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Fast and Reduced Full-System Finite Element Solution 

of Elastohydrodynamic Lubrication Problems: Line 

Contacts 

W. Habchi and J. Issa 

Lebanese American University, Department of Industrial and Mechanical Engineering, Byblos, Lebanon 

 

Abstract: 

This paper presents a reduced full-system finite element solution of elastohydrodynamic 

lubrication (EHL) problems. It aims to demonstrate the feasibility of this approach by applying it 

to the simple isothermal Newtonian line contact case. However the proposed model can be 

extended to more complex situations. This model is based on a full-system finite element 

resolution of the EHL equations: Reynolds, linear elasticity and load balance. A reduced model 

is proposed for the linear elasticity problem. For this, three different techniques are tested: the 

classical “modal reduction” and “Ritz-vector” methods and a novel “EHL-basis” method. The 

reduction order in the first two appears to be insufficient and a large number of degrees of 

freedom is required in order to attain an acceptable solution. On the other hand, the “EHL-basis” 

method shows up to be much more efficient, requiring only a few degrees of freedom to 

compose the elastic deformation of the solid components. In addition, a comparison with the full 

model shows an order of magnitude execution time gain with errors of the order of only 1‰ for 

the central and minimum film thicknesses.    

Keywords: Elastohydrodynamic Lubrication, Finite Elements, Model Reduction, Full-System Approach. 
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1. Introduction 

Lubrication has been a topic of interest for the engineering community during the last century. In 

particular, Elastohydrodynamic lubrication (EHL) has gained much attention since its 

recognition as the main physical mechanism behind the successful operation of important 

mechanical elements such as roller bearings and transmission gears. Numerical modeling of this 

lubrication regime has always faced major difficulties mostly related to the high dependence of 

common lubricants viscosities on pressure and the relatively large elastic deformations of the 

contacting elements. In fact, these contacts can be subject to very high pressures that can reach 

several GPa and the film thicknesses involved can go down to a few nanometers. These 

difficulties have lead throughout the years to the introduction of different numerical approaches 

with one aim which is to have a robust and fast EHL solver that would cover a large range of 

operating conditions. All these approaches fall within two major categories: Semi-System and 

Full-System. In the first, the different EHL equations are solved separately and an iterative 

procedure is established between their respective solutions. The weak coupling in these models 

leads to a loss of information that is compensated by underrelaxation, leading to slow 

convergence rates. Many examples of such models can be found in the literature. One of the first 

works using this approach was that of Dowson and Higginson [1] followed by the pioneering 

work of Hamrock and Dowson [2]. A major step forward was the introduction of multigrid 

techniques to EHL problems by Lubrecht et al. [3]. These techniques helped improve the 

convergence performance of the Semi-System approach and opened the way to solving EHL 

problems on small scale computers. In the Full-System approach, EHL equations are solved 

simultaneously, preventing any convergence degradation due to losses of information resulting 

from coupling. One of the first models to use such an approach is that of Rhode and Oh [4] who 
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solved the EHL problem (in a finite element framework) as one integro-differential equation 

using a Newton-Raphson procedure. Later on, a similar work was provided by Houpert and 

Hamrock [5]. More recently, Hughes et al. [6] used the differential deflection method [7] in order 

to solve the EHL problem using the finite element method within a Full-System framework. The 

list of references provided above is by no means an exhaustive one. A few milestone 

contributions have only been cited and the interested reader is referred to the references therein 

for a more exhaustive coverage of the literature. 

Although the Full-System based models mentioned above provide some attractive convergence 

properties, these have always suffered from three major drawbacks. First, the tedious 

implementation of the cavitation condition because of the simultaneous solution of all pressure 

updates. Second, the elastic deflection calculation in these models is based on a half-space 

approach. Therefore, the elastic deflection at any discretization point is related to all other points 

of the computational domain by means of the integral calculation. This results in a full Jacobian 

matrix that requires an important computational overhead in order to invert it. Finally, for 

heavily loaded contacts, the Jacobian matrix becomes almost singular which makes the solution 

hard to reach. In a recent work, Habchi et al. [8-10] introduced a finite element Full-System 

approach where the elastic deflection calculation was based on a linear elasticity model. This 

lead to a sparse Jacobian matrix since every discretization point belonging to a certain number of 

finite elements is only connected to its neighbouring points belonging to these elements. Thus 

the problem of the large computational overhead associated to the inversion of a full Jacobian 

matrix was overcome. However, a significantly larger, but sparse, Jacobian matrix is obtained 

resulting in reduced computational overhead associated with its inversion. In addition, the 

authors used a penalty method as proposed by Wu [11] to deal with the free boundary problem. 
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This method is implemented in a straightforward manner, by adding an additional penalty term 

to the Reynolds’ [12] equation. Finally, special stabilized finite element formulations were 

introduced for the solution of highly loaded contacts. Hence, all difficulties associated so far to 

the Full-System approach were overcome, allowing this model to take full advantage of its fast 

convergence properties. In addition, this model was shown to have the same complexity as state 

of the art ones, but faster convergence rates. This is only true up to a certain problem size since 

the complexity of the employed sparse direct solver slightly exceeds O(n) for large n values 

(where n is the total number of unknowns in the problem). This restriction can be alleviated by 

the use of iterative solvers as proposed in [13] where an EHL solver with O(n) complexity is 

developed, for linear finite elements, based on a multigrid preconditioned GMRES iterative 

linear solver. It is worth noting that even with an algorithm of O(n) complexity, the complexity 

of the Full-System approach is only the same as state of the art ones provided the number of 

linear elasticity unknowns can be bounded by ( )logp pn n  where np is the number of pressure 

unknowns in the problem. This is entirely possible with the use of locally refined meshes as is 

the case with the Full-System approach. Finally, the use of the finite element method which 

enables non-regular non-structured meshing lead to smaller size systems and hence faster 

solutions. 

