¥
.

S

236

Software Quality System
For

Lebanese Companies

Badia Z. Fidaoui

B.S., Beirut University College, 1994

PROJECT

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science
at the Lebanese American University

August 1997

(B U.C. - Ligk=RY

____-.—"“‘-'—-_—-'—H-__—.-—..

Ay el

RECEIVED

Professor of Compfiter Science 3
Lebanese American University

mzi Haraty
rofessor of Computer Science
Lebanese American University

Acknowledgments

Developing this work would have been impossible without the support of many great

people to whom I would like to express my sincere appreciation.

First, I would like to thank my family for supporting me all the study period. 1 would
like to thank my father for encouraging me to start my higher education, my mother for

taking good care of me, and my two sisters for bearing with me.

I'would like also to thank my best friend, Rashed Hashash for his patience and help, for
supporting me and for his continuous encouragement. Without his support and help

throughout these three years, 1 certainly couldn’t have made it.

My special thanks to Dr. Nashat Mansour, my advisor, for his guidance and advice,
and to Dr. Ramzi Haraty for accepting to be on my committee, for all the ideas he has

suggested, and for his support and assistance.

Abstract

Based on a study conducted on the Lebanese software firms, it was found that the
development process is applied based on subjective assessments and self made rules,
documentation and planning issues are not the main concern, and assuring quality in
software is regarded as a burden that delays the production of software and increases
its cost. This showed the need of the Lebanese firms for a quality system to be
introduced into their companies. The quality system is suggested for small-to-medium
scale Lebanese firms in order to attain an acceptable level of quality in the software
production industry. It is based on a selection of international standards namely the
ISO and IEEE SQA standards. It contains and focuses on the minimum activities to be
carried out in each of the development phases. The aim is to produce a simple and
direct quality system integrated into the entire development phases and accepted by the
Lebanese firms’ managers. A case study is also presented, where the suggested quality

system is implemented at a small scale Lebanese company.

Table of Contents
Table of Contents
Chapter 1 Introduction...........eeeerrurrruesnnnns resssessrsssenssnsnans sressetnneans 1
1.1. Meaning of Qualityc...cooomoiiiore oo 1
1.2, Problem Definitioncoooiviioeicooe 1
L3, Causes ..o, 3
L4, SOILION ..ottt 3
1.5. Process and Product Qualityccoooooovviiieie . 3
L. SCOPE o, 4
1.7. Report Orgamizationc..coooooimioioee . 5
Chapter 2 SQA Survey of Concepts.......cerurunene.. rerressssssssnnanaaane o
2.1. Introduction to the Concepts of Quality...............ccooovveveir . 6
and Assurance '
2110 Quality ..o 7
2.1.2. Software Qualitycocoocoiivoeiee B
213, Quality ASSUranceco.ocoeiveeers oo 9
214, Quality Pohcy ..o 11
2.1.5. Quality Assurance System..................ccccocoi... i1
2.1.6. Quality Assurance Planc..cocoi 12
2.1.7. Project Development Tasks of SQA........................ 12
2.1.7.1. Quality Planning.................c....c.ccoooii 12
2.1.7.2. Quality Controlccociii. 13
2.1.7.3. Quality Testing...............cccccoeeeiii 13
2.1.8. SQA ObJECIVESooviiiee oo 14
219, Quality Modelsoooooiioiiiioeee e, 14
2.1.9.1. Factors of Software Quality 16
2.1.9.2. Criterion of Quality Factors...................... 17
2.1.9.3. Advantages and Disadvantages of 22
Quality Models
2.1.94. Viewsof Quality ... 24
2.1.9.5. Meaning of Quality Models in a QAS 25
2.1.10. Quality Assurance Principles 26
i

Table of Contents

Chapter 3

Chapter 4

2.1.11. Quality Assurance Measurescccoeveren... 29
2.1.12. Necessary Planscccooeeeiiiii 30
2.1.13. Degree of SQA Involvementcc.ccc....... 32
Standards cesssssstenraasssssssaannnans resssstsntiiasasaaassteeaeannns 33
3.1, Managing Quality ..., 33
3.2, The ISO 9000 Series of Standards...................c.ococooevini.. 34
3.2.1. Why be interested in ISO 9000: its Benefits............. 35
3.2.2. Standard Elements of ISO 9000 37

3.3. IEEE Standard for SQAPoooiiiiiie e, 43
Suggested Quality System........... srsseosissnsressaenassasans anneD3
4.1. Management Responsibilitycoovoviiini, 54
4.1.1. Quality POHCY ..o, 54
4.1.2. Organizational Structurecoccooeevee . 55
4.1.2.1. Roles, Responsibilities and Authority.......... 57

