
   Lebanese American University Repository (LAUR) 

Post‐print version/Author Accepted Manuscript 

Publication metadata 

Title:  A Film Thickness Correction Formula for Double‐Newtonian Shear‐Thinning in Rolling EHL 

Circular Contacts  

Author(s): W. Habchi, S. Bair, F. Qureshi, M. Covitch 

 Journal:  Tribology Letters  

DOI/Link: https://doi.org/10.1007/s11249‐012‐0078‐6 

How to cite this post‐print from LAUR: 

Habchi, W., Bair, S., Qureshi, F., & Covitch, M. (2013). A film thickness correction formula for double‐

Newtonian shear‐thinning in rolling EHL circular contacts. Tribology Letters ,
DOI: 10.1007/s11249‐012‐0078‐6, URI: http://hdl.handle.net/10725/2178

 Year 2013 

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives 

(CC‐BY‐NC‐ND 4.0) 

This paper is posted at LAU Repository 

For more information, please contact: archives@lau.edu.lb 



1 
 

 

A Film Thickness Correction Formula for Double-Newtonian Shear-Thinning 
in Rolling EHL Circular Contacts 

 

W. Habchi1,2* ,  S. Bair2** , F.Qureshi3 and M. Covich3 

1 Lebanese American University, Dep. of Ind. & Mech. Eng., Byblos, Lebanon 
2 G.W. Woodruff School of Mech. Eng., Center for High Pressure Rheology, Georgia Institute of Technology, 

Atlanta, GA 30332-0405 
3 Lubrizol Corporation 

*********** 
****** 

 
*At the time this work was done, the first author was holding a visiting scholar position at Georgia Institute 
of Technology 
** Corresponding author 

 

 

Abstract 

Lubricants which contain a polymeric thickener will often display a second Newtonian 
plateau in measured flow curves.  Like other manifestations of shear-dependent viscosity, this 
shear response will lead to an inaccurate prediction when the classical film thickness formulas 
are employed.  A correction formula has been developed from numerical experiments for a range 
of parameters of the double-Newtonian modified Carreau equation.  The parameters of this 
shear-thinning model were selected from measurements for real lubricants obtained in Couette 
viscometers and a capillary viscometer.  Additionally, a full EHL film thickness formula has 
been derived from the same numerical experiments. The correction formula and the full formula 
were successfully validated using published film thickness data and published viscosity data for 
an EHL reference liquid, a polymer solution.  Clearly, viscometer measurements of shear 
dependent viscosity which contain the inflection leading to the second Newtonian are essential 
for a film thickness calculation when a high-molecular-weight component of the lubricant is 
present.  

Keywords: elastohydrodynamic, film-thickness, non-Newtonian, rheology, pressure-viscosity 
coefficient 
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Introduction 

 Early on, it was recognized that the shear dependence of the viscosity of polymer-
thickened lubricants must influence film thickness [1] in elastohydrodynamic lubrication (EHL).  
The development of the classical Newtonian film thickness formulas for EHL circular contacts 
[2] was one of the shining achievements of the field.  In the ensuing enthusiasm it was often 
overlooked that these formulas lacked precision for all conditions and were accurate only for 
mineral oils and other low-molecular-weight base oils under mild conditions.  Experimental 
measurements indicated that, for polymer blended mineral oil or high molecular weight silicone 
oil, the predicted film thickness may be about twice the measured value [3].  This trend could be 
observed when employing a pressure-viscosity coefficient obtained from a viscometer [4] rather 
than a pressure-viscosity coefficient which had been adjusted [5] to yield agreement with the 
same Newtonian formula.  

 The shear stress in a steady shear flow for a non-Newtonian liquid is related to the shear 
rate by 

τ ηγ=    (1) 

where the generalized viscosity, η , is some function of the invariants of stress and strain rate.  
Many empirical functions have been derived for η  and most employ a parameter, 2µ , 
representing a limit to the viscosity at infinite shear rate or simply a second plateau apart from 
the first Newtonian plateau, µ , at low shear rate. 