Although the model discussed above provides interesting performance properties compared to 

existing ones, a major improvement is possible and highly desirable to tackle computationally 

demanding problems (e.g. point contacts, transient EHL problems). In fact, as stated earlier, the 

elastic deflection of the solid elements is computed by means of a linear elasticity approach. The 

latter is applied to the entire solid domain, whereas for the EHL solution, only the surface 

deflection in the contact area is needed. Hence, a large number of degrees of freedom (dof) that 
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is being computed is not useful in practice. The aim of this paper is to improve the elastic 

deflection calculation by reducing the size of the corresponding model. Several techniques can 

be found in the literature for reducing the size of linear elasticity problems e.g. Boundary 

Element Method (BEM) [14], Infinite Elements [15], Model Order reduction [16]. However, the 

BEM method leads to full matrix systems and Infinite Elements have to be used in regions away 

from the contact area where the mesh size is usually relatively large and therefore the reduction 

in the size of the overall matrix system is relatively small. Hence, this work will focus on 

investigating the possibility of applying Model Order Reduction techniques to the EHL problem. 

Therefore, line contacts operating under steady-state regime shall be considered. Although the 

solution of line contact problems is relatively fast without the need for any model reduction 

techniques, it is important to explore the proposed method on the simple case before moving on 

to the more complicated, more computationally demanding cases. Besides, the method 

introduced in the following is not restricted to the simple line contact case and can be extended 

to more general applications. In the following, the lubricant is assumed to have a Newtonian 

behavior, thermal effects are neglected, and solid surfaces are taken to be smooth.                                  

2. EHL theory and equations 

Line contacts take place between two solid elements having an infinite radius of curvature in one 

of the principal space directions (y-direction). Such contacts can be reduced to an equivalent 

contact between a cylinder and a flat surface with the cylinder having an equivalent radius of 

curvature R in the x-direction as shown in Figure 1. The surfaces of these elements are pressed 

against each other by an external applied force F, they are separated by a full lubricant film and 

have constant unidirectional surface velocities in the x-direction. 
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Figure 1: Geometrical description of a line contact 

Three main equations define an EHL problem: the Reynolds equation which describes the 

pressure distribution p in the contact area, the linear elasticity equations which determine the 

elastic deformation of the contacting elements and the load balance equation which ensures that 

the correct load F is applied. All equations are written in dimensionless form using the Hertzian 

dry contact parameters [17] (i.e. Hertzian contact pressure ph and Hertzian contact half-width a). 

The Reynolds [12] equation describing the dimensionless pressure distribution P for a steady-

state line contact problem with unidirectional surface velocities u1 and u2 in the X-direction is 

given by: 

 
( ) 0

HP
X X X

ρ
ε

∂∂ ∂ ⋅ − = ∂ ∂ ∂ 
 (1) 

Where: 
23

1 2
3

12,      and   =
2

m R
m

h

u R u uH u
a p
µρε λ

µλ
+

= =  

This equation stems from the Navier-Stokes equations to which the thin film simplifying 

assumptions are applied. H is the film thickness. The dimensionless viscosity µ  and density ρ  

vary with pressure throughout the contact domain cΩ  (See Figure 2) making the problem highly 

nonlinear.  
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Figure 2: Computational domain of the line contact problem 

The modified WLF model proposed by Yasutomi et al. [18] is used for viscosity variations with 

respect to pressure: 

 

( )
( )( ) ( )
( )( ) ( )

( ) ( ) ( )
( ) ( )

1 0

2 0

1 2

1 2

            10

with:   0 ln 1

           1 ln 1

g

g

C T T p F p

C T T p F p
g

g g

p

T p T A A p

F p B B p

µ µ

− ⋅ − ⋅

+ − ⋅= ×

= + +

= − +

 (2) 

Where T0 is the ambient temperature. As for density variations with pressure, the Dowson and 

Higginson [19] model is used: 

 ( )
9

9
0.6 101

1 1.7 10R
pp

p
ρ ρ

−

−

 ×
= + + × 

 (3) 

Neglecting body loads, the linear elasticity equations consist in finding the displacement vector 

{ },U u v=  over the 2D computational domain Ω  such that: 

 ( ) ( )0 sdiv with C Uσ σ ε= =  (4) 
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Where σ is the stress tensor, εs the strain tensor and C the compliance matrix. Line contacts being 

infinitely long in the y-direction, a plane-strain approximation is assumed. The computational 

domain Ω  of the linear elasticity problem is a square which edges are large enough compared to 

the contact area (See Figure 2) in order to satisfy the half-space approximation and avoid any 

side effects. An edge length of at least 60a was shown to be sufficient [8]. In order to simplify 

the computational model, an equivalent problem is defined to replace the elastic deformation 

computation for both contacting bodies under the same pressure distribution. The equivalent 

model is defined by applying eq. (4) to a body that has the following material properties [9]: 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 22 2
1 2 2 2 1 1 1 2 2 2 1 1

2
1 2 2 11 2 2 1

1 1 1 1
   and   

1 11 1
eq eq

E E E E E E
E

E EE E

υ υ υ υ υ υ
υ

υ υυ υ

+ + + + + +
= =

+ + + + + + 
 (5) 

Moreover, by multiplying the equivalent Young’s Modulus by a R  the dimensionless 

displacement vector is obtained directly and dividing it by hp  allows the use of the 

dimensionless pressure distribution P as a pressure load in the contact area. Hence, the 

equivalent material properties become: 

 ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 22 2
1 2 2 2 1 1 1 2 2 2 1 1

2
1 2 2 11 2 2 1

1 1 1 1
   and   

1 11 1
eq eq

h

E E E E E EaE
R p E EE E

υ υ υ υ υ υ
υ

υ υυ υ

+ + + + + +
= × =

+ + + + + + 
 (6) 

The previous simplification is equivalent to considering that one of the bodies is rigid while 

the other (that has the equivalent material properties defined in eq. (6)) accommodates the total 

elastic deflection of both surfaces. This avoids running a similar calculation twice (once for each 

solid body). 

The film thickness H contains three contributions: the rigid body separation H0, the original 

undeformed geometrical shape and the elastic deflection of the solid components δ : 
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 ( ) ( ) ( ) ( )
2

0    with   
2

XH X H X X v Xδ δ= + + =  (7) 

Where ( )v X  corresponds to the elastic displacement in the z-direction. Finally, the load balance 

equation is written in dimensionless form as follows: 

 ( )
2

c

P X dX π

Ω

=∫  (8) 

Where 2π  corresponds to the dimensionless external load. This equation ensures that the 

correct external load F is applied. The latter is controlled by the value of the film thickness 

constant 0H . 

