ELISSAR : A Case Tool for Testing and Regression Testing

By
Diana M. Nasreddine

June 1997

ELISSAR : A Case Tool for Testing and Regression Testing

KT
S
By
~ Diana M. Nasreddine
B.Sc., Lebanese American University

PROJECT

Submitted in partal fulfillment of the requirements for the degree of
Master of Science in Computer Science
At the Lebanese American University
June 1997

Assistant Professor of Computer Science
Lebanese American University

B.U (. LIBRARYI
5 FEB 1998
RECEIVED

ABSTRACT

Software testing is done within the implementation phase of the Software Development
Life Cycle (SDLC) in order to provide confidence about the correctness of the software.
Regression testing is done in the maintenance phase to verify that the modifications made
have not caused unintended adverse side effects and that the modified system still meets
the requirements. Testing and Regression testing are significant and costly parts of SDLC.
Therefore, Computer Aided Software Engineering (CASE) tools are needed by software
engineers to assist them for performing these activities. ELISSAR is such a CASE tool
developed at LAU which takes a procedural program as an input and provides the
following functionality :

{a) It generates and displays control flow graph

(b) It generates and displays def-use graph

(c) It assists in dataflow testing

(d) It provides test coverage information

(e) It includes a few regression testing algorithms that suit different user requirements.

To My Dear Father and Mother

ii

Acknowledgements

Developing this work would have been impossible without the support of many great
people to whom I would like to express my sincere appreciation.

First of all, I would like to thank Professor Nashat Mansour, My advisor for his guidance,
encouragement and suppport. Also.I would like to thank my second reader Professor Issam
Moughrabi for accepting to be on my committee. I greatly thank the chairman of the
Natural Science Division at LAU, Dr. Ahmad Kabbani and the secretary of he Natural
Science Division at LAU, Mrs. Hanan Naccach for the support and encouragement they
offered.

Also I would like to thank all my friends, The A.C.C supervisor Mr. Tarek Dana, and the
assistant A.C.C supervisor Mr. Ali Aleywan for their help.

Finally, special thanks go to my family for supporting and encouraging me in all the study

period and for taking good care of me. Especially I would like to thank my brother Najib
for all the helpful comments and discussions.

iii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

References

Table of Contents

Introduction......ccoovivieiiiiiiiiiiiiini i iisese e e e 1
Tool architecture.....cooviiiiiiiiiiiiiiiiiiiiiicicreerrereresrncenans 6

1. Tool Structure Chart.......cooiiiiiiii s 6
2. Global Data Structures and Variables Declarations............... 7
User Interface...ccoiiveeiniiiiiiiinsiiieiinisiiieieierararcanransrseaess 9
Lo MemuTree...ooon i e, 9
2. MNUS. e e, 10
Program Flow Graphs.......ccieeceiieiiiiniiiiiiiiiiiniiniciniiin.a, 33
1. Control Flow Graphs......c..cociieeiiiiiiiiiiiiiiiiniiieaean, 33
2. Def-use graph.....c.cooveiniiiiiiiii e 36
3. Implementation of the Control Flow and the Def-use Graphs...38
TeStiME.eevurrieiiriraiiiaratinieiiiiiiriereianiarsssrsenssnsansensannns 46
1. Data Flow Testing Criteria...........cocccvvviiiiivininiiicirnennnn. 46
2. ASSET . e 50
3. Implementation.......ccooviivniiinin e e 53
Experimental Resulfs.....coeveviaiiiiiiniiioiininiiiisiiiisincienanen 64
User Guidelines......occveviiiniioiiiiiieiieriinimiarsnsrresnssinsssrecons 77
1. Syntax LIMitations.......oooovviiiiiiiiiinriniiieerireninrereenenenan 77
2. File Naming.....oooooviiiiiiiiiiiiir e ee e e 77
ConCluSION. ..vvvveiriieiiiiri st sttt s it ne e re e sn s arnsnnane 81

... R-1

iv

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 2.1
Figure 3.1
Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 5.1

Figure 5.2
Figure 5.3

Figure 6.1
Figure 6.2

Figure 7.1

List of Figures

The Structure Chart of ELISSAR
The Menu Tree of ELISSAR

An example of a C program

The Control Flow Graph of Figure 4.1

(a) The Tabular Form of the Def-Use
Graph of Figure 4.1

(b} The Graphical Form of the Def-Use
Graph of Figure 4.1

The Structure Chart of the Ctrlduse Module

The structure Chart and Semantics of the
Pascal Subset, the Input to ASSET

The Modfile.c of Figure 4.1

The Structure Chart of the Testcov Module

An example of a C Program
The Modfile.c of Figure 6.1

The Variable Information File of Figure 4.1

34
35

36
37
39

52
54
56

64
65

80

CHAPTER 1

INTRODUCTION

Software testing is done within and after the implementation phase of the Software
Development Life Cycle (SDLC) in order to produce working software. It has been
claimed that testing is a demonstration that faults are not present. Despite the fact that
some organizations spend up to 50% of their software budget on testing, delivered tested
software are unreliable. The reason for this contradiction is simple. As Dijkstra puts it, «
Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence” [Dijkstra 1972]. What Dijkstra is
saying is that if a product is executed with test data and the output is wrong, then the
product definitely contains a fault. But if the output is correct, then there still may be a
fault in the product; all that particular test has shown is that the product runs correctly on
that particular set of test data. So testing is the process that gives more confidence in the

software reliability and correctness, but it never shows that the software is free of bugs.

Software Testing is time consuming. A significant part of software cost is the cost of bugs:
The cost of detecting them, the cost of correcting them, the cost of designing tests that
discover them, and the cost of running those tests.
Another problem of testing is that many programmers appear to be unaware that tests

themselves must be designed and tested. Too often, test cases are attempted without prior

Chapter 1 Introduction

Analysis of the program’s requirements or structure. Such test design is just a haphazard
series of cases that are not documented either before or after the tests are executed.
Because they were not formally designed, they cannot be precisely repeated, and no one is
sure whether there was a bug or not. After the bug has been corrected, no one is sure that

the retest was identical to the test that found the bug.

In order to produce designed test cases many testing strategies were proposed. Those
testing strategies produce designed tests that aim at detecting errors, documenting and
correcting them. Each testing strategy is designed to detect and correct some kind of errors
in order to increase the programmer confidence in the reliability of the tested program.,
Testing strategies can be grouped into two classes, The Black box and the Glass box testing

strategies.

The black box testing strategies, or functional testing strategies, totally ignore the structure
of the program or code unit under test. The software element is considered a black box,
which when presented with the input parameters produces an output similar to that defined
in the specification. Testing is a comparison of the actual output with the specified output

[Beizer 1990].

The Glass box testing strategies, or structural testing strategies looks at the code and the
structure of that code. There are a number of different forms of glass box testing, including

statement, branch, and path testing strategies [Beizer 1990].

Chapter 1 Introduction

Path testing is the name given to a family of testing strategies based on judiciously
selecting a set of test paths through the program. Path testing strategies arc the oldest of all
the structural testing techniques and are applicable for unit testing. However, path testing
requires complete knowledge of the program’s structure. It is most often used by
programmers to unit test their own code. The effectiveness of path testing rapidly
deteriorates as the size of the software aggregate under test increases. Path testing is rarely,
if ever, used for system testing . The assumption for path testing strategy is that something
has gone wrong with the software that makes it take a different path than intended. It is also
assumed in path testing that specifications are correct and achievable, and that there are no
processing bugs other than those that affect the control flow. This is why path testing
usually utilizes the program’s control flow graph which is a graphical representation of a

program’s control structure.

