
JOURNALOF SOFTWAREMAINTENANCEAND EVOLUTION: RESEARCHAND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
Published online 20 July 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.508

UML-based regression testing for OO software

Nashat Mansour∗,†, Husam Takkoush and Ali Nehme

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

SUMMARY

In software maintenance, a system has to be regression tested after modifying it. The goal of regression
testing is to ensure that modifications have not adversely affected the system. Regression test selection
determines a subset of test cases, from the initial test suite, which concentrates on the parts of the system
affected by the modification. Previous techniques have been mainly code-based and several of them have
addressed procedural programs. When working with large and complex object-oriented systems, source
code-based regression testing is usually costly. This paper proposes a programming-language-independent
technique for regression test selection for object-oriented software based on Unified Modeling Language
(UML 2.0) design diagrams. These diagrams are: the newly introduced interaction overview diagram,
class diagrams, and sequence diagrams. We assume a test suite that contains both unit and system test
cases. Based on the software changes reflected in the class and the interaction overview diagrams, our
proposed technique selects test cases in phases. In the first phase, we select both unit and system test cases
that directly traverse the changed methods and their calling methods. For the second phase, we present
algorithms for detecting system level changes in the interaction overview diagram. If the change is at the
action level, which is represented by a sequence diagram, only the test cases that execute changed methods
will be selected. We apply our proposed technique to a few object-oriented subject applications and
evaluate its precision and inclusiveness in addition to the number of selected tests; the results demonstrate
the advantages of the technique. Copyright q 2010 John Wiley & Sons, Ltd.

Received 14 November 2008; Revised 23 April 2010; Accepted 17 May 2010

KEY WORDS: design-level testing; object-oriented regression testing; regression test selection; software
maintenance; UML

1. INTRODUCTION

A program is regression tested after modifying it in the maintenance phase [1]. Regression testing
can also be used in the testing release phase of software development. One important objective
of regression testing is to ensure that the change made to a program does not cause adverse side
effects. Retesting using all test cases that are generated during initial software development is too
costly. Hence, regression test selection techniques aim to select a reduced subset of test cases from
the initial test suite for retesting the modified software. This leads to a reduction in the cost of
software maintenance.

The selection of appropriate test cases can be made in different ways and a number of regression
test selection methods have been proposed. These methods are based on different objectives and
techniques such as: firewalls [2]; slicing-based data-flow technique [3]; safe algorithm based
on program’s control graph [4]; test case reduction algorithms that account for the location of

∗Correspondence to: Nashat Mansour, Department of Computer Science and Mathematics, Lebanese American
University, Beirut, Lebanon.

†E-mail: nmansour@lau.edu.lb

Copyright q 2010 John Wiley & Sons, Ltd.



52 N. MANSOUR, H. TAKKOUSH AND A. NEHME

the modification made in the program and its effects [5]; optimization problem formulation and
nature-inspired heuristics for minimizing the number of selected test cases [6]; concentrating on the
glue code and using firewall analysis for component-based software [7]; state machine diagrams
for web services [8].

In the last decade, regression testing techniques have been proposed for object-oriented software.
Rothermel et al. [9] and Harrold et al. [10] use syntax-based inter-procedural control flow graphs
and class control flow graph for regression testing C++ and Java programs. Taneja and Xie
[11] propose an approach called DiffGen for generating regression tests. Their approach detects
behavioral differences between two versions of a given Java class by checking observable outputs.
Wu et al. [12] generate Affected Function dependency graphs based on the functions in the
different classes and their behavior and non-behavior effects. Le Traon et al. [13] build a test
dependency graph which is a directed graph of classes. Then, the graph is decomposed into
connected components and the components are ordered. If a component is modified, all the
components connected to it will be retested. Chen et al. [14] use an activity diagram like a control
flow graph to describe the system requirements. The test paths that correspond to the affected
graph nodes determine the tests to be rerun. Beydeda and Gruhn [15] build a graph for class
level regression testing based on class specification and implementation information. Korel et al.
[16] use extended finite state machines and carry out dependence analysis of this model based
on data and control dependencies of the transitions. This analysis leads to selecting test cases.
Wu and Offutt [17] use class, collaboration, and state machine UML diagram for regression testing
component-based software. Briand et al. [18] use UML to design and classify the test cases
into: retestable, reusable, and obsolete. Their approach considers changes by comparing class and
sequence diagrams. After that comparison, use cases that have their sequence diagrams changed
are determined and test cases related to these use cases are classified. Farooq et al. [19] have
proposed a selective regression testing strategy that uses class diagrams and state machines for
change identification and subsequent test selection. The changes are classified as class-driven and
state-driven and the tests are classified as obsolete, reusable, and retestable. Pilskalns et al. [20]
propose a regression testing technique based on UML sequence and class diagrams. Changes in
these diagrams are mapped into vertices of an object method directed acyclic graph. Then, this
graph is employed for classifying test cases, selecting the ones to be reused, and determining the
new tests to be generated. Also, Batra [21] proposes a UML-based approach for regression testing
software components. In this approach, a UML sequence diagram of a component is transformed
into an extended control flow graph which is traversed for detecting change information. Then,
tests are identified as reusable, obsolete or newly added. The resulting set of regression tests is
suitable for detecting interaction and scenario faults.