To complete these equations, boundary conditions must be supplied for Reynolds’ and the linear 

elasticity equations. For Reynolds’ equation, the pressure is considered to be zero at the 

boundaries of the contact area: 

 0    on  cP = ∂Ω  (9) 

As for the complementary film rupture boundary condition, which is used to define the free exit 

boundary of the contact: 

 0   on    and   P 0  on the cavitation boundaryc cP P n≥ Ω = ∇ ⋅ =
  (10) 

Where cn  is the outward normal vector to the outlet boundary of the contact. Finally, the 

boundary conditions of the elastic problem are defined as follows: 

 
0                     at the bottom boundary 

      at the contact area boundary 
0                    elsewhere

b

n c

n

U
n Pσ σ

σ

= ∂Ω
 = ⋅ = − Ω
 =

  (11) 
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These boundary conditions along with the different EHL equations provided above completely 

define the mathematical model used to describe the behaviour of smooth isothermal Newtonian 

EHL line contacts operating under steady-state regime. 

3. Full and Reduced Models  

The full model for line contact problems has been previously introduced in [8-10] and in this 

section only a brief reminder of this model shall be provided. On the other hand, the reduced 

model, which constitutes the core of this paper, shall be described into more detail. Both models 

are based on the Full-System finite element approach introduced in [8-10]. The three EHL 

equations (Reynolds, elasticity and load balance) are solved simultaneously using a damped 

Newton procedure as described in [20]. The free boundary problem is treated by means of a 

penalty method as proposed by Wu [11]. The latter consists in adding a penalty term to the 

Reynolds equation. This term acts only in the negative pressure region and forces the negative 

pressures towards zero. Reynolds equation thus becomes: 

 
( ) 0

HP P
X X X

ρ
ε ξ −∂∂ ∂ ⋅ − − ⋅ = ∂ ∂ ∂ 

 (12) 

Where ξ  is an arbitrary large positive number and ( )min ,0P P− =  corresponds to the negative 

part of the pressure distribution. In addition, for heavily loaded contacts, the Galerkin Least 

Squares (GLS) finite element formulation introduced in [10] is used. 

 

3.1 Full Model 

In the full model, the linear elasticity equations (4) are applied to the entire solid geometrical 

domain Ω, whereas Reynolds’ equation is applied only to the one-dimensional contact area Ωc. 

On the other hand, the load balance equation is an ordinary integral equation that is added 
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directly to the system of equations formed by the Reynolds and linear elasticity equations, along 

with the introduction of an additional unknown 0H . The weak form finite element formulation 

of the obtained system of equations reads: 

 

( ) ( )

( ) ( )

0

0 0

0Find , ,  such that , , ,  one has:

0

0

0
2

c

c c c

c

U P U P H U P

s s U U

P P
P

H H

U P H S S R W W W S S R

C U W d P n W d

W WP d H d P W d
X X X

PW d W

ε ε

ε ρ ξ

π

Ω Ω

−

Ω Ω Ω

Ω

∈ × × ∀ ∈ × ×


− ⋅ Ω+ − ⋅ Ω =


 ∂ ∂∂ − Ω+ Ω− ⋅ Ω = ∂ ∂ ∂

 Ω− =


∫ ∫

∫ ∫ ∫

∫



 (13) 

Where: ( ) ( ){ } ( ){ }1 1 1/ 0 on    and   / 0 onU b P c cS U H H U S P H P= ∈ Ω × Ω = ∂Ω = ∈ Ω = ∂Ω  

Let us now write the discrete form of the previous system of equations. Consider 

{ }1, ... ,
e

h
nΩ = Ω Ω  a finite element partition of Ω  such that: 1

en
e e=Ω = ∪ Ω , Ω = Ω∪∂Ω ,  

e e eΩ = Ω ∪∂Ω  and φ=Ω∩Ω 'ee  if 'ee ≠ . en  denotes the total number of elements in the 

partition while ∂Ω  and e∂Ω  denote respectively the boundaries of the domain Ω  and the 

element eΩ . Let ceΩ  be the set of elements representing the 1D contact domain cΩ  and defined 

by { }/ce e c ceΩ = Ω ∩Ω Ω ≠∅  and let cen  be the total number of elements belonging to ceΩ . Let 

h
U US S⊂  and h

P PS S⊂ . The discrete functions hU  and hP  defining these spaces have the same 

characteristics as their analytical equivalents U  and P  defined above with the only difference 

that h lU L∈  and  lh LP ∈ where lL  is the set of interpolation polynomials of degree equal to l

defined within each element eΩ . The discrete form of the previous system of equations is 
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obtained by replacing the field variables U and P by their discrete equivalents 
( ) ( )

 and 
e eh hU P

within every discretization element e:  

 
( ) ( )( ) ( )

1 1
   and    

U Pe e
n n

h e h e
i Ui i Pi

i i
U U N P P N

= =

= =∑ ∑  (14) 

Where ( ) ( ) and e e
i iU P  are the nodal values of U and P respectively, associated to the interpolation 

functions UiN  and PiN  within the element e (  and U Pn n  being their respective numbers). 

Similarly, the weighting functions  and U PW W  are approximated by 
( ) ( )

 and 
e eh h

U PW W respectively: 

 
( ) ( )( ) ( )

1 1
   and   

U Pe e
n n

h e h e
U Ui Ui P Pi Pi

i i
W W N W W N

= =

= =∑ ∑  (15) 

Where ( ) ( )
, ,W  and e e

U i P iW  are the nodal values of the weight functions  and U PW W  within the 

element e respectively. Finally, by adding the stabilizing GLS term to Reynolds equation, the 

discrete form of the system of equations (13) becomes: 

 

( ) ( )
( ) ( )

( )

00Find , ,  such that , , ,  one has:

0
h h

c

h h h
c c c

h h h h h h h h
U P U P H U P

h h h h
s s U U

Penalty term
h hh

h hP P
P

h h
h P P

h

U P H S S R W W W S S R

C U W d P n W d

W WP d H d P W d
X X X

W WR P H
P X X X

ε ε

ε ρ ξ

ρτ ε

Ω Ω

−

Ω Ω Ω

∈ × × ∀ ∈ × ×

− ⋅ Ω+ − ⋅ Ω =

∂ ∂∂
− Ω+ Ω− ⋅ Ω

∂ ∂ ∂

 ∂ ∂∂ ∂
− − ∂ ∂ ∂ ∂

∫ ∫

∫ ∫ ∫





0 0

1
0

0
2

ce

ce

h
c

n

e

GLS term

h
H H

d

P W d Wπ

= Ω

Ω








  
 Ω =    


 Ω− =


∑ ∫

∫



 (16) 