( ) ( )2 2 Fη µ µ µ γ= + −   or ( ) ( )2 2 Fη µ µ µ τ= + −  (2) 

The function F  goes to 1 as the argument goes to zero and F  goes to 0 as the argument goes to 
infinity. The expectation is that, for a polymer solution, the contribution of the solvent to the 
viscosity will be unaffected by shear within the inlet of the EHL contact.  This contribution of 
the solvent is expected to result in a second plateau or, at least, an inflection in the flow curve 
which will be produced by 2 0µ > .  An extensive list of models which have served the role of 
equation (2) may be found in [6]. 

The shear dependence of the viscosity of polymer solutions has been of extreme 
importance to Rheology [7] and considerable research effort has been devoted to understanding 
the shear response.  It must be stressed that the generalized Newtonian approach which is used 
here and throughout tribology is incomplete. In addition to shear dependent viscosity other, even 
more profound, effects such as normal stress differences result from the shearing of the polymer 
solutions [8] which are ubiquitous as lubricants.   
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Within the tribology literature, it is often recommended to set 2µ  equal to the viscosity of 
the base oil or the viscosity of the oil less the polymer [9].  In the rheology literature, where the 
second Newtonian viscosity has been measured with precision, the second Newtonian viscosity 
generally is greater than the viscosity of the solvent [10] and occasionally less, but seldom equal.  
There has been some work to determine the relationship between the intrinsic second Newtonian 
viscosity and the intrinsic first Newtonian viscosity [11]; however the principals involved do not 
lead to an estimation of 2µ . 

It is usually difficult to observe both the first and second Newtonian plateaus in a single 
experimental flow curve.  Experience also indicates that the approach to the second Newtonian 
plateau is often interrupted by mechanical degradation of the polymer or the onset of shear-
dependence of the base oil.  Gear oils are less likely to display a clear inflection than motor oils. 
When a second Newtonian appears, the ordinary meaning of n , τ γ= ∂ ∂   in the power-law regime, does 

not apply unless 2 0.03µ µ < .   

An example for which the first Newtonian appears, as well as an inflection which may be 
characterized by a second Newtonian viscosity, is shown in Figure 1. This flow curve for a 
multigrade motor oil was obtained with a pressurized, thin-film Couette viscometer [6]. The 
curves plotted in Figure 1 represent a remarkably useful modification of the Carreau [12] 
equation  

( )
2

2 2

1 1

2
1

n

G
τη µ µ µ

−

  = + − +  
   

 (3) 
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Figure 1. Flow curves for a motor oil obtained with a pressurized, thin-film Couette viscometer. 

 

Notice that in Figure 1, the value of G , which establishes the limit of Newtonian 
response has been held constant, a useful and simple application of the time-temperature-
pressure superposition principal. The curves can be superimposed by shifting vertically.  A 
useful relation for estimating the Newtonian limit, G , for a polymer solution [13] is  

gc R T
G

M
ρ

≈  (4) 

where M is the molecular weight of a monodisperse polymer of concentration, c , in a solution 
of mass density, ρ , and absolute temperature, T .  In Figure 1, the value of 2µ µ  has also been 
held constant with good result.  The effective shear modulus, G  and the power-law exponent, n , 
only have the usual meanings [6] when 2µ µ  , that is 1 1 n−  equals the slope on a log–log 
plot of viscosity versus shear stress. 

Reynolds equations for double Newtonian shear-thinning have been analytically derived 
for the one-dimensional case [14] and the two-dimensional case [15].  Correction formulas have 
already been derived from numerical experiments for single-component liquids for which a 
second Newtonian plateau is not expected [16][17][18][19][20][21].  One of these, [21], is 
unusual in that the viscosity function takes the form of an empirical expression for thermal 
softening from viscous heating rather than for shear-thinning.  Corrections are generated by 
calculating film thicknesses for the Newtonian and shear-thinning rheologies over some range of 
load, geometry and rolling velocity.  The correction factor is the ratio of Newtonian to shear-
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thinned film thickness. Here, the same approach is taken for double-Newtonian shear-thinning 
lubricants. 