Using the path testing strategy as the basis for test data selection presents two distinct
problems. The first problem is that a bug could create unwanted paths or make mandatory .
paths unexecutable. Further, just because all paths are right doesn’t mean that the routine is

doing the required processing along these paths.

Chapter] Introduction

The second problem is that programs with loops may have an infinite number of paths, so

path testing strategy can never lead to complete testing.

Rapps and Weyuker have proposed a family of test data selection criteria, the data flow
criteria, which address the problems of the path testing strategies. The data flow criteria
are based on the idea that rather than selecting program paths based on the control
structure of a program, we track input variables through the program, following them as
they arc modified, until they are ultimately used to produce output values [Rapps,

Weyuker 1985].

The data flow criteria are constructed so that associations between the definition of a
variable and its uses are examined using the program def-use graph. Just as one would
not feel confident about the correctness of a portion of a program which has never been
executed, one has no reason to believe that the correct computation has been performed,

if the result of some computation has never been used.

In this project, we have developed a Computer Aided Software Engineering (CASE) tool

for testing based on data flow criteria proposed by Rapps and Weyuker [Rapps, Weyuker
1985]. The tool takes a C program as input and produces the control flow graph and the
def-use graph for the input }Srogram. Also, it assists the tester in designing test cases and
provides information about test coverage. This tool is a part of a larger project undertaken
at LAU, leading for the development of the ELISSAR a CASE tool for testing and
regression testing that provides the following functionality :

(a) It generates and displays control flow graph

Chapter 1 Introduction

(b) It generates and displays def-use graph

(c) It assists in dataflow testing

(d) It provides test coverage information

() It includes regression testing algorithms that suit different user requirements

[Baradhi 1996, Arabi 1997).

This report is organized as follows. Chapter 2 gives the tool architecture and global data
structures. Chapter 3 presents the user interface. Chapter 4 explains the generation of the
program flow graphs. Chapter 5 presents the testing part of the tool. Chapter 6 gives the
experimental results. Chapter 7 presents the user guidelines. Chapter 8 concludes the

report.

CHAPTER 2

Tool Architecture

2.1. Tool structure chart

Elissar
Testing Regression Testing
Ctrlduse FGTCD Testcov
Reduction Slicing Incremental Genetic

Simulated Firewall
Annealing

Figure 2.1. Structure chart of ELISSAR

Figure 2.1 contains the structure chart for ELISSAR: a CASE tool for testing and

regression testing. The structure chart displays all the important modules for ELISSAR.

Chapter 2 Tool Architecture

The complete structure chart of the ctrlduse module is presented in section 4.3.1 and the
complete structure chart of the testcov module is presented in section 5.3.1. The FGTCD
and Reduction modules was built by Mr. Nidal Araby [Araby 1997]. The Incremental,
Firewall, Slicing modules were built by Miss. Ghinwa Baradhi [Baradhi 1996]. The
Genetic module was built by Mr. Khaled Fakih [Fakih 1996]. The Simulated Annealing

module was built by Dr. Nashaat Mansour [Mansour 1994].

2.2. Global data structures and variables declaration

In this section we will give the declarations for global data structures and variables which

were used in the implementation of ELLISAR.

typedef struct node{
int conl,con2,tag.nest,lev,e flg,nodenum;
struct node *link;
struct node *prev;
int expll,expl2;
}stack;

typedef struct list {
int cnt,else_brac;
struct list *next;
struct list *before;
}pointer;

typedef struct list2 {
int ndnum;
char varname[15];
char vtype;
inti_o,loop,type ;
struct list2 *after;
} varptr;

typedef struct list3 {

Chapter 2 Tool Architecture

intel,e?;

char enamef15];
char etype ;

struct list3 *enext;

yedgptr;

typedef struct list4{
int node ;
struct list4 *plink;
ipath;

typedef struct list5{
char dcuvar[15];
int i;
path *dcuptr;
struct list5 *dculink;
}deu;

typedef struct list6{
int nodel,node2 ;
struct listé *pnext;
Jtdpu;

typedef struct list7{
char dpuvar{15];
inti;
tdpu *dpuptr;
struct list7 *dpulink;
}dpu;

typedef struct list8{
char adefvar[15];
int n1,n2,n3;
struct list8 *adeflink ;
}adef; |

stack *flowlist;
varptr *varlist;
edgptr *edglist;
dcu *dculist;

dpu *dpulist;

dcu *dulist;

char filename4[15];

CHAPTER 3

USER INTERFACE

Firewall

|

Simulated annealing

3.1. Menu tree
ELISSAR
Initial Regression

Control flow Def-use graph Reduction

graph

Execute program Add new test case Genetic

Test another Print Slicing

program

Figure 3.1. Menu tree

Figure 3.1 contains the menu tree of ELISSAR.

Incremental

Chapter 3 User Interface

3.2. Menus

This section contains the ELISSAR’s menus. The menus found in Figures 3.1, 3.7, 3.8, 3.9,
3.10,3.11,3.12, 3.13, 3.14, 3.15, 3.22 and 3.23 were implemented by Mr. Nidal Araby
[Araby 1997].

TRESSION

Figure 3.2. ELISSAR Main menu.

10

Chapter 3 User Interface

| igure 3.3. Initial Testing Ipt Menu.

11

Chapter 3 User Interface

CTRIDUSE.C
DISPLAYC.CPP

| FosC

R rioC

B o1
F22.C

B Ti0.C

INPF1.C

Figure 3.4, Initial estin]nput F Selection MaMenu.

12

Chapter 3 User Interface

Figure 3.5. Initial testin Main menu.

13

Chapter 3 User Interface

Figure 3.6. Contol Flow Graph Menu.

14

Chapter 3 User Interface

EVHIEI 0OF FILE PRESS aANY KEY OR ANY MOUSE BUTTON TO EXIT

Figure 3.7, The Tabular Form of the Control Flow Graph.

15

Chapter 3 User Interface

Figure 3.8. The FGTCD Main Menu.

16

Chapter 3 User Interface

Figure 3.9. The Graphical Draw of the FGTCD.

17

Chapter 3 User Interface

b e e e e

Figure 3.10. A Zoomed Draw of the Control Flow Graph.

18

Chapter 3 User Interface

Enter File

19

Chapter 3 User Interface

Figure 3.12. The test Traversal Path Graphical Draw.

20

Chapter 3 User Interface

~ Deonnectivity System

Figure 3.13. The Data Flow Graph Draw Menu.

21

Chapter 3 User Interface

Deonnectivit Variable Screen

SEGMENT VARIABIE = - USE

' inpt © - Definition Use

Conpt Definition Use
A;: R Bte Befi_:ﬁtioﬁ Uses

- B R | | f[}efini{ic‘:n:ﬁée _

. Definition Use -

0
0
0
0

. Definition Use

e

E}efiﬁitimz Use
.Cmrz.putaticin, Use

- Definition Use

Figure 3.14, The Data Flow Graph Tabular Screen.

22

Chapter 3 User Interface

Figure 3.15. The FGTCD Exit Menu.

23

Chapter 3 User Interface

|/This program was dene in partial

| fullfillment of a master project. It was

| developed by Nidal Araby under the
‘supervision of Dr. N. Mansour.

| Academic Year : 1995 — 1996 (Surnmer) |

- ['Press Any key to exit the program...

re 3.16. The FGTCD Exit Screen.

24

Chapter 3 User Interface

25

Chapter 3 User Interface

B
FOB.T1
FO8.T2

Figure 3.18. The Test Set Input Menu.

