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Abstract 

This paper investigates the effects of lubricant compressibility on the film-forming performance 
of thermal elastohydrodynamic lubricated (EHL) circular contacts. Numerical film thickness 
predictions using the classical Dowson and Higginson relationship are compared to those that 
would be obtained using a more realistic compressibility model, all other parameters kept 
unchanged. This allows an isolation of the realistic compressibility effects on the film-forming 
performance. For realistic predictions, the authors consider two model liquids from the 1953 
report of the ASME Research Committee on Lubrication, the most and the least compressible. 
The compressibility of these liquids is modeled using the Tait equation of state (EoS) while all 
other transport properties are kept unchanged for the sake of isolating compressibility effects. In 
addition, the same typical generalized-Newtonian behavior is assumed for both model liquids. 
The results reconfirm the well-known observations that minimum film thickness is very little 
affected by lubricant compressibility while central film thickness decreases linearly with the 
increase in volume compression of the lubricant. It is also observed that the relative errors on 
central film thicknesses induced by the use of the Dowson and Higginson relationship for 
compressibility increase with load and temperature and are very little affected by mean 
entrainment speed. Compressibility is shown to be a significant source of error in film-derived 
measurements of pressure-viscosity coefficients especially at high temperature.  The 
thermodynamic scaling which provides an accurate and consistent framework for the correlation 
of the thermophysical properties of liquids with temperature and pressure requires an accurate 
equation of state. In brief, this paper highlights the importance of using realistic transport 
properties modeling based on thermodynamic scaling for an accurate numerical prediction of the 
performance of EHL contacts.        

Keywords: Lubricant compressibility, Thermal elastohydrodynamic lubrication, Circular contacts, generalized-
Newtonian lubricant 
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1. Introduction 

The effect of lubricant compressibility on the performance of elastohydrodynamic lubricated 
(EHL) contacts has earned very little attention from the tribological community. This is because 
from the early pioneering work of Dowson and Higginson [1], Hamrock and Dowson [2][3] or 
Kweh et al. [4] it was noted that compressibility has a minor effect on minimum film thickness in 
elastohydrodynamic lubricated contacts. The effect was more noticeable on central film 
thickness which is significantly reduced with lubricant compressibility.  

To the authors’ knowledge, the only work that attempted to quantify the effect of realistic 
compressibility on film thickness in EHL was that of Venner and Bos [5]. These authors 
employed the Jacobson and Vinet [6] isothermal equation of state which provides a better 
prediction of lubricant compressibility at high pressures than the widely used Dowson and 
Higginson [7] relationship. They found that the central film thickness decreases linearly with the 
increase in compression of the lubricant (induced by the use of the Jacobson and Vinet 
relationship) while little effect was observed on minimum film thickness. This important 
observation allowed engineers to correct their film thickness predictions which are derived from 
numerical simulations employing the Dowson and Higginson relationship. However, two 
decades later, the Dowson and Higginson relationship for compressibility is still the most widely 
used EoS in numerical modeling of EHL contacts. This is in part due to the fact that the Jacobson 
and Vinet relationship has a somewhat inconvenient form for EHL solvers as it provides pressure 
as a function of density and cannot be easily inverted. In addition, although this equation can be 
more accurate than the Dowson and Higginson relationship, it has some shortcomings which 
prevent it from predicting a realistic physical based pressure-temperature dependence of density 
as shall be discussed in the following section. 

 The work of Venner and Bos [5] was based on an isothermal Newtonian analysis using 
hypothetical lubricant transport properties. The current paper revisits the effects of 
compressibility on film thickness in EHL circular contacts while alleviating the simplifying 
assumptions employed in [5]. In fact, both thermal and generalized-Newtonian effects are 
considered. In addition, realistic rheological models are used. These are based on experimental 
data describing the dependence of viscosity on pressure, temperature and shear stress as well as 
the dependence of density on pressure and temperature. In addition, the equation of state (EoS) 
describing the latter has a convenient form for an easy incorporation into EHL solvers. Density 
scaling provides a precise and consistent correlation of the thermophysical properties of the 
liquid [8] and such correlations are essential to quantitative EHL.  Density scaling requires an 
accurate EoS. 

 
This is not the first attempt to use such realistic rheological models. In fact, the authors have 

previously employed these and obtained an accurate prediction of film thickness as well as 
friction in EHL contacts over a wide range of operating conditions [9] [10]. It is noteworthy to 
mention that these numerical predictions were validated against experiments without any 
alteration of the rheological parameters used in the numerical model. The idea behind the current 



3 
 

work is to use this validated numerical framework to compare its predictions with those obtained 
using the classical Dowson and Higginson relationship, all other parameters kept unchanged. 
This would allow an isolation of the effects of realistic compressibility on the performance of 
EHL contacts. 

