustering network serves as a representative,‘ or
exemplar, vector for the input patterns which the network has placed on that cluster. During
training, the network determines the output unit that is the best match for the current input vector;
the weight vector for the winner is then adjusted in accordance with the network’s learning.
algorithm. The training process for the Adaptive Resonance Theory networks discussed in the next

chapter involves a somewhat expanded form of this basic idea.
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The network discussed in this chapter uses a learning algorithm, known as Kohonen
learning. In this form of learning, the units that update their weights do so by forming a new weight
vector that is a linear combination of the old weight vector and the current input vector. Typically,
the unit whose weight vector was closest to the input vector is allowed to learn. The weight update
for output (or cluster) unit § is given as:

wi(new) = wij(old) + afx - wi(old)] = ax + (1 - a)wj(old)
where x is the input vector, w; is the weight vector for unit 7, and o, the learning rate, decreases as

learning proceeds {Freeman, 91].

Two methods of determining the closest weight vector to a pattern vector are commonly
used for Self-Organizing networks. Both are based on the assumption that the weight vector for
each cluster (output) unit serves as an exemplar for the input vectors that have been assigned to that

unit during learning.

The first method of determining the winner uses the squared Euclidean distance between the
input vector and the weight vector and chooses the unit whose weight vector has the smallest

Euclidean distance from the input vector.

The second method uses the dot product of the input vector and the weight vector. The
largest dot product corresponds to the smallest angle between the input and weight vectors if they
are both of unit length. The dot product can be interpreted as giving the correlation between the

input and weight vectors.
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4.2 Kohonen’s Self-Organizing Maps

The Self-Organizing neural network described in this section, also called topology-
preserving map, assume a topological structure among the cluster units. This property is observed
in the brain, but is not found in other artificial neural networks. There are m cluster units, arranged
in a one or two-dimensional array; the input signals are n-tuples. The weight vector for a cluster
unit serves as an exemplar of the input patterns associated with that cluster. During the self-
organization process, the cluster unit whose weight vector matches the input pattern most closely is
chosen as the winner. The winning unit and its neighboring units, in terms of the topology of the

cluster, update their weights.

4.2.1 Architecture

The architecture of the Kohonen Self-Organizing Map is shown in Figure 4.1 below.
The neighborhoods of radii R = 2, 1 and 0 are shown in Figure 4.2 for a grid. The wimiing

unit is indicated by the symbol "#" and the other units are denoted by "*".

Figure 4.1: Kohenen’s Self-Organizing Map
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Figure 4.2 Neighborhood ina Rectangular Grid

4.2.2 Algorithm

The implemented algorithm is taken from [Fausett,94]. Its steps are as follows:

Step 0. Initialize weights wy.
Set topological neighborhood parameters.

Set learning rate parameters.

Step 1. While condition is false, do Steps 2-8.
Step 2. For each input vector x, do Steps 3-5.

Step 3 For each j, compute:

D)= Zi(w;; - X',
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Step 4. Find index J such that D(J) is a
minimum.
Step 5. For all units j within a specified

neighborhood of J, and for all i:
wij(new) = wy(old) + a[x; ~ wij(old)]
Step 6. Update learning rate.
Step 7. Reduce radius of topological neighborhood at specified
times.

Step 8. Test stopping condition.

4.2.3 Controlling Parameters

Alternative structures are possible for reducing R and a. The learning rate o is a
slowly decreasing function bf time (or training epochs). Kohonen indicates that a linearly
decreasing function is satisfactory for practical computations; a geometric decrease would
produce similar results. The radius of the neighborhood around a cluster unit also decreases

as the clustering process progresses [Fausett, 94].

The formation of a map occurs in two phases: the initial formation of the correct
order and the final convergence. The second phase takes much longer than the first and

requires a small value for the learning rate.
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4.3 Experimental Results and Conclusions

The above algorithm is used to recognize characters belonging to three different fonts. The
fonts used are not real world fonts. They were created in such away that a character in one font has
a different shape than the same one in the other two fonts, yet the difference was intended not to be
revolutionary so that the network could still give reasonable results. Figure 4.3 shows the letter “A”
written in the three different fonts. The network is supposed to cluster similar patterns together. For

example, all “A” letters in the three fonts are clustered on unit 24.