The majority of the previous techniques are code-based and limited amount of work has been
design-based, especially for object-oriented software. When working with large and complex
systems, code-based testing and regression testing is quite costly and might not be feasible since
it usually requires generating large dependence graphs. In this paper, we present a design-based
regression test selection technique for objected-oriented software using standard UML 2.0 diagrams
[22] that are not dependent on the particular programming language used. We use, for the first
time, the newly introduced interaction overview diagram in UML 2.0 since it provides a modular
overview of the system including control flow, action states, and interaction diagrams. We also
employ information from class and sequence diagrams for further test selection. We have two
test case pools for the unit and system test cases. Based on the software changes reflected in
the class and the interaction overview diagrams, the technique for test case selection is mainly
composed of two phases. In the first phase, we propose an algorithm for detecting the changed
methods in the class diagram; this is done under the assumption that the developers update the
design properly. For retesting, we select both unit and system test cases that directly traverse the
changed methods and their dependent methods. In the second phase, we propose an algorithm for
detecting system level changes in the interaction overview diagram. If the change is at the action
level, which is basically a sequence diagram, only the test cases with changed method sequence
will be selected. We apply our proposed technique to a few object-oriented subject programs and

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 53

the results show the advantages of this design-level language-independent regression test selection
technique.

This paper is organized as follows. Section 2 presents the proposed technique and algorithms.
Section 3 includes the empirical results. Section 4 concludes the paper.

2. REGRESSION TEST SELECTION

In this section, we present our technique for regression test case selection from system and unit
test cases based on information derived from class and interaction overview diagrams. Interaction
overview diagrams, introduced in UML 2.0, summarize the control flow of the entire system.

2.1. Notation and assumptions

In the remainder of this paper, we use the notation summarized in Table I and the following
assumptions:

(i) T is the set of system test cases, and the following tables are maintained using instrumen-
tation.

(a) T.IO where for each ti ∈T , the table T.IO will contain the ordered traversal list of
interaction overview artifacts.

(b) T.SD where for each ti ∈T , the table T.SD will contain the ordered traversal list of
SD in the form of: OBJECT.METHOD.

(ii) UT is the set of unit test cases where for each uti ∈UT , uti method specifies the method
tested.

(iii) Instrumentation is assumed to be used when running the initial tests in order to record
the correct path coverage. Instrumentation probes would be inserted inside the methods
and the control structures that include method calls.

(iv) There is one interaction overview diagram for the entire program.
(v) A sequence diagram is identified by its unique name in the interaction overview diagram,

referred to as the signature of the sequence diagram.
(vi) SD messages are method calls. SD messages should be consistent with the called methods,

hence the message will carry the same name as the invoked method, the message will be
referenced as: Object.MethodName().

Table I. Notation.

Notation Description

CD Class diagram
CD’ Modified class diagram
SD Sequence diagram
T Set of all system tests and their respective path in the IO and SD diagrams
T.IO Ordered path list in the interaction overview diagram for each system test case
T.SD Ordered path list per sequence diagram frame for each system test case
UT Set of the unit tests and their covered methods
Md Total number of methods in the class diagram
M Set of changed methods
SD.M list of methods involved in SD
IO Interaction overview diagram
IO’ Modified interaction overview diagram
T’ Set of all tests selected from T for retest
T” Set of tests (from T) marked as candidates for retest
UT’ Set of all tests from UT selected for retest
t A single system test case
ut A single unit test case

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



54 N. MANSOUR, H. TAKKOUSH AND A. NEHME

(vii) Upon updating methods in the source code, their version number in the class diagram
should be updated as well.

(viii) A list of methods involved in an SD, SD.M, is maintained before and after updating the
IO diagram.

2.2. Overview of the technique

Our proposed technique is based on the UML diagram representation. We consider the CD and
CD’, IO and IO’, the set of system test cases (T) and the set of unit test cases (UT). The technique
for test case selection consists of two phases: the first involves detecting changes and selecting tests
based on the class diagram and interaction overview diagram; the second involves selecting test
cases based on their coverage in the interaction overview diagram. The two phases are summarized
in the following:

(I) Test case selection based on changes in class diagram: First, we determine the set of changed
methods, M, from class diagram changes. Then, we use M to generate the set of unit and
system tests that need to be re-tested.

(a) Determine the set of changed methods M based on changes in the class diagram affecting
one or more UML entities (Association, Class, Method, etc.). We consider each class
in both class diagrams, CD and CD’, and compare the methods’ versions. If there is a
change, we add this method to M.