2. Compressibility in EHL 

The treatment of compressibility in EHL has a similar history as the treatment of 
piezoviscosity. For the earliest numerical studies, a simple isothermal EoS was employed [7] for 
the qualitative film thickness solutions which famously established the field. This EoS is 
commonly known as the Dowson and Higginson equation: 

( )0
0.61 ,  in GPa

1 1.7
pT p

p
ρ ρ

 
= + + 

 (1) 

This empirical formula was obtained from measurements for a mineral oil at pressures to 350 
MPa at a single temperature [7].  A limit of compression was mentioned but not observed. 

 
In EHL, the compressibility ( 1 pρ ρ−− ∂ ∂ ) is assumed to be universally temperature 

independent and the complete EoS has (for example, [11]) been 

( ) ( )3
0

0.61 0.65 10 ,  in GPa,  and  in K
1 1.7R R R

pT T T p T T
p

ρ ρ − 
= + − × − + 

 (2) 

This EoS served the needed purpose of demonstrating the effect of liquid compressibility on 
the film shape just as the simple pressure-viscosity models demonstrated the dependence of film 
thickness on the pressure-viscosity coefficient.  However, just as the simple piezoviscous models 
were not supported by accurate measurements, the simple EoS (2) invokes non-physical 
behavior. First, the limit of compression, ( ) 0 1.353pρ ρ→∞ = , in equations (1) and (2), does 

not occur, although it may be argued that the glass transition imposes somewhat of a limit.  
Second, since this EoS fixes the compressibility independent of temperature and the longitudinal 
sound velocity at ambient pressure is approximately proportional to 0 0K ρ , the sound velocity 

is predicted to increase with temperature when 0ρ  must decrease.  Of course, sound velocity in 
organic liquids decreases with temperature [12].  Third, if the simple EoS (2) is used to calculate 
the volume used in the Doolittle free-volume model [13] for viscosity, the inflection in the plot 
of log viscosity versus pressure never occurs. 
  

The measurement of compressibility or the pressure dependence of density or volume for 
liquids is not as straightforward as might be expected [14] and requires some attention.  The 
usual method employed in EHL laboratories is to use the pressure-generating piston-in-cylinder 
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device to directly measure the volume change as pressure is increased.  While this apparatus is 
well suited to detect the small compressibility changes which accompany phase transitions, 
substantial errors will arise from measurements of the compressibility due to the inability to 
accurately account for vessel elastic deformation and from the contribution of the seal 
displacements [14].  The most widely accepted means of measuring compressibility of liquids to 
EHL pressures was introduced by Nobel laureate Bridgman [15].  This is the metal bellows 
volumometer or piezometer which has been improved over the years ([16] for example) and at 
least one commercial device is available to 200MPa. 

The preferred isothermal EoS in physics-based fields is the Tait equation [17], actually a 
modification of the relation proposed by Tait, which for the relative volume reads: 

( ) 0
0

0 0 0

11 ln 1 1
1

V p K
V K K

ρ
ρ

 
′= − + + = ′+  

  (3) 

Here the parameters are defined as by Cook et al. [18] where 0K  is the bulk modulus at 

ambient pressure or 0p =  and 0K ′  is the pressure derivative of K   at ambient pressure or 0p = . 
This EoS is often held to be the most accurate [19] of the simple relations, even for extrapolation 
to very high pressures [20].  For numerical EHL it has the advantage of providing an explicit 
formula for density as a function of pressure and tables of parameters are available for a vast 
number of liquids (see [21][22][23][24][25][26][27] for examples). 

   
A modification of equation (3) will be necessary to incorporate temperature.  The value of 

0K ′  is often considered to be independent of temperature [26] and in some cases it has been 

assigned a universal constant 0 10.2K ′ ≡  [25][27] although counter examples exist [17].  Here, 

0K ′  is material dependent and temperature independent.  Many expressions have been employed 

for the temperature dependence of 0K .  Here the exponential form of Fakhreddine and Zoller 
[27] is used. 

( )0 00 exp KK K Tβ= −  (4) 

It is also required that 0V  vary with temperature and a linear dependence of density on 
temperature can be more accurate than a linear dependence of volume on temperature: 

 

( )

( )

0

0

0

0

1  linear dependence
1

1  linear dependence

R

R R

R
V R

R

V T
V a T T
V a T T V T
V

ρ

ρ ρ
ρ

ρ
ρ

= = → −
− −

= = + − → −
 (5) 
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The first attempt in numerical EHL simulation to use a more suitable EoS than equation (2) 
was by Venner and Bos [5] who employed a relation offered by Jacobson and Vinet [6]. 

( )
2 1 1

3 3 3

0 0
0 0 0

33 1 exp 1 1
2

V V Vp K K
V V V

−     
         ′= − − −                      

 (6) 

The Jacobson and Vinet equation (6) is unusual for an EHL EoS in solving for pressure as a 
function of the volume or density.  Oddly, Jacobson and Vinet [6] found that a good 
representation of their experimental data was obtained by making 0K  in (6) independent of 
temperature.  It should be noted that their experimental method would not be considered accurate 
according to the rules set forth by Hayward [14] since the elastic deformation of the pressure 
vessel must be accounted for in the measurement. 

