<P

SMART CONTAINER LOADING 50010

c.\

by
OMAR CHEHAYEB MAKAREM

B.S., Computer Science, American University of Beirut, 2008

Project submitted in partial fulfillment of the requirements for the Degree of Master

of Science in Computer Science

Department of Computer Science and Mathematics

LEBANESE AMERICAN UNIVERSITY

May 2008

LEBANESE AMERICAN UNIVERSITY

School of Arts and Sciences - Beirut Campus

Project Approval Form (Annex V)

Student Name:Omar Chehayeb Makarem LD. #: 200400124

Project Title

Program
Division/Dept :
School

Approved by:

Project Advisor: -

Member

Smart Container Loading

Computer Science
Computer Science and Mathematics
School of Arts and Sciences

Ramzi A. Haraty

Abdul Nasser Kassar

Date

May 20, 2008

Plagiarism Policy Compliance Statement

I certity that I have read and understood LLAU’s Plagiarism Policy. I understand that
failure to comply with this Policy can lead to academic and disciplinary actions

against me.

This work is substantially my own, and to the extent that any part of this work is not
- my own [have indicated that by acknowledging its sources.

Name: Omar Chehayeb Makarem

Signature: Date: May 5, 2008

i

I grant to the LEBANESE AMERCIAN UNIVERSITY the right to use this work,
irrespectix.fe of any copyright, for the University’s own purpose withoutrcost to the
University or its students and employees. I further agree that the University may
reproduce and provide single copies of the work to the public for the cost of

reproduction.

iii

Acknowledgment

I would like to express my exireme appreciation to my advisor Dr. Ramzi
Haraty for his guidance and encouragement throughout my project work. I would also
like to thank Dr. Abdul Nasser Kassar for being on my project committee.

I want to expressly deepest gratitude for my parents who kept supporting and
motivating me to complete the project. This work is theirs as much as it is mine,

To my beloved three sisters, Suzanne, Tamara and Dalia, your love, care and
affection will always be remembered. May you all be proud of me as much as I'm
proud of you.

To all my friends who eased the burden of the work, I thank you. You are all a
source of inspiration and admiration. A special thanks goes to my former supervisor

and mentor at work, Mr. Raed Gharzeddine, who suggested the topic.

iv

Abstract

The need to move various items from one location to another has become a primary
need of most companies. Items are usually boxed and arranged inside containers to be
transported from one location to the other. Most companies pay shipments by the
number of containers being transported; therefore, it is in the interest of the company
to minimize that number. Furthermore, some items might have properties, which force
special constraints on how and where they are stored inside the container. In this
work, we propose an agent based solution for maximizing the use of a single
container; thus, reducing the transportation cost for the companies having their items
transported, as well as increasing transportation performance for. fransportation
companies. Separate agents are used for packing, tracking, loading and unloading
items. Also, artiﬁciai intelligence is provided ﬂlrough the use of the PROLOG
programming language to specify rules and constraints on items loaded as well as on

the container itself.

Contents

. Imtroduction

1.1. Container Loading and Related Problems
1.2. Methods Solving the Problem

1.3. Organization of the report

. Review of Literature

. The Solution

3.1. Assumptions, Rules and Constrainfs
3.2, Agents

3.2.1. Packing Agent

3.2.2. Loading Agent

3.2.3. Unloading Agent

3.2.4. Tracking Agent

3.3. Graphical User Interface

. Result and Discussion
. Conclusion

. References

12

12

15

16

17

19

20

21

26

30

32

vi

List of Figures

Figure 1Information about objects 22
Figure 2 Inserting new objects 22
Figure 3 Prolog queries 23
Figure 4 Container graphical view 24

Figure 5 Box inside the container 24

vii

List of Tables

Table 1 Dimensions and properties of input boxes. 23

Chapter 1

Introduction

Movement of items of any type, shape, size and weight has become
increasingly common among most companies; industrial and commercial, as well as
among regular individuals for both business and personal reasons (Birgin, Martinez &
Ronconi, 2005). Ttems being transported can range from small items of irregular
shapes having negligible weight, to large heavy items with specific shapes.
Companies transport items for business reason. It is common among construction
companies to transport equipment used in one site, to be able to use them on another
site, instead of buying new.material for each site. It is even more common among
production colmpanies to ship their products from their factories to various locations
where their consumers reside. Regular individuals, as well as companies, may need to
transport their possessions from location to another, most notably when moving from

a residence location to another. Their possessions will include furniture, electronics

and many other personal belongings.

~ Depending on the type of the item being transported, specific propertics might
be associated with the items. Some items can be marked as fragile, these items will
need special care when being placed, and cannot be placed anywhere when being
transported. Some items might be of more value than others, and will need to be
handed priority when being transported. Each item however belongs to a specific

customer, These items must reach the destination specified by the customer. When

having his items transported, the customer will expect his‘her items to arrive at a

specified date, to the specified destination. Therefore, items of the same customer are
usually transported together.