4.1.2.2. Independence in the Organizational 59

Structure

4.1.3. Management Review.....................coooviiiviiei 61

42, Quality Planning ...t 62
4.3, Initial Planning Phase........................cocoiiii 63
4.4, Final Planning Phaseccooooveiiivieooseeeoro) 65
4.4.1. The Software Requirements Phase 65
4.4.2. The Project Planning Phasec......... 67
443, TheDesignPhase......................coooiviioiiii 68
4.4.4. The Implementation Phaseocoovvviin.. 71
4.4.5. The Integration and Test Phase 73
4.4.6. The Maintenance Phase.................cccoooecoooii) 75

4.5, Quality Controlsocoovveooiieo e 76
4.5.1. Static Tests vs. Dynamic Tests................c.cc.......... 76
452, Reviews vs. Audits..................c.oooooveivee 77
453, REVIEWS....ocoooiviiiiniiit i 77
4.53.1. SRSReVIEW..........coevviiiiiiicirie 78

4.5.3.2. Design Reviews.............c.cccoooooeecevecnnn . 79

4.5.3.3. Post-Operation Review 79

ii

Table of Contents

454, AuditS.......ccociiiii e, 80
4.5.4.1. Functional Auditc....... 80
4.54.2 Physical Audit...................ocoeeeeriiiii 81
455, Testing....cocoovmiiiiiiii e 82
4.5.5.1. Test Planning ..., 82
4552 TestDesign.................ocooovoeviivineeeeri 83
4.5.5.3. Test Case Determination 84
4.5.5.4. Test Procedure Planning.......................... 84
4.5.5.5. Test Execution..................ccoooovvee 84
4.5.5.6. Test Report..............ccocoovviiiiiiiii ., 85
4.5.6. Resources for Quality Control..................cc.cooeoo1 ., 85
4561 Toolsand Aids.............cococoeeiviiiiii 85
4.5.6.2. MeLIICS .ottt 86
4.5.6.3. Quality Recordscocoevveee 38
A0, SUMMALY ..o, 92
Chapter 5 Case Study...coceveerernererenne. rertrreessstenereens rrresssasteeennns 96
5.1 IntroduCtion. ..o e 26
5.2, Management Responsibilityccoooiovoer 96
521 Quality PolCY ..o 96
5.2.2. Organizational Structurec...........oii. 97
5.3. Quality Planming ... 100
5.4. Imtial Quality Planning Phase................ccocooococooiiii, 100
5.5. Final Quality Planing Phase...................ccoovooeioiroci 101
5.5.1. The Software Requirements Phase 102
5.5.1.1. SRD Production and Review.................... 103
5.5.1.2. PDP Production and Review 104
5.52. TheDesign Phase. ... 107
5.5.2.1. SDD Production and Review.................... 108
5.5.2.2. Test Plans, Test Design Development....... 109

and Review
5.53. The Implementation Phase 112
5.54. The Testing Phase.............c.ccocooveooiioo 113
5.5.5. The Maintenance Phase..........................c.o......... 114
Chapter 6 Conclusions.......... cesreeessssnnsens resseseessnnnareises eseresennenenns 118

iii

Table of Contents

Appendix A SRD for the Callback Billing Systemccooovveveennne. 121
Appendix B Project Development PIancceeeivveererneereeseeceeesnens 129
Appendix C SDD for the Callback Billing Systemoceceevrnnnen. 136
GLOSSATY ittt rssssssssessesseseesssensessessosssssssessesaees 141
References

Bibliography

v

List of Figures

List of Figures

Chapter 2 Figure 2.1 A Hierarchical Model of Quality............................ 15
Figure 2.2 Factors of Software Quality and their Related 21

Criteria

Chapter 4 Figure4.1 Project Basic Structurecocccooovovceveoveronnn, 56
Figure 4.2 Detailed Organizational Structure.......................... 56
Figure 43 Review Preparation FOrm..................c.occooveiee e, 91
Figure 44 Review Evaluation Form........................ccoceei. 92

Chapter 5 Figure 5.1 QM Job Description..............coocoovoovoeeoooroeosen 08
Figure 5.2 Company Organizational Structure.......................... 99