26

Chapter 3 User Interface

PRESS ‘ANY KEY. TO SEE NEXT PAGE I PRESS THE LEFT’ BUTTIZIM"
TO. PROCEED I1-RIGHT BUTTOM ~ ESC to EXIT - g

27

Chapter 3

User Interface

Ail-nodes

ogram and show

Figure 3.20, The Data Flow Criteria Main Menu.

28

Chapter 3 User Interface

-Es’cﬂl must exerc cise the du«-p.;:th
o with I“Eb}:u:fﬂt to A
= _[) S

f,} . o

Stﬂi :mubt exercise the duwpath
. }f’l‘ﬁ}} 1‘&51:»3%;1; to }1 S

e

= .5 r?

K _dnd : : '

“still must exercise the du—ydth
‘mth reapect i:u : mpt

Fi 3.21. The utut Screen of the Selection of a Data Flow Criterion,

29

Chapter 3 User Interface

Add new test

DATAPLS

DATAL . BAK
DATA1.DAT
DATAZ . DAT
DATAS, DAT

Figure 3.22. The Test Anoth Program lectin Menu.

30

Chapter 3 User Interface

Figure 3.23. The Regression Testing Module Main Menu.

31

Chapter 3 User Interface

Figure 3.24. The Reduction Testing Method Main Menu.

32

CHAPTER 4

PROGRAM FLOW GRAPHS

In this chapter we will define control flow and def-use graphs, we will give an example for

each one of them and we will talk about the implementation of each one of them. In what

follows we will refer to the program found in Figure 4.1.

4.1. Control flow graph

The control flow graph is a graphical representation of a program’s control structure. It

consists of the following elements: process blocks, decisions, and junctions {Beizer 1990].

1. A process block is a sequence of program statements uninterrupted by either decisions
or junctions. It is a sequence of statements such that if any statement of the block is
executed, then all statements thereof are executed. A process block can be one source
statement or hundreds and it has one entry and one exit

2. A Decisions is a program point at which the control flow can diverge. The if statement
and the while statement are examples of decision

3. A junction is a point in the program where the control flow can merge. an example of

junctions are the end and until.

The control flow graph of the program found in Figure 4.1 is shown in Figure 4.2.

Chapter 4 Program Flow Graphs

#include <io.h>#include <dos.h>
#include <stdio.h>

#inclede <stdlib.h>

#include <ctype.h>

#include <string.h>

#define null 0

FILE *inpt,*onpt;
main()

{

int e,tdx.c;

inpt = fopen("data.c","r");

onpt = fopen("out.c","w");
while(!(feof(inpt)))
{

fscanf{inpt,"%d %d",&d,&e);
x=0);

c=2*d;

while{d > e)

d=d/2;
t=c - (2*x+d);
ifit>0)
c=2*((c - (2*x+d)));
else
X =x+d;

x=x+§;
d=§;
h
if(x > 100)
X=x/2;

else

Xx=9;
forintflonpt,"%d %ed",d,e);
felose(inpt);
fclose(onpt);
retum;

Figure 4.1. An example of a C program.

34

Chapter 4 Program Flow Graphs

()
(0
7

©

o ,
o)

. N

)
@R
G

Figure 4.2. The control flow graph of the program found in Figure 4.1.

Chapter 4 Program Flow Graphs

4.2. Def-use graph

The def-use graph is constructed from the program control flow graph by associating a set
with each edge and two sets with each node[Rapps, weyuker 85]. With each edge (i, j) we
will associate the set p-use(i, j) which is the set of variables for which edge(i, j) contains a
predicate use. And with each node (i) we associate the set def(i) which is the set of
variables for which node i contains a global definition, and the set c-use(i) which is the set
of variables for which node i contains a global use.

In Figure 4.3 we have the def-use graph of the program found in Figure 4.1.

node c-use def edge p-use
0 ¢ {inpt, onpt} (1,2) {inpt}
2 {d} {d,e,x,c} (1,9 {inpt}
4 {d, c, x,d} {d, t} (3,4) {d, e}
6 {c, %, d} {c} (3, 8) {d, e}
7 {x, d} {x} (5, 6) {t}
8 {x} {x, d} (5.7) {t}

10 - {x} {x} (9, 10) {x}
11 ¢ {x} (9, 11) {x}
12 {d, e, inpt, onpt} ¢

@

36

Chapter 4 Program Flow Graphs

o Iﬁpt, onpt D

al©
dex,cD / .
dC inpt P

d,tD de

dex C °
tP ﬂ
m xD

¢cD x,dC
c,x,d

xD
xC / \ xD

d, e,inpt,onpt C

(b)

Figure 4.3. (a) The tabular form of the def-use graph of Figure 4.1
(b) The graphical form of the def-use graph of Figure 4.1.

37

Chapter 4 Program Flow Graphs

4.3. Implementation of the control flow and def-use graphs

In order to build the two graphs we have lexically analyzed the input code. Each statement
has been identified as being either a control statement such as the if and while... statements,
or to be a normal statement such as the assignment, read and write statements. The
occurrence of a control statements create a new node in he control flow graph. The
statements that have occurred before this control statement constitute a different node, and
the statements that occur directly after the branching statement constitute another new
node. The occurrence of “}” indicates the end of the current node; therefore the statement
that follows a “}” will indicate the beginning of a new node. In this manner the code is
divided into nodes. Each node have either one or two successors. If the node is a control
statement then it will have two successor, the first one is the node that will be executed if
the control statement evaluates to true, the second is the node that will be executed if the
control statement evaluates to false. If the node is a normal node then it will have only one

successor which is the node that will be executed directly after it.

| The def-use graph is built in paralle] with the control flow graph. If the node is a normal
node, then we will associate to it two sets: the definition and the c-use set. Each variable
occurring in this node will be classified as occurring in the definition set or in the c-use set.
If the node is a control node then we will associate with it and each of its two successors
the p-use set. So each variable occurring in the control statement will be in the p-use set of

each of the edges linking the control node to its two successors.

38

Chapter 4

Program Flow Graphs

4.3.1. Structure chart

Figure 4.4 contains the structure chart of the ctrlduse module of Figure 2.1.

ctrlduse
passl
| |
checkl initialize pass? traverse
check1 initialize push push2 check2 sort
edgbuild nodbuild viraverse

Figure 4.4. Structure chart of the ctrlduse module

39

Chapter 4 Program Flow Graphs

4.3.2. Detailed design

A. Function passl

Description
This function reads from the input file until it reaches the first *{*.
when it reads the first “{° it calls pass2 .

Pseudo code
open input and output files;
initialize variables ;
brac = 0;
get the first character of the input program into c;
while not end of file of the input program do
write ¢ to modfile.c;
if (¢='{")
write ¢ to modfile.c;
brac = brac +1;
get the next character of the input program into c;
else :
if (c="}")
brac = brac - 1;
write ¢ to modfile.c;
get the next character of the input program into c;

else
if(c=""
write ¢ to modfile.c;
get the next char of the input program into c;
ifc="*
read the remaining of the comment;
else

initialize(arr{]);
get the next word from the input program into arr(];
write art]] to modfile.c;
get the next character from the input program into c;
if ((c="(") and (brac =0))
keep on reading from the input program and writing to modfile.c
until
: you read the { charecter;
flowlist = null;
seg_count =-1;
call pass2(c,brac,flowlist,seg_count),
call traverse(flowlist);
close input and output files;

40

Chapter 4 Program Flow Graphs

B. Function pass2

Description
This function build the control flow graph, the def-use graph and the modfile.c of
the program.