Shipping companies have to deal with the many types, shapes, sizes and
weights of these items. These companies are responsible for shipping the items from
one location to another. They might ship items by land through vehicles, such as pick
up trucks, or by sea through ships. In either case items that are to be transported will
be placed inside boxes. All items are boxed in order to provide a single shape to deal
with, ease of handling and protection when transporting (Birgin & al, 2005).
Providing a single shape simplifies the problem by reducing the infinitely many
shapes that items can take into a single shape: a box. Furthermore, some itemns might
be too small to consider them by themselves. That is why we group them with other
items inside the same box. Boxes are also easier to move around and protect their
content from damage (Birgin & al, 2005). Some companies may have only limited
amount of box types to be used to further simplify the problem. Even when boxed,
these items cannot be transported alone. The shipping companies will usually group
boxes in containers for each separate shipment. These containers will serve as the

smallest units of transportation. Shipment companies will ship a number of containers

in every shipment,

It is in the benefit of both the transporting company and the customer to keep
the number of containers needed to transport this customer’s items to a minimum
(Birgin & al; 2005). Since the customer pays the transportation company according to
the number of shipments taken to transport his/her items, by keeping this number to a
minimum, he/she will reduce his transportation cost. The shipping company Will also

benefit from this by increasing their transportation performance. This will aliow them

to serve more customers in the same amount of time, increasing their profits.

In order to keep the number of containers needed at a minimum, we are faced
with the problem of maximizing the utilization of a single container. In most cases,
maximizing utilization refers to maximizing the space of the container occupied by
boxes, but, depending on the situation, it might be more interesting to maximize
weight, number or other aspects of the boxes inside this container. This problem is
commonly known as the Container Loading Problem (Pisinger, 1999; Schei;:hauer,
1999).

This type of problem has numerous applications, mostly in the packing
industry as we have seen, but also in the cutting industry, for optimizing the cutting of
wood or metal into smaller peaces .(Alvarez-Valdes, Parenno & Tamarit, 2003).

In the following chapter, we discuss the theoretical aspects behind this
problem as well as similar computer science problems.

1.1 Container Loading and Related Problems

Container Loading is a classic problem mainly due to its simplicity in defining
it and the complexity of finding a solution for it. This problem cannot be solved in
time relative to the number of available boxeé; and therefore, it is a non-polynomial

(NP) hard problem (Scheithauer, 1999). There are a lot of variations of this problem,

most commonly the “Bin Packing” (Faroe, Pisinger & Zachariasen, 2003; Martello,
Pisinger & Vigo, 2000), “Cylinder Packing” (Birgin & al, 2005) and “Pallet Loading”
(Pureza & Morabito, 2006; Lim & Zhang, 2005) problems. By simply modifying the
number of dimensions used, shapes of items placed or number of containers to place
items in, we end up with a new variation of the problem.

All the variations of this problem can be summed into a single problem called

the “Packing Problem™. The Packing Problem is simply an application of the more

general “Multidimensional 0-1 Knapsack Problem” (“Knapsack problem”, 2007). The

Knapsack Problem, v;rhich itself has a number of variations, is, in'its simplest form, a
maximization problem which consists of maximizing the value of the items that can
fit in the knapsack (Vasquez & Hao, 2001). Beiﬁg multidimensional means that the
problem is subject to more than one constraint, since it is a 0-1 problem, items
available can be either included in the knapsack or left behind, one can not however
take part of that item (Vasquez & Hao, 2001). The problem can be stated more
formally as:

Given a set of n objects where each has a corresponding profit, and a knapsack,

pack the list of objects that can fit in the knapsack such that the profit sum of

included objects is maximized (Vasquez & Hao, 2001; Pisinger, 1994).

The problem is also defined mathematically in “Knapsack problem” (2007) as

follows:

n

Maximize Z¢; . X;
=1

n

Subject to Za;;. x; <b;, fori=1..m
i=1
%€ {0,1},1<j<n
where n is the number of items available to be packed, m is the number of

4 enecific item 1 is
i & J

represented by ¢;, x; indicates if item j is included in the result or not, if the
item is included the value is 1 while if it was excluded, the value is 0, b; is the
maximum value for constraint i that the solution can have. Finally, a;; is an
entry in a constraint matrix which contains the value of each item j on each
constraint i. (p. 1)

For the container loading problem, we are maximizing the value of the boxes

loaded in the container (Lim & Zhang, 2005). This value may vary depending on the

aspect we want to maximize. Sometimes, we need to maximize the capacity of the

container used, 50 we try to maximize the volume of the boxes chosen (Lim & Zhang,
2005). In other cases we might want to maximize the value of the weight inside the
container, so we focﬁs on the weight of the boxes inside the container (Bischoff,
2003). In some other cases, we might even need to maximize the number of the boxes
to be packed. So this value will depend on the logic we intend o follow.

The container is subject to many constraints (Bischbff, 2003). Most notably,
the length of the container on each of the three dimensions must not be exceeded by
the largest sum of adjacent boxes’ length on that dimension (Birgin & al. 2005).
Another recurring constraint is that of the container’s weight: the sum of the weights
of the items inside the container must not exceed the weight capacity of the container
(Bischoff, 2003). Many more compIeX constraints can be added to the container, such
as load balance of boxes inside the container or constraint on location of objects
inside of it.

The container is not the only subject to constraints, Some boxes may be
constraint by the weight they can carry inside them or on top of them. Some boxes
may not even allow items to be placed on top of it at all (Bischoff, 2003). In other

cases, the direction of the faces of the box might even be constrained.