 
3. Thermal EHL model 

In this section, the numerical model employed in this work is briefly reminded. The latter is 
based on the full-system finite element approach described in [28]. The generalized Reynolds, 
linear elasticity and load balance equations define the EHL part of the model. The Reynolds 
equation for a steady-state point contact between a ball and a flat plane lubricated with a 
generalized Newtonian lubricant under unidirectional surface velocities in the x-direction is 
given by Yang and Wen [29]: 

( )3 3 *12 m
e e

p ph h U h
x x y y x

ρ ρ ρ
η η

      ∂ ∂ ∂ ∂ ∂
+ =      ∂ ∂ ∂ ∂ ∂      

 (7) 

Where:   

( )*

0

2 30 0 0 0

20 0

12
2

1

1 1

1 1 1 1

p s e e
m e

ee

he e s p e p
e

m

h z h z

e e

h h

e e

u u
U

u u u
dz

U h
dz z dzdz dz

h h
dz z dz

h h

η ρρ ρ
η η

ρ η ρ
ρ ρ ρ

ρ ρ ρ ρ
η η

η η η η

+  ′  ′′= = −   ′   
 ′ − + = =

′ ′ ′
′ ′′= =

= =
′

∫

∫ ∫ ∫ ∫

∫ ∫

 

Note that this equation accounts for the variations of both density and viscosity across the 
film thickness through the integral terms. In fact, the changes in density are due to temperature 
variations across the lubricant film whereas the changes in viscosity stem from both temperature 
and shear rate variations across the film. Moreover, both density and viscosity are allowed to 
vary with pressure and temperature throughout the lubricant film. Indices p and s correspond to 
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the plane and the sphere respectively and η  is the generalized Newtonian viscosity. The film 
thickness h in equation (7) is replaced by: 

( ) ( )
2 2

0, ,
2

x yh x y h x y
R

δ+
= + −   (8) 

Where R is the radius of the ball and δ(x,y) corresponds to the normal elastic deformation of 
the solid surfaces at every point (x,y) of the two-dimensional contact area cΩ . It is obtained by 
solving the linear elasticity equations on a large 3D solid body representing a half-space domain. 
To complete the EHL part, the load balance equation is used to monitor the value of the rigid 
body displacement h0 and ensure that the correct external load F is applied to the contact. This 
equation reads: 

c

p d F
Ω

Ω =∫  (9) 

As for the thermal part, the temperature distribution in the two solid bodies and the lubricant 
film is obtained by solving the 3D energy equation. For the solid parts p and s this equation 
reads: 

2 2 2

2 2 2

2 2 2

2 2 2

p p p p

s s s s

T T T Tc u k
x x y z

T T T Tc u k
x x y z

ρ

ρ

  ∂ ∂ ∂ ∂
= + +  ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ 

  (10) 

The geometrical domains of solids p and s are taken as infinite layers with a finite thickness 
sufficiently large to have zero temperature gradient away from the contact area. As for the 
lubricant film, the energy equation is given by: 

2 22

2
f f

f f f f

u vT T T T p pc u v k u v
x y z T x y z z

ρρ η
ρ

 ∂ ∂      ∂ ∂ ∂ ∂ ∂ ∂
 + = − + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

 (11) 

Where the lubricant velocity field components uf and vf in the x and y directions respectively 
are given by: 

( )
0 0 0

0 0

z z ze s pe
f p

e

z ze
f

e

u up z dz dz dzu u h
x h

p z dz dzv h
y

ηη
η η η η

η
η η η

− ′ ′ ′ ′∂
= + − + ′∂  

 ′ ′ ′∂
= − ′∂  

∫ ∫ ∫

∫ ∫
  (12) 
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Equations (7-12) completely define the thermal EHL problem. These equations are solved 
using the usual EHL boundary conditions. That is, for the generalized Reynolds equation zero 
pressure is assumed on the boundary of the contact area cΩ and the free boundary problem 
arising at the exit of the contact is handled by applying the penalty method [30]. As for the linear 
elasticity part, the pressure distribution obtained from Reynolds equation is used as a normal 
pressure load boundary condition on the contact surface cΩ . Finally, for the thermal part, an 
ambient temperature T0 boundary condition is applied at the inlet of the solid bodies and the 
lubricant film.  