Where Rh is the residual of the hydrodynamic problem (Reynolds equation). The tuning 

parameter τ is defined as: 
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( )

( ) ( )

2

1with: ,    and  coth
2

e

e

h Pe
l

h
H Pe Pe Pe

P l Pe

τ ξ
β

βρβ ξ
ε

=

∂
= = = −

∂

 (17) 

Where eh  and Pe  are respectively the characteristic length and the local Peclet number of the 

element e. l is the polynomial order of the hydrodynamic problem’s Lagrange shape functions 

NP. In the current work, second order Lagrange elements (l = 2) are employed for both the elastic 

and hydrodynamic problems (NU and NP). The system of equations (16) is nonlinear and a 

Damped-Newton [20] procedure is employed in order to solve it. The latter gives rise to a 

linearized system of equations (as a function of the increments δU, δP and δH0) to solve at every 

Newton iteration i: 

 

2 1

1 1

2

1

0

2 1

2

1

D D

i i i

ee eh eD

he hh hl hD

lh l

N N

K K U RN

K K K P RN

K H R

δ

δ

δ

− −

×

     
     ∅×      
     
     

=    
    
    
    
    ∅ ∅     

 

 (18) 

The subscripts e, h and l stand for “elastic”, “hydrodynamic” and “load balance” respectively. 

N2D is the number of nodes in the 2D mesh associated to the elastic problem whereas N1D is the 

number of nodes in the 1D mesh associated to the hydrodynamic problem. Hence, the total 

number of unknowns or dof of the elastic problem is 22 DN×  since 2 dof are associated to every 

node. These are uδ and vδ , the increments of the elastic deflections in the x and z directions 

respectively. On the other hand, the total number of unknowns of the hydrodynamic problem is 
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1DN  since 1 dof ( Pδ ) is associated to each node. The total number of unknowns is then defined 

as: 

 2 12 1dof D DN N N= × + +  (19) 

The matrix on the left-hand-side is the Jacobian matrix whereas the right-hand-side vector is 

formed by the residual vectors of the elastic, hydrodynamic and load balance equations (Re, Rh 

and Rl respectively). Starting with an initial guess of the solution (Hertzian pressure distribution 

and its corresponding elastic deflection), the system of equations (18) is solved at every Newton 

iteration i using a direct linear system solver (UMFPACK [21]). The result is added to the 

solution obtained at the previous iteration according to: 

 

1

0 0 0

i i i

i

U U U
P P P
H H H

δ
λ δ

δ

−
     
     = +     
     
     

 (20) 

Where [ ]0,1iλ ∈  is a “damping factor” computed according to [20]. This operation is repeated 

until convergence of the solution is obtained. The convergence criteria are also provided in [20]. 

Remark: Note that the elastic problem and the load balance equation are linear. Hence, their 

corresponding contributions to the Jacobian matrix Kee, Keh and Klh remain unchanged 

throughout the nonlinear resolution procedure. These matrices are only assembled once (at the 1st 

iteration), and the result is used throughout the iterative procedure. 

3.2 Reduced Model 

Although the model described above has been shown to have the same complexity as state of the 

art EHL solvers with faster convergence rates and smaller size systems, leading to smaller 
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execution times (the interested reader is referred to [8-10]), a major improvement is yet to be 

achieved. In fact, the elastic problem is solved over the sufficiently large two-dimensional 

geometrical domain associated to the solid elements. However, in practice, only the elastic 

deflection in the one-dimensional contact area Ωc is needed for the EHL solution. Hence, a large 

number of dof is being computed in vain. The idea here is to make the elastic calculation more 

efficient by reducing the size of its corresponding model. 

The reduced model is obtained by a simple change of solution space. In fact, the finite element 

formulation (15) remains the same with the only difference that the solution space SU for the 

elastic problem is now replaced by a reduced “richer” one US . The latter has the same properties 

as SU, but is formed by a smaller set of functions. However, these functions are now defined over 

the entire two-dimensional geometrical domain Ω, contrarily to those forming SU which, for a 

given element Ωe, are only defined inside the element and take a value of zero elsewhere. This 

property is the main reason behind the richness of US  compared to SU. Let Nm be the total 

number of functions iϕ  (i=1, 2, … , Nm) forming US . From this point on, these functions are 

referred to as “basis functions” and the vectors describing their discrete form over the two-

dimensional mesh of the elastic problem are referred to as “basis vectors”. Now, the elastic 

deflection U can be formed as a linear combination of the basis functions: 

 
1

mN
i

i
i

U α ϕ
=

=∑  (21) 

Where the parameters iα  are known as “Generalized Coordinates”. Equation (21) can be written 

in discrete form (within an element e) as: 
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( ) ( ),

1

me e
N

h i h
i

i
U α ϕ

=

=∑  (22) 

Where 
( ), ei hϕ  is the discrete equivalent of iϕ defined over the element e as: 

 
( ) ( ),

1

Ue e
n

i h i
j Uj

j
Nϕ ϕ

=

=∑  (23) 

Where 
( )ei

jϕ ( j = 1…nU) are the nodal values of iϕ  within element e. Hence, the reduced discrete 

system of equations is now obtained by replacing U, P, WU and WP by their discrete equivalents 

( )ehU (given by eq. (22)),  
( )ehP , 

( )eh
UW  and 

( )eh
PW . However, in contrast with the full model case, 

( )ehU  and 
( )eh

UW belong now to h
US  instead of h

US . The unknowns of the elastic problem are now 

the generalized coordinates iα . Their number is Nm compared to 22 DN×  in the full model case. 

And the matrix form of the linearized system of equations to solve at every Newton iteration i 

now becomes: 

 

1

1 1

1

0

1

1

m D

i i i
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lh l
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     ∅     
     
     
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 

  



 (24) 

With: , and  T T
ee ee eh eh he heK K K K K K= Φ Φ = Φ = Φ    

eR  is the residual of the reduced elastic problem whereas Φ  is the 22 D mN N×  transformation 

matrix which columns correspond to the basis vectors. 
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Remark: Note that the reduced elastic problem remains linear, and therefore its corresponding 

contributions to the Jacobian matrix eeK  and ehK  are also assembled only at the 1st iteration of 

the nonlinear resolution procedure. 