This problem cannot be solved since it is a NP-Hard problem. In the next
section we discuss how such problems are usually handled.
1.2 Methods Solving the Problem
Being a NP-Hard problem, one cannot find the optimal solution for this problem
in polynomial time; i.e, time relevant the number of boxes we have as input
(Martello& al. 2000). In order to deal with such problems, people usually revert to

Heuristics (Lim & Zhang, 2005). Heuristics provide near optimal solution for large

number of instances (Pisinger, 2002). A heuristic is an algorithm that does not get the

optimal solution for the problefn; it gets a solution close to the optimal one in good
and reasonable running times. In many problems, including the container loading
problem, it is more practical to use heuristics to find solutions almost as good as the
optimal one in an acceptable amount of time, then to wait indefinitely till we find the
optimal solution for a problem (Pisinger, 2002).
1.3 Organization of the Report

In the next chapter, a review of lit-eratu:re related to container loading and the use
of heuristics is made, showing how others used heuristics and other techniques to
solve this problem. Chapter 3 contains the proposed solution for this problem. Chapter

4 discusses the results of this solution and chapter 5 serves as a conclusion.

Chapter 2

Literature Review

As stated before, container loading problems can be solved in aéceptable times
only through the use of heuristics. All the work related to this topic in the literature
review consists of proposing a new heuristic or choosing an existing one and
extending it, applying this heuristic, and showing its performance over the problem.

The simplest heuristic to use would be the greedy approach (Lim & Zhang,
2005). In this approach, boxes are chosen in a greedy manner, starting with the most
desired box and trying to fit it in the-contajner, then going through the remaining
boxes following the same approach until all boxes are chosen or the container is full.
In practice, since the objective is to maximize the value of boxes in the container, the
most desired box to pack would be the one with the highest value. If not packed early,
these boxes will be awkward to pack at later stages. This approach is very simple to
implement and very fast in practice. However, it hardly yields near optimal or even

acceptable solutions.

In their work, A, Lim and X. Zhang (2005) extended ther simple greedy
approach by suggesﬁng some “trouble-making” (Lim & Zhang, 2005, p.914)
elements: boxes that are awkward to pack. These elements will force the use of
dynamic prioritization between iterations in the algorithm. The “trouble making”
aspect 1s represented through a priority factor assigned to each box type, this factor is
dynamically changed to increase or decrease the priority of a specific box. The greedy

approach is still followed, but here the boxes with the highest priority, not the ones

with the most value, are being chosen.

Using this approach the most “trouble making” boxes are always placed at the
bottom of the container, The idea is to get rid of these difficult to place boxes at the
beginning, in order to deal later with easier boxes to place. The issue in this approach |
is that it does not build a layer on which other layers or boxes can be placed,
rendering the placement of boxes on higher levels difficult,

Common approaches to solve this problem include the wall-building approach
(Pisinger, 2002). In this approach the container is filled with a number of layers across
the depth of the container. The same approach could be used to fill the height of the
container instead of the depth and is called the stack building approach (Pisinger,
2002). The depth, or height, of a layer in either approach must be well chosen.
Usually, boxes are sorted based on their smallest dimension, the box with the largest
smallest dimension is then chosen, and the depth is chosen equal to the largest side of
that box. These boxes will be difficult to accommodate later, so are chosen first. This
wall building method also fallows the greedy approach and is bound to the same
weaknesses.

Pisinger (2002) extended this greedy approach of wall building to include back

tracking, by using a tree search heuristic. The tree search algorithm is used to find the

layer depths that will provide the best overall filling. Even though not all possible
branches are studied, due to computational complexities, the heuristic has some good
results.

The wall building approach, whether using the greedy or the free search
heuristic, is designed to fill containers with boxes based on their volume. This

approach is not well suited to fill the container based on other aspects of the boxes,

such as their weight or their priority.

- Linear programming is another common method used in heuristics for the
container loading problem (Schithauer, 1999). Linear programming is used to find the
best outcome; maximum or minimum, for a linear ﬁlnction given equality and
inequality constraints (“Linear programming”, 2007). Linear programming is mostly
used for optimizations in the operation research, microeconomics and business
management (“Linear programming”, 2007). |

In his work, Scheithauer (1999) was able to find tighter bounds for the container
loading problem through the use of linear programming relaxation. Scheithauer
argued that the three dimensional packing pattern of the container can be described by
smaller spatial dimensions. Through the use of a single dimension: length; the
packing pattern of the container can be described through a set of patterns on this
dimension, -called the bar-patterns. The container is thus partitioned into bars having
1x1 cross-section (1 unit in height and length). The real position of the bar is not
restricted and is said to be “relaxed” (Scheithauer, 1999, p.202). These bars contain
parts of the packed boxes and can be characterized by integer vectors and are subject
to constrainis. The problem becomes é linear programming problem by adding the

objective function to be minimized: the function showing value of packed boxes. To

achieve a tighter bound for the container loading problem, the linear programming
problem must be solved. Similarly, Scheithauer was also able to describe the packing
pattern using a set of two dimensional patterns. This method also works for the
multiple containers (Scheithauer, 1999).

The drawback of this method is that it only considers orthogonal packing of the
boxes, while in reality; the box has six orientations to be considered. Boxes with same

sizes and shapes but with different orientations are considered boxes of different

types.

As opposed to the previous methods; which deal with boxes themselves to find
the solutions, researchers can resort to search for the best solution in the solution
space. This can be achieved through the use of meta-heuristics (“Metaheuristics”,
2007). The most widely used meta-heuristics include local search, branch and bound,
and genetic algorithms.

Local search iteratively searches solutions moving from a solution to one of its
neighbors while modifying the neighborhood structure as the search progresses, until
some criterion has been satisfied (“Local search”, 2007). Tabu search is a special type
of local search because it uses a Tabu list, containing lst of solutions visited in the
recent past (“Tabu search”, 2007). The solutions in the Tabu list are excluded from
the neighborhood of the current solution.