(b) Select system test cases: for every method in M, select from T.SD the test cases that
have a reference call to the changed methods.

(c) Select unit test cases:

(i) Select all the unit test cases that test the methods in M.
(ii) Select all the unit tests for the methods that M’s methods are reachable from. In an

SD, the flow of methods specifies which methods are called before others. However,
a change in method m, would imply that the methods calling m need to be retested
as well. Therefore, for every SD, we consider all methods whose calls precede those
in M in order to rerun their unit tests.

(II) Test case selection is based on changes in the interaction overview diagram. The comparison
algorithm works by traversing IO and IO’ in parallel:

(a) Compare every SD in IO and IO’ and mark all the changed SDs as changed. This is
performed by doing a lifeline by lifeline and messages comparison between the SD in
IO and that in IO’.

(b) Select tests based on IO changes: Compare IO and IO’, if there is a changed flow/edge,
decision, decision final, or SD signature, then all test cases traversing the changed element
are marked for retest.

(c) If an SD signature is not changed, but the SD itself is marked as changed, then we mark
the test cases that traverse the changed SDs as candidates for selection and retest.

(d) Reduction: For each test case t marked as candidate for selection, do the following: for
every SD in the path of t marked as changed, do the following:

(i) If there is no changed message (including those in combined fragments of UML
2.0 notation, if they exist) or order on the traversed path of t inside the SD, as per
T.SD, then move to the next SD in the path list of t in T.IO.

(ii) Otherwise, mark t as selected for retest.

The algorithms that implement this regression test selection technique are presented in the following
subsections.

2.3. Test selection based on class diagrams

We first generate the set of changed methods from the class diagram, and then perform selection
of test cases from unit and system level based on directly changed and indirectly affected methods.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 55

Figure 1. Class Diagram Test Case Selection Algorithm.

Figure 2. Class Diagram System Test Selection.

This is summarized in Figure 1. The algorithm FindChangedMethods() determines the set of
the directly changed methods in the system. This algorithm is based on the initial and changes
class diagrams by comparing the signature of methods for each class and updating the set of
changed methods, M. The cost of this method is O(Md). The algorithm CDSystemTestSelection()
selects system test cases, T’, for retest. It is based on the set of the directly changed methods, M,
in the system. Every system test case traversing methods in M should be selected for retest.
CDSystemTestSelection has one loop that selects test cases from T.SD that traverses the changed
methods. For every row (path sequence) in T.SD we check whether any element of M exists in
the T.SD path. This will cost O(t.sd ∗l∗#T ), where t.sd is the number of rows in T.SD, l is the
maximum length of paths traversed in T.SD, and #T is the number of all system tests.

Figure 2 gives the algorithm, CDUnitTestSelection, for selecting unit test cases, UT’, for retest.
We select the unit tests for the directly changed methods. Also, the algorithm determines the
indirectly changed methods. This is done by determining the methods that call the directly changed
methods. CDUnitTestSelection has two main loops, one to generate the indirectly changed methods
for each SD and the other is for selecting unit test cases of the changed methods. The cost of finding
the indirectly changed methods for all SDs is O(#SD∗Md), where #SD is the number of SDs in the

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



56 N. MANSOUR, H. TAKKOUSH AND A. NEHME

Figure 3. System Test Case Selection Algorithm.

IO diagram. Selecting unit test cases from UT that test the directly and indirectly changed methods
costs O(#UT ∗Md), where #UT is the number of unit tests. Therefore, CDUnitTestSelection
costs O((#SD+#UT )∗Md).

2.4. Test selection based on interaction overview diagram

Figure 3 summarizes the steps for selecting test cases based on the IO diagram. Since the IO
diagram is a graph, IO comparison is done by doing a breadth first traversal of both graphs, original
and updated, in parallel starting from the start node. If there is a change detected in an IO artifact,
the test cases traversing that changed artifact will be selected for retesting. However, if a test case
passes through a changed SD, then that test case is marked for refinement/reduction. Finding a set
of changed SDs is done by comparing SDs with the same signature in IO and IO’. SDs (SD for IO
and SD’ for IO’) are compared lifeline by lifeline. Lifelines are compared by ordered messages
comparison between the lifeline in SD and its corresponding lifeline in SD’. If there is a change in
one lifeline, we mark SD as changed. IOTestSelection will first compare every SD diagrams in IO
with its respective diagram in IO’. Then, we invoke two methods: IOBasedClassification followed
by SDBasedReduction. Comparing all the SDs of the interaction overview diagram with each other
costs O(#SD∗#SDa) where #SD is the number of SDs in IO and #SDa is the maximum number
of SD artifacts in the SDs. The costs of calling IOBasedClassification and SDBasedReduction will
be discussed next.