Pseudo code
initialize variables;
do
if ¢ is a space or a tab character
write ¢ to modfile.c;
get the next character of the input program;
else
if ¢ is an operator or a separator
write ¢ to modfile.c;
if{(c =";") and (else_ext = 4))
else_ext=0;
flag=3;
write the character “}” to modfile.c;
if ((¢=";") and (nest_flg = 1))
assign p to the head list;
use p to go down the head list until you reach the last node;
use p to go up the head list until you reach a branching node that is not
connected to its
second successor;
p->con2 = seg-count+1;
set flags to appropriate values;
get the next character of the input program into c;
else
if c="{)
brac = brac +1;
write ¢ to modfile.c;
if((flag !=2))
seg_count = seg_count + 1;
if(seg_count != 0}
write to modfile.c the statement “ fprintf{ofpt, seg-count);
create a new node and insert it to the head list;
get the next character from the input program;
else
if(c="})
write ¢ to modfile.c;
brac = brac -1;
if (brac != 0)
p = head;
use p to go down the head list until you reach the last node;
use p to go up the head list until you reach a branching statement that is not

41

Chapter 4 Program Flow Graphs

connected to its
second successor;
p->con2 = seg_cout +1;
set appropriate flags;
else
seg_count = seg_count + 1;
create the program exit node an inserted into the head list;
get the next character of the input program into c;
else
if(c=""")
write ¢ to modfile.c;
get the next character of the input file into c;
if (c o I*P) .
read the remaining of the comment;
else
initialize(arr);
get the next word from the input program into arr[];
write arr[] to modfile.c;
if arr[] is a branching statement
create a new node for the branching statement and insert it into the
head list;
for every variable in the branching statement create a node and insert
it into the varlist;
set appropriate flags;
else
for every variable in the statement create a node and insert it into
the varlist;
set appropriate flags;
{while brac < 0)
call sort(varlist);
call edgbuild(head, edglist);
call nodbuild(varlist);
return(head);

C. Function sort
description
This function sorts the varlist in ascending order with respect to the nodenum.

Pseudo code
assign a temperory pointer to the head of the varlist;

sort the list in ascending order according to the nodnum;
return(vhead);

)

Chapter 4 Program Flow Graphs

D. Function edgbuild
Description
This function consider each node of the varlist.
If the node is a branching node, it insert a new edge in the edglist for each p-used

variable.

Pseudocode
assign q to the head of the varlist;
use q to traverse the list and for each node do
if q contains a predicate variable
create a new node in the edglist corresponding to q and its first successor;
create a new node in the edglist corresponding to q and its second
successor;
return({edglist);

E. Function nodbuild
Description
This function delete all the node that contains a p-use from the varlist.

Pseudo code
assign q to the head of the varlist
use q to traverse the varlist and for every node do

if (q->vtype ='P')
delete q from the varlist;
return(varlist);

F. Initialize
Description
This function initialize the array arr[] to spaces.

Pseudo code
loop 250 times
assign space to the current array cell;

G. Check!
Description
This function check if the read character is a separator or an operator.

Pseudo code
If ((c is an operator) or (¢ is a separator))
flag = 1;
else
flag=10;

43

Chapter 4 Program Flow Graphs

H. Check2
Description
This function checks if the read array is reserved C word.

Pseudo code
If (arr[] = if) or (arr = while) or (arr = for) or (arr = do) or (arr = scanf) or
(arr = printf) or (arr = fscanf) or (arr = fprintf)
flag=1;
else
flag = 0;

1. viraverse
Description
This function write the variable information on a file.

Pseudo code
assign vn to the head of the varlist;
traverse the varlist using vn and for every node do
write(output file, node num, var name, var type);

J. traverse
Description
This function write the nodes information on a file.

Pseudo code
agsign p to the head of the flowlist;
traverse the flowlist using p and for every node do
write(output file, node num, node conl, node con2);

K. Push
Description
This function insert a node in the flowlist;

Pseudo code
If the list is empty
assign the head of the list to the new node;
else
traverse the flowlist until you reach the last node;
assign the last node link to the new node;

44

Chapter 4 Program Flow Graphs

L. Push2
Description
This function insert a node in the varlist;

Pseudo code
If the list is empty
assign the head of the list to the new node;
else
traverse the flowlist until you reach the last node;
assign the last node link to the new node;

45

CHAPTER 5

TESTING

5.1. Data FLOW TESTING CRITERIA

Most path selection criteria are based on control flow analysis, which examines the branch
and loop structure of a program. Those path selection criteria, have many problems such as
dealing with loops structures. In this chapter we present a family of test data selection
criteria which are based on data flow analysis and for which the number of paths selected is
always finite, and chosen in a systematic and intelligent manner in order to help us uncover

errors.

Rather than selelcting program paths based solely on the control structure of a program, the
data flow criteria track input variables through a program, following them as they are
modified, until they are ultimately used to produce output values. In data flow analysis it is
believed that if the result of some computation has never been used, one has no reason to
believe_ that the correct computation has been performed.

Before discussing how to apply data flow analysis in selecting software test data, we will

define some flow graph theoretic concepts [Rapps, Weyuker 1985].

Chapter 5 Testing

5.1.1. Flow graph theoretic concepts

A path is a finite sequence of nodes (nl,, nk), in the program flow graph, such that
there is an edge from ni to ni+1 for all i= 1, 2, k-1. A path is simple if all nodes, except
possibly the first and the last, are distinct. A path is loop-free if all nodes are distinct. A
complete path is a path whose initial node is the program start node and whose final node is

a program exit node.

A syntactically endless loop is a path (nl, ..., nk), n1 = nk, such that none of the blocks
represented by the nodes on the path contain a conditional transfer statement whose target
is etther in a block which is not on the path or it is a halt statement. We assume that

programs contain no syntactically endless loops.

Data flow testing criteria are based on an investigation of the ways in which values are
associated with variables, and how these associations can affect the execution of the
program. This analysis focuses on the occurrences of variables within the program. Each
variable occurrence is classified as being a defenitional, computation-use, or predicate-use
occurrence. We refer to these as def, c-use, and p-use, respectively for example:

¢ The input statement ‘read x’ contains a def of x.

» The output statement ‘print X’ contains a c-use of x.

¢ The conditional transfer statement ‘if p(x) then ..." contains a p-use of x.

77

Chapter 5 Testing

The c-use affects the computation being performed or allows one to see the result of an
earlier definition. It may indirectly affect the flow control through the program. The p-use
directly affects the flow of control through the program, and thereby may indirectly affects

the computations performed.

since we are interested in tracing the flow of data between nodes, any definition which is
used only within the node in which that definition occurs is of little importance to us. We
thus make the following distinction: A c-use of a variable x is a global c-use, provided
there is no definition of x preceding the c-use within the block in which it occurs.

Otherwise it is a local c-use.

A conditional transfer statement is always the last statement of a block and has two
executional successors, which are in two different blocks. Since the value of the variable
occurring in the predicate portion of the conditional transfer statement directly determines
which of these two blocks is to be executed next, we associate p-uses with edges rather

than with the node in which the predicate portion occurs.

A path containing no defs of x, is called a def-clear path with respect to x. A path (i, nl, ..,
nm, j, k) containing no defs of x in node nl, ..., nm, j is called a def-clear path with respect
to x from node i, to edge (j, k). A def of a variable x in node 1, is a global def if it is the last
def of x occurring in the block associated with node i and there is a def-clear path with
respect to x from node i to either a node containing a global c-use of x or to an edge

containing a p-use of x. A def of a variable x in node i which is not a global def is a local

43

Chapter 5 Testing

def if there is a local c-use of x in node i which follows this def, and no other def of x

appears between the def and the local use.