Branch and bound also searches the complete solution space. It uses branching
to divide searchr space into subspaces recursively, and bounding to find the upper and
lower bounds of the studied branch (“Branch and bound”, 2007).

Genetic algorithms alter the pool of solutions by combining or mutating existing
solutions, better solutions survive while solutions of lower quality are discarded. The

process is repeated until an acceptable solution is found (“Tabu search”, 2007).

Bischoff (2003) used genetic algorithms to add the load baﬁng aspect to the problem.
In their work, Pureza and Morabito (2006) used Tabu search heuristic to solve
the pallet loading problem. The method proposed generates an initial solution using
block heuristics, then apply block expansion moves. In block heuristics, block
patterns are formed out of smaller boxes arranged in the same orientation. In block
expansion moves, neighboring blocks can be decreased in size, divided into one or

more blocks, or grow in size in order to preserve the solution feasibility.

10

Martello, Pisinger and Viro, (2000) developed an exact algorithm with a
continuous lower bound to fill a single container. Their algorithm starts by solving the
problem in two dimensions, then uses a branch and bound algorithm to develop it into
a container loading problem solution: All the boxes placed on the lowest level are
then used as bases for sub-containers ranging up to the ceiling of the container, and
the problem is repeated for this sub container. This algorithm can also be applied to
the bin packing problem. Although this algorithm is easy to implement and has a
lower bound, it does not perform as good as other studied algorithms.

Faroe, Pisinger and Zachariasen, (2003) solved the bin packing problem. Their
solution first solves the problem using the greedy approach then iteratively decreases
the number of bins using a guided local search algorithm. This algorithm also restricts
the orientation of the boxes.

In this chapter, some of the most common and popular techniques and heuristics
used to solve the container loading problem have been covered. In the next chapter,
we will propose a method to solve this problem through the use of agents and by

specifying logic for loading the container through a PROLOG file.

11

Chapter 3

The Solution

In order to solve the container loading problem, rules and constraints to abide
by need to be set. The problem is also subject to some assumptions that must be
stated. Assumptions, rules and constraints set the frame for the solution. The solution
is based on four agents: one for each of the packing, tracking, loading and unloading
activities. While packing, items are placed inside boxes and the constraints and rules
are set. Tracking locates items in boxes, boxes in the container and the location of the
container itself. The loading activity involves loading boxes in the container. The
logic of the loading activity can be modified by specifying the logic to follow through
the use of PROLOG. Unloading deals with removing all the boxes from the container,
finding the fastest way to a box in the container and the lessons learned from the
loading activity.

3.1 Assumptions, Rules and Constraints
By definition, the problem only deals with boxes. It is assumed that all items

to be transported are packed in boxes that can fit them. Smaller items can be grouped

and packed in a single box. This means that a box can contain more than a single
item. These assumptions simplify the problem by eliminating the need for smaller
boxes for the small items or having a larger empty box.

Once a box has béen placed in the container it is assumed that it will stay still
in that location for the duration of thé shipment. In practice, this can be easily
achieved through the use of ropes or by filling the empty space of the container with

polystyrene for lighter items or wood and rubber compartments for heavier items.

12

Items placed inside the boxes are also assumed to stay still during the
shipment. The idea is preserve the items that are being transported. This can also be
easily achieved through choosing the right box sizes for the items and holding the
item in place by filling the empty parts of the box with polystyrene or rubber, if
necessary.

Boxes can be made of different material and sizes. Boxes made of the same
material and sizes on all dimensions are considered of the same type. 1t is assumed all
boxes of the same type have the same characteristics such as the weight that they can
carry in or on top of them.

When boxes are packed, it is assumed that a box can not hang in the air. In
practice, it is very difficult or even impossible to place a box without supporting
boxes under it. Each box must be on the floor of the container or on top of another
box.

All boxes must be packed orthogonally. This rule forces the faces of the boxes
to be always parallel with those of the container. In practice, if the box is placed in an
inclined position it is highly probable that it will slide and fall and damage its content

or the content of other boxes. This last rule takes care of such situations.

Because boxes are placed orthogonally, a box only has six possible
orientations. In each orientation the different sides of the box are parallel to different
sides of the container. However, some boxes may require a specific face of the box to
be facing a specified direction. This is very common in practice; boxes are markgd
with “This side up” tags to specify orientation.

When boxes are placed in the container they can be placed next to each other
or on top of each other but without overlapping. If boxes overlap., the box itself, and

possibly its content, will be damaged.

I3

Each box has a limit weight that it can carry on top of it. This weight is
assumed to be maximum weight the box can carry without being damaged or
deformed; otherwise, the boxes will overlap. All boxes of the same type are supposed
to have the same limit. Some boxes might be so fragile that they require that no other
boxes be placed on top of them.

Box types also have a limit on the weight they can carr.y inside the boxes. In
practice, if the item inside the box is too heavy, even if it fits in the box, it will
damage the bottom of the box. Therefore, items must be place only in boxes that can
carry them.

In order to find where items and boxes are in the container, every box and item
is tagged with a unique serial number. The serial number is used to identify the
location as well as the owner of the items.

The location of the box in the container may need to be restricted. In practice,
some items might need to be placed on the floor or next to a side of the container for
support. Sometimes a box with a very high priority might be restricted to stay close to
the entrance of the container for easy access.

The container itself may have restrictions on the location of boxes. In the case

where we have boxes belonging to different customers, it might be required to put the
boxes of the same customer near each other, Here, the container will place a
constraint restricting each customer’s boxes to a specific location.

The container may do load balancing on placed boxes. If the container is a
truck, it is required that the center of gravity of the container be close to its middle,
otherwise the truck risks flipping over.