IOBasedClassification algorithm, presented in Figure 4, will perform test case selection based on
the interaction overview diagram before and after the update. This algorithm traverses the original
and updated IO diagrams in parallel detecting changes along the path and selecting test cases that
traverse that change. Based on the change type, the algorithm will either classify the test cases
as selected for retest or as candidates for further refinement/reduction. Candidates are usually
test cases that traverse a changed SD. This is because if an SD is internally changed, test cases

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 57

Figure 4. IO-Based Classification/Selection Algorithm.

traversing that SD might not necessarily traverse the change inside that SD. IOBasedClassification,
is a graph coverage algorithm, it costs O(e * #T * l), where e is the number of edges in IO, #T
is the number of system test cases, and l is the maximum length of the test paths per test case
in T.IO.

After classifying the test cases based on the IO diagram as candidates for further analysis, the
SD-based reduction algorithm (Figure 5) examines these candidates for the purpose of excluding
those that do not cover changed elements. For each candidate test case, we consider the changed
SDs traversed by this test and check whether the SD path covered by this test case in T.IO is
different from the SD path in IO’. That is, SDBasedReduction compares method paths in changed
SD for a candidate test case. The comparison particularly concentrates on changed messages in the
SD and changed order of messages. Any of these changes leads to selecting the relevant candidate
test for retesting. The computational cost is O(#T” * #SD’ * l ′), where #T” is the number of

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



58 N. MANSOUR, H. TAKKOUSH AND A. NEHME

Figure 5. SD-Based Reduction Algorithm.

candidate tests for retest, #SD’ is the number of changed SDs, and l ′ is the maximum method-call
path traversed per SD from T.SD.

3. EMPIRICAL RESULTS AND DISCUSSION

The empirical procedure is composed of the following steps: design the application with UML
diagrams; generate a suite (TS) of N unit and system test cases; determine and save the relationship
between the UML diagrams (viz. CD, IO, and SD) and each test case; introduce a change into the
application; reflect the change in the UML-design diagrams; determine which test cases in TS are
modification-revealing with respect to the change; run the regression testing algorithms; compute
the number of selected test cases (#R) as a percentage of N, inclusiveness (Inc), and precision (Pre)
as metrics for assessing the results. Inclusiveness measures the percentage of modification-revealing
tests selected by the regression testing technique, whereas precision measures the percentage of
non-modification-revealing tests omitted in the selected tests.

For empirical evaluation, we use three systems with different versions to make up seven subject
applications, which are illustrated in Table II; Md is the number of methods, C is the number of
classes, and NIO is the number of nodes in the IO diagram. These systems were developed by
students as class projects and the changes considered were found to be introduced by the students
for updating the systems. An example of one system and the application of our technique is given
in the Appendix. Since there are no existing techniques that are comparable to our technique in
the UML diagrams employed, we compare our results with retest-all (i.e., #R=100% of N) and
randomly select strategies. In the latter, the number of randomly selected test cases is made equal
to the number selected by our regression testing technique (i.e., #R).

Table III gives the results for the seven applications, where N is the number of test cases in
the initial test suite TS, and mr is the number of modification-revealing tests in TS; a test case is
modification-revealing if it causes the output of the two applications (before and after change) to be
different. The columns of results (in percentages) correspond to those produced by our technique,
randomly select method, and retest-all method.

The results in Table III show the advantages of our proposed technique. The number of selected
test cases for retesting ranges from 2 to 18% of N, which is a relatively small percentage. That

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 59

Table II. Description of the subject applications.

Application Description Md C NIO

P1V1 Library System v1 74 8 13
P1V2 Library System v2 79 8 15
P2V1 ATM Application v1 43 11 15
P2V2 ATM Application v2 43 11 16
P3V1 Learning Center v1 62 14 16
P3V2 Learning Center v2 65 15 17
P3V3 Learning Center v3 69 15 17

Table III. Results for the nine subject applications.

Proposed technique Randomly select Retest-all

App. N mr #R% Pre Inc #R% Pre Inc #R% Pre Inc

P1V1 83 3 8 95 100 8 91 0 100 0 100
P1V2 90 7 8 100 100 8 92 0 100 0 100
P2V1 55 6 15 96 100 15 89 17 100 0 100
P2V2 55 1 2 100 100 2 98 0 100 0 100
P3V1 74 10 18 95 100 18 83 20 100 0 100
P3V2 77 2 10 92 100 10 89 0 100 0 100
P3V3 82 9 11 99 100 11 90 22 100 0 100

is, the proposed technique does reduce the time and effort, required for regression testing after
program modification, in comparison with retest-all that blindly selects all tests.

The inclusiveness results (all 100%) indicate that our algorithms select all modification-revealing
tests similar to the retest-all strategy. In contrast, the randomly select strategy performs poorly
on inclusiveness since it selects tests without accounting for their relationship to the modification
made. However, our technique is based on a safe strategy (selecting all modification-revealing tests)
which might not be practical for large systems and large test suites. For large systems, it might be
necessary to classify modification-revealing tests and select high-priority ones only; however, such
prioritization may not be obvious. On the other hand, the precision results (92–100%) show that
our technique performs well on omitting non-modification-revealing tests from the subset selected
for retesting.