4. Numerical procedure 

All equations defined in the previous section are discretized using a finite element 
approximation and solved in dimensionless form [28]. Non-structured meshing is used 
throughout the different parts of the problem. For the hydrodynamic part (generalized Reynolds 
equation), fifth order Lagrange triangular elements (2D) are employed whereas for the elastic 
part Lagrange second order tetrahedral elements (3D) are used. Using higher order elements for 
the hydrodynamic problem, as an alternative to refining the mesh, allows having a good 
precision for its solution without inducing any unnecessary increase in the number of degrees of 
freedom in the three-dimensional elastic problem. For the thermal part, Lagrange second order 
tetrahedral elements are also employed. The meshing of all geometric components is tailored 
towards the nature of the EHL problem. That is, the mesh is always finer in the central area of 
the contact (mesh diameter ~ 0.05) where additional precision is required owing to the sharper 
solution gradients that are encountered. For more details regarding the geometry and its meshing, 
the reader is referred to [28].     

The global numerical procedure consists in starting with an initial guess for pressure, film 
thickness and temperature. The generalized Reynolds, linear elasticity and load balance 
equations are solved simultaneously using a damped Newton [31] resolution. The resulting 
pressure and film thickness distributions are then used to solve the thermal problem defined by 
equations (10-12) which are also solved simultaneously. An iterative procedure is thus 
established between the respective solutions of the EHL and thermal problems. This iterative 
procedure is repeated until the pressure and temperature solutions are converged, that is until the 
maximum absolute difference between the pressure solutions and the maximum relative 
difference between the temperature solutions at two consecutive resolutions falls below 10-3. 
Note that for highly loaded contacts, special stabilized finite element formulations are needed for 
the solution of the generalized Reynolds equation. Similar formulations are also needed for the 
solution of the energy equations in a convection-dominated regime. For more details about the 
convergence criteria, the definition of the penalty term for the treatment of the free boundary 
problem and the numerical precision of this solution scheme the reader is referred to [28]. 
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5. Properties of simulated liquids 

Numerical experiments are performed for two liquids possessing different compressibility 
characteristics which were obtained from measurements, known to be accurate, on real liquid 
lubricants. For the sake of isolating compressibility effects, all other liquid properties are kept 
unchanged (viscosity, thermal conductivity, heat capacity…). These are summarized in Table 1 
along with the properties of the solids (both the sphere and the plane are assumed to be made out 
of steel). The reference temperature TR=25oC for both considered lubricants. Density and 
viscosity parameters are provided in the following sections. 

 Solids Lubricants 
Thermal Conductivity (W/m.K) 46 0.15 

Heat Capacity (J/kg.K) 470 1500 
Density (kg/m3) 7850             900 (at TR)  

Young’s Modulus (GPa) 210 - 
Poisson’s Coefficient 0.3 - 

Equivalent Radius (mm) 15 - 
Table 1: Lubricants and solids material properties 

5.1 Compressibility 

Surprisingly, many accurate experimental measurements of viscosity and density for 
lubricating oils to 1 GPa and 218°C have been available throughout the development of the EHL 
field as reported in the 1953 report of the ASME Research Committee on Lubrication [28].  
These results were generated at the Harvard University laboratory of Nobel laureate, P.W. 
Bridgman.  For the numerical work to follow, two model liquids were chosen from the ASME 
report; the most compressible, a silicone oil (ASME 55), and the least compressible, a heavy 
naphthenic mineral oil (ASME 38).  The Tait EoS has been fitted to these data as shown in 
Figure 1 with the parameters listed in Table 2.  The V-T linear dependence relationship has been 
used to specify the temperature dependence at ambient pressure because the use of a ρ-T linear 
dependence relationship which is actually more precise at ambient pressure results in the 
crossing of isotherms for the silicone oil at T=473K and p=1.4 GPa.  Some accuracy at ambient 
pressure has therefore been sacrificed to avoid non-physical response at elevated pressure. 

 ASME sample 38 ASME sample 55 
0K ′  9.650 9.735 

00 (GPa)K  5.792 4.196 
-1(K )Kβ  0.003791 0.005318 
-1(K )Va  0.000679 0.000984 

Table 2: Tait parameters for the model liquids 
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Figure 1: The ASME relative volumes of the naphthenic mineral oil (ASME 38) and the silicone oil (ASME 55) 
and their fit to theTait EoS 

The Jacobson and Vinet equation (6) provides an excellent fit to the data for the silicone oil 
only when 0K  is a function of temperature as in equation (4). The parameters are 0 11.308K ′ = ,  

00 4.946 GPaK = , 1= 0.006046 KKβ
−  and 1= 0.000897KVa − . 

5.2 Viscosity 

The most precise temperature-pressure correlations for the thermophysical properties of 
liquids are obtained from thermodynamic scaling [33] which represents the property as a 
function of temperature and volume (or density).  This representation is, however, not possible 
here because the intent is to compare only the effect of compressibility with the remaining 
property relations being the same.  For this purpose, the temperature and pressure dependence of 
the low shear viscosity, ( ),T pµ , of a viscosity reference liquid, diisodecyl phthalate [34], and 

the shear dependent viscosity, ( ),η µ τ , of a similar diester, di(2-ethylhexyl) phthalate [35], will 

be used in the numerical experiments. 