All the assumptions‘just stated are assumed when the solving the problem. All

specified rules and constraints must also be satisfied. The assumptions, rules and

14

constraints constitute the environment in which work is done to solve the problem.

Next, in the environment just set up, the use of agents is discussed.
3.2 Agents

As stated earlier, the container loading problem is used in practice to simplify
transportation of items from one location to another. Transporting an item in a
container involves several steps and underlying processes. First, it involves packing
the item into a box so it can be placed into the container. Here, we refer back to the
assumption that all items transported must be within boxes. Second, the box must be
loaded into the container along with other boxes, in a way that optimizes the use of
the container. Finally, the box needs to be retrieved from the container when it
reaches its destination. During all the steps, location of the box and the container must
be known; therefore, they should be tracked.

In order to automate the transportation of the item, we deal with agents
responsible for the processes involved. An agent is software that assists, or acts on
behalf of, the user in performing repetitive computer related tasks (Haag, Cummings
& Phillips, 2007). Agents apply reasoning capabilities to reach a conclusion. Agents

are a form of artificial intelligence where machines imitate human thinking. They are

used to replace the tedious and repetitive task that a human has to do every time a set
of items needs to be transported. When given the logical thinking to follow, the agent
will come up with the same result a human would in much less time.

For each of the four processes involved in the transportation of the item, an
agent has been created. The agents share data about the boxes, containers, items and
other information through a database that they all use. The database stores
information about the box types, boxes, the container itself and the items being

transported. The database identifies which items are in which boxes; it also speciﬁes

15

different locations. Furthermore, the destination of the box must be known to know in
which container it should be loaded. Description is again optional only for the boxes
that need additional information.

After identifying all the items and boxes to be used, the packing agent notes
into which box every item is being placed. This will allow the tracking agent to
identify what every box contains and in which box every item is contained.

Next, the container in which the boxes will be placed must be specified. A
container has a name, description, destination, height, length, width, and weight
capacity. In practice, the container could be the back of a truck or a storage room in a
ship among others. The container is identified by its name. Additional information of
the container can be provided through its description. The dimensions of the container
can be casily measured, while its weight capacity is usually estimated.

Constraints and rules can be added to the problem through the use of
properties. Properiies can be applied to items, boxes, box types and containers.
Properties have a name, a description and a restriction. The name identifies the
property. Additional information can be provided for the property through the

description. The restriction includes the rule or constraint that restricts the loading

operation.

All properties to be used are idenﬁﬁed by the packing agent. The agent also
assigns these properties to the container, box, box type or item. These properties will
be used by the loading agent to enforce rules and constraints on the loading
operations.

3.2.2 Loading Agent
The loading agent is responsible for loading the boxes in the container. This

agent will take the list of available boxes in the database and try to load them into the

17

container. The loading logic varies through two Prolog files, one for the Prolog facts
and the other for Prolog queries.

Prolog is a programming language used for artificial intelligence programming
(Cook, 2004). Like all other artificial intelligence software, Prolog attempts to imitate
human behavior by attempting to understand and analyze information and knowledge.
For Prolog, there are two main types of knowledge: facts and reasoning procedures.
Facts are information that is known to be true, while reasoning procedures, or queries,
follow reasoning of facts (Cook, 2004).

The .Net framework is used to create the agents. In order to read Prolog files
using this framework, a library called P#, created specifically to bridge between Net
and Prolog, is used.

The loading agent works by retrieving the loading logic from the Prolog facts
and querics, then working its way through the boxes available in the system and tries
to fill them in the most optimal way. To do so, the P# is first used to load the facts
file, and the queries are then executed against these facts. The answers to ‘these
questions are reported in an output file. The agent will read the results from the output

file, and according to these results it changes its logic and behavior.

According to the logic specified in the Prolog file, the agent will sort boxes by
specified criteria. The agent will try to insert these boxes according to their order into
the container.

The loading is achieved through the use of sub-containers. When the problem
starts, there is only one sub-container, which is the container itself. Everﬁf time a box
is inserted in a sub-container, it creates three sub-containers formed by the volume
between a box’s faces and sub-container’s .faccs parallel to them. If a sub-container is

too small to fit any box, it is discarded. Sometimes, when a box is placed, it intersects

18

existing sub-containers and thus reduces their size. The program continues until the
smallest box is larger than the largest sub-container and no more boxes can be placed
in the container. The resulting load is the solution to the problem.

Loads can be tempotarily stored and continued later. This_happens when a list
of boxes is inserted and a load is executed on these boxes, then more boxes are added
to the system. In this case, the user has the option to continue loadiné the remaining
unloaded boxes in the container while keeping already loaded boxes in their places, or
to remove the loaded boxes from the container and repeat the load with all the boxes
in the system.

3.2.3 Unloading Agent

The unloading agent is primarily used to unload boxes from the container, and
items from the boxes. Just like the packing agent is an observer of packing operations,
the unloading agent is an observer of all uﬁloading operations. Every time a box or
item is unloaded, the agent notes the change in the database.

The unloading agentr uses features from the tracking agent to get the list of
boxes blocking a specific box. This agent determines the easiest and fastest way to get

to that specific box, and the items inside it, by determining Iist of boxes that need to

be removed first.

