Effectiveness of Positron Emission Tomography for Predicting Chemotherapy Response in Colorectal Cancer Liver Metastases

Evan S. Glazer, MD; Karen Beaty, PA-C; Eddie K. Abdalla, MD; J. Nicolas Vauthey, MD; Steven A. Curley, MD

Hypothesis: Chemotherapeutic agents may be able to convert unresectable colorectal hepatic metastasis to resectable disease, therefore changing the surgical options. The role of positron emission tomography (PET) for patients undergoing chemotherapy remains unclear. We hypothesize that recent chemotherapy treatment could result in false-negative PET results.

Design: Case-control study evaluating PET findings.

Setting: The University of Texas M. D. Anderson Cancer Center.

Patients: From May 1, 2006, through August 31, 2008, data for 224 consecutive patients were entered into a prospective database for evaluation of hepatic metastasis of colorectal carcinoma. One hundred thirty-eight patients underwent PET and conventional imaging (a combination of computed tomography, magnetic resonance imaging, and ultrasonography). All had oncologically sound colorectal operations.

Interventions: Liver resection or ablation for colorectal liver metastases.

Main Outcome Measures: To determine the accuracy of PET scans to detect residual viable colorectal cancer liver metastases after a significant response to systemic chemotherapy.

Results: Patients with biopsy-proven disease underwent hepatic resection (120 patients [87.0%]), radiofrequency ablation (2 [1.4%]), or resection with radiofrequency ablation (7 [5.1%]). Nine patients (6.5%) had inoperable disease that was found intraoperatively. When performed within 4 weeks of chemotherapy, PET had a negative predictive value of 13.3% and a positive predictive value of 94.3%. The sensitivity was 89.9%, the specificity was 22.2%, and the accuracy was 85.5%.

Conclusions: Positron emission tomography within 4 weeks of chemotherapy is not a useful test for evaluation of colorectal hepatic metastases. The high rate of false-negative results is likely due to metabolic inhibition caused by chemotherapeutic drugs. We recommend that physicians not use PET in patients recently completing chemotherapy; they should undergo the appropriate oncologic hepatic operation based on the high probability of viable malignant disease.

From May 1, 2006, through August 31, 2008, data for 224 consecutive patients were entered into a database for evaluation of hepatic metastasis of colorectal carcinoma. All underwent oncologically sound colon resections. One hundred thirty-eight patients underwent PET and conventional imaging (a combination of CT, MRI, and ultrasonography). The presumptive diagnosis was hepatic metastatic disease. No patient had only PET results, and all PET was performed in the latter half of the chemotherapeutic protocol or within 4 weeks of terminating chemotherapy. All patients had tissue-proven diagnoses of hepatic metastases.

Patients with biopsy-proven disease underwent hepatic resection (120 patients [87.0%]), radiofrequency ablation (1.4%), or resection with radiofrequency ablation (5.1%). After chemotherapy delivered for 4 weeks or less in advance of liver resection (Table 1), the false-negative rate for hepatic metastasis of the PET was 86.7% (n = 13) with a negative predictive value (NPV)
of 13.3% (2 true-negative and 13 false-negative findings). These patients underwent hepatic wedge resection and possible ablation based on CT or MRI findings despite negative PET findings. The odds ratio for predicting hepatic metastasis vs a benign cause was 2.55 (95% confidence interval [CI], 0.55-12.21 [P = .25]). As a test, PET yielded 116 true-positive, 13 false-negative, 7 false-positive, and 2 true-negative findings (Table 2). The sensitivity rate for PET was 89.9%, with a specificity rate of 22.2%. The positive predictive value (PPV) was 94.3% (116 true-positive and 7 false-positive findings). The accuracy was 85.5%, as seen in the following tabulation.