We now define several sets needed in data flow testing and we will refer to the program

found in Figure 4.1 in what follows:

Let i be any node and x any variable such that x belongs def(i). Then dcu(x, i) is the set of
all nodes j such that x belongs to c-use(j) and for which there is a def-clear path with
respect to x from i to j, i.e. deu(d,4) = {6,7}.

dpu(x, 1) is the set of all edges (j, k) such that x belongs to p-use(j, k) and for which there
is a def-clear path with respect to x from i to j, i.e. dpu(e,2)={3 4, 3 8}.

A path (nl, ..., nj, nk) is a du-path with respect to a variable x if nl has a global definition
of x and either :

e nk has a c-use of x and (n, .., nj, nk) is a def-clear simple path with respect to x.

* (nj, nk) has a p-use of x and (nl, .., nj) is a def-clear loop-free path with respect to x.

ie. (2,3,4,5,6,8,9,10,12) is a du-path with respect to e.

5.1.2. Data flow analysis

‘We now introduce a family of paths selection criteria based on data flow analysis [Rapps, weyuker 1985]:
Let G be a def-use graph, and P be a set of complete paths of G. Then :

. P satisfies the all-nodes criterion if every node of G is included in p

e P satisfies the all-edges criterion if every edge of G is included in P

49

Chapter 5 Testing

¢ P satisfies the all-def criterion if for every node i of G and every x belongs to def(i), P

includes a def-clear path with respect to x from i to some element of deu(x, i) or dpu(x,
i)

e P satisfies the all-puses criterion if for every node i and every x belongs to def(i), P
includes a def-clear path with respect to x from i to all elements of dpu(x, i)

» P satisfies the all-c-uses/some-p-uses criterion if for every node i and every x belongs
to def(i), P includes some def-clear path with respect to x from i to every node in deu(x,
i); if deu(x, i) is empty, then P must include a def-clear path with respect to x from i to
some edge contained in dpu(x, i)

» P satisfies the all-puses/some-c-uses criterion if for every node i and every x belongs to
def(i), P includes a def-clear path with respect to x from i to all elements of dpu(x, i).

e P satisfies the all-uses criterion if for every node i and every x belongs to def(i), P
includes a def-clear path with respect to x from i to all element of deu(x, i) and to all
elements of dpu(x, i)

» P satisfies the all-du-paths criterion if for every node i and every x belongs to def(i), P
includes every du-path with respect to x

¢ P satisfies the all-paths criterion if P includes every complete path of G.

5.2. ASSET

In 1985 a software tool for testing, ASSET, was developed [Phyllis, Frankl, Weiss and
Weyuker 1985] based on the family of data flow test selection and test data adequacy

criteria which we have discussed in section 5.1. ASSET, uses data flow information to aid

in the sclection and evaluation of test data for programs written in a small subset of Pascal

50

Chapter 5 Testing

which has the structure and semantics shown in Figure 5.1 and it determines whether a

given test set adequately tests a given program with respect to the chosen test data

adequacy criteria.

ASSET’s first step is the production of the subject program’s def-use graph. On the first
pass through the subject program, a table of label occurrences in label statements and their
uses in {ransfer statements is constructed. On the second path, statements are classified as
labeled or unlabeled, and as conditional transfer, Unconditional transfer, transfer, or other,
and this information, along with the table, is used to divide the program into blocks and to

produce the flow graph, which is represented as an array of adjacency lists.

51

Chapter 5 Testing

<program> ::= <program heading>;
<label declaration part>;
<variable declaration part>;
begin <stmt>{;<stmt>} end.
<stmt> 1= [<label>:]<simple stmt>
<simple stmt> ::= <assignment stmt>
[<conditional transfer stmt>
|<unconditional transfer stmt>
|<input stmt>
|[<output stmt>
<assignment stimt>
= <identifier> := <expression>
<conditional transfer stmt>
::= if <expression> then goto <label>
<unconditional transfer stmt>
1= goto <label>

<input stmt> :=read [(<identlist>)]
lreadln [(<identlist>)]
<output stmt> 1= write [(<exprlist>)]
|writeln [(<explist>)]
<identlist> »»= <identifier> [,<identlist>]
<exprlist> 1= <expression> {,<exprlist>}
where

<program heading>, <label declaration part>,
<variable declaration part>, <label>,
<identifier>, and <expression>

are defined as in Pascal.

Figure 5.1. The structure and semantics of the Pascal subset, the input to ASSET.

The flow graph provides the information needed to insert probes in the subject program. A
statement of the form ‘writeln (traversed<block number>) is inserted into each block. The
modified subject program is then compiled by a Pascal compiler and executed on each

element of the test set. A record at each test is written, including the input, the output, and

52

Chapter 5 Testing

the path traversed. These results can be examined by the person testing the program to
determine whether the test was successful, i.e. whether the program met its specification on
each test datum. The paths executed by the various test data are recorded in the file
“traversed”, separated by markers. These will be used later to determine whether or not the

test fulfilled the given adequacy criterion.

ASSET uses the def-use graph to determine which pairs or paths are required by the given
criterion. For the criteria all-def, all-p-uses, all-c-uses/some-p-uses, all-p-puses/some-c-
uses and all-uses, this requires to construct the sets deu(x, i), and dpu(x, i) which were
defined before. These sets are constructed by performing a series of depth-first searches,
one for each non-local definition of a variable. For example if the criterion is all-du-paths,
then for each definition of variable x in node i, ASSET explotes the graph in a depth-first
manner, recording in a file every du-path from i to a node containing a c-use or an edge
containing a p-use. ASSET next determines which, if any, of £he pairs or paths required by

the given adequacy criterion were not executed by the given test data.

5.3. Implementation

The first step in the implementation of the data flow testing criteria is to create the
Modfile.c of the program. The Modfile.c is a modified version of the input program which
will be executed by the tool on a set of test data in order to check if the selected test set
satisfies the selected criterion. While building the control flow graph of the program, the
Modfile.c is built in the following manner. Statements are copied as they are from the input

program to the Modfile.c file, and at the beginning of each node a statement that indicates

53

Chapter 5 . Testing

the node number is added. The statement will have the form [fprintf(trvpt,” node-number"

}]. the Modfile.c of the program found in Figure 4.1 is in Figure 5.2.

J| main()
{
FILE *trvpt,*tdr,*ovr;char tdata[15],0dataf15]; inte ,t ,d ,x ,c;
trvpt = fopen("trvpath.dat”,"w");tdr = fopen("tnamel.dat","r");fscanf(tdr,"%s" tdata};
ovr = fopen("tname?2.dat","r");fscanf(ovr,"%s",odata);
fprintfitrvpt," 0 "); inpt= fopen(tdata,"r");onpt= fopen(odata,"w");
fprintf(trvpt,” 1");

while(!(feof(inpt))){

fprintf{tevpt,” 2 "); fscanf(inpt,"%d %d",&d,&e);

x=0;c=2*d; fprintf(trvpt," 3 ");

while(d > e){
fprintf(trvpt," 4 ");d= d/2;t= ¢ - (2*x+d);fprintf{trvpt," 5");

if(t > 0){
fprintf(trvpt,” 6 ");c=2*((c - (2*x+d)));}

else

{fprintf(trvpt,” 7"); x= x+d;

3

fprintf(trvpt,” 8 "); x=x +8; d= §;

Hprintf(trvpt," 9 "),

if(x> 100)

{fprintf{trvpt,” 10 "); x=x/2;}

else { fprintf{trvpt,” 11"); x=9;}
fprintf(trvpt,” 12 ");fprintflonpt,"%d %d",d,e);
felose(trvpt);fclose(inpt);fclose(onpt);
return ;

}

Figure 5.2. The Modfile.c of the program found in Figure 4.1

The second step is the construction of the dcu(x,i) and the dpu(x,i) sets. In order to build
those two sets we perform a depth-first searches on the control flow graph of the program
as follows. Starting at the start node of the program we mark the node i as visited, we take
information about the node from the def-use table of the program. If the node i contain a
definition of a variable x then a deu(x,i) and a dpu(x,i) sets are constructed for that variable

and they are assigned to the empty set. Then we go where the i’s conl point to. The edge

54

Chapter 5 Testing

conl is marked as visited and we take information about the edge from def-use table. if the
edge contain a predicate use of the variable then the node is added to the dpu set of the
variable. Then if the new visited node contain a c-use of the variable we add it to the c-use
set of that variable. We repeat the same thing at each node until we reach an exit statement
or a node where the variable is redefined; so we backtrack to the last visited node j and then
we go where the j’s con2 points to. and we repeat the whole process until we return to the

start node.