## # #
# # #
# # # #

# # # # # #

# # # # # #
#HHEAH # # #H#HHAH
# # H#t# ## # #
# # # # # #

#H#H# H#HHH # # ## #H#

Figure 4.3: Letter “A” as Drawn in the Three Fonts

The program takes as input a bitmap file made up of disconnected uppercase letters. The file
is opened using 2 Windows CommonDialoguebox control in‘;o a Picturebox control. The user starts
the character recognition process by clicking a command button. The text equivalent for the picture
input is written to a Textbox Control on the same form. The program traverses the picture box and

identifies each letter individually before presenting it to the network as a binary vector.
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For experimental purposes, the algorithm was run a number of times, each time using a
different value for the “learning” radius while keeping the same value for the learning rate o. All
experiments were run using a 36-unit grid neighborhood architecture for the cluster units. Table 4,1
shows the results of running the algorithm with the radius parameter set to 4. Table 4.2 shows the
same thing but with radius set to three. This value proved to be the most suitable for this particular

character recognition problem at a given learning rate c.

Radius =4 Unit or Patterns
a=0.38 Cluster
1 Gl1, G2, G3, 51,82, 83
3 E2, B2
5 11,13, T1, T2, T3
8 Mi, M2, M3
9 Bl
10 B3, El, E3
12 72,73
13 01,02.,03.,01,Q2,Q3
16 V3
15 HI1, H2, H3
17 W1, W2, W3, V1
18 Z1
20 F1,¥2, F3,K1, K3
21 D1,D3,L1,1.2 1.3
22 P1, P2, P3,R1,R2, R3
25 CI1,K2,U1,U02,U3
26 C2,C3,11,52,J3,D2,V2
28 12 '
29 Y1, Y2, Y3
30 X1, X2, X3
31 N3
33 N2, N3
36 Al, A2, A3

Table 4.1 Clustering of Characters with Radius Set to Four & «=0.8
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Radius =3 Unit or
Patterns
=08 Cluster
1 W1, W2, W3
3 Ci,C2,C3,G1,G2,G3
5 D2, U1, U2, U3
8 D1, D3, R1, R2, R3, P1, P3
10 E2, K2
11 V2
12 01,02,03
13 V1, V3
14 F1,F2,¥3,K1,K3,L1,L2, L3, P2
15 J1,J2, 13
17 12
20 Y1, Y2, Y3
22 T1, T2, T3,11, I3
24 Q1,Q2,Q3
25 X1, X2, X3
27 Z1
28 22,73
31 Si, 82
32 S3
33 Bl1,B2,B3,El,E3
34 M1, M2, M3
35 N1, N2, N3, H1, H2, H3
36 Al, A2, A3

Table 4.2: Clustering of Characters with Radius Set to Three & a=0.8

For convenience, only the results of the other trials will be shown. Table 4.3 summarizes the

results of running the program each time with a different value for the radius parameter.
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Radius Percentage of Correctly Percentage of Erroneously
Recognized Characters Recognized Characters
0 (No Architecture) 65 35
1 65 35
2 71 29
3 72 28
4 72 28
5 73 27

Table 4.3: Effect of Changing the Initial Value for the Learning Radius

The next set of experiments was conducted to observe the effect of the learning rate o on
the network performance. The learning radius was fixed to three while the learning rate changed
from 0.55 to 1 where o was incremented by 0.5 at each trial. Table 4.4 on the next page

summarizes the obtained results.

Learning Rate o Percentage of Correctly Percentage of Erroneously
: Recognized Characters Recognized Characters

0.55 . 63 37
0.6 75 25
(.65 70 30
0.7 63 37
0.75 84 16
0.8 74 26
0.85 76 24
0.9 77 23
0.95 86 14

1 75 25

Table 4.4: Effect of Changing the Learning Rate
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Figure 4.4 gives a graphical interpretation of Table 4.4,

100 -
90 -
80 - — Percentage of
e 70 Correctly Recognized
§’ 60 | Characters
5 50
2 40 - —— Percentage of
e 30 Erronously
0 \/\/W Recognized
10 | Characters
o
D L2 H A DD H D H N
Learning Rate

Figure 4.4: Graphical Interpretation of Table 4.4

So far the discussion has been centered on printed character recognition; a more challenging
problem, however, is that of hand-written character recognition. One variation of Self-Organizing
neural networks, the Adaptive-Subspace Self-Organizing Map proposed by [Zhang, 99], proved to
be highly accurate in recognizing hand-written characters. A full discussion on this topic can bg__

found in [Zhang, 99].