A correlation of the low shear viscosity of diisodecyl phthalate which does not require an 
EoS has been published [36]. The Vogel, Tammann and Fulcher equation [37] with pressure 
dependent divergence temperature is: 

( )
( )

2
0 0

0

0 0

exp

with    ln 1

FD T p
T T p

T TT T p
T T

µ µ ∞
∞

∞

∞

 
=  

−  
 ′ ′′
 = − −
 ′′ ′ 

 (13) 
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The parameters which describe the diester are 63.655 10  Pa sµ −
∞ = × ⋅ , 16.30FD = , 

0 114.4 KT = , 0 146.0 K/GPaT ′ =  and 2
0 331.1 K/GPaT ′′ = − .   

The shear dependence of viscosity of di(2-ethylhexyl) phthalate is represented by a modified 
Carreau equation [36] written in terms of shear stress, τ . 

2

1 1

2
1

n

G
τη µ

−

  = +  
   

  (14) 

The parameters are, from [35], 0.41n = and 6 MPaG = . 

6. Results 

In this section, numerical tests are carried out to study compressibility effects on lubricant 
film thickness under thermal EHL conditions. As mentioned earlier, in order to isolate 
compressibility effects, all physical parameters (lubricant viscosity, solid material properties, 
etc.) are kept constant throughout the tests except for lubricant density. Three different densities 
are considered: ASME 38 and ASME 55 according to the Tait EoS and the Dowson & Higginson 
density. The latter being material independent, corresponding film thicknesses are compared to 
those obtained using the first two. This allows a quantification of the error involved in using the 
Dowson & Higginson relationship in modeling lubricant density. A wide variety of operating 
conditions is considered with different loads F, inlet temperatures T0, mean entrainment speeds 
Um and slide-to-roll ratios SRR defined as:  

s p

m

u u
SRR

U
−

=   (15) 

The results of all numerical tests are summarized in Tables 3 and 4. Table 3 provides the 
pure-rolling (SRR=0) test results for various loads, mean entrainment speeds and inlet 
temperatures whereas Table 4 provides rolling-sliding results. |ΔHc |/Hc corresponds to the 
relative error induced by using the Dowson & Higginson relationship on the dimensionless 
central film thickness Hc defined as: 

( ) ( )
( )

&c cc

c c

H Tait H D HH
H H Tait

−∆
=  (16) 

Only the effect on central film thickness is reported in this section as it is observed that the 
minimum film thickness is barely affected by compressibility as noted by Venner and Bos [5]. 
Several conclusions may be drawn from the results of Tables 3 and 4.  
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First, from Table 3 it can be noted that the relative error induced by using the Dowson & 
Higginson relationship continuously increases with increasing load. This is not surprising, as for 
both model liquids, density difference between the Tait EoS and Dowson & Higginson 
relationship continuously increases with pressure as can be seen in Figure 2. Remember that 
Venner and Bos [5] observed that central film thickness decreases linearly with the increase in 
compression in isothermal EHL contacts. It is noteworthy to mention that this observation still 
holds here under thermal conditions. The error increase with load is observed for both ASME 38 
and 55 except for the low temperature cases (30oC) of the former where the error is minimal for 
the 90N load (ph≈1GPa) and then increases as the load departs from that value. In fact, by 
observing Figure 2 (left) closely, one can note that for 30oC the density lines of Tait and Dowson 
& Higginson cross at ≈1GPa and deviate as the pressure departs from that value. This explains 
the minimum value of error obtained for the 90N case with an inlet temperature of 30oC. Figure 
3 shows a comparison of the dimensionless film thickness profiles along the central line of the 
contact in the x-direction for both ASME 38 and 55 (Tait) with respect to those obtained using 
the Dowson & Higginson relationship for an inlet temperature of 30oC. These clearly highlight 
the error trends discussed so far. Note that the use of the Dowson & Higginson relationship leads 
to an overprediction of the central film thickness except for the low load case of ASME 38. This 
is because at 30oC, the Dowson & Higginson relationship predicts a higher density for ASME 38 
than the Tait EoS up to ≈ 1 GPa (see Figure 2). Also note, that the errors are always more 
important for ASME 55 compared to ASME 38 which is not surprising as the density deviations 
for the latter with respect to the Dowson & Higginson relationship are smaller as can be seen in 
Figure 2. 
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T0(oC) F(N) Um(m/s) 
|ΔHc |/Hc (%) 

ASME 38 ASME 55 

30 

10 
(ph ≈ 0.5GPa) 

0.1 1.07 3.49 
0.2 1.04 3.43 
0.5 0.99 3.33 
1.0 1.38 2.74 
2.0 0.86 3.02 

90 
(ph ≈ 1.0GPa) 