Moreover when the user select a set of test data, the tool execute the Modfile.c of the
program on this set of test data. The execution of the modfile.c will create a list of the
nodes that were covered by this set of test data. For example if the program 05 is executed

on the test set f05.T11, then the list of the covered node will be written on the file f05.P11.

When a data flow testing criteria is selected. The tool build a list of the nodes that are
required by the selected criterion. Then this list of the covered node that was produced by
the execution of the Modfile.c on the selected set of test data, is compared to the list of the
required nodes. and a list of the nodes that are required by each of the data flow testing

criteria but that are not yet covered by the test data is produced.

55

Chapter 5 Testing

5.3.1. Structure chart

Figure 5.3 contains the structure chart of the testcov module of Figure 4.1.

testcov
fbuild vebuild ppush builddcu builddpu
builddul builddu2 allnodes alledges alldefs
allpuses allcuse-spuse | |allpuse-scuse all-uses all-du-paths

Figure 5.3. Structure chart of the testcov module.

5.3.2. Detailed design

A. Function testcoy
Description
This function builds the dcu(x,i) and dpu(x,i) sets.
It also provides test coverage and checks for data flow criteria satisfaction.

Pseudo code
Initialize variables;
open input and output files;
call builddcu(dculist);
call builddpu(dpulist);
call builddul(dulist);
call builddu2(dulist);
choose a data flow criterion ;
if choice =1
call allnode(nhead, phead)

56

Chapter 5 Testing

else
if choice =2
call alledges(chead, phead)
else
if choice =3
call alldefs(adhead,phead)
else
if choice =4
call allpuses(adhead, phead)
else
if choice =5
call allcuses-spuses(adhead, phead)
else
if choice = 6
call allpuses-scuses(adhead, phead)
else

if choice = 7
call all-uses(adhead, phead)
else
if choice = 8
call all-du-paths(adhead, phead);
print the list of nodes and paths needed by the selected criterion;
close input and output files;
return;

B. Function all-uses
Description
This function checks if the all-uses criterion is satisfied by the selected set of test

data.

Pseudo code
assign dcuh to the head of dculist;
assign dpuh to the head of dpulist;
use dcuh to traverse the dculist and for every node do
assign tp to the head of the node’s dcuptr;
use tp to traverse the node’s decuptr list and for every node do
if the node is not covered by the test data then
create a new node and push it in the adhead list;
use dpuh to traverse the dpulist and for every node do
assign th to the head of the node’s dpuptr;
use th to traverse the node’s dpuptr list and for every node do
if the node is not covered by the test data then
create a new node and push it in the adhead list;

return(adhead);

7

Chapter 5 Testing

C. Function all-du-paths

Description
This function checks if the all-du-paths criterion is satisfied by the selected set of

test data.

Pseudo code
found = 0;
assign dcuh to the head of the dulist;
traverse the dulist using dcuh and for each node do
assign tp to the head of the node’s dcuptr;
traverse the node’s deuptr list and for each node do
if the node is not traversed by the test data then
found =1;
if found = 1 then
insert the node’s dcuptr list into the adhead list;
return(adhead);

D. Function alldefs
Description
This function checks if the alldefs criterion is satistied by the selected set of test

data.

Pseudo code
assign dcuh to the head of dculist;
found = 0;
use deuh to traverse the dculist and for every node do
assign tp to the head of the node’s dcuptr;
use tp to traverse the node’s deuptr list and for every node do
if the node is covered by the test data then
found = I;

if found = 0 then
assign dpuh to the dpulist node that have a definition of the same variable;
assign th to the head of the node’s dpuptr;
use th to traverse the node’s dpuptr list and for every node do
if the node is covered by the test data then
found =1;
if found = 0 then
create a new node for each of the tp and th lists and push it into the adhead list;
return(adhead);

58

Chapter 5 Testing

E. Function allcuses-spuse
Description

This function checks if the allcuses-spuse criterion is satisfied by the selected set of
test data.

Pseudo code

found = 0;
assign dcuh to the head of dculist;
use dcuh to traverse the dculist and for every node do
assign tp to the head of the node’s deuptr;
if tp <> null then
use tp to traverse the node’s dcuptr list and for every node do
if the node is not covered by the test data then
create a new node and push it in the adhead list;
else

assign dpuh to the node of the dpulist that have a definition of the same
variable;

assign th to the head of the node’s dpuptr;

use th to traverse the node’s dpuptr list and for every node do

if the node is covered by the test data then;

found = 1;
if found = 0 then
create a new node for every th node and push it in the adhead list;

return(adhead);

F. Function allpuses-scuse
Description

This function checks if the allpuses-scuse criterion is satisfied by the selected set of
test data.

Pseudo code

found = 0;
assign dpuh to the head of dpulist;
use dpuh to traverse the dpulist and for every node do
-assign th to the head of the node’s dpuptr;
if th < null then
use th to traverse the node’s dpuptr list and for every node do
if the node is not covered by the test data then
create a new node and push it in the adhead list;
else
assign dcuh to the node of the dculist that have a definition of the same variable;
assign tp to the head of the node’s dcuptr;
use tp to traverse the node’s deuptr list and for every node do

59

Chapter 5 Testing

if the node is covered by the test data then;
found=1;
if found = 0 then
create a new node for every tp node and push it in the adhead list;
return{adhead);

G. Function allpuses
Description
This function checks if the allpuses criterion is satisfied by the selected set of test

data.

Pseudo code
use dpuh to traverse the dpulist and for every node do
assign th to the head of the node’s dpuptr;
use th to traverse the node’s dpuptr list and for every node do
if the node is not covered by the test data then
create a new node and push it in the adhead list;
return(adhead);

H. Function allnodes

Description :
This function checks if the allnodes criterion is satisfied by the selected set of test
data.

Pseudo code
assign p to the head of the flowlist;
use p to traverse the flowlist and for every node do
if the node is not traversed by the test data then
create a new node and push it in the nhead list;
return(nhead);

I. Function alledges

Description
This function checks if the alledges criterion is satisfied by the selected set of test
data.

Pseudo code
assign p to the head of the flowlist;
use p to traverse the flowlist and for every edge do
if the edge is not traversed by the test data then
create a new node and push it in the ehead list;
return(ehead);

60

Chapter 5 Testing

J. Function builddcu

Description
This function checks if the builddcu criterion is satisfied by the selected set of test
data.

Pseudo code
initialise variables;
assign q to the head of the flowlist;
use q to traverse the flowlist and for each node do

q->tag = 0;
g->expll =0;
if(g->con2 = Q)
q->expl2 =1,
else
g->expl2 = 0;

assign varpl to the head of the varlist;
use varpl to traverse the varlist and for each node do
if the node contain a definition of a variable then
create a new node for the defined variable and push it in the dculist;
traverse the flowlist until you reach the node where the variable is defined;
starting at that node explore the flowlist in a depth first search maner

for each visited node do

if the node contain a c-use of the defined variable then

create a new node for this variable and insert it in the c-use list of the
defined variable
return(dculist)

K. Function builddpu

Description
This function checks if the builddpu criterion is satisfied by the selected set of test
data.