Numerical Experiments 

In this section, the global numerical procedure employed in this work is described. The 
authors employ the finite element full-system approach described in [22] for solving the EHL 
problem. The goal is to model a lubricated contact between a sphere and a plane under a 
prescribed external load. Both contacting bodies are elastic and have constant surface velocities. 
Surface separation is ensured by a complete lubricant film. In this work, only pure rolling 
conditions are considered under mild mean entrainment speeds. Therefore, thermal effects are 
neglected.  

In the Full-System approach, the generalized Reynolds, linear elasticity and load balance 
equations are solved simultaneously. The Reynolds equation for a steady state point contact 
lubricated with a generalized Newtonian lubricant under unidirectional surface velocities in the 
x-direction is given by Yang and Wen [23]:  

( )3 3 *12 m
e e

p ph h U h
x x y y x

ρ ρ ρ
η η

      ∂ ∂ ∂ ∂ ∂
+ =      ∂ ∂ ∂ ∂ ∂      

 (5) 

Where:   

( )*
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+  ′  ′′= = −   ′   
 ′ − + = =

′ ′ ′
′ ′′= =

= =
′

∫

∫ ∫ ∫ ∫

∫ ∫

 

 

 Note that this equation accounts for the variations of viscosity across the film thickness as 
can be seen in the integral terms. In fact, the changes in viscosity stem from shear rate variations 
across the lubricant film. Moreover, both density and viscosity are allowed to vary with pressure 
as described in the following section. Indices p and s correspond to the plane and the sphere 
respectively and η is the generalized Newtonian viscosity. The film thickness h is defined from 
the film thickness equation: 

( ) ( )
2 2

0, ,
2

x yh x y h x y
R

δ+
= + −  (6)  
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Where h0 corresponds to the rigid body separation and δ the equivalent elastic deformation of both 
contacting solids obtained by solving the linear elasticity equations on a large solid representing a semi-
infinite medium as described in [22]. 

Finally, the load balance equation ensures the correct external load L is applied to the contact by 
balancing it with the integrated pressure field over the contact area: 

p d LΩ =∫  (7) 

This equation ensures load balance by monitoring the value of the rigid body separation variable h0. The 
generalized Reynolds, linear elasticity and load balance equations are solved simultaneously using a finite 
element discretization and a non-linear damped Newton resolution procedure. For more details about the 
technical implementation of the numerical scheme employed in this work, the reader is referred to [22]. 

 

Selection of rheological Parameters 

 Two representations of the pressure dependence of viscosity of lubricating oils were used 

in this analysis.  Both are based upon the Doolittle free volume relation and utilized the Tait 

equation of state to supply the specific volume of the liquid.  The pressure dependence of the 

density also comes from the Tait equation.  The parameters of the Tait equation of state are the 

universal parameters proposed in reference [6], page 70.  The two sets of Doolittle parameters 

are the model strong liquid and model fragile liquid in reference [6], page 123.  The temperature 

was assumed to be 60°C for the model strong liquid and 80°C for the fragile liquid.  The 

reference viscosity was 0.3 Pa·s, resulting in ambient pressure viscosities of 0.0302 and 0.0123 

Pa·s for the strong and fragile liquids, respectively, and reciprocal asymptotic isoviscous 

pressure coefficients of 14.6 and 18.3 GPa-1, respectively.   The fragility classification of glass-

forming liquids [24] provides a useful means of describing the viscosity dependence on 

temperature and pressure at high pressure. 

 The shear dependence of viscosity was given by equation (2).  The various combinations 

of parameters of this viscosity function should be representative of the behavior of real 

lubricants.  The combinations of 2,   andG n µ µ  plotted as the solid points in Figure 2 were 

obtained from curve fitting of flow curves of motor oils and gear oils.  Twelve motor oils were 

investigated in this work and eight clearly showed an inflection which allowed the determination 

of 2µ µ .  The remaining data were not used.  Five additional oils were included in Figure 2 
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from references [14][25][26][27] and these include two gear oils.  The combinations chosen for 

the numerical experiments are shown as the open points in Figure 2.  A total of 25 individual 

combinations of 2,   andG n µ µ  (as summarized in Table 1) were investigated numerically. 