Based on the above results and work performed by [Fausett, 94], the following can be
concluded:
1. The value of the learning radius plays a role in the ability of the network to accurately

recognize characters. Lower values for the radius allows a smaller number of neighboring
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clusters to learn the input pattern. Larger radius values do the opposite and improve the network
performance.

The learning rate o. is also a key parameter that affects the network performance. Relatively
lower values for o produce lower correct recognition percentages. Higher values for o tend to
increase the network’s ability to correctly recognize characters. This is because higher a values
make the weight vector of the winning cluster unit very similar to the input pattern being
presented to network, thus making the network prone to clustering input patterns on the same
cluster unit only if they highly “resemble” each other.

The architecture of the cluster units is a third factor in determining network performancre,
Fausett presents three different topological' architectures for the output cluster units.
Experiments prove that the no architecture scheme produces poor results as compared with the

diamond architecture and the square grid architecture.



Chapter 5

Adaptive Resonance Networks for Character Recognition

Adaptive Resonance Theory (ART) was developed by Carpenter and Grossberg
[Veelenturf, 95]. These networks cluster inputs by using unsupervised learning. Input patterns may
be presented in any order. Each time a pattern is presented, an appropriate cluster unit is chosen and
that cluster's weights are adjusted to let the cluster unit learn the pattern. As is often the case in
_clustering networks, the weights on a cluster unit may be considered to be an exemplar for the

patterns placed on that cluster.

S.1 ART Networks

ART networks are designed to allow the user to control the degree of similarity of patterns
placed on the same cluster. However, since input patterns may differ in their level of detail (ﬁumber
of components that are non-zero), the relative similarity of an input pattern to the weight vector for
a cluster unit, rather than the absolute difference between the vectors, is used. As the network 15
trained, each training pattern may be presented séveral times. A pattern may be placed on one
cluster unit the first time it is presented and then placed on a different cluster when it is presented
later (due to changes in the weights for the first cluster if it has learned other patterns in the
meantime.) A stable network will not return a pattern to a previous cluster. In other words, a pattern

oscillating among different cluster units at different stages of training indicates an

48
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unstable network. Some networks achieve stability by gradually reducing the learning rate as the
same set of training patterns is presented many times. However, this does not allow the network to
learn a new pattern that is presented for the first time after a number of training epochs has already
taken place. The ability of a network to learn a new pattern equally well at any stage of learning is
called plasticity. Adaptive resonance theory networks are designed to be both stable and plastic

[Lavoie, 99].

5.1.1 Architecture

The basic architecture of an adaptive resonance neural network involves three
groups of neurons: an input processing field (ca-ll.ed the F1, layef), the cluster units (the F2
layer), and a mechanism to control the degree of similarity of patterns placed on the same
cluster (a reset mechanism). The F1, layer can be considered to consist of two parts: the
input portion and the interface portion. The interface portion combines signals from the
input portion and the F2 layer, for use in comparing the similarity of the input signal to the
weight vector for the cluster unit that has been selected as a candidate for learming. The

input portion of the F1 layer is denoted as F1(a) and the interface portion as F1{b).

To control the similarity of patterns placed on the same cluster, there are two sets of
connections (each with its own weights) between each unit in the interface portion of the
input field and each cluster unit. The F1(b) layer is connected to the F2 layer by bottom-up
weights; the bottom-up weight on the connection from the i™ F1(b), unit to the i F2 unit is
designated by. The F2 layer is connected to the F1(b) layer by top-down weights; the top-

down weight on the conneetion from the j™ F2 unit to the i F1(b), unit is designated by t;;
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The F2 layer is a competitive layer where the cluster unit with the largest network input
becomes the candidate to learn the input pattern. The activations of all other F2 units are set
to zero. The interface units now combine information from the input and cluster units.
Whether or not this cluster unit is allowed to learn the input pattern depends on how similar
its top-down weight vector is to the input vector. This decision is made by the reset unit,
based on signals it receives from the input (a) and interface (b) portions of the F1, layer. If
the cluster unit is not allowed to learn, it is inhibited and a new cluster unit is selected as the
candidate. Each unit in the F1(a) layer is connected to the corresponding unit in the F1(b)
layer. Each unit in the Fi(2) and F(b) layers is connected to the reset unit, which in turn is
connected to every F2 unit. Each unit in the F1(b) layer is connected to each unit in the F2
layer by two weighted pathways. The F1(b) unit X; is connected to the F2 unit Y; by

bottom-up weights by. Similarly, unit Yj is connected to unit X; by top-down weights t;.