We note that the proposed technique assumes that the software developers update the design
diagrams in a timely way, every time they introduce changes into the software system. This
assumption becomes also a limitation for the proposed technique if, in practice, such timely
updating does not occur. Another limitation is that concurrency methods are not accounted for in
our technique. We also note a threat to the validity of the results given by the fact that the selected
systems, developed by students, may not be strong representatives of the software domain.

4. CONCLUSION

We have presented a regression test selection technique for object-oriented software. This technique
is design based and employs recent standard UML 2.0 diagrams. Empirical results have shown its
capability to reduce the regression testing effort and to safely select modification-revealing tests and
to omit non-revealing ones. Further, since our technique is based on UML-design and not on code,
it also has the following advantages: (a) it works when design documentation only is available,
(b) it makes test selection more manageable and leads to faster processing since design-based
graphs and information is less complex than the corresponding code-based information, (c) it is
independent of particular programming languages, and (d) it employs recent UML 2.0 diagrams,
especially the newly introduced interaction overview diagram.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



60 N. MANSOUR, H. TAKKOUSH AND A. NEHME

The proposed technique assumes that the system has only one interaction overview diagram
for the whole application. This would be realistic for small- or medium-sized applications but it
becomes a limitation for large ones. Hence, the technique should be developed further to account
for multiple or a hierarchy of interaction overview diagrams. Also, further work may investigate
the level of details that should be included in interaction overview diagrams and its effect on the
results. Furthermore, the scalability of the proposed technique should be empirically established
on larger real-world software systems.

APPENDIX A: CASE STUDY—LIBRARY SYSTEM

The application is a support system for a simple library that provides items (books and magazines)
to borrowers listed in the system. The system allows users to borrow items from the library and
ensures that borrowers can only perform services that are associated with themselves, similarly
for librarians. Borrowers can only search for books or magazines, and all the other interactions
are done through the librarian. Old books and old magazines are taken out of the library when
they are out of date, and new items are regularly purchased. After a book is purchased, users can
check its availability and can reserve a copy if the book was unavailable. A user can also cancel
a previous reservation thus allowing the person next in the list to take his/her place. The system
consists of 8 classes, 29 attributes, 74 methods and 12 relationships.

The first change to this application is adding a new functionality to the system. A new fine
system is included, where all late borrowers will be subject to fines which depends on the item
type and the number of days.

Changes in the class diagram

For implementing the above-mentioned cahnge, a few additions are made at the class level.
A dueDate attribute, GetDueDate(), and SetDueDate() are added to the Loan class. The dueDate is
determined based on the lendingTime and the date of borrowing. The amountPerDay attribute is also
added to both BookTitle and MagazineTitle Classes. These two attributes allow saving the amount
of money due for each day exceeding the dueDate. Two methods are added to the Title class:
GetAmountPerDay() and SetAmountPerDay(). These two methods are used to manipulate the amount-

PerDay attribute. The modified class diagram is shown in Figure A1 and the changes are listed in
Table AI.

Changes in sequence diagram

The new system functionality resulted in a change inside the Return Item sequence diagram. The
modification resulted in the addition of the GetDueDate() and the GetAmountPerDay() method when
the date to return a book has been exceeded.

The change inside the GetLendingTime() method did not affect the SD Borrow Item since it
occurred inside the method itself. This change is transparent to the sequence diagram and can only
be noticed by signature comparison between the old and the new version of the application. The
change inside the SD Return Item is mostly given by an alternative fragment, shown in Figure A2,
which is used to denote the case where the borrower returns an overdue book.

Changes in the interaction overview diagram

At the interaction overview diagram level, the modifications to the system result in the addition
of one sequence diagram (SD Print Receipt). The introduction of this SD resulted in the addition
of 4 flows: F2, F3, F4 and F5. Only one flow was deleted: F6. A new decision (D1) was added
to the system to denote whether the loan exceeded its due date or not. Figure A3 shows the IO
diagram after the modification.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 61

Figure A1. Modified library system.

Table AI. Library system changes.

Total before update Added Modified Deleted Total after update

Attributes 29 3 0 0 32
Methods 74 5 1 0 79
Relationships 12 0 0 0 12
Classes 8 0 4 0 8

Set of test cases

The initial system test cases with their respective path in the interaction overview diagram (T.IO)
are shown in Table AII. The paths of system tests inside the sequence diagrams (T.SD) are

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



62 N. MANSOUR, H. TAKKOUSH AND A. NEHME

BorrowerItem LoanTitle

FindOnISBN()

GetLoan()

GetBorrower()

RemoveLoan

DoReturnItem

GetItemID()

[Due date is over]

GetDueDate()

GetAmountPerDay

Librarian

alt

Sd SD Return Item

Figure A2. Modified Return Item sequence diagram.

presented in Table AIII. The initial unit test cases (UT) and the respective methods are shown in
Table AIV.