  

 

 
Figure 2.  Experimentally measured values of the second to first Newtonian viscosity ratio and the power-law 

exponent versus Newtonian limit plotted as solid points and values selected for analysis plotted as open points. 

 Both Newtonian and non-Newtonian solutions for central and minimum film thicknesses 

were generated for 36 permutations involving rolling velocities of 0.1, 0.3, 1 and 3 m/s, reduced 

radii of 0.005, 0.015 and 0.05 m and Hertz pressures of 0.5, 1 and 1.5 GPa.  For the non-

Newtonian case, each of these permutations was investigated for 25 combinations of the shear 

dependent viscosity parameters shown in Table 1.  

 

Table 1. Combinations of parameters of equation (2) employed in the numerical experiments. 

G /kPa n  2µ µ  
0.3 0.5 0.2, 0.4, 0.8 
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0.3 0.7 0.2, 0.4, 0.8 
3 0.5 0.2, 0.4, 0.8 
3 0.7 0.2, 0.4, 0.8 
3 0.9 0.2, 0.4, 0.8 
30 0.5 0.4, 0.8 
30 0.7 0.4, 0.8 
30 0.9 0.4, 0.8 
300 0.7 0.4, 0.8 
300 0.9 0.4, 0.8 

 

Film thickness Results and Derivation of Correction Formula 

 Each of the 900 results for central and minimum film thicknesses using the pressure-

viscosity response of the model strong liquid were treated by dividing into the corresponding 

Newtonian result to yield values of ϕ . 

Newt

nonNewt

h
h

ϕ =    (8) 

The task of deriving a correction formula amounts to finding an expression that approximates ϕ .  

In many past works [16][17][18][19] an inlet Weissenberg number was used to quantify the 

shear stress of the inlet flow relative to the Newtonian limit for the liquid. 

( )0 cNewtu h GµΓ =  (9) 

where cNewth  is the Newtonian solution for central film thickness.  In the past [16][17][18][19], it 

has been useful to employ, as the correction formula, the functional form of the viscosity law, 

with Γ substituted for the usual Weissenberg number.  This is not surprising since the film 

thickness should vary roughly with viscosity raised to the 2/3 power.  This technique is used 

here.  Seven trial functional forms were tested and the form which yielded a combined low 

standard deviation and simplicity is  

[ ]( )12 21 1 1
a a

nbµ µ
ϕ µ µ

−    
= +  −  + ⋅Γ        

  (10) 
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Where n is simply the power-law exponent in the constitutive law. The two parameters a and b 

and the standard deviations are listed in Table 2 for central and minimum thicknesses obtained 

from a least squares regression.   

 The formula (10) was derived for the case of the strong liquid.  Applying it to the results 

for the fragile liquid resulted in standard deviations of 5.0% and 6.1% for central and minimum 

film thicknesses respectively. 

Table 2. Parameters and standard deviations of equation (10). 

Type Central  Minimum 
a  0.7469 0.8930 
b  1.678 1.543 

Standard Deviation 3.2% 4.2% 
 

Another approach is taken to benefit from the extensive data obtained from the numerical 

experiments.  A complete expression for the film thickness can be written as the product of a 

Newtonian solution and the correction equation (10).  If the Newtonian solution is put in terms of 

the three Blok [28] dimensionless numbers 

0

1
2

2
h ERH
R uµ
 

=  
 

, 2
0

3
4

2
F ERM

ER uµ
 

=  
 

, 0

1
42 uL E

ER
µα  =  

 
 (11) 

The full formula reads 

B C
NewtH A L M −= ⋅  (12) 

[ ]( )12 21 1
a a

nB CH A L M bµ µ
µ µ

−−
      = ⋅ +  −  + ⋅Γ           

 (13) 

The same 900 results for central and 900 results for minimum film thicknesses were employed in  

a least squares regression.  The parameters and the standard deviations are listed in Table 2 for 

central and minimum thicknesses.  Although equation (13) yields greater standard deviations, it 

has the advantage of not requiring an independent Newtonian prediction. 