Table 1. Chemotherapy Before Positron Emission Tomographya

<table>
<thead>
<tr>
<th>No. (%) of Patients</th>
<th>FOLFOX plus bevacizumab</th>
<th>FOLFOX</th>
<th>FOLFOX plus cetuximab</th>
<th>Oxaliplatin, bevacizumab, and capecitabine</th>
<th>Fluorouracil</th>
<th>Other</th>
<th>Capecitabine</th>
<th>FOLFIRI plus bevacizumab</th>
<th>FOLFIRI plus panitumumab</th>
<th>Fluorouracil and irinotecan hydrochloride</th>
<th>Capecitabine, irinotecan, and bevacizumab</th>
<th>FOLFIRI</th>
<th>FOLFIRI plus bevacizumab and cetuximab</th>
<th>FOLFIRI plus irinotecan</th>
<th>Irinotecan, cetuximab, and bevacizumab</th>
<th>Oxaliplatin, bevacizumab, and irinotecan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76 (60.3)</td>
<td>24 (19.0)</td>
<td>5 (4.0)</td>
<td>5 (4.0)</td>
<td>3 (2.4)</td>
<td>13 (10.3)</td>
<td>2 (1.6)</td>
<td>2 (1.6)</td>
<td>2 (1.6)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: FOLFIRI, leucovorin (folic acid), fluorouracil, and oxaliplatin; FOLFOX, leucovorin calcium (folic acid), fluorouracil, and oxaliplatin.
aIncludes patients receiving chemotherapy for colorectal carcinoma after colon resection with subsequent diagnosis of hepatic metastases (n=126); 12 patients (8.7%) were missing.

Table 2. Relationship Between Positron Emission Tomography (PET) Results and Hepatic Lesionsa

<table>
<thead>
<tr>
<th>PET Results</th>
<th>Hepatic Metastases, No. of Patients</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>116</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>13</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

aIncludes tissue-proven results of PET after chemotherapy. Readings were by experienced radiologists with expertise in abdominal cancer.

More than 85% of patients had a reduction of greater than 25% in hepatic tumor burden after chemotherapy according to multimodality imaging results. Slightly less than half of the patients had a reduction of greater than 50% in their metastasis, as seen in the following tabulation.

Pathologically Confirmed Radiologic Response	No. (%) of Patients³
Complete (>90%) | 3 (3.4)
Major (>50% to 90%) | 35 (40.2)
Minor (25% to 50%) | 37 (42.5)
None (<25%) | 12 (13.8)

³Results are included only if comparisons are with actual previous imaging studies (n=87). Previous studies were missing in 51 patients (37.0%). Because of rounding, percentages may not total 100.

Of this very select group of patients, we report a 93.5% survival rate at a median follow-up time of 15 months (range, 1 week to 6 years). Median time to death after the first 90 days (n=7) was 9.4 (range, 6.5-48.3) months. There was a single perioperative death (at 1 week) and another death during the first 90 days for a total 90-day mortality rate of 1.4%.

COMMENT

The management of metastatic colorectal carcinoma is evolving drastically. Often, PET is used as confirmation of CT/MRI findings or for whole-body surveillance. Within 4 weeks of chemotherapy, however, liver lesions may or may not be adequately identified on CT/MRI, and these are not reliably identified on PET (Figure 1 and Figure 2). Figure 1 clearly shows a primary colorectal adenocarcinoma and liver metastatic disease are denoted by arrows. Background (normal) metabolism is seen in other parts of the gastrointestinal tract. The patient is a man aged 61 years. The scale is given in standard uptake values.

Figure 1. Hypermetabolic regions of the primary tumor (distal sigmoid colorectal adenocarcinoma) and biopsy-proven hepatic metastatic disease are denoted by arrows. Background (normal) metabolism is seen in other parts of the gastrointestinal tract. The patient is a man aged 61 years. The scale is given in standard uptake values.
an oncologically sound partial colectomy with hepatic recurrence 6 months after surgery. The PET portion of the scan clearly yielded negative findings. However, this patient had pathologically proven metastatic disease. This is seen on the CT portion of the image (changes in the gray scale rather than the intensity of red pseudocolor) of Figure 2.

As we described, the sensitivity rate for PET in this setting is relatively high at 89.9%, suggesting that the ratio of true-positive to false-negative values is high. This is true, but it is incomplete. Comparing false-negative with true-negative findings (the false-negative rate) yields a slightly different picture: an 86.7% false-negative rate (equivalent to stating a 13.3% NPV). That is, when the PET finding is negative, it cannot be trusted (Figure 2). The NPV depends on the population being analyzed, which is where this unique situation develops.