Pseudo code
initialize variables;
assign q to the head of the flowlist;
use q to traverse the flowlist and for each node do
q->tag = 0;
q->expll = 0;
iflg->con2 = 0)
q->expl2 =1;
else
g->expl2 = 0;

61

Chapter 5 Testing

assign varpl to the head of the varlist;

use varpl to traverse the varlist and for each node do

if the node contain a definition of a variable then
create a new node for the defined variable and push it in the dpulist;
traverse the flowlist until you reach the node where the variable is defined;
starting at that node explore the flowlist in a depth first search maner

for each visited edge do
if the edge contain a p-use of the defined variable then
create a new node for this variable and insert it in the p-use list of the
defined variable
return(dpulist);

L. Function buildul

Description

This function checks if a node contains a definition.
If the node contain a definition it associate with it a set of all definition clear paths
from this node to all edges that contain a p-use of the defined variable.

Pseudo code
initialize variables;
assign varpl to the head of the varlist;
assign varp2 to the head of the edgelis;
assign thead to the head of the flowlist;
traverse the flowlist using fhead in a depth first search manner and for each node
do
use varpl to see if the node contain a definition;
if the node contain a definition then
traverse edghst using varp2 and for each node do
if the node contain a p-use of the variable and is not traversed by the test
data then
create a new node and insert it into the dulist;

return{dulist);

M. Function buildu2

Description
If the node contain a definition it associate with it a set of all definition clear paths
from this node to all nodes that contain a c-use of the defined variable.

Pseudo code
initialize variables;
assign varpl to the head of the varlist;
assign varp2 to the head of the varlist;

62

Chapter 5 Testing

assign thead to the head of the flowlist;
traverse the flowlist using fhead in a depth first search manner and for each node
do
use varpl to see if the node contain a definition;

if the node contain a definition then

traverse varlist using varp2 and for each node do
if the node contain a c-use of the variable and is not traversed by the test
data then
create a new node and insert it into the dulist;

return(dulist);

N. Function fbuild
Description
This function reads from the control flow graph file and build the flowlist.

Pseudo code
loop until the end of file
create a new node;
read(node number, conl, con2);
insert the new node in the flowlist;
return(flowlist);

O. Function Vebuild
Description
This function reads from the def-use graph file and build the varlist.

Pseudo code
loop until the end of file
create a new node;
read(node number, var name, var type);
insert the new node in the varlist;
return(varlist);

P. Function ppush
Description
This function reads from the traversed path file and builds the pathlist.
Pseudo code
loop until end of file
create a new node;
read(node number);
insert the new node into the pathist;
return({pathlist);

63

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter we will work on a C program and show how ELISSAR works.

#include <io.h>
#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#define null 0
FILE *inpt,*onpt;
main()
{
int e,t,dxc;
inpt = fopen("data.c","r");
onpt = fopen("out.c","w");
while(!(feof(inpt)))
{
fscanf{inpt,"%d %5d",&d,&e);
x=0;c=2%(,
while(d > e)

d=d/2;
t=c - (2*x+d);
iflt>0)
¢=2%((c - @*x+d)));
else
X =x+d;
}
x=x+8;d=8§;
}
if(x> 100)
X =x/2;
else
x=9;
fprintf{onpt,"%d %d",d,e);
felose(inpt);
fclose(onpt);
return;

Figure 6.1. An example of a C program.

Chapter 6 Experimental Results

main()

{

FILE *trvpt, *tdr,*ovr;

char tdata[15],0data[15}; int e ,t ,d ,x ,c;

tevpt = fopen("trvpath.dat”,"w");

tdr = fopen("tname?.dat","r");fscanf(tdr,"%s", tdata);
ovr = fopen{"tname2.dat","r");
fscanf{ovr,"%s",0data);

fprintf{trvpt," 0 ");

inpt= fopen(tdata,"r");onpt= fopen{ odata,”w"};
fprintf(trvpt," 1"); :
while(!(feof(inpt)))

{

fprintf{trvpt,” 2"),
fscanf{inpt,"%d %d",&d,&e);
x=0;c=2%d;
fprintftrvpt,” 3 ");
while(d >){
fprintfitrvpt," 4 "),
d=d/2;t= ¢ - (2*x+d);
fprintf{trvpt,” 5");
if(t > 0)

{

fprintf(trept,” 6 ");
o=2%((c - (2*x+d));}
else

{
Torintf{trvpt," 7")
x=x+d;
}
}
fprintf(trvpt," 8");
X=X 18§; d=§;
}
fprintf{trvpt," 9");
if{ x> 100)

{

fprintfitrvpt,” 10");
x=x/2;

1

else

{

forintf{tevpt," 11");

x=9;

}

fprintf{trvpt,” 12 ");
fprintflonpt,"%d %d",d,e);
felose(trvpt); felose(inpt); felose{onpt);
return ;

}

Figure 6.2. The Modfile.c of the program found in Figure 6.1

65

Chapter 6 Experimental Results

Figures 6.3 (a) and (b) contain the tabular form of the control flow graph of the program

found in Figure 6.1 and 6.3 (c) contains its graphical representation.

ANY KEY NEXT PABE I
TO PROCEED Il RIGHT BUTTOM ~ ESC to EXIT

Figure 6.3. (a) The First Screen of the Tabular Form of the
Control Flow Graph of Figure 6.1.

66

Chapter 6 Experimental Results

END OF FILE PRESS ANY KEY OR ANY MOUSE BUTTON 71O EXIT

Figure 6.3. (b) The Second Screen of the Tabular Form of the
Control Flow Graph of Figure 6.1.

67

Chapter 6 Experimental Results

i
L
i
I
b
1
|
|
1
|
|
1
|
|
i
1
|
1
1
1
|
1
1
|
)
i
1
r
i
i
1
i
1
1
§
H
f
f
|
!
|
|
|
|
|
1
1
1
1
|
|
1
I

Figure 6.3. (¢) The Third Screen of the Tabular Form of the
Control Flow Graph of Figure 6.1.

68

Chapter 6 Experimental Results

Figures 6.4 (a), (b), (¢) and (d) contain the tabular form of the def-use graph of the

program found in Figure 6.1.

PRESS ANY KEY TO SEE NEXT PAGE Il PRESS THE LEFT BUTTOM
TO PROCEED I RIGHT BUTTOM , ESC to EXIT

Figure 6.4. (2) The First Screen of the Tabular Form of the
Def-Use Graph of Figure 6.1.

69

Chapter 6 Experimental Results

{ PRESS ANY KEY TO SEE NEXT PAGE || PRESS THE LEFT BUTTOM
TO PROCEED H RIGHT BUTTOM .~ ESC to EXIT

Figure 6.4, (b) The Second Screen of the Tabular Form of the
Def-Use Graph of Figure 6.1.

70

Chapter 6 Experimenta] Results

PRESS ANY KEY TO SEE NEXT PAGE Ii pntss THE LEFT I BUTTUH
TO PROCEED | RIGHT BUTTOM ~ ESC to EXIT

Figure 6.4. (c) The Third Screen of the Tabular Form
of the Def-Use Graph of Figure 6.1.

71

Chapter 6 Experimental Results

END OF. FILE B PRESS ANY kE'}" or ¢ MOUSE E}LFTTIJi‘-I TO E}(IT.

Figure 6.4. (d) The Fourth Screen of the Tabular Form of the
Def-Use Graph of Figure 6.1.