FzLaycr
¥ . ¥ - Yo ) (Cruster Units)
R
A by
z
% Fy (&) Layer
d (Intcrface)

5 F; (o) Layer
" (Input)

Figure 5.1: Architecture of an ART Network
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3.1.2 Operation Description

It is difficult to describe even the basic architecture of ART networks without discussing
the operation of the networks. A learning trial in ART consists of the presentation of one input
pattern. Before the pattern is presented, the activations of all units in the network are set to zero.
All F2 units are inactive. Once a pattern is presented, it continues to send its input signal until

the learning frial is completed.

The degree of similarity required for patterns to be assigned to the same cluster unit is
controlled by a user-specified parameter, known as the vigilance parameter. Its function is to

control the state of each node in the F2 layer. At any time, an F2 node is in one of three states:

Active “on” activation = 1
Inactive “off” activation = 0, but available to participate in competition
Inhibited “off” activation = 0, and prevented from participating in any further competition

during the presentation of the current input vector.
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3.1.3 Algorithm

A binary input vector s is presented to the FI(a) layer, and the signals are sent to the
corresponding X units. These F1(b) units then broadcast to the F2 layer over connection
pathways with bottom-up weights. Each F2 unit computes its network input, and the units
compete for the right to be active. The unit with the largest network input sets its activation to
1; all others have an activation of 0. This winning unit, with index J, becomes the candidate to
learn the input pattern. A signal is then sent down from F2 to F1(b) (multiplied by the top-down
weights). The X units, in F1(b) layer, remain “on” only if they receive non-zero signals from

both the Fl(a) and F2 units.

The norm of the vector x, the activation vector F1(b), gives the number of components
in which the top-down weight vector for the winning F2 unit t; and the input vector s are both 1.
If the ratio of ||x]| to ||s|| is greater than or equal to the vigilance parameter, the weights (top
down and bottom up) for the winning cluster unit are adjusted. However, if the ratio is less than
the vigilance parameter, the candidate unit is rejected, and another candidate unit must be
chosen. The current winning cluster unit becomes inhibited, so that it cannot be chosen again as’
a candidate on this learning trial, and the activations of the F1 units are reset to zero. The same
input vector again sends its signal to the interface units, which again send this as the bottom-up
signal to the F2 layer, and the competition is repeated without the participation of any inhibited

units.
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The process continues until either a satisfactory match is found, (i.e., a candidate is
accepted) or all units are inhibited. The action to be taken if all units are inhibited must be
specified by the user. It might be appropriate to reduce the value of the vigilance parameter,
allowing less similar patterns to be placed on the same cluster, or to increase the number of
cluster units, or simply to designate the current input pattern as a pattern that could not be

clustered.

At the end of each presentation of a pattern, (i.e., after the weights have been adjusted)
all cluster units are returned to inactive status but are available to participate in the next

competition.

The use of the ratio |{x]] to {|s|| of the input vector in the reset calculations described
above allows an ART network to respond to relative differences. This reflects the fact that a
difference of one component in vectors with only a few non-zero components is much more

significant than a difference of one component in vectors with many non-zero components.

The training algorithm for an ART network is taken from [Fausett, 94]. Its steps are as follows: -

Step 0.  Initialize parameters: L> 1,0 <p<1.
Initialize weights:
0<by( <LAL-1+n)
ti(0) =1

Step 1. While stopping condition is false, do Steps 2-13.
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Step 2. For each training input, do Steps 3-12.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Set activations of all F2 units to zero.
Set activations of F1(a) units to input vector s.
Compute the norm of's:
fisli= Zi S;
Send input signal from F1(a) to the F1(b) layer:
Xi=5
For each IF2 node that is not inhibited:
If yj #-1, then
yi= Zibjx;.
While reset is true, do Steps 8-11.
Find J such that y; > y; for all nodes j.
If y; = - 1, then all nodes are inhibited and this pattern cannot
be clustered.
Recompute activation x of F1(b):
Xi=sith.
Compute the norm of vector x:
[Ixll = Zi xi.
Test for reset:
If {|x||/is|| <P, then
yj = -1 (inhibit node J and continue, executing Step 7

again).
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Else Proceed to step 12
Step 12. Update the weights for node J (fast learning):
biJ(new) = Lxi/(L-1 + [|x|}
tji(new) = xi.