List of Tables

List of Tables
Chapter 2 Table 2-1 Factors of Software Qualityccoooeeinerennee, 17
Table 2-2 Ciriteria of Software Quality Factors....................... 19
Chapter S Table 5-1 SRR Sample Checklistcccooovevvireeernene. 103
 Table5-2 PDP Review Sample Checklist.................cceveeen, 106
Table 5-3 SDD Review Sample Checklist 109
Table 5-4 Test Plan and Design Review Sample Checklist..... 112
Table 5-5 System Testing Sample Checklist 114
Appendix A Table A-1 CDR Description FOImatc.cocoveievrereninann. 123
Table B-1 Sample Activity List............cccoooveviiviniiieieeee 131

Appendix B

Vi

Chapter 1 Introduction

Chapter 1

Introduction

1.1. Meaning of Quality

The software industry is one of the growing markets in the economy. Everyone is
becoming more and more dependent on software systems. Development of high-
quality and cost effective software has been a challenge facing the software industry.
The question: 'is software facing a crisis?' is continually being asked. There is ample
evidence to show that it is. Actually, such a question should not be asked, and more
attention should be given to the problem and its solutions. Essentially, the problem
stems from the quality of the software development process. Quality means
conformance to requirements [Schulmeyer 1988]. The true quality of software is that
which is perceived by the eventual users of that software: a system which is unreliable,
for whatever reason, will be perceived as of poor quality, and such perceptions will be
reinforced by a lack of responsiveness to problems identified by the user. Over the last
decade, the software industry has witnessed a dramatic rise in the impact and
effectiveness of Software Quality Assurance (SQA) [Smith 1990]. As a result, the
successful development of software systems can be accomplished and users need not
expect a product which is unmaintainable, unportable and unreliable. Thus, SQA has

become an indispensable aid.

1.2. Problem Definition

The quality of industrial products has a wide economic consequences. Deviation by a

small percentage from the prescribed quality factors can cause losses in the range of

Chapter 1 Introduction

millions in a competitive market. So, the use of software in business and industry is still
unsatisfactory. Evidence for this is the absence of a systematic development process
supported by methods and tools [Wallmiiller 1994]. So, it is advisable to pay attention
to software quality and to use appropriate principles, methods and tools. Software
producers are expected to produce high-quality products, on time and within budget.
We can see that the organization’s problem in producing poor quality lies in the

problems encountered in these three factors.

The problems in the time factor are that only five percent of all projects are completed
on time, and more than sixty percent of all projects have at least a twenty percent time
overrun. Many software projects are not completed on time, and completion problems

often lead to the failure of the entire project [Wallmiiller 1994].

The problems with the cost factor are that development cost increases exponentially
with the complexity of software. The higher demand for adequate user friendliness and
reliability also cause higher development costs. In many instances, sixty percent more
of the entire software cost of a product is spent on maintenance [Wallmiller 1994],
Delays can reduce market opportunities for a product and render investment
unprofitable. The problems of cost estimation are widely known. Attempts are being
made to improve cost estimation by extrapolation of results from earlier projects and

by estimating metrics such as line of code (LOC).

The problems with product quality factor are that errors are found too late, frequently
not until the customer tries to put the system into operation. The software product
documentation is missing, incomplete, or not up-to-date. Because of product faults
more than fifty percent of development time and effort is spent on error detection and
correction, Finally, quality as a development aim cannot be proved because of lack of
Quality Planning [Wallmiiller 1994].

Chapter 1 Introduction

1.3. Causes

The causes of the present problems in software development are on several levels. The
complexity of the software to be created is underestimated not only by management,
but also by the developers of software products. The management of software projects
does not meet the requirements. Software product requirements are not adequately
specified. They are vague, confusing or contradictory. The developers often try to
improve the quality by testing instead of developing the quality step by step. The
ddcumentation, one of the most important foundations for quality testing, is often

missing or of poor quality.
1.4. Solution

The above mentioned factors lead to the realization that planning and production of
software must be systematic and carried out by professional engineers and that quality
must be a development goal. Thus, the goal of SQA is to help produce a quality

software, on time and within budget.
1.5. Process and Product Quality

Different aspects of quality will be examined in order to achieve a distinct and
comprehensive idea of software quality. In principle, there is a distinction between the

quality of a product and the quality of the development process.

The quality goals for the software product determine the quality goals of the
development process. The quality of the former is based on the quality of the
development processes. These have a decisive influence on the quality of the product.

Software development is a very complex process which requires the use of many

different disciplines for the development of a product to satisfy its requirements. The

Chapter 1 Introduction

necessary disciplines are Project Management, Quality Assurance, Configuration
Management and Software Engineering for the implementation process. Effective

management and development practices are necessary.

1.6. Scope

The objective of quality management is to produce quality products by building quality
into the products rather than testing quality into the products. Quality management is
meant to ensure that faults do not occur in the first place. Quality management systems
are used for developing products and are designed to ensure that quality is being

designed and built into the products.