It is clear that the total number of dof of the reduced model is: 

 1 1dof m DN N N= + +  (25) 

Hence, if one can define a sufficiently rich solution space US  such that the total number of basis 

functions required to reconstitute any EHL elastic deformation (within a wide range of operating 

conditions) 22m DN N<< × , then the size of the reduced model dof dofN N<< . As a consequence, 

execution times are expected to be reduced. 

Now that the basic principles behind the reduced model employed in this work have been 

introduced, the whole problem boils down to choosing an appropriate reduced solution space US . 

Model reduction of linear elasticity problems in itself is not a novel topic. In fact, numerous 

techniques can be found in the literature for the selection of the reduced solution space. The 

interested reader is referred to [22] and references therein for an exhaustive review of these 

techniques. In this work, three model reduction techniques are inspected. The first two are more 

or less classical: a “Modal Coordinate Reduction” technique also known as “Modal Reduction”, 

which uses the mode shapes of a structure in order to form its reduced solution space and a 

“Ritz-vector-like” method which uses some load dependent deflections as basis vectors. Finally, 

the third method is a novel EHL-oriented one, which uses EHL deflections as basis vectors. 

3.2.1 Modal Reduction Technique 

Modal reduction is a classical model reduction technique that has been widely used in the 

literature [16]. The latter consists in using the mode shapes of a structure as basis functions. 
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These possess an interesting orthogonality property with respect to the stiffness matrix eeK , 

making the reduced stiffness matrix eeK  a diagonal matrix. The values of the diagonal terms are 

nothing else but the eigenvalues of the linear elasticity problem.  

In order to test this method, a simple EHL case is considered. The values of the dimensionless 

Moes [23] parameters M and L are taken to be M=30 and L=5 respectively. The Hertzian contact 

pressure ph=0.46GPa, and this contact is a lightly loaded one, which solution is normally easy to 

obtain using classical approaches. Figure 3 shows the dimensionless pressure and film thickness 

distributions obtained for this case by both the full and reduced models. The left hand figure 

clearly shows that for Nm=100 the dimensionless pressure profile exhibits an oscillatory behavior 

in the central area of the contact. Increasing the number of mode shapes to Nm =1800 (right) 

reduces the amplitude of these oscillations but does not completely remove them. In fact, the 

mode superposition technique defined in eq. (21) is known to generate micro-oscillations in the 

displacement field U [16]. In most linear elasticity applications, these oscillations are irrelevant 

and their effect is of minor importance. However, the EHL problem is very sensitive to these 

micro-oscillations in the elastic deflection. This is because under a wide range of operating 

conditions (especially in the high load regime) the elastic deflection of the solid components can 

be several orders of magnitude larger than the film thickness. Hence, any small error in the 

elastic deflection is amplified when included in the film thickness. Since the latter appears to the 

cubic power in the second order term of Reynolds equation, this effect is even further amplified 

and leads to important oscillations in the pressure distribution.     
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Figure 3: Dimensionless pressure and film thickness profiles obtained using the modal reduction technique for the 

case M=30, L=5 (ph=0.46GPa) using 100 (left) and 1800 (right) mode shapes   

It is clear that the results obtained by modal reduction in the simple case presented in Figure 3 

are unsatisfactory, even when using a very large number of mode shapes (Nm=1800). For high 

loads, this spurious behavior is expected to be further amplified. Hence, a different, more stable 

alternative for the selection of the reduced solution space is to be investigated. Next, a Ritz-

Vector-like method is discussed.  

3.2.2 Ritz-Vector-like method 

Ritz-vector methods are an attractive alternative for model reduction when a structure is subject 

to fixed spatial distribution of applied loads. This happens to be the case in EHL applications, 

where the external load is always a normal load applied over the contact area Ωc. “Load 

Dependent Ritz Vectors” (LDRVs) are a particular and efficient class of Ritz vectors in which 

loading information on the structure is used to generate the vectors which form the reduced basis. 

Because Ritz vectors are created based on a specific load pattern, fewer vectors are typically 

needed to achieve the same level of accuracy as modal reduction techniques. The LDRV method 

was first proposed by Wilson et al. [24] and then improved by Nour-Omid and Clough [25][26]. 
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These schemes employ static recurrence procedures to generate the LDRVs starting with a first 

vector that corresponds to the static deformation of the structure due to a particular applied 

pattern. The reduced basis formed by the LDRVs automatically satisfies the orthogonality 

property with respect to the stiffness matrix eeK .  

The same principle is employed in this section in order to develop a Ritz-Vector-like method, 

specifically designed for EHL applications. The first Ritz vector is generated by considering a 

Hertzian pressure distribution in the contact area whereas the remaining vectors are determined 

using the static recurrence procedure. In order to test this method, the same test case is 

considered as previously (M=30, L=5, ph=0.46GPa). Figure 4 shows the dimensionless pressure 

and film thickness distributions obtained for this case by both the full and reduced models. The 

left hand side figure clearly shows that for Nm=100 the pressure distribution still exhibits an 

oscillatory behavior. However, note that the amplitude of these oscillations is smaller than that 

obtained using the modal reduction technique with the same number of basis vectors. Increasing 

the number of Ritz-Vectors Nm to 300 (right) reduces the amplitude of these oscillations to a 

much better extent than the case Nm=1800 using the modal reduction technique.  But again, these 

oscillations are not completely smoothed out. 
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Figure 4: Dimensionless pressure and film thickness profiles obtained using the Ritz-Vector-like method for the 

case M=30, L=5 (ph=0.46GPa) using 100 (left) and 300 (right) Ritz-Vectors 

As expected, the Ritz-Vector-like method being load-dependent, it turned out to be more stable 

than the modal reduction technique. Yet, the number of Ritz-Vectors needed to reach an 

acceptable solution remains relatively high (Nm>300) for a relevant reduction in the 

computational effort to be obtained. This number is expected to be even higher for highly loaded 

cases. As a consequence, it seems unavoidable to consider a more EHL-oriented choice of the 

reduced solution space. This track is investigated next. 