Step 13. Test for stopping condition.

The stopping condition is satisfied when one of the following is satisfied:
* No weight changes,
= No units reset, or

*  Maximum number of epochs reached.

There are some restrictions on the initial values of the parameters. Fausetit suggests the

following initial values:

L L>1
P 0<p<1
by 0 <b;j{0) < LAL-1 +n)

ti t;:(0) =1
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5.2 Learning

In ART, the changes in the activations of units and in weights are governed by coupled
differential equations. The network is a continucusly changing system, but the process can be
simplified because the activations are assumed to change much more rapidly than the weights.
Once an acceptable cluster unit has been selected for learning, the bottom-up and top-down signals
are maintained for an extended period, during which time the weight changes occur. This is the

resonance that gives the network its name [Fausett, 94].

Two types of learning that differ both in their theoretical assumptions and in their
performance characteristics can be used for ART networks. In the fast learning mode, it is assumed
that weight updates during resonance occur rapidly, relative to the length of time a pattern is
presented on any particular trial. Thus, in fast learning, the weights reach equilibrium on each trial.
In the slow learning mode the weight changes occur slowly relative to the duration of a leamning
trial; the weights do not reach equilibrium on a particular trial. Many more presentations of the
patterns are required for slow learning than for fast learing, but fewer calculations occur on each
learning trial in slow learning. In fast learning, the network is considered stabilized when each
pattern chooses the correct cluster unit when it is presented. Because the patterns are binary, the
weights associated with each cluster unit also stabilize in the fast learning mode. Also, the
equilibrium weights are easy to determine, and the iterative solution of the differential equations
that control the weight updates is not necessary. This is the form of learning that is typically used

for ART networks [Fausett, 94].
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3.3 Experimental Results and Conclusions

Like the preceding two programs, this program, which implements the above algorithm, has
been developed with Visual Basic 5.0 Professional Edition. The graphical user interface resembles
that described in the previous chapter. The deference is however, is in the character recognition
algorithm. The experimental results presented below show the effect of the value of the vigilance
on the ability of the network to recognize characters correctly. The order in which training patterns
are presented to the network also plays a key role in the correct learning of the network. Another
factor effecting the ability of the network to accurately recognize characters is the maximum

number of output clusters allowed.

The program has been run seven times, each time with a different value for the vigilance
parameter. The goal is to determine the effect the vigilance parameter has on the network output.
The number of output cluster units used is 26 (one for each letter in the alphabet). The same

sequence of input pattern is presented each time in this experiment:

Al, A2, A3,B1,B2,B3,CL,C2,C3, ..o s Y1, Y2,Y3, 21,72, 23

Table 5.1 on the next page, shows the results obtained from a sample run of the program
with the vigilance parameter set to 0.55. This value proved to be the most convenient for our
particular character recognition problem. The results of the other six trials will be shown. The last

column in the table is labeled NC, meaning Not Clustered.



58

t

input Pattern

Cluster Uni
1112113{14[15[16]17]18[19

-
N

20

21

22

23

24

25

26/N.C.

A1, A2, A3

B1, B2, B3

IC1,C2,C3

D1, D2, D3

[ET

fE2

E3

F1,F2,F3

G1, G2, G3

H1

H2, H3

1,13

[

I:I‘J<‘.l‘2 J2,J3

K1, K3

L1

L2, L3

M1, M2, M3

N1, N2, N3

01, 02,03

P1. 73

jP2

Q1,Q2,Q3

Rt, R2, R3

51, 52, 83

11,72, T3

U1, Uz, U3

V1, V3

V2

W1, W2, W3

X1, X2, X3

Y1,Y2, Y3

21,22, 73

Table 5.1: Sample Run with Vigilance = 0.55
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Table 5.2 shows the percentage of the correctly recognized characters, erroneously recognized
characters, and that of characters that were not clustered as the vigilance value changes in each of

the seven trials.