Based on a study conducted by Hajjar in Lebanon, some of the findings were that the
development process in Lebanon is applied based on subjective assessments and self-
made rules, details methodologies, documentation and planning issues are not the main
concern, but rather the software as a whole. Add to this, that assuring quality in
software is regarded as a burden that can delay the product from emerging and
increasing its cost. Whenever, the software works, free of any errors and whenever the

customer is satisfied, that is field proof that the software is of good quality.

This thesis provides a suggestion of a quality system based on international standards.
The quality system is designed for a small-to-medium scale Lebanese company. It is
designed to be effective for the company and meet the company quality objectives. The
aim is to initiate such a system in Lebanon since in the Lebanese market there is no
organized SQA. This will greatly improve the marketability of locally developed

software.

Chapter 1 Introduction

1.7. Report Organization

This thesis is organized as follows: Chapter 2 offers a survey of related SQA concepts.
Chapter 3 presents a study on ISO9001 standard and TEEE standard for SQA plans.
Chapter 4 includes a suggestion of SQA program followed by a case study that
implements the program in real situation in chapter 5. Chapter 6 is the conclusion,
Some readings relevant to the case study are presented under the appendices.
Appendix A, appendix B, and appendix C present respectively the Software
Requirement Document, the Project Development Plan and the Software Design
Document for the Callback billing system on which the suggested quality system was

implemented. A list of Acronyms is presented in the Glossary.

Chapter 2 S0A Survey of Concept

Chapter 2
SQA Survey of Concepts

2.1. Introduction to the Concepts of Quality and Assurance

It is useful to define some concepts in connection with quality and assurance,
examining classical definitions and the specific issue relating to software. It is
important to recognize that quality is as important in the end product as it is during
development. However, it is good to define some of the elements important to
software quality, and to agree on the vocabulary used throughout this chapter
[Wallmtiller 1994].

A principle 1s defined as a concept on which the actions are based. They comprise
general rules of attitudes, but they do not prescribe how a goal should be reached. For

example, document structuring, and information hiding.

Methods ~ support software engineering principles and lead the developers to
predictable results. Methods rest on principles. For example, the method of structured
analysis makes use of the principle of abstraction levels. A rough data flow is divided

into more refined data flows.

Tools which support the application of principles, methods and are useful to the

software developer, to the project leader and to the SQA engineers.

Processing models which structure the development and maintenance process through

standardized processes.

Chapter 2 §0A Survey of Concept

Standard is an instruction about how a document should be laid out. For example, a
requirement specification standard would specify all the sections expected in such a

document and how each section is to be structured.

Procedure is a text which describes how a particular software task is to be carried out.
For example, a procedure for programming would describe what standards to apply,
where to store the source code and object code of a program or module, how to carry
out certain categories of test and what documentation to fill in when the process of
programming and testing have been completed. The important point about procedures
and standards is that once they have been adopted for a particular project they have to

be adhered to.
2.1.1. Quality

Difficulties have been encountered while explaining and defining guality. The difficulty
of explaining quality is addressed through the following phrase:

“This is not because Quality is so mysterious but because Quality is so simple,
immediate and direct” [Schulmeyer 1988].

Further difﬁouities are explained through the following dilemma exposed by Prisig;
“Quality is not objective..., Quality is not subjective...” [Schulmeyer 1988].

There is a range of formal and informal definitions available for quality. The Oxford
English Dictionary states that quality is “the degree of excellence”, but this definition
does not take customer requirements into consideration. Customers generally require
acceptable performance at a particular price point, rather than absolute excellence. An
alternative formal definition of quality is provided by the International Standards
Organization (ISO) as “the totality of features and characteristics of a product or
service that bear on ils ability to satisfy specific needs”. The standard definition
associates quality with the ability of the product to fulfill its function. This is achieved

through the features and characteristics of the product.

Chapter 2 S0A Survey of Concept

In approaching the definition of quality from the point of view of J.M Juran: “The
basic building block on which fitness for use is built is the quality characteristic”

[Schulmeyer 1988].

Actually, if we look at the definitions of quality given in many books, we find out that
they all agree on the phrase “fitness for use”. That is, a quality product is one which
does what the customer expects it to do. Although fitness for use is an important
concept, and forms a central point of view of Quality Assurance (QA), it is not the
only property of a quality product. A high quality product is one which has associated
with it 2 number of quality factors [Ince 1994]. Factors and Criteria or Characteristics

and Features will be defined later.