Test case selection based on the class diagram

The changed method found by the FindChangedMethods algorithm is M={GetLendingTime()}.
The sequence diagram referencing M, found by the CDSystemTestSelection algorithm is A8: SD
Borrow Item (Figure A3). By inspecting the list of system test cases’ paths in the sequence
diagrams (T.SD), the system test case traversing A8 at the I.O level is only T5.

CDUnitTestSelection algorithm selects the unit test cases from both directly and indirectly
changed methods. The unit test case executing M directly is UT32. Thus, the indirectly changed
methods affected by the change of GetLendingTime() are: DoBorrowItem(), FindTitle(), GetTitle() and
FindItem(). The unit test cases testing these methods (refer to Table AIV) are: UT44, UT16, UT22
and UT7. Hence, the selected test cases, based on CD changes are: T5, UT7, UT16, UT22, UT32
and UT44.

Test case selection based on the interaction overview diagram

Comparing the interaction overview diagram before and after modification yields that the set of
changed SDs is {A1: SD Return Item}. The IOBasedClassification algorithm will select test cases
based on the IO diagram. The direct change in the IO diagram is the addition of F2, F3, F4, F5
and the deletion of F6. D1 was also added. The test cases selected from T.IO for retest are the
ones traversing A1, i.e., the system test case T1. Then, since the flow traversed in the sequence

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 63

Figure A3. Modified interaction overview diagram.

diagram A1 is detected to have been changed by the SDBasedReduction algorithm, the test T1
will be marked for retest.

In conclusion, the final set of selected test cases consists of 5 unit tests and 2 system tests for
a total of 7 out of 83 test cases.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



64 N. MANSOUR, H. TAKKOUSH AND A. NEHME

Table AII. System test cases in T.IO.

Test Case Description Test path

T1 Valid Return Item F23, D6, F1, A1, F6.
T2 Valid Reserve Item F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,

D3, F14, A6, F15, D4, F16, D5, F17, A7, F18.
T3 Invalid Borrow Item, item unavailable,

drop item
F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,
D3, F14, A6, F15, D4, F16, D5, F19.

T4 Invalid Borrow Item, item unavailable,
on order

F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,
D3, F14, A6, F15, D4, F20.

T5 Valid Borrow Item F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,
D3, F14, A6, F15, D4, F21, A8, F22.

T6 Invalid Borrow Item, title not found F23, D6, F7, A3, F8, D2, F9.
T7 Invalid Borrow Item, not eligible,

exceeds number of loans
F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,
D3, F13.

T8 Invalid Borrow Item, not eligible, user
not registered

F23, D6, F7, A3, F8, D2, F10, A4, F11, A5, F12,
D3, F13.

T9 Valid Cancel Reservation F23, D6, F24, A9, F25.

Table AIII. System test cases in T.SD.

Test Case SD Path

T1 A1 Librarian.DoReturnItem, Title.FindOnISBN, Title.FindOnISBN.Return,
Item.GetItemID, Item.GetItemID.Return, Item.GetLoan, Item.GetLoan.Return,
Loan.GetBorrower, Loan.GetBorrower.Return, Borrower.RemoveLoan,
Borrower.RemoveLoan.Return

T2 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T2 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.IsRegistered,
Borrower.IsRegistered.Return, [alt: Registered=false], Borrower.Report

T2 A6 Title.FindOnISBN, Title.GetNoItems, Title.GetNoReservations, [alt: No
Items Found], [loop: more items], Item.GetItemID, Item.IsBorrowed,
Item.GetItemID.Return, Title.GetItem, Item.GetStatus, Item.GetStatus.Return,
[alt: status=available], [alt: no available items], Borrower.Report

T2 A7 Librarian.DoReserveItem, Reservation.Reservation, Reservation.SetTitle,
Reservation.Reservation.Return, Borrower.AddReservation,
Borrower.AddReservation.Return

T3 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T3 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.IsRegistered,
Borrower.IsRegistered.Return, [alt: Registered=false], Borrower.Report

T3 A6 Title.FindOnISBN, Title.GetNoItems, Title.GetNoReservations, [alt: No
Items Found], [loop: more items], Item.GetItemID, Item.IsBorrowed,
Item.GetItemID.Return, Title.GetItem, Item.GetStatus, Item.GetStatus.Return,
[alt: status=available], [alt: no available items], Borrower.Report

T4 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T4 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.IsRegistered,
Borrower.IsRegistered.Return, [alt: Registered=false], Borrower.Report

T4 A6 Title.FindOnISBN, Title.GetNoItems, Title.GetNoReservations, [alt: No Items
Found], Title.FindOnISBN.Return, Borrower.Report

T5 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 65

Table AIII. Continued.