 

3.2.3 EHL-Basis Technique 

Based on the unsatisfactory results obtained by the classical modal reduction and Ritz-vector like 

methods, it is unavoidable to adopt a more “EHL-oriented” strategy in the choice of basis 

functions for the reduced model. In this section, a novel method is proposed, where the basis 

functions are nothing else but EHL elastic deflections computed using the full model presented 

earlier. From this point on, the resulting basis is referred to as “EHL-basis”. The corresponding 

functions are selected in such a way to cover a large range of operating conditions. The Moes 
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dimensionless load and material properties parameters, M and L respectively, are used to define 

this range. In fact, the EHL-basis functions are selected within a range of values 

0 1000 and 0 20M L< ≤ < ≤ . Their selection is based on numerical experimentation and 

visualization of the corresponding deflections, mostly their deviation with respect to the Hertzian 

elastic deflection within the contact area Ωc. The following observations were established: 

1- It is important to distinguish three separate domains of operating conditions based on 

their values of M. These are 0 20, 20 50  and 50 1000M M M< ≤ < ≤ < ≤  corresponding 

to Low, Medium and High values of M respectively. 

2- In the High M regime, often associated to high loads, the EHL solution is very sensitive 

to any micro-oscillations in the elastic deflection resulting from the superposition of a 

large number Nm of basis functions. This is because the elastic deflection in this regime is 

often several orders of magnitude larger than the film thickness. Hence, the slightest error 

in the elastic deflection has an important effect on the film thickness. In addition, since 

the latter appears to the cubic power in the second order term of Reynolds equation, this 

effect is even more amplified on pressure. As a consequence, a smaller and more 

scattered number of basis functions is to be employed under these conditions.   

Based on the previous observations, three separate sets of basis functions were derived. These 

are shown in Figure 5 for the Low, Medium and High M regimes. For all three cases, the 

Hertzian elastic deflection is used as the first basis function. The remaining functions are marked 

by an x-tick in their corresponding grid showing their M and L values. The total number of basis 

functions Nm does not exceed 30 in all cases (Nm =29 for Low and Medium M whereas Nm =22 

for high M). Note that for high M, the basis functions are more scattered and their number is 

reduced (relatively to the covered range of M and L) compared to the Low and Medium cases. 
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Finally, it is important to note that the choice of EHL-basis is not unique, however the one 

suggested in this work was found to provide stable solutions over the corresponding range of M 

and L.  

Remark: Note that the EHL-basis functions are not orthogonal with respect to the linear 

elasticity stiffness matrix Kee, leading to a full reduced stiffness matrix eeK . However, 

considering their very small number (Nm<30), the total number of nonzero terms in eeK  is 

negligible compared to Kee.   

Figure 5: Composition of the EHL-basis for the Low (left), Medium (centre) and High M (right) regimes 

 

In order to test this EHL-oriented method, three test cases are considered (one for each M 

regime). The first corresponds to M=17, L=15, ph=1.05GPa (Low M), the second M=30, L=5, 

ph=0.46GPa (Medium M) and finally M=375, L=15, ph=4.91GPa (High M).  

Remark: Note that for the last case considered, the Hertzian contact pressure ph=4.91GPa is 

relatively high and may very rarely be encountered in real applications. Under such pressures, 

the solid materials may even be subject to plastic deformations and the linear elasticity approach 
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employed here is no longer valid. However, this case is considered here for the only purpose of 

showing the robustness of the proposed model. 

 

Figure 6: Dimensionless pressure and film thickness profiles obtained using the EHL-Basis method for 3 different 

test cases. Left: M=17, L=15, ph=1.05GPa (Low M), Centre: M=30, L=5, ph=0.46GPa (Medium M), Right: M=375, 

L=15, ph=4.91GPa (High M) 

Figure 6 shows the dimensionless pressure and film thickness distributions obtained by both the 

full and reduced models for the three test cases considered. It is clear that the solutions obtained 

by the reduced model perfectly match those obtained by the full one and no oscillations are 

observed. Hence, despite the relatively small number of basis functions employed in the EHL-

Basis, the latter is rich enough to allow a robust and satisfactory solution of the problem. From 

this point on, only the EHL-Basis method is adopted and a thorough investigation of its 

numerical properties is realized.     

 

4. Overall numerical procedure 

In this section, the overall numerical procedure of the reduced model is described. The overall 

procedure consists of two main parts: Preprocessor and Solver. In the pre-processing phase, for a 

given mesh case, the mesh data is generated and stored on a text file. Then, the Full Model is 

employed to run Full calculations and generate the basis functions. For this, any typical lubricant 

can be used provided that the set of basis functions is derived for the M and L values indicated in 
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Figure 5. Then, these derived basis functions are stored on the same text file with the mesh data. 

Note that this pre-processing phase is carried out only once for a given mesh case and there is no 

need to regenerate the basis functions even for different lubricants (see following section). In the 

solver part, the first step is to read the mesh data along with the basis functions from the 

corresponding text file. Then, for a given set of operating conditions, the Reduced Model is 

employed to solve the different EHL equations using a damped Newton procedure as indicated in 

section 3.2.  

5. Results 

In the following, motivated by the promising results obtained using the EHL-Basis technique, a 

thorough investigation of the numerical performance of this method is presented. Five different 

mesh cases are considered in this section: “Extra Coarse”, “Coarse”, “Normal”, “Fine” and 

“Extra Fine”. Their respective properties are listed in Table 1 for both the full and reduced 

models.  

Mesh Case N2D N1D Ndof 
Ñdof 

Low / Medium M High M 
Extra Coarse 741 105 1588 135 128 

Coarse 1816 203 3836 233 226 
Normal 5419 499 11338 529 522 

Fine 10773 909 22456 939 932 
Extra Fine 63927 4229 132084 4259 4252 

Table 1: Properties of the different mesh cases considered 

All mesh cases are developed such that the mesh size be fine in the Hertzian contact area, coarser 

in the inlet and outlet regions of the contact and even coarser and coarser with increasing 

distance from the 1D contact area. This guarantees a custom-tailored “EHL-optimized” dof 

repartition over the 2D computational domain Ω. Figure 7 shows the “Extra Coarse” (left), 

“Normal” (centre) and “Extra Fine” (right) mesh cases. 
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Figure 7: “Extra Coarse” (left), “Normal” (centre) and “Extra Fine” (right) mesh cases 

In the following numerical tests, three different lubricants are considered: a standard paraffinic 

mineral base oil (CPRI), a low viscosity low pressure-viscosity mineral base oil (CPRP) and a 

synthetic hydrocarbon base lubricant of higher viscosity (PENNZ). Their modified WLF 

constant parameters are listed in Table 2 along with their ambient pressure viscosity µR and 

equivalent pressure-viscosity coefficient α* also known as the reciprocal asymptotic isoviscous 

pressure coefficient [27] and defined as: 

( )
( )

1

*

0

0p
dp

p
µ

α
µ

−
∞ =

=  
 
∫  (26) 

The modified WLF properties of the considered lubricants can be found in [28][29]. The ambient 

temperature is considered to be T0=25oC. 