While unloading boxes, the agent can add lessons learned in form of Prolog
facts and queries. The packing agent adds constraints and rules imposed by the user
through properties. The unloading agent hbn the other hand changes the logic of the
loading activity for future loads by adding facts and queries about the last load. Facts
might include lessons related to the location where the box should be placed, such as
placing wooden plates on the top of othgr objects and not on the floor. The queries

that might be added will change the logic of the loading operation. Queries are

19

questions that will be asked and checked against current facts, such as “should
wooden plates be placed on top of other objects?”

The agent is able to clear the détabase. This feature is used when a new
experiment is to be performed. In practice, the old data and information is usually
backed up, and then the database is cleared to allow the new experiment to be
performed. |

The agent is also able to delete all types of objects in the system. This feature
is used when one box, box type; item or container were incorrectly added, or when we
want to perform the experiment without the specified object.

This agent is also able to remove constraints and rules applied to the problem
by removing properties associated with boxes, box types, containers and items.

3.2.4 Tracking Agent

At any point, the tracking agent is responsible for identifying the boxes, box
types, items, containers and properties in the system. Although the information about
these components is inserted in the packing agent, the tracking agent is responsible for
retrieving this information. All the retrievéls performed by the tracking agent are from

the common database, making this agent the search engine of the system.

Another peace of information inserted at the packing stage and retrieved at this
stage is _the items contained in a box. Given a specific box, the tracking agent will
retrieve all the items contained in that box. On the other hand, the agent is able to find
the box containing a specified item. The agent is also able to identify all the boxes,
and thus, items contained in the container. Furthermore, given a specific box, box
type, item or container the agent can find associated properties. Conversely, given a
property, it can find all boxes, box types, items and containers that are associated to

this property.

20

This agent also keeps track of the location of items and boxes. At any point,
given a specific box or item, the agent is able to find out if it is loaded in a container,
and if it is léaded, the agent can specify its exact location. Conversely, given a
specific location inside the container, the tracking agent is able to find the box at that
location. These features allow the unloading agent to find the list of boxes that need to
be unloaded in order to reach a specific box.

Other activities that agent can do include finding the number of hoxe-s of a
specific type. The agent is also able to identify unpacked items and unloaded boxes in
the system.

3.3 Graphical User Interface

In this solution for the container loading problem, a graphical representation of
the loaded boxes is given. This representation is achieved through the use of
Microsoft’s .Net framework and an OpenGL library for Net.

The Net framework is a windows component that supports building and
running applications (Cook, 2004). The advaniage of .Net is that is simplifies
development, deployment and integration with a wide variety of programming

languages. In this work, C# is used as the coding language to write the agents.

C# will communicate with an OpenGL library created épeciﬁcally for Net.
“QOpenGL is a software interface to graphics hardware” (Neider, Davis & Woo, 1997).
OpenGL is responsible for sending information to the hardware that will graphically
draw the solution.

The graphical user interface lists all the containers, boxes, box types, items
and properties in the system. By selecting a specific object, the system will display

detailed information about that object (As shown in Figure 1).

21

BeoxType Material; Fiberboerd §
G BoxType Waight:400

T BoxType Volume: 198030

o BexTFype Height: 42
BowType Lengih: 41
BokType Widih: 116)
Maximun waight on top of BoxTyps:-400
Maximuin weight inside BexType: 2000
Number af boxes of thistype: 17

The interface also provides controls to add new objects (As shown in Figure
2), delete existing objects or associate other objects with properties. It also allows the

user to change the Prolog facts and queries to be used in the loading process (As

7 Figure 1 Information about objects
shown in Figure 3).

Figure 2 Inserting new objecis

22

{SurfokesBasedinSiee L
3 i5oitloxesBated OndlumberdB onesOITheS ameType.
HSorlBore:Bassd0Hveight. - -
ASoitBaxssDatediiLongesilenith.

AR

Figure 3 Prolog queries

At any point, the user can empty the container and then refill it using the
changed Prolog logic. This can be achieved through the interface by the assigned
buttons for these actions.

The graphical user interface will load information ai)out the container and the
boxes inside this container. The user interface will draw only the frame of the
container, in order to see through it. The interface will also draw solid cubes for each
box with randomly chosen distinct colors for each box in order to identify them
easily. The interface allows for rotation around the container to view it from different

angles. It also_allows for zooming in and out of the container for a better view. (As

shown in Figure 4)

23

Figure 4 Container graphical view
When user is trying to find the shortest way to reach a box, the interface will

only draw the frame of the boxes that need to be removed in order to reach that box

(As shown in Figure 5). If the box can be directly removed, all the boxes will be

drawn normally.

Figure 5 Box inside the container

24

This interface will be used to test the loading logics that created using the
Prolog facts and queries. In the next section, experiments will be performed on the

user interface to test the effectiveness of the solution.

25

Chapter 4

Result and Discussion

In order to test the effectiveness and efficiency of the proposed solution, it will
be benchmarked against numerical data taken from Pisinger (2002). That data
however does not contain material type or weights for the boxes. To solve this
problem, material types were randomly assigned to each box type out of the following
materials: paperboard (for carton), wood, fiberboard (for corrugated boxe) and steel.
Boxes weights, maximum weight that can be carried inside and on top have been
assigned to each box type depending on its material and its volume. The list of boxes

used as input is detailed in the table below.