0.1 0.08 6.14 
0.2 0.10 6.15 
0.5 0.14 6.11 
1.0 0.17 6.09 
2.0 0.33 5.57 

300 
(ph ≈ 1.5GPa) 

0.1 1.74 8.51 
0.2 1.77 8.58 
0.5 1.82 8.63 
1.0 1.84 8.62 
2.0 1.36 8.14 

700 
(ph ≈ 2.0GPa) 

0.1 3.51 10.78 
0.2 3.48 10.77 
0.5 3.51 10.91 
1.0 3.54 10.95 
2.0 3.07 10.45 

100 

10 
(ph ≈ 0.5GPa) 

0.5 0.09 4.63 
1.0 0.08 4.48 
2.0 0.07 4.35 

90 
(ph ≈ 1.0GPa) 

1.0 1.39 7.53 
2.0 1.40 7.45 

300 
(ph ≈ 1.5GPa) 

1.0 3.23 10.26 
2.0 3.25 10.13 

10.0 2.75 9.46 
700 

(ph ≈ 2.0GPa) 
2.0 5.08 12.61 

10.0 4.55 11.84 

200 

10 
(ph ≈ 0.5GPa) 

2.0 1.02 5.93 
5.0 0.96 5.56 

90 
(ph ≈ 1.0GPa) 5.0 2.80 9.18 

300 
(ph ≈ 1.5GPa) 10.0 5.05 12.20 

700 
(ph ≈ 2.0GPa) 10.0 7.05 15.33 

Table 3: ASME 38 and 55 pure-rolling numerical tests results for various load, mean entrainment speed and inlet 
temperature conditions 

Second, it can be noted from Table 3 that the mean entrainment speed Um has very little 
influence on the error induced by the use of the Dowson & Higginson relationship and the error 
remains almost unchanged regardless of speed. This is because for a given load, the mean 
entrainment speed has little effect on the overall magnitude of the pressure distribution in the 
contact and thus on lubricant density. 

 



13 
 

 
Figure 2: Comparison of the Tait EoS and Dowson & Higginson relationship for dimensionless density of ASME 

38(left) and ASME 55 (right) lubricants as a function of pressure  

Finally, from Table 3 it can be observed that error increases with inlet temperature T0 for 
both ASME 38 and 55. This is because the deviation of the Tait EoS from the Dowson & 
Higginson relationship continuously increases with temperature as can be seen in Figure 2. This 
is true except for the low load cases of ASME 38 where the deviation is almost nill for 
T0=100oC and smaller than for T0=30oC. This explains the minimum errors obtained for 
T0=100oC for the low load case (F=10N). To conclude, it can be said that errors increase with 
temperature in general (not only inlet temperature) as highlighted by the results of Table 4. 

T0(oC) F(N) Um(m/s) SRR |ΔHc |/Hc (%) ΔTmax (oC) 

30 

90 
(ph ≈ 1.0GPa) 1.0 0.0 

0.5 
6.09 0.22 
6.88 44.68 

300 
(ph ≈ 1.5GPa) 2.0 0.0 

0.5 
8.14 1.81 

10.65 91.49 

100 

90 
(ph ≈ 1.0GPa) 1.0 

0.0 7.53 0.03 
0.5 7.75 9.44 

300 
(ph ≈ 1.5GPa) 2.0 

0.0 10.13 0.09 
0.5 11.31 36.76 

Table 4: ASME 55 rolling-sliding numerical test results for various load, mean entrainment speed and inlet 
temperature conditions  

Table 4 presents the results of the numerical tests for ASME 55 under rolling-sliding 
conditions. It is clear that the error induced by employing the Dowson & Higginson relationship 
for density not only increases with the inlet temperature T0 but also with temperature in general. 
This is highlighted by the larger variations in error between the pure-rolling cases (SRR=0) and 
the rolling-sliding cases (SRR=0.5) observed for the lower inlet temperature case (T0=30oC). 
These can be associated to the higher increase in temperature as suggested by the values of the 
maximum temperature increase ΔTmax within the lubricant film reported in Table 4. These 
greater temperature rises are due to the higher viscosities obtained at lower surrounding 
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temperature T0 leading to an increased thermal dissipation by shear, all other operating 
conditions being unchanged.  