2.1.2. Software Quality

Some definitions have been suggested which specifically refer to software quality.
Examining some of these definitions, should aid comprehension,

In the IEEE Standard Glossary of Software Engineering Terminology, software quality
is defined as: “Totality of features and characteristics of a software product that bear
on its ability to satisfy given needs; for example, conform to specifications”.

Another sub-definition of IEEE for software quality: “The degree to which a customer
or user perceives that software meets his’her composite expectations”.

Turning more to the objective nature of software quality, an objective definition of
software quality is “the fitness for use of the total software product’. This definition
recognizes the two features of a quality software, conformance to its specification and
Jfitness for its intended purpose. These may be summarized as: Is it a good solution?

and does it address the right problem?

Chapter 2 S0A Survey of Concept

2.1.3.Quality Assurance

Often 'Quality Assurance' is spoken of as if the two words were one: ‘quality-
assurance'. This refers to the entire process of assuring software quality. There are

two elements involved here: quality and assurance.

Quality

Cfosby defined quality as conformance to requirements. Crosby's definition of quality
implies two areas of action for the SQA function: First, ensuring that the requirements
established for the software correspond to user needs. Second, ensuring that the
software product adheres to requirements, both general functional requirements and
specific quality characteristics. The distinction made between the two types of
requirements is that while a software product may perform its general processing
function, there are a number of software characteristics which may also be required of
it [Sinclair 1988].

The quality function is an iterative process, whose elements may be defined as follows:
Document-Discuss-Agree.

To Document means to write down ideas about what requirements and characteristics
should constitute software quality for a particular project. What is meant by Discuss is
to talk about the specifications and characteristics with others involved in the project.
As to Agree is to reach a consensus with the discussion group about the requirements
and characteristics which will define quality, and modify the initial documentation
accordingly.

For the general functional requirements of the software, discussions must be conducted
and their outcome will be a hierarchy of formal system documentation detailing the
performance specifications to be met.

For the specific quality characteristics required, the outcome of the discussions should
be threefold: First, a series of 'characteristics' which must be present in sufficient

degree to constitute acceptable or 'quality' software. These are software quality

Chapter 2 S0A Survey of Concept

Factors. Second a series of subcharacteristics which constitute the quality Factors, and
whose presence to a sufficient degree will ensure that the Factors they constitute are
present. These are Criteria. Third, a series of checklists based upon the Criteria. These
allow the verification and measurement of the quality Factors and their Criteria.

In a later section, we will present some of the agreed-upon software quality Factors

and their Criteria.

Assurance

As to Assurance, it is the process by which we achieve the desired goal of quality. Like
the quality function, assurance is an iterative process. It is composed of four elements :
Process-Documentation-Review-Comparison.

These elements may be defined as follows : Process is a series of actions carried out
according to their definitions in the SQA development process. Documentation is a
written record of the process. Review is an examination of the documentation
produced. Comparison is a matching of the documentation produced with standards
for conformance to determine acceptance. If the documentation conformance is found
to be lacking, the initial assurance step, Process, becomes corrective and the loop is

repeated.

Many definitions have been suggested which specifically refer to quality assurance. The
definition of quality assurance within the context of IEEE STD729 can be summarized
as follows: “Quality assurance is a planned and systematic pattern of all actions-
procedures, techniques and tools necessary to provide adequate confidence that the
item or product conforms to established technical requirements”.

Reifer provides the following definition: “Software quality assurance is the system of
methods and procedures used to assure that the software meets its requirements. The
system involves planning, measuring and monitoring developmental activities

performed by others” [Wallmiiller 1994].

10

Chapter 2 S0A Survey of Concept

The narrowing of the software quality definition provides the definition for software
quality assurance: “The systematic activities providing evidence of the fitness Jfor use

of the total software product” [Wallmiiller 1994].

2.1.4. Quality Policy

What is meant by quality policy are the basic aims and objectives of an organization
regarding quality, as stipulated by management. Examples are customer orientation,
fast reactions to market conditions through the introduction of new products, and
manufacturing of products with comprehensive and efficient customer service.

Quality policy is a central task of top management. Quality policy in connection with
software means that the three project elements of time, cost and product requirements,

are equally important.

2.1.5, Quality Assurance System

Quality Management System, Quality Assurance System (QAS), and Quality System
are defined to be “the system” of people, processes, procedures, tools, disciplines, and
practices that are directly involved in producing a product or providing a service. They
are systems for managing quality (i.e., building quality into a product). This includes
the organization of construction and release procedures, the allocation of
respongibilities and the selection of tools for the implementation of quality assurance
[Ince 1994].

Quality assurance