Trial Vigilance | % of Correctly % of Erroneously %4 of Not Clustered
Number Recognized Characters | Recognized Characters | Characters

1 0.52 72.3 24.9 2.8

2 0.53 75.8 20.8 34

3 0.54 84.7 11.6 3.7

4 0.55 87.3 10.2 2.5

5 0.56 7 82.6 9.8 7.6

6 0.57 80.9 8.8 10.3

7 0.58 80 8.6 11.4

Table 5.2: Effect of Changing the Value for the Vigilance Parameter

100 e i oo meeeeme
g0 -
80 /’\ Caorrectly
o Recognized
@ 70 4 Characters
&= _
8 60
5 50 - Erronecusly
o 40 Recognized
& ] Characters
30 - 7
20 - \ Unclustered
10 - e e T Characters |
0 oo S , . :
0.52 0.53 0.54 0.55 0.56 0.57 0.58
Vigilance Value

Figure 5.2: Graphical Interpretation of Table 5.2
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Figure 5.1 gives a graphical interpretation of Table 5.2.

To examine the effect the input order of patterns has on the network output, the network
was presented with the following input pattern sequence:
Al,BL ClL, ...... , X1,Y1,Z1,A2,B2,C2, ...... ,X2,Y2,72,A3,B3,C3, ...... ,X3,Y3,23
rather than the initial input pattern sequence:
Al, A2, A3,B1,B2,B3,C1,C2,C3, ...... ,X1,X2,X3,Y1, Y2, Y3
For the same vigilance value (0.55) and the same number of output clusters (26), the following

results were obtained:

% of Correctly Recognized % of Erroneously Recognized % of Not Clustered
Characters Characters Characters
TEF ‘ 41 0.2

Table 5.3: Effect of Changing the Order of Input Pattern

Changing the number of output cluster units while keeping the other parameters constant
determines the effect of the output-unit number on the performance of the network. Conducted
experiments prove that having insufficient number of output units (i.e., number of units less than
26) causes the network to cluster dissimilar patterns together and depending on the vigilance value
the number of unclustered pattern is determined. Having greater number of cluster units makes the

network less sensitive to the order of input patterns.
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Based on the above three conclusions can be drawn:

1. A relatively lower value for the vigilance parameter allows the network to cluster dissimilar
clusters together and minimizes the number of unclustered pattern. A relatively higher vigilance
value minimizes the possibility of clustering dissimilar patterns together, but causes the number of
unclustered patterns to increase. A moderate vigilance value achieves best results. Vigilance values
are problem-specific and there is no rule governing their value.

2. Contrasting the result obtained in Table 5.3 with the corresponding one in Table 5.2 (trial
number 4) we find that the network output depends on the order in which input patterns arc
presented.

3. Insufficient number of output units causes the network to cluster dissimilar patterns together and
depending on the vigilance value the number of unclustered pattern is determined. Greater number

of cluster units makes the network less sensitive to the order of input patterns.



Chapter 6

Backpropagation Networks for Character Recognition

Backpropagation has been the most popular and most widely implemented of all neural
networks paradigms. It is based on a multi-layered, feed forward topology, with supervised
learning. This paradigm was initially developed by Paul Werbos in the early 70s, and was evolved
in a series of his subsequent papers. Werbos adopted Sigmund Freud’s ideas about how the brain
processes information. Freud hypothesized that a chemical flow backwards from neuron to neuron
takes place in a direction opposite to the forward direction of electrical excitation [Ritter, 92]. This
concept triggered Werbos into looking at the backward propagation of errors through a feed

forward electronic network, as a model of the learning process.

A key element in the backpropagation paradigm is the existence of a hidden layer of nodes.
The network is fully connected, with every node in layer # - 1 connected to every node in layer n. A
. backpropagation network typically starts with random weights. Then it is exposed to a training set
of input data. As it gets these inputs, it also is given the correct output that should go along with
every input. The network contrasts its initial random output with what it is supposed to produce and
adjusts its weights accordingly. As the training proceeds, the network's weights are incrementally
adjusted until it is responding more accurately. At that point, it is ready to categorize unknown

inputs in whatever application it was trained for.
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Among the advantages of backpropagation are its ability to store numbers of patterns far more than
its built-in vector dimensionality. On the other hand, it requires very large training sets in the

learning phase, and it converges to local minima, which may or may not be global minima.