72

Chapter 6 Experimental Resulis

Figure 6.5 contains the tabular form of the path traversed by the execution of the program

on a selected test set.

END OF FILE PRESS ANY !AMY MOUSE BUTTOWN TO EXIT

Figure 6.5. The Test Traversed path Screen.

73

Chapter 6 Experimental Results

Figure 6.6 contains the list of nodes that were not traversed by the execution of the

program on the selected test case and needed to satisfy the ali-nodes criterion.

 node 4 should be included
i node & sheuld be included
= node 6 should be included
= rede ¥ should be included _
e-fiede 10 should be included -
, .f_"ude 1‘3 mhouhi be meiuded

Figure 6.6. List of nodes needed to satisfy the all-nodes criterion.

74

Chapter 6 Experimental Results

Figure 6.7 contains the list of paths that were not traversed by the execution of the program

on the selected test case and needed to satisfy the all-defs criterion.

still must exercise at least 'n_e of the def~—clear pathb e
“owith respect to- from to N - i
S : : T I

_:'dn;} ' i R,

: :51;1}1 nmat ‘exercise dt }e:tbt ui’it—: uf the def—dear paths

wﬂ:h I&bp&:".’l_t to fmm '. - tu

btﬁl Hlﬂbt exercise’ at leabt one ::,rf thﬁ db"f""blﬁ'dl patha e

W}.th ze&peut tu -~ from o to
d. o4 B8
' atﬂl znust exerciee at hf_-aat {me uf the da—:f*clecu pdths L
‘C\?‘ith respect to frum ta : . R

Figure 6.7. List of paths needed to satisfy the all-defs criterion.

75

Chapter 6 Experimental Results

Figure 6.8 contains the test traversal file of the program fond in Figure 6.1 and Figure 6.9

contains its variable information file.

11110000110111
1111¢000110111
11110000110111
11111111116111
11110000110111
11110000110111
11110000110111

Figure 6.8. Test traversal file of the program found in Figure 6.1.

Oinpt10100
Qonpt10100
linpt11101
2d10010
2elG010
2x10000
2¢c10000
2d12000
3411001
3ellnol
4d10000
4d12000
4110000
4¢12000
4x12000
4d12000
5t11000
6c10000
6cl12000
6x12000
6d12000
Tx10000
7x12000
7d12000
8§x10000
8x12000
8410000
9x11000
10x10000
10x12000
11x10000
12412020
12e1202¢
2inpt12100
2onpt12100
-1

Figure 6.9. Variable information file of the program found in Figure 6.1.

76

CHAPTER 7

USER GUIDELINES

7.1. Syntax limitations

the input program is a compiled C program which have the following syntax limitations:

1. At least a space should separate the operators and operand

2. Switsh statements are not allowed

3. The “{”, “}*and else should be written on a line

4. Dynamic data structures are not allowed except for the name of the files

5. Goto and label statements are not allowed.

6. The input should be read from one file and the output should be written on one file.
7.2. File naming

The tool produces several useful documents pertaining to the subject program. If the input

program is named PRG.c then all the produced output files will have PRG as file name and

each file will have an extension that indicates what information are saved on this file. In

what follows we will describe all the output files that are produced by the tool.

Chapter 7 : User Guidelines

First, the tool produces the control flow graph and def-use graph of the input program in a
tabulated form. The control flow graph is saved on a file which has cfg as extension and the
def-use graph is saved on a file which has dfg as extension.
Second, each set of test data is saved on a file which has Txx as extension, where xx can be
any number between 1 and 99. So the first set will have extension T1 the second will have
extension T2 and so on. In this way each set of test data is saved on a file indicating the
name of the program to test and the number of the test data set.
Third, the tool enable the user to execute the input program on any set of test data, and it
saves the program output on a file which will have the extension Oxx where xx is the same
number of the selected test data, and it saves the path traversed by the test data on a file
which will have the extension Pxx where xx is also the same number of the selected test
data. For example if the user execute the program PRG.c on the PRG.T22, the output data
is saved on the file PRG.022 and the traversed path will be saved on the file PRG.P22.
Moreover, all the traversed paths are saved in a file which will have the extension ttf. Each
line of the file will correspond to a traversed path and it will contains a series of zeroes and
ones. For example if the PRG.P5 contains the following path (1 3 5 7 9) then the 5th line of
PRG.ttf contains (010101010 1) where:

» 0 indicates that the test case does not pass by that segment.

¢ 1 indicates that the test case passes by that segment.
The last file that the tool produces is the variable file which contains the variables
information and the data flow information for the program and it is terminated by a -1 and
has the extension vif and it has the following general format:

Seg, Variable, C, D-U, Type, 1O flasg, Loop flag, where:

78

Chapter 7 User Guidelines

e Seg = segment number
* Variable is the variable name
¢ (C is a constant that is assumed to be always equal to 1
e D-U=
0 - definition use.
2 - computation use.
1 - predicate use.
¢« Type=
0 - if ordinary variable.
1- if pointer variable.
e 10 flag=
0 - if the variable has no I/O operations.
1 - if the variable is read.
2 - if the variable is written.
o Loop=
0 - if no loop.
1 - if there is a loop.

For example the variable information file of the program found in Figure 4.1 is in Figure
7.1.

79

User Guidelines

)
<
(=]
<

—

80

0011000000000000000000
=R s R e =R RO W = R e R - T R B Y
0000000000000000000000
S O N NNN o NNONNO o~

L R e B R R I e B B I R

OO 0T T 0 X w00 KT MM M T M

I NNt TSN DD P 000080 Oy

~
A
@
]
=%
o
=
O

12 onpt 1 2 1

12 inpt 1 2 1
-1

Figure 7.1. The variable information file of the program found in Figure 4.1.

CHAPTER 8

CONCLUSION

ELISSAR is a CASE tool for software testing and regression testing developed at LAU.

Using ELISSAR for initial testing assists the user in designing test cases for a procedural

language program according to dataflow testing criteria, i.e. it checks what dataflow testing

criteria was satisfied by running the tested program on a test set and gives the user a

summary of the paths needed to satisfy the rest of the dataflow criteria. Also, ELISSAR

provides the user with the following :

Tabular and graphical display of the control flow graph
Def-use graphs of the tested program

Test coverage information

Ability to add new test cases

Printing facility

ELISSAR can be also used for regression testing. The tester can use one of the following

regression testing algorithms to verify that the modifications made. to the program have not

caused unintended side effects and that the modified system still meets the requirements:

Reduction algorithm

Firewall algorithm

Genetic algorithm

Chapter 8 Conclusion

* Simulated annealing algorithm
¢ Slicing algorithm

¢ Incremental algorithm.

82

REFERENCES

Araby, N. 1997. A Software Tool for Regression Testing. Thesis: Lebanese American University.
February,

Baradhi, G. 1996. A Comparative Study of Regression Testing Methods. Thesis: Lebanese American
University. June.

Beizer, B. 1999. Sottware Testing Techniques. 2ed. New York.
Van Nostrand Reinhold.

Dijkstra, E. W. 1972. The Humble Programmer. Communications of the ACM. October,
859-866.

Fakih, K., and Mansour, N. 1996. A Genetic Algorithm for Corrective Retesting.
Lebanese Scientific Research Reports, Vol. 1, No. 1, January, 5-19.

Frankl, P.,Weiss, S. and Weyuker, E. 1985, Asset a system to Select and Evaluate Tests.
IEEE Transactions on Software Engineering. 72-79.

Rapps, S.and Weyuker, E.1985. Selecting Software Test Data Using Data flow
Information.IEEE Transactions on Software Engineering. Vol.SE-11, No.4, April, pp. 367-
375.

	test92a
	test92b