Table 1;: Dimensions and properties of input boxes
Box type i 2 3 4 5 6 7 8 ¢ f0 N 12 13 M4 15 16 I7 & 19 20

Width 8 36 68 71 .28 109 94 32 52 29 42 97 106 105 107 39 29 31 39 101
Height 60 69 26 100 31 29 52 106 115 68 41 59 53 68 43 62 56 47 41 38
Depth 26 28 46 100 42 51 43 113 45 44 115 48 40 32 110 80 73 42 114 40

Material W W p
Weight 2 6 1 10 5 4 . .
In Weight 0 3 5 50 25 2 25 5 35
6 4
7 8

=
=
=

]] 1 4 25 13 38 32
25 25 5 2 125 65 19 16
5 5 10 406 2§ 13 38 32

N
—
~1

Top Weight | 20 0 9% 5

Boxes 5

N = by
6 N W g

12

The container chosen to fill thesg boxes in has the same dimensions of thé one
used in Pisinger’s (2002) data. The container has a height and a width of 230
centimeters and a depth of 590 centimeters for a total volume of 31,211,000
centimeters cubed. The 146 boxes have a total volume of 91.8% of the container
volume. Pisinger’s (2002} algorithms were able to fill up 90.44% of the containers
volume with specific ranking rules; however some tests took up to two minutes to

come up with the result.

26

The user interface is used to enter all this data as input to the problem. Behind
the scenes, the loading agent is responsible of entering boxes into the database. The
container is assigned- a default capacity of 1,000 kg. In order to compare the results to
Pisinger’s outcomes, the boxes will be loaded empty into the container.

In order to try to maximize the utilization of the container, prioritization logic is
used. The prioritization logic to use is specified through the PROLOG file. The logic
will order boxes based on the specified priority. The loading agent will attempt to
load boxes into the container based on this order. Results of prioritization logics based
on volume, weight, number of similar boxes available and length will be discussed.
For these tests it is assumed that the boxes loaded cannot be rotated and must be
placed as defined. |

First, the weight maximization of the boxes inside the container is studied.
Boxes are ordered based on their weight, with heavier boxes having higher priority.
Doing so should increase total boxes weight, filling a higher percentage of the weight
that the container can hold. This logic fills 92 boxes in the container which constitute
63% of the volume of the container and 20% of the weight that the container can hold.

This finding is rather expected since this logic would sacrifice volume for the sake of

weight. Out of the studied logics, this is the logic that maximizes weight utilization of
the container. This logic is not very effective when the deviation of weights of the
boxesl is rather small. On the other hand, it is very useful when boxes are filled with
actual items of different weights.

Next, the volume maximization of the boxes inside the container is discussed.
Following the greedy approach, boxes are ordered based on their volume in
descending order. Boxes with larger volumes will be inserted first into the container.

Running this logic will fill 73 boxes into the container. These boxes constitute 66% of

27

the volume of the container, while their weight is 12% of the weight that the container
can hold. The low number of boxes packed is explained by their large volumes, since
fewer boxes are needed to fill more space in the container. The volume filled
percentage is still rather low and better results can be achieved.

Inspired by the wall building approach, the following logic prioritizes boxes
based on the number of boxes of the same type that are available. The idea behind this
logic is that boxes of the same type constitute perfect walls, reducing wasted space
between them. This test fills 125 boxes in the container which constitute 67% of the
volume of the container and 16% of the weight that the container can hold. Even
though this logic loads the most boxes into the container, it still does not provide a
much better solution then loading based on volume. The reason is that there are
usually more small boxes and fewer large boxes. In this case, the smallest boxes were
being loaded, increasing amount of loaded boxes but not greatly affecting volume
filled.

Finally, the logic that orders boxes based on their length is studied. Here, boxes
with the longest length have higher priority. This logic also imitates the wall building

approach. Here the walls are defined by the lengths of the boxes. When a box is

placed inside the container, it defines a wall segment having for width the length of
the box. Since boxes are prioritized by their length, all smaller boxes are candidates
for that wall segment. This test fills 101 boxes in the container which constitute 71%
of the volume of the container and 15% of the weight that the container can hold. This
logic is also similar to that of Pissinger’s, except it is only without allowing boxes to
rotate and wall segments are determined by box’s length. This logic proved to be the

most efficient among the studied logics. These findings agree with the reviewed

28

literature which shows that wall building approaches are more effective than greedy
approaches.

Pissinger’s (2002) approach can also be implemented in the logic. This can be
achieved by adding rotation to boxes and prioritizing based on the largest smallest
dimension. Pissinger builds his wall segments based on the smallest dimension of a
box, so prioritizing boxes based on their smallest dimension should give similar
outcomes to those in his research.

Regarding speed, some of Pissinger’s tests took up to two minutes to come up
with results. The loading agent came up with results relatively faster. It took the agent
less than five seconds to fill the container.

The studied tests are all executed with empty boxes. Adding items to the boxes
will increase the constraints on the problem. The resulting. outcomes will be
constrained by the weight and positioning constraints enforced by the items on the

box or on the container.

29

Chapter 5

Conclusion

In this Work, a new way to solve the container loading problem using agents
has been studied. Four agents were used to perform the various tasks involved. in
transporting items: a packing agent, a tracking agent, a loading agent and an
unloading agent. These agents communicate with each other and share information
and data by using a common database.

A set of assumptions, rqles and constraints have been considered and applied
to the problem in order to solve it. It is assumed that the problem only deals with
boxes that stay still with their content inside the container. Boxes must be packed
orthogonally in one of six orientations, without them overlapping other boxes;
furthermore, boxes can not be hanging in the air. Restrictions may be apphied for a
box’s location, or the weight it can carry inside or on top of it.

The contribution of this work is in the agents created. A packing agent acts as
an observer for the process of filling the boxes and assigns properties to each box or

item and to the container itself. A tracking agent is responsible for locating boxes and

items at all times.