6.1 Architecture

The structure of a backpropagation network is illustrated in Figure 6.1. In the figure, a
three-layered network is assumed, having an input layer, an output layer, and one hidden layer.
However, a backpropagation network can contain greater numbers of hidden layers. The iraining of
a network by backpropagation involves three stages: the feedforward of the input training pattern,
the calculation and backpropagation of the associated error, and the adjustment of the weights.
After training, the application of the network involves only the computations of the feedforward

phase. The next section describes the training algorithm in more detail.

Figure: 6.1 Backpropagation Network
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6.2 Training Algorithm

During feedforward, each input unit X; receives an input signal and broadcasts this signal to
the each of the hidden units Z;, . . ., Z,. Each hidden unit then computes its activation and sends its
signal z; to each output unit. Each output unit Yy, computes its activation yy to form the response of

the network for the given input pattern.

During training, each output unit compares its computed activation yy with its target value t
to determine the associated error for that pattern with that unit. Based on this error, the factor 8 (k
=1,..., m)is computed. 8 is used to distribute the error at output unit Yy back to all units in the
hidden units that are connected to Yy. It is also used later on to update the weights between the
output and the hidden layer. In a similar manner, the factor & (j = 1, . . ., p) is computed for each
hidden unit Z;. It is not necessary to propagate the error back to the input layer, but §; is used to

update the weights between the hidden layer and the input layer [Ritter, 92].

After all of the & factors have been determined, the weights for all layers are adjusted
simultancously. The adjustment to the weight wj. (from hidden unit Z; to output unit Yy) is based"
on the factor & and the activation z; of the hidden unit Z;. The adjustment to the weight v;; (from

input unit X; to hidden unit Z;) is based on the factor &; and the activation x; of the input unit.



65

6.3 Activation Function and Nomenclature

The activation function most often used in backpropagation networks is the binary sigmoid
function, which has a range of 0 to 1 and is defined as
fix)=1/(1+e™)
with the derivative
f(x)= f(x)*(1-{(x))
The function is continuous, differentiable and monotonically non-decreasing {Veelenturf, 95].

Figure 6.2 illustrates the function

Figure 6.2: Sigmoid Function

Below is a list of symbols used in the algorithm and their meanings.

X Input training vector (x;j...Xn)
t Output target vector (ty,...,tn)
Sk Portion of ertor correction weight adjustment for wy that is due to an error at output unit Yy;

also the information about the error at unit Yy that is propagated back to the hidden units

that feed into Y.
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dj Portion of error correction weight adjustment for v;; that is due to the backpropagation of

error information from the output layer to the hidden unit Z;

a Learning rate
X; Input unit i (for an input unit, the input signal and the output signal are the same, namely x;)
Yo Bias on hidden unit j

Z; Hidden unit j
The network input to Z; is denoted z_in;:
Z._in; = vy + Xixivi;
The output signal (activation) of Z; is denoted z;
zj=f(z_in))
Wok  Bias on output unit k
Y Output unit k
The network input to Yy is denoted y_iny:
y_ing = wo; + Zjzjwik |
The output signal (activation) of Yy is denoted yy

yx = f{y_ing)

6.4 Algorithm

The algorithm is taken from [Fausett, 94]. Its steps are as follows:

Step 0. Initialize weights.
Step 1. While stopping condition is false, do Steps 2-9.

Step 2. For each fraining pair, do Steps 3-8.



Feedforward:

Step 3.

Step 4.

Step 5.
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Each input unit X;, (i = 1, ..., n) receives input signal x; and
broadcasts this signal to all units in the layer above (the hidden units).
Each hidden unit Z;, (j = 1, ..., p) sums its weighted input signals,
z_iny = voj + Zi=1 5 XiVyj, and applies its activation function to compute
its output signal, z; = f{z_in;), and sends this signal to all units in the
layer above (output units).

Each output unit Yy (k=1, ..., m) sums its weighted input signals
Y_ing = wor + Zj=1.p ziwy and applies its activation function to
compute its output signal

Y=y iny)

Backpropagation of error:

Step 6.

Step 7.