 
Figure 3: Comparison of dimensionless film thickness profiles along the central line of the contact in the x-direction 
obtained under pure-rolling conditions using the Tait EoS for both ASME 38 (left) and ASME 55(right) with respect 

to those obtained using the Dowson & Higginson relationship (T0=30oC) 
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Figure 4: Comparison of dimensionless film thickness profiles along the central line of the contact in the x-direction 

obtained using the Tait EoS for ASME 55 with respect to those obtained using the Dowson & Higginson 
relationship for SRR=0 (left) and SRR=0.5 (right) with T0=30oC (top figures) and T0=100oC (bottom figures) 
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Figure 4 shows comparison plots of the dimensionless film thickness profiles along the 
central line of the contact in the x-direction for ASME 55 (Tait) with respect to those obtained 
using the Dowson & Higginson relationship for slide-to-roll ratios SRR=0 (left) and SRR=0.5 
(right) for the cases reported in Table 4. These plots reveal the error trends discussed above. Also 
note the well-known change in the horseshoe shape of the film thickness profile due to thermal 
effects. In fact, when the SRR is increased, the minimum film thickness on the central line of the 
contact in the x-direction decreases and approaches the global minimum film thickness and the 
film thickness constriction gains in width. Therefore, the horseshoe shape at the outlet of the 
contact, which originally has large ends and a narrow central region, gains in width on its central 
part and starts having an almost constant width. This feature was highlighted for instance in the 
numerical tests of [9] or the experimental results of [38]. 

7. Discussion 

The Venner and Bos rule [5] for the correction of the central film thickness from an 
incompressible solution can be expressed as:  

 ( )
( ), 0

h
c c i

V p p
h h

V p
=

=
=

  (17) 

Where hc,i is the central film thickness that would be obtained if the lubricant was assumed to 
be incompressible. This equation can be easily generalized to:  

 
( )
( )

1

1 2

2

hEoS
c cEoS EoS

hEoS

V p p
h h

V p p

=
=

=
 (18) 

so that different compressibilities may be compared.  In fact, here it is found that this rule may be 
extended to the thermal case by substituting in (17) and (18) V at the inlet temperature and 0p =  

for ( )0V p =  and by substituting V at the central film temperature and hp p=  for ( )hV p p= . 

There are some consequences of the widespread use of a simple EoS such as equation (2).  
Most values of pressure-viscosity coefficient published recently have been the effective pressure-
viscosity coefficient obtained by forcing agreement of a classical film thickness formula with a 
measurement of central film thickness in a circular contact as, for example, in [39]. When there 
are viscosities measured under high pressure for comparison, these effective pressure-viscosity 
coefficients are often much smaller than the coefficients derived from a real viscosity 
measurement.  The primary reason is the neglect of the shear dependence of viscosity [40].  
However, the assumed compressibility may play a significant role in the discrepancies.  If all 
other effects are precisely as were assumed for the film thickness formula and if *0.53

ch α∝ as it 
is for the classical Hamrock & Dowson film thickness formula [3]:  
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1.89
chα ∝  (19) 

However, if the compressibility is not the same as was assumed for the formula, then from 
the Venner and Bos rule (18), the proper relation for a pressure-viscosity coefficient derived 
from film thickness measurements would be:   

( ) ( ) 1.891.89 0c hh V p p V pα
−

∝ = =    (20) 

Unfortunately, the real compressibilities of the liquids for which the effective coefficients 
have been reported are seldom known.  The possible errors in effective coefficients may be 
investigated from the examples in this paper.  In Figure 5, the measured pressure-viscosity 
coefficient *α  is plotted versus temperature for diisodecyl phthalate as the solid curve.  If all 
other effects are precisely accounted for in a film thickness formula which employed the Dowson 
& Higginson relationship, then the effective coefficient is related to the real pressure-viscosity 
coefficient *α  by: 

( )
( )

1.89

*

&

h
eff

hDow Hig

V p p
V p p

α α
 =

=  
=  

  (21) 

This effective coefficient has been plotted in Figure 5 for the compressibility of ASME 55 as 
the dotted curve and that of ASME 38 as the dashed curve. In other words, the dashed and dotted 
curves represent the values of pressure-viscosity coefficient which would be reported from a film 
thickness measurement using the established technique (equation (19)) while the solid curve is 
the coefficient which would be obtained from a viscometer.  The discrepancies are temperature 
dependent and may be quite large, almost 30% for the highest temperature and pressure. 

Figure 5: Comparison of effective pressure-viscosity coefficients using assumed compressibilities with the directly 
measured coefficient. 
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Figure 6: Comparison of real (certified by NIST) density variations of 2-methylpentane against pressure and 

temperature with those predicted by the Tait EoS 

It is necessary to warn against the overenthusiastic use of universal equations of state, even 
those based on Tait (3).  For example, process liquids such as fuels or even refrigerants have 
been investigated as possible ultra-low-viscosity EHL lubricants. These liquids may be used 
under conditions of temperature and pressure sufficiently close to the critical point to display 
compressibility very different from that of the compressed liquids which are ordinarily addressed 
in EHL.  The difficulty imposed by very low molecular mass liquids is illustrated in Figure 6 
where the density of 2-methyl pentane is plotted against pressure for various isotherms.  The 
critical isotherm must be vertical on this plot at the critical density.  This requirement is, of 
course, not met by any EoS employed in EHL.  The curves plotted in Figure 6 are the densities 
certified by NIST [41].  The vapor dome is shown for reference.  The points represent the Tait 
EoS (3) with 0 10.29K ′ = , 00 2.168 GPaK = , 1= 0.004492 KKβ

−  and 1= 0.001127KVa − .  The fit 
at critical temperature, 225°C, is poor below 150 MPa and the fit at ambient pressure is poor 
above 27°C. 