An unloading agent is used to unload boxes from the container. This last agent
is capable of learning lessons when boxes are unloaded. It is also able to find the
shortest path to reach a box in a container by identifying required boxes to be
removed to reach that box. |

A loading agent is responsible for placing boxes in the container in a way that

optimizes our required atiribute. This agent that can have its loading logic changed

30

easily through Prolog. This capability allows control over complexity and type of
loading to be used.

The proposed solution is rule based in that if allows easy addition of new
constraints both on the container and on the box. It also allows changing the logic of
filling the container, which allows it to change the complexity of the problem
depending on the user’s requirements. |

A graphical presentation of the problem was provided to visualize the problem
and the solution. The open source graphical language, OpenGL, was integrated with
Microsoft .Net via a library created specifically for .Net in order to provide the
graphical presentation.

The discussed agents, that solve the container loading problem, are highly
useful and effective. These agents need to be applied in a real work environment to
fully test their abilities and discover their limitations.

Further work can be done to make thése agents be used as framework for

testing loading logics and visualizing the solutions.

31

References

Alvarez-Valdez, R. Parreno, F. and Tamarit, J. (2003). A tabu search algorithm for
large-scale guillotine (un)constrained two-dimensional cutting problems.
Computer & Operations Research, 29(7), 925-947.

Birgin, E. G. Martinez, J. M. and Ronconi, D. P. (2005). Optimizing the Packing of-
Cylinders into a Rectangular Container: A Nonlinear Approach. European
Journal of Operational Research, 60(1), 19-33.

Bischoff, E. E. (2003). Dealing with Load bearing Strength Considerations in
Container Loading Problems, tech. report, European business management
school, Univ. of Wales, Swansea, 1-18.

Branch and bound. (2007, October 5). In Wikipedia the Free Encyclopedia.
Retrieved 07:53, October 10, 2007, from

http://en.wikipedia.org/w/index.php?title=Branch_and_bound&oldid=162399
285

‘Chen, L. Xi, L. Cai, J. Bostel, N. and Dejax, P. (2005). An Integrated Approach for
Modeling and Solving the Scheduling Problem of Container Handling
Systems. Journal of Zhejiang University Science 4, 7(2), 234-239.

Cook, J. J. (2004). Language Interoperability and Logic Programming Languages.
Doctor of Philosophy, Laboratory for Foundations of Computer Science,
University of Edinburg, 1-172

Cook, J. J. (2004). Optimizing P#: Translating P# into a more Idiomatic C#. In
Proceedings of CICLOPS 2004, 59-70.

Faroe, O. Pisinger, D. and Zachariasen, M. (2003). Guided Local Search for the
Three-Dimensional Bin Packing Problem. Informs Journal on Computing,

L NG

15(3);267-283.
Haag, S. Cummings, M. Phillips, A. (2007). Management Information Systems for the
Information Age. New York: The McGraw-Hill Companies, Inc.

Neider, J. Davis, T. Woo, M. (1997). OpenGL Programming Guide: The official
guide fo learning. New Work: Addison Wesley.

Knapsack problem (2007, September 1). In Wikipedia, the Free Encyclopedia.
Retrieved 22:20 September 1, 2007, from
hitp://en.wikipedia.org/wiki/knapsack problem

Lim, A. and Zhang, X. (2005). The Container Loading Problem. In Proceedings of the
2005 ACM Symposium on Applied Computing, 913-917.

Linear programming (2007, October, 1). In Wikipedia, the Free Encyclopedia.
Retrieved 13:47, October 2, 2007, from

32

hito://en.wikipedia.org/w/index.php?title=Linear programming&oldid=16155

1252

. Local search (optimization) (2007, July 10). In Wikipedia, the Free Encyclopedia.
Retrieved 7:00, October 10, 2007, from

htgg:f/en.wikipedia.org/w/index.ghp‘?title=Local search_%28optimization%s29
&oldid=143744314

Martello, S. Pesinger, D. and Vigo, D. (2000) The Three-Dimensional Bin Packing
' Problem. Operations research, 48(2), 256-267.

Metaheuristics. (2007, October 7). In Wikipedia, the free Encyclopedia.
Retrieved 06:33, October 10,2007, from
http://en.wikipedia.org/w/index.php?title=Metaheuristic&oldid=162973403

Pisinger, D. (1999). Core Problems in Knapsack Algorithms. Operations research,
47(4), 570-575.

Pisinger, D. (2002). Heuristics for the Container Loading Problem. European Journal
of operational research. 141(2), 382-392.

Pureza, V. and Morabito, R. (2006). Some Experiments with a Simple Tabu Search
Algorithm for the Manufacturer’s Pallet Loading Problem. Computers &
Operations Research, 33(3), 804-819.

Scheithauer, G. (1999). LP-based Bounds for the Container and Multi-Container
Loading Problem. Infernational Transactions in Operation Research, 6(2),
199-213.

Scheithauer, G. (1992). Algorithms for the Container Loading Problem. In Operations
' Res’earch Proceedings 1991, 445-452.

'Tabu search. (2007, September 10). In Wikipedia, The Free Encyclopedm
" Retrieved 11:48, Qcicber 6, 2007, from :

" hitp://en. w1k1ped1a org/w/index. DhD"tlﬂe—Tabﬁ search&old1d“1569945 16

Vasquez, M. and Hao, J. (2001). A Hybrid Approach for the 0-1 Multidimensional
Knapsack Problem. In Proceeding of the 1 7% International Joint Conference
on Artificial Intelligence, 238-233.

33