Test Case SD Path

T5 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.IsRegistered,
Borrower.IsRegistered.Return, [alt: Registered=false], Borrower.Report

T5 A6 Title.FindOnISBN, Title.GetNoItems, Title.GetNoReservations, [alt: No
Items Found], [loop: more items], Item.GetItemID, Item.IsBorrowed,
Item.GetItemID.Return, Title.GetItem, Item.GetStatus, Item.GetStatus.Return,
[alt: status=available], Title.FindOnISBN.Return, [alt: available items],
Borrower.Report

T5 A8 Librarian.DoBorrowItem, Title.FindTitle, Title.GetTitle, Title.FindTitle.Return,
Item.FindItem, Item.FindItem.Return, Title.GetLendingTime,
Title.GetLendingTime.Return, Loan.Loan, Item.SetLoan, Item.SetLoan.Return,
Borrower.AddLoan, Borrower.AddLoan.Return, Loan.Loan.Return

T6 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T7 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T7 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.Report

T8 A3 Title.FindOnName, Title.IterateTitle, Title.FindOnName.Return, [opt: Find by
author], Title.FindOnAuthor, Title.IterateTitle, Title.FindOnAuthor.Return, [alt:
Title not found], Borrower.Report

T8 A5 Borrower.CheckEligibility, Borrower.GetBorrower, Borrower.GetNoOfLoans,
Borrower.CheckEligibility.Return, [alt: No Loans>=3], Borrower.IsRegistered,
Borrower.IsRegistered.Return, [alt: Registered=false], Borrower.Report

T9 A9 Librarian.DoCancelReservation, Borrower.FindOnLastName,
Borrower.FindOnLastName.Return, Reservation.Reservation,
Reservation.Reservation.Return, Title.GetTitle, Title.GetTitle.Return,
Title.GetReservation, Title.GetReservation.Return, Borrower.RemoveReservation,
Borrower.RemoveReservation.Return

Table AIV. Unit test cases (UT).

Test Case Method

UT1 Loan.Loan
UT2 Loan.GetBorrower
UT3 Loan.GetTitleName
UT4 Loan.GetItem
UT5 Loan.GetItemID
UT6 Item.Item
UT7 Item.FindItem
UT8 Item.GetTitleName
UT9 Item.GetItemID
UT10 Item.SetLoan
UT11 Item.GetLoan
UT12 Item.IsBorrowed
UT13 Item.SetStatus
UT14 Item.GetStatus
UT15 Title.Title
UT16 Title.FindTitle
UT17 Title.FindOnName
UT18 Title.FindOnAuthor
UT19 Title.FindOnISBN
UT20 Title.IterateTitle
UT21 Title.GetTitle

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



66 N. MANSOUR, H. TAKKOUSH AND A. NEHME

Table AIV. Continued.

Test Case Method

UT22 Title.GetTitle
UT23 Title.GetAuthor
UT24 Title.GetISBN
UT25 Title.GetType
UT26 Title.SetTitle
UT27 Title.SetAuthor
UT28 Title.SetNumber
UT29 Title.SetType
UT30 Title.SetBanned
UT31 Title.GetBanned
UT32 Title.GetLendingTime
UT33 Title.GetNoItems
UT34 Title.AddItem
UT35 Title.RemoveItem
UT36 Title.GetItem
UT37 Title.GetNoReservations
UT38 Title.GetReservation
UT39 Librarian.Librarian
UT40 Librarian.CheckIn
UT41 Librarian.CheckOut
UT42 Librarian.DoReturnItem
UT43 Librarian.DoCancelItem
UT44 Librarian.DoBorrowItem
UT45 Librarian.DoReserveItem
UT46 Reservation.Reservation
UT47 Reservation.SetTitle
UT48 Reservation.GetBorrower
UT49 Borrower.Borrower
UT50 Borrower.GetBorrower
UT51 Borrower.IterateBorrower
UT52 Borrower.FindOnLastName
UT53 Borrower.AddLoan
UT54 Borrower.RemoveLoan
UT55 Borrower.GetNoLoans
UT56 Borrower.AddReservation
UT57 Borrower.RemoveReservation
UT58 Borrower.GetNoReservations
UT59 Borrower.GetReservation
UT60 Borrower.IsRegistered
UT61 Borrower.CheckEligibility
UT62 Borrower.Report
UT63 Borrower.SetFirstName
UT64 Borrower.SetLastName
UT65 Borrower.SetAddress
UT66 Borrower.SetCity
UT67 Borrower.SetZip
UT68 Borrower.SetState
UT69 Borrower.GetFirstName
UT70 Borrower.GetLastName
UT71 Borrower.GetAddress
UT72 Borrower.GetCity
UT73 Borrower.GetZip
UT74 Borrower.GetState

ACKNOWLEDGEMENTS

We wish to thank the anonymous referees whose comments helped in improving the paper.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



UML-BASED REGRESSION TESTING FOR OO SOFTWARE 67

REFERENCES

1. Bennett KH. The software maintenance of large software systems: Management, methods and tools. Reliability
Engineering and Systems Safety 1991; 32:135–154.