 

 

 WLF constant parameters µR (Pa.s) α* (GPa-1) 
A1(oC) A2(MPa-1) B1   B2(MPa-1) C1 C2(oC) Tg(0) (oC) µg (Pa.s) 

CPRI 19.17 4.07x10-3 0.230 0.0249 16.04 18.18 -73.86 1012 0.02828 23.6 
CPRP 22.47 4.22x10-3 0.222 0.0349 15.87 10.22 -113.79 1012 0.00165 12.5 

PENNZ 69.81 1.68x10-3 0.213 0.0118 11.84 60.59 -87.46 107 0.20209 18.05 

Table 2: Viscosity data for CPRI, CPRP and PENNZ lubricants from [27-28] 
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Finally, all numerical tests are carried out for Steel-Steel contacts. The employed Steel has a 

Poisson’s coefficient υ=0.3 and a Young’s Modulus E=210GPa. 

5.1 Convergence and Complexity 

In this section, the convergence behavior of the proposed model with respect to the mesh size is 

studied along with the complexity of both the full and reduced models. In order to study the 

convergence behavior of the EHL solution with respect to the mesh size, two typical EHL cases 

are considered M=30, L=5 (ph=0.46GPa) and M=500, L=10 (ph=3.78GPa). The values of the 

dimensionless central film thickness Hc and minimum film thickness Hmin (obtained by the full 

model) are reported in Figure 8 for the five different mesh cases considered. 

 

Figure 8: Solution convergence behavior of the proposed model with respect to the mesh size. Left: Lightly loaded 

case (M=30, L=5); Right: Highly loaded case (M=500, L=10) 

Figure 8 (left) clearly shows that for the lightly loaded case (M=30, L=5) convergence of the 

central and minimum dimensionless film thicknesses is reached for the “Normal” mesh case. 

However, for the highly loaded case (M=500, L=10), convergence is reached for the “Fine” 

mesh case. This feature is common to all EHL models, since highly loaded contacts are known to 
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be more numerically sensitive to mesh size variations. Based on these results, from this point on, 

unless stated otherwise, the “Fine” mesh case is adopted for numerical tests. 

Full Model Reduced Model 
Ndof Execution time / Newt. iter. (s) Ñdof Execution time / Newt. iter. (s) 

           1588 (= nref)          0.015(= tref)            135 (= nref)          0.004(= tref) 
3836 0.043 233 0.006 

11338 0.135 529 0.015 
22456 0.284 939 0.029 

132284 2.017 4259 0.182 

Table 3: Execution time for one Newton iteration as a function of the total number of dof for a typical line contact 

(M=30, L=5) for both the full and reduced models  

 

Figure 9: Experimental complexity of the proposed full and reduced models 

Finally, the complexity of both the full and reduced models is studied. Table 3 lists the execution 

time required for one Newton iteration by both models (using a 2.4GHz processor) for a typical 

line contact case (M=30, L=5) as a function of the total number of dof. These results are used to 

plot the overall global complexity of the full and reduced model algorithms as shown in Figure 9. 

This figure shows the experimental complexity of the Full and Reduced models as compared to 

three reference complexities (n, n log(n) and n2). From Figure 9, it is clear that both models have 

a complexity close to O(n) over a wide range of the total number of dof (n/nref < 30). However, 
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as the total number of dof is further increased the complexity becomes slightly higher than O(n) 

but remains below O(n.log(n)) or even more O(n2) over the considered range of n/nref. Note that 

the execution time per Newton iteration is used to derive the complexity curves. This is because 

the total execution time might be misleading as for the same test case the total number of 

iterations might be different for the Full and Reduced models since the stopping criterion for the 

damped-Newton procedure is error-based [20]. Hence, the execution time per iteration is more 

representative of the amount of computational effort required by each model for a given number 

of dof. 

5.2 Reduced vs. Full Model 

In this section, a series of numerical tests is realized in order to compare the precision and 

performance of the reduced model to that of the full one. The corresponding results are listed in 

Tables 4 and 5. All results discussed here are obtained using the “Fine” mesh case. Table 4 

provides the dimensionless central film thickness Hc and minimum film thickness Hmin obtained 

by both the full and reduced models for several test cases using the three different lubricants 

mentioned previously. Note that the errors reported in this table correspond to relative errors 

between the Full and Reduced models’ respective solutions (where the Full model solution is 

used as the reference solution). 
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 M L ph  Hc Hmin 
(GPA) Full Red. Err.(‰) Full Red. Err.(‰) 

CPRI 

12 12 0.70 0.18052049 0.18052302 0.014 0.15514818 0.15514674 0.009 
17 15 1.04 0.13772694 0.13771578 0.081 0.12093119 0.12083193 0.821 
45 5 0.57 0.02515687 0.02515679 0.003 0.02128733 0.02136252 3.532 

100 10 1.69 0.01438153 0.01438083 0.049 0.01290887 0.01291139 0.195 
600 8 3.31 0.00159831 0.00159830 0.006 0.00147220 0.00147069 1.026 

CPRP 

13 8 0.92 0.13077684 0.13074332 0.256 0.11272771 0.11259963 1.136 
40 9 1.82 0.03846414 0.03847607 0.310 0.03416566 0.03424579 2.345 
45 5 1.07 0.02465579 0.02458083 3.040 0.02129696 0.02142663 6.089 

120 10 3.50 0.01165195 0.01166741 1.327 0.01055419 0.01057317 1.798 
500 6 4.28 0.00166994 0.00167389 2.365 0.00153944 0.00154153 1.358 