Each output unit Yy (k = 1, ..., m) receives a target pattern
corresponding to the input training pattern, computes its error
information term

3= (tk — I (y_in)

calculates its weight correction term

A Wik = 0dkzj

Calculates its bias correction term

AWOk = oc6k

and sends & to units in the layer below

Each hidden unit Z; (j=1, ..., p) sums its delta inputs

6_inj =Zk=1__m Sijk
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Multiplies by the derivative of its activation function to calculate its
error information term
8j=29_in; £'(z_iny)
calculates its weight correction term
Avig = adix;
and calculates its bias correction term
Avyj = o;
Update weights and biases:
Step 8. Each output unit Yy (k = 1...m) updates its bias and weights (j =
L...p)
wik(new) = wik(old) + Awjy
Each hidden unit Z; (j=1...p) updates its bias and weights (i = 0...n)
Vij(new) = vjj(old) + Avj

Step 9. Test Stopping Condition

6.5 Experimental Results and Conclusions

The experimental results in this section are taken from [Brown, 93]. The paper from which
the results arc taken explores the application of neural networks to the problem of identifying
machine-printed characters in an automated manner. In particular, a backpropagation network is
trained on an eighty-four-character font and tested on two other fonts. The paper explores the
differences between two different character recognition algorithms: a feature extraction method

using traditional artificial intelligence techniques for classification, and a neural network approach
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with virtually no preprocessing. Only the results obtained from the backpropagation neural network

approach will be considered in this report.

The data used consists of three 84-character fonts. The character resolution for all three fonts is
8X8. The sets contain upper and lower case letters as well as numbers and a handful of
miscellaneous punctuation marks. The sets are all used as actual display characters on an old CBM
C128 computer so they represent real-world data; they were not designed for this experiment

[Brown, 93].

(D)isplay char, (R)un new set, or {(Qluit: d

Character number: &8
ICharacter name: K

XX +*X
Tk kR
* % ok k

* %Y

*od ko
ok ok ok

XX X

Figure 6.3: Example of a Character Display

The neural netwérk approach utilized three separate steps. The first step simply translated
the binary character data into a friendlier form. The second step took the output of the first and
trained a backpropagation network on it, outputting all the resulting weights and general network
information. The third step took the output of the sepond and created a network. It then ran a full
character set through the network and output identification information for all the characters the set
contained. The network consisted of 64 inputs, 96 hidden nodes, and 7 outputs. It was essentially a
flat feedforward network that was fully connected without self-inputs or biases {Brown 93]. Figure

6.4 below shows the network architecture.
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Each of the sixty-four inputs corresponds to one of the pixels in the 8X8 character. An input
was taken to be zero if the pixel was empty, or a one otherwise. The seven outputs were simply
used to make a seven bit numerical label (unique labels for 84 characters require seven bits) that

coincided with the ordering of the character set. The labels ran from 0 to 83.

Figure 6.4: Backpropagation Network Topology

Training the network was troublesome and fraught with difficulties. The learning program
required several hundred computer hours on a dedicated Sun SPARCstation to run, making it
practically impossible to really try and obtain optimal results. It is almost guaranteed that 96 is not
the optimal number of hidden nodes; this number was produced by multiplying the number of

inputs by 1.5.
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With all this difficulty stated, the network was made to leamn properly by using a step size of
1.05. Not only did it manage to converge with this particular step size, it converged fairly quickly
and only required 136 sweeps through the data set. Once a properly trained network had been

obtained, it produced reasonable results for an unoptimized algorithm [Brown 93]. Table 6.1 shows

the obtained results.

- — Resultsforthe “Ale" CharacterSet
[Total Correct R o 66 79%
Total Correct {(without counting identical characters) _ N 15 18%
Total Unknowns o 2 R 2%
Total Wrong Guesses 16 19%
Total Wrong Or Unknown 7 18 21%
_ . Results for the “Ult” Character Set o
Total Correct _ 33 39%
Total Correct (without counting identical characters) _ i 129 14%
[Total Unknowns o 3 4%
Total Wrong Guesses 48 57%
[Total Wrong Or Unknown o 51 "y 61%
7 o Total Combined Results

Total Correct 99 54%
Total Correct (without counting identical characters) o 27 16%
{Fotal Unknowns T R 3%
Total Wrong Guesses -~ - ' 1 64 38%
Total Wrong Or Unknown N o 69 ; 41%

Table 6.1: Results for the “Alt” and “Ult” Character Recognition

The results in the above table could hardly be compared to those obtained in chapter 4 and
five since they don’t all work on the same character set. However, having observed the results in
the three chapters, one may be able to say that the ART network produced the most favorable

results as far as this particular character recognition problem is concerned.
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Module Design Appendix
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Module Design for Kohonen's Self-Organizing Map Program
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Module Design for ART Network Program
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