10 
 

Table 3. Parameters and standard deviations of equation (13). 

Type Central  Minimum 
A  2.233 2.805 
B  0.4664 0.4791 
C  0.1061 0.2702 
a  0.7589 0.9069 
b  1.929 2.189 

Standard Deviation 5.6% 7.9% 
 

 

Experimental Validation 

 For experimental validation of the new correction formulas both rheological data and film 

thickness data are required for the same material and there are few examples available.  

Fortunately, the film thicknesses have been measured for one of the reference liquids of 

reference [29], a solution of 15% by weight cis-polyisoprene ( M =4×104 Daltons) in squalane.  

New viscosity data at 450 MPa pressure from [30] are shown in Figure 3 along with data from 

reference [29].  Curves plotted in Figure 3 are equation (2) with G=23 kPa, n=0.65 and 

µ2/µ=0.28.  

 Film thicknesses for this liquid, obtained from optical measurements, have been reported 

in reference [31] for a circular contact formed by a 12.7 mm radius ball against plane with 

combined elastic modulus of 124 GPa.  The load was 23 N to give a maximum Hertz pressure of 

0.47 GPa.  The test temperature, at 40°C, results in µ0=0.0711 Pa·s and α=18.53 GPa-1.   
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Figure 3.  Experimentally measured values of the viscosity of SQL+PIP compared with equation (2). 

 The Hamrock and Dowson Newtonian film thickness formulas [2] were used for 
validation of the correction formulas (10) in Figure 4 and 5.  The corrected film thicknesses are 
shown to improve the film thickness predictions.  The central prediction improved from an 
average deviation of 41% to -9% and the minimum prediction improved from an average 
deviation of 44% to -11%. 
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Figure 4.  Experimentally measured central film thicknesses compared to the Hamrock and Dowson prediction and 
the corrected prediction. 

 
Figure 5.  Experimentally measured minimum film thicknesses compared to the Hamrock and Dowson prediction 

and the corrected prediction. 

 Next, the full film thickness formulas (13) are compared to the Newtonian formulas (12) 

in Figures 6 and 7.  The full film thickness formulas are shown to improve the film thickness 

predictions over the Newtonian predictions.  The central prediction improved from an average 

deviation of 49% to -6% and the minimum prediction improved from an average deviation of 

74% to 1%. 
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Figure 6.  Experimentally measured central film thicknesses compared to the present Newtonian prediction and the 

present full prediction. 

 
Figure 7.  Experimentally measured minimum film thicknesses compared to the present Newtonian prediction and 

the present full prediction. 

 

 



14 
 

Conclusions 

1. A correction formula has been developed from numerical experiments for a range of 
parameters of the double-Newtonian modified Carreau equation.  The parameters of this shear-
thinning model were selected from measurements for real lubricants obtained in Couette 
viscometers and a capillary viscometer.  Additionally, a full EHL film thickness formula has 
been derived from the same numerical experiments. 

2. The correction formula and the full formula were successfully validated using published film 
thickness data and published viscosity data for an EHL reference liquid, a polymer solution. 

3. Clearly, viscometer measurements of shear dependent viscosity which contain the inflection 
leading to the second Newtonian are essential for a film thickness calculation when a high-
molecular-weight component of the lubricant is present.  
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Nomenclature 

µ   low shear (first Newtonian) viscosity 

0µ  ambient pressure, low shear viscosity 

2µ  second Newtonian viscosity 

η  generalized (non-Newtonian) viscosity 

τ  shear stress 

γ   shear rate 

α   reciprocal asymptotic isoviscous pressure coefficient 

p  pressure 

Γ   Inlet Weissenberg number 

G   effective liquid shear modulus associated with λ 

h  film thickness 

n  power-law exponent 
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M  molecular weight of polymer 

c  weight fraction of polymer 

ρ   mass density 

Rg  universal gas constant 

T  temperature 

D  polydispersity index 

cNewth  Newtonian solution for central film thickness  

E combined elastic modulus of the rollers.  
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