PENNZ 

12 8 0.61 0.14334110 0.14334916 0.056 0.12171494 0.12156599 1.224 
18 15 1.41 0.12726978 0.12728937 0.154 0.11291462 0.11288638 0.250 
40 12 1.68 0.04516983 0.04519063 0.460 0.04031014 0.04036518 1.365 

200 12 3.75 0.00719969 0.00720202 0.324 0.00658494 0.00658984 0.744 
600 6 3.25 0.00133440 0.00133627 1.401 0.00122894 0.00123036 1.155 

Table 4: Error behavior: comparison between the full and reduced models 

Table 4 clearly shows that the relative error in Hc and Hmin for the reduced model with respect to 

the full one is negligible. Despite the small number of basis functions employed, for most cases, 

the relative error is less than 1‰. Note that this is valid for all tested lubricants without the need 

to derive a new set of basis functions for each. Although, these lubricants have very different 

viscosities and viscosity-pressure dependencies, the choice of basis functions did not show any 

dependence on the choice of lubricant. In fact, for this work CPRI lubricant has been used when 

deriving the basis functions. This is probably why the deviations in film thickness between the 

reduced and full models is relatively lower than for the remaining lubricants considered here. 
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 M L ph  No of Iterations   Execution time (s) 
(GPA) Full Red. Full Red. 

CPRI 

12 12 0.70 13 16 4.20 0.45 
17 15 1.04 23 38 7.60 1.10 
45 5 0.57 11 11 3.80 0.30 

100 10 1.69 17 17 5.40 0.68 
600 8 3.31 24 16 8.20 0.51 

CPRP 

13 8 0.92 14 14 4.70 0.38 
40 9 1.82 13 20 7.10 0.59 
45 5 1.07 8 10 2.90 0.28 

120 10 3.50 16 17 5.20 0.71 
500 6 4.28 27 25 10.0 0.99 

PENNZ 

12 8 0.61 14 16 4.60 0.44 
18 15 1.41 49 50 15.0 1.50 
40 12 1.68 27 29 8.40 0.86 

200 12 3.75 25 27 8.30 0.81 
600 6 3.25 30 24 11.0 1.00 

Table 5: Performance analysis: comparison between the full and reduced models 

Finally, Table 5 compares the performance of the reduced model to that of the full one in terms 

of convergence behavior (No of iterations required for convergence) and execution times for the 

test cases considered in Table 4. The results suggest that the convergence behaviors of both 

models are virtually identical. However, although the number of iterations is practically the 

same, in most cases the reduced model shows an order of magnitude execution time gain with 

respect to the full model. This is because of the smaller size systems obtained with the former. 

Finally, note the relatively small number of iterations required for a converged solution using 

this full-system damped-Newton approach. This clearly highlights the attractive feature of this 

type of approach as indicated previously.    

Remark: The elastic deflections used to form the basis vectors of the EHL-basis were computed 

for a Steel-Steel contact. A different combination of solid materials would require the 

development of a new EHL-basis. However, in practice, for EHL applications, the number of 

possible combinations is very small and one can derive and store an EHL-basis for each possible 
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combination. This would require an additional effort during the preprocessing phase. But again, 

this is done only once for every solid material combination. 

6. Conclusion 

This paper presents a novel reduced model for a fast and robust solution of EHL problems. The 

developed approach is applied to the isothermal Newtonian line contact case, operating under 

steady-state regime. The model is based on a Full-System finite element resolution of the EHL 

equations: Reynolds, linear elasticity and load balance. A model reduction technique is derived 

to reduce the size of the linear elasticity problem. This leads to a significant reduction in the size 

of the global discrete system of equations, leading to a considerable reduction in execution time. 

The model is shown to be robust, allowing the solution of the EHL problem over a wide range of 

operating conditions. Its complexity is shown to be approximately O(n). The relative error in the 

film thickness results for the reduced model compared to the full one is shown to be of the order 

of only 1‰ under a wide range of operating conditions. 

Although the simple isothermal Newtonian line contact case is considered in this work, the 

developed approach can be extended to more general cases. In fact, this work aimed to prove the 

applicability of Model Order Reduction techniques to the elastic part of the EHL problem and 

demonstrate its attractive execution time reduction feature. The latter is of minor importance in 

the line contact case, since the corresponding solution can be obtained relatively fast even in the 

full model case. This feature would be of much greater importance for more computationally 

demanding applications (e.g. transient regime, point contacts). The extension of the reduced 

model to these cases is planned for future work. 
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Nomenclature 

A1, A2 : Modified WLF model constant parameters  

B1, B2 : Modified WLF model constant parameters 

C1, C2 : Modified WLF model constant parameters 

Ei : Young’s modulus of solid body i   

Eeq : Equivalent Young’s modulus  

F : External load 

H : Dimensionless film thickness 

H0 : Dimensionless film thickness constant parameter 

L : Dimensionless Moes material properties parameter  

M : Dimensionless Moes load parameter 

N1D : Number of dof in the 1D hydrodynamic problem 

N2D : Number of dof in the 2D linear elasticity problem 

Ndof : Total number of dof of the full model  

dofN  : Total number of dof of the reduced model 

Nm : Number of basis functions employed in the reduced model 

P : Dimensionless pressure 

Pe : Peclet number 

R : Cylindrical roller radius 

SP : Pressure solution space 

SU : Elastic deflection solution space 

US  : Elastic deflection reduced solution space 

T0 : Ambient temperature 
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Tg(0) : Lubricant’s ambient pressure glass transition temperature 

X : Dimensionless space coordinate 

a : Hertzian contact half-width 

p : Pressure 

ph : Hertzian pressure 

ui : Surface velocity of solid body i 

um : Mean entrainment speed 

α* : Equivalent pressure-viscosity coefficient 

μg : Lubricant’s viscosity at glass transition temperature  

μR : Lubricant’s reference viscosity 

µ  : Lubricant’s dimensionless viscosity 

νi : Poisson’s coefficient of solid body i 

νeq : Equivalent Poisson’s coefficient 

iϕ  : Basis function i 

ρ  : Lubricant’s dimensionless density 

ρR : Lubricant’s reference density 

Subscripts 

e : Elastic 

h : Hydrodynamic 

l : Load balance 

Dimensionless parameters 

2
h R R

x p hRX P H
a p a

ρ µρ µ
ρ µ

= = = = =  
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