The prevalence of early hepatic metastatic disease is high (the median disease-free interval is <1 year after colon resection), whereas PET findings will be positive only for metabolic activity above baseline. The goal of chemotherapy is to decrease malignant cell metabolic activity, ideally, to zero and induce apoptosis/necrosis and cell death. A priori, then, PET would not be expected to yield useful information after an effective chemotherapeutic regimen until malignant cells recovered enough metabolic activity that is greater than the surrounding tissues. Our results confirm this finding, and they are in line with other evidence in the literature.6,10 Exactly how long to wait after chemotherapy until PET becomes useful is unknown, but longer than 8 weeks seems reasonable.

Most of these patients undergo abdominal-pelvic CT before initial colon resection, and comparing that scan with postchemotherapeutic imaging may be a better alternative. Changes in lesions (or any new lesions) are then treated accordingly. If a lesion is worrisome on CT or MRI within 4 to 6 weeks of finishing chemotherapy, it should then be surgically removed regardless of the PET results. In this study, the PPV was very high (94.3%). Again, the PPV varies with the population being studied, as described in other studies.1,6,9 The prevalence of hepatic metastases is greater than 50% during the first 5 years after diagnosis. On surveillance imaging, a positive PET finding without CT findings poses a diagnostic dilemma if the temporal relationship to chemotherapy is short. Of the 7 false-negative findings, PET was the modality of diagnosis in 3 (43%). This suggests that 3 of the 138 operations (2.2%) would have been prevented if PET had not been performed. This rate is similar to those of other cost-benefit and decision analyses.11 Another report13 suggests that up to 24% of patients with negative preoperative imaging results show macroscopic disease at the time of operation at that same site.

Furthermore, there were only 10 patients with poorly differentiated colon adenocarcinoma liver metastases. One of these 10 had a negative PET finding. The PPV of 94.3% and the small proportion of poorly differentiated lesions (10 of 138 [7.2%]) suggest that these results are valid for nearly all patients regardless of the degree of differentiation of their disease.

No survival benefit has been seen in the use of PET by other groups.6,12 We had a median follow-up of 15 months with 93.5% of patients alive. This population is obviously extremely selected but shows that, in a selected population, clinically significant improvements can be made. Of those dying despite surgery, the median time to death was 9.4 months. The Surveillance, Epidemiology, and End Results data14 show an 11% 5-year survival rate with distant disease. It is difficult to extrapolate how many of our patients will be alive at 5 years, but
it appears that this population benefits from surgical intervention for their metastatic disease.

Finally, the distinction between radiologic and pathologic responses is an important one. The current technological age allows for unprecedented imaging before surgical intervention. This, coupled with the increasing evidence-based approaches to surgery, not only allows but requires that we investigate surgical decision making. Investigators at our own institution recently showed that pathologic response is an independent predictor of survival in these patients. Although imaging techniques are very valuable, functional studies are not sufficiently accurate for surgical planning or decision making. An interesting study would begin serial PET scans at the time of initial primary colorectal cancer diagnosis at colonoscopy. Although this would be expensive, it would quantify the effects of multiple therapies, the patient’s global health, and chemotherapeutics on the functional status of these lesions. At present, few of our patients undergo PET before receiving any treatment; therefore, the likelihood of a negative finding a priori is not known for this population. However, if these findings were all positive, we would still not recommend performing repeated PET after chemotherapy. In addition, if these previously positive findings on PET were negative after chemotherapy, this would provide further support to not perform follow-up PET.

At current practice, our algorithm is as follows: If chemotherapy has not been given for 6 weeks or longer, we recommend patients undergo CT-PET with reconstructions. If chemotherapy is ongoing or has been administered within the past 6 weeks, we recommend CT or MRI only, obtaining whichever type of scan that the patient has undergone previously to allow direct comparison. Prior comparisons are one of the most important tools in determining the likelihood of a malignant lesion and response to therapy. If there are any suspected malignant lesions or changes, we recommend resection if possible, ablation if not.