2. White L, Jaber K, Robinson B. Utilization of extended firewall for object oriented regression testing. Proceedings
IEEE International Conference on Software Maintenance, 2005; 695–698.

3. Gupta R, Harrold MJ, Soffa ML. Program slicing-based regression testing techniques. Software Testing, Verification
and Reliability 1996; 6(2):83–111.

4. Rothermel G, Harrold MJ. A safe, efficient regression test selection technique. ACM Transactions on Software
Engineering and Methodology 1997; 6(2):173–210.

5. Mansour N, Bahsoon R. Reduction-based methods and metrics for selective regression testing. Information and
Software Technology 2002; 44(7):431–443.

6. Mansour N, El-Fakih K. Simulated annealing and genetic algorithms for optimal regression testing. Journal of
the Software Maintenance: Research and Practice 1999; 11:19–34.

7. Zheng J, Robinson B, Williams L, Smiley K. Applying regression test selection for COTS-based applications.
Proceedings IEEE International Conference on Software Engineering, May 2006.

8. Tarhini A, Fouchal H, Mansour N. Simple approach to testing web services based applications. Proceedings of
the Innovative Internet Community Systems Conference. Springer: Berlin, June 2005.

9. Rothermel G, Harrold MJ, Dedhia J. Regression test selection for C++ software. Journal of Software Testing
Verification and Reliability 2000; 10:77–109.

10. Harrold MJ, Jones JA, Li T, Liang D, Orso A, Pennings M, Sinha S, Spoon SA, Gujarathi A. Regression test
selection for Java software. Proceedings of the 16th ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications, 2001; 312–326.

11. Taneja K, Xie T. DiffGen: Automated regression unit-test generation. Proceedings 23rd IEEE/ACM International
Conference on Automated Software Engineering, September 2008; 407–410.

12. Wu Y, Chen M, Kao H. Regression testing on object-oriented programs. Proceedings of the 10th International
Symposium on Software Reliability, 1999.

13. Le Traon Y, Jéron T, Jézéquel JM, Morel P. Efficient OO integration and regression testing. IEEE Transactions
on Reliability 2000; 49(1):12–25.

14. Chen Y, Probert RL, Sims DP. Specification-based regression test selection with risk analysis. Proceedings of
the Conference of IBM Center for Advanced Studies, 2002.

15. Beydeda S, Gruhn V. Intergrating white- and black-box techniques for class-level regression testing. Proceedings
of the 25th International Computer Software and Applications Conference, 2001; 357–362.

16. Korel B, Tahat LH, Vaysburg B. Model based regression test reduction using dependence analysis. Proceedings
IEEE International Conference on Software Maintenance, 2002.

17. Wu Y, Offutt J. Maintaining evolving component based software with UML. Proceedings of the 7th European
Conference on Software Maintenance and Reengineering, 2003.

18. Briand LC, Labiche Y, Buist K, Soccar G. Automating impact analysis and regression test selection based on
UML designs. Proceedings IEEE International Conference on Software Maintenance, Montreal, 2002.

19. Farooq Q, Iqbal MZ, Malik Z, Nadeem A. An approach for selective state machine based regression testing.
Proceedings of the 3rd International Workshop on Advances in Model-based Testing, London, U.K., 2007; 44–52.

20. Pilskalns O, Uyan G, Andrews A. Regression testing UML designs. Proceedings 22nd IEEE International
Conference on Software Maintenance, 2006; 254–264.

21. Batra G. Model-based software regression testing for software components. Proceedings of the 3rd International
Conference on Information Systems, Technology and Management, Prasad SK (ed.), vol. 31. Springer: Berlin,
March 2009.

22. Arlow J, Neustadt I. UML 2 and the Unified Process (2nd edn). Addison-Wesley: U.S.A., 2005.

AUTHORS’ BIOGRAPHIES

Nashat Mansour is a Professor of Computer Science at the Lebanese American Univer-
sity. He received BE and MEngSc in Electrical Engineering from the University of
New South Wales, and MS in Computer Engineering and PhD in Computer Science
from Syracuse University. His research interests include: software testing, application of
metaheuristics and data mining to real-world problems, and protein structure prediction.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr



68 N. MANSOUR, H. TAKKOUSH AND A. NEHME

Husam Takkoush is currently a computing professional at MDS systems. He received an
MS in Computer Science from the Lebanese American University and a BS in Computer
Science from the American University of Beirut. His research interests include: software
design and testing.

Ali Nehme is currently an IT consultant. He received his BS and MS in Computer Science from the Lebanese
American University. His research interests are in software engineering.

Copyright q 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2011; 23:51–68
DOI: 10.1002/smr