8. Conclusion 

This paper highlights the importance of using realistic modeling of lubricant compressibility 
for an accurate numerical prediction of central film thicknesses in thermal EHL circular contacts. 
Lubricants have density-pressure-temperature dependencies that do not necessarily follow the 
commonly used Dowson & Higginson relationship especially at high pressures and temperatures. 
Numerical film thickness predictions using the classical Dowson and Higginson relationship are 
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compared to those obtained using a more realistic compressibility model, all other parameters 
kept unchanged. In order to achieve as realistic as possible predictions, the authors considered 
two model liquids from the 1953 report of the ASME Research Committee on Lubrication, the 
most and the least compressible. The compressibility of these liquids is modeled using the Tait 
equation of state (EoS) while all other transport properties are kept unchanged for the sake of 
isolating compressibility effects. In addition, the same typical generalized-Newtonian behavior is 
assumed for both model liquids. While the errors in predicting minimum film thickness are 
negligible, the central film thickness errors are pronounced. In most cases, the Dowson & 
Higginson relationship underpredicts lubricant density leading to an overprediction of central 
film thicknesses. The Venner and Bos rule is confirmed; the central film thickness varies in 
proportion to the volume compression. It is found that the relative errors on central film 
thicknesses increase with load and temperature and are very little affected by mean entrainment 
speed. Compressibility can be a significant source of error in film-derived measurements of 
pressure-viscosity coefficients especially at high temperature.  The thermodynamic scaling 
which provides an accurate and consistent framework for the correlation of the thermophysical 
properties of liquids with temperature and pressure requires an accurate equation of state.  
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Nomenclature 

Va   : thermal expansivity defined for volume linear with temperature, K-1 

aρ   : thermal expansivity defined for density linear with temperature, K-1 

c : lubricant thermal heat capacity, J/kg.K  
cp : thermal heat capacity of plane’s material, J/kg.K 
cs : thermal heat capacity of sphere’s material, J/kg.K 

FD  : fragility parameter in the VTF equation 
E′  : composite Young’s modulus, Pa 
F : external applied load, N 
 G : shear modulus, liquid critical shear stress, Pa 
 h  : film thickness, m 
H : dimensionless film thickness 

 ch  : central film thickness, m 
Hc : dimensionless central film thickness 

 mh  : minimum film thickness, m 
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Hm : dimensionless minimum film thickness 
0h  : rigid body separation, m 

k : lubricant thermal conductivity, W/m.K 
kp : thermal conductivity of plane’s material, W/m.K 
ks : thermal conductivity of sphere’s material, W/m.K 

0K  : isothermal bulk modulus at p = 0, Pa 

0K ′  : pressure rate of change of isothermal bulk modulus at p = 0 

00K  : K0 at zero absolute temperature, Pa 
 n      : power-law exponent 
 p : pressure, Pa 
SRR : slide-to-roll ratio 
T : temperature, K 

RT  : reference temperature, K 

0T  : ambient pressure value of T∞ , K 

0T ′  : ambient pressure value of dT dp∞ , K/Pa 

0T ′′  : ambient pressure value of 22d T dp∞ , K/Pa2 

T∞  : divergence temperature, K 

pu  : plane surface velocity, m/s 

su  : sphere surface velocity, m/s 

fu  : lubricant velocity component in x-direction, m/s 

fv  : lubricant velocity component in y-direction, m/s 

mU  : mean entrainment speed, m/s 
V : volume at T and p, m3 

VR : volume at reference state, TR, p = 0, m3 
V0 : volume at  p = 0, m3 

x,y,z : space coordinates 
0α  : initial pressure-viscosity coefficient, Pa-1 

*α  : reciprocal asymptotic isoviscous pressure coefficient ( 1 aip= ), Pa-1 

filmα  : general film-forming pressure-viscosity coefficient, Pa-1 

Kβ  : temperature coefficient of 0K , C-1 

ΔTmax: maximum temperature elevation within lubricant film (oC) 
γ     : shear rate, s-1 

η  : rate-dependent shear viscosity, Pa s⋅  
µ  : limiting low-shear viscosity and Newtonian viscosity, Pa s⋅  
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0µ  : low-shear viscosity at p=0, Pa s⋅  

cΩ  : Contact area geometric domain 
 ρ : lubricant mass density, kg/m3 

 ρ0 : lubricant mass density, at p = 0, kg/m3 

pρ  : mass density of plane’s material, kg/m3 

sρ  : mass density of sphere’s material, kg/m3 
τ  : shear stress, Pa 
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