CONCLUSIONS

A unique situation arises in the use of PET with hepatic metastases of colorectal carcinoma during or soon after chemotherapy. Routine surveillance with CT or MRI often yields findings for metastatic disease, but clinical confirmation is desired. Unfortunately, although the accuracy rate is 85%, this test should not be used in surgical decision making. A positive test result does not alter the surgical plan, whereas a negative test result should not be trusted. This is a slightly unusual high-prevalence metastatic disease with a reasonably good test (PET). Owing to the nature of the metastatic disease and the poor prognosis, aggressive surgical intervention is warranted. Positron emission tomography allows for confirmation, but it does not and perhaps should not change the surgical recommendations to the patients and their families within 4 to 6 weeks of receiving chemotherapy because the NPV is too low. A randomized, controlled trial would clearly answer the questions, but the ethics involved in not subjecting worrisome lesions to biopsy after nonfunctional studies (ie, CT or MRI) are prohibitive. More aggressive percutaneous biopsy might be an appropriate compromise in a highly selective situation, but even in the presence of isolated extrahepatic disease, definitive surgical intervention yields the best chance for survival.

Accepted for Publication: May 1, 2009.
Correspondence: Steven A. Curley, MD, Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 444, Houston, TX 77030 (scurley@mdanderson.org).

Author Contributions: Study concept and design: Glazer and Curley. Acquisition of data: Glazer, Beaty, Abdalla, and Vauthey. Analysis and interpretation of data: Glazer, Beaty, Abdalla, Vauthey, and Curley. Drafting of the manuscript: Glazer. Critical review of the manuscript for important intellectual content: Glazer, Beaty, Abdalla, Vauthey, and Curley. Statistical analysis: Glazer. Administrative, technical, and material support: Beaty, Abdalla, Vauthey, and Curley. Study supervision: Beaty, Abdalla, Vauthey, and Curley.

Financial Disclosure: None reported.
Funding/Support: This study was funded in part by grant 5 T32 CA093999 from the National Institutes of Health (Dr Glazer).

Additional Contributions: The University of Texas M. D. Anderson Cancer Center Departments of Surgical Oncology and Quantitative Sciences, specifically Vickie Ellis, Kristine Ash, and Roland Bassett, MS, helped with this research.

REFERENCES

11. Tan MCB, Linehan DC, Hawkins WG, Siegel BA, Strasberg SM. Chemotherapy-induced normalization of FDG uptake by colorectal liver metastases does not usu-
Advances in chemotherapy during the past decade have created an evolving paradigm for treating patients with liver metastases from colorectal cancer, particularly in increasing the resectability rate. The management of disease in these patients relies heavily on imaging with CT and MRI. Positron emission tomography is frequently used. In the preceding article, Glazer et al retrospectively analyzed the utility of PET in the management of disease in these patients. This article is important because it highlights the limitations of PET in predicting response to chemotherapy. Figures 1 and 2 nicely demonstrate the problem. Despite a negative PET finding, viable tumor is likely to be present. The NPV of PET performed within 4 weeks of chemotherapy was 13.3%.

As the authors postulate, chemotherapy interrupts the metabolism of tumor cells to induce apoptosis and cell death. Some cells may survive with metabolic activity similar to that of the surrounding tissue and thus cannot be detected on PET 4 weeks after chemotherapy. The optimal timing for performing PET after chemotherapy is not known, but it is likely that there will be fewer false-negative scans after a longer interval following completion of chemotherapy.

In this study, only a few patients had PET before any therapy, so the metabolic activity of the primary tumor and its ability to be visualized on PET is unknown. Also, although the PPV of PET was 94.3% in this study, a positive finding did not change the surgical plans. Positron emission tomography is expensive and should be used only if the results will alter management.

I agree with the authors that surgical decisions should not be based on the results of PET without further investigation. The algorithm that they offer is reasonable and relies on a comparison of current with prior CT or MRI findings. The movie is usually more useful than the snapshot, in particular to identify change. Despite the authors’ findings in this study, their algorithm recommends PET be performed if more than 6 weeks have lapsed since chemotherapy. Why should we trust a negative PET finding 6 weeks after chemotherapy? I would hope that the authors and others will continue to evaluate this in well-managed trials. Until that time, surgical decisions in patients with colorectal liver metastases should be based on careful clinical evaluation and serial CT or MRI studies.

James C. Hebert, MD

Author Affiliation: Department of Surgery, University of Vermont College of Medicine, Burlington.

Correspondence: Dr Hebert, Department of Surgery, University of Vermont College of Medicine, Fletcher Allen Health Care, 111 Colchester Ave, Burlington, VT 05401 (james.hebert@vtmednet.org).

Financial Disclosure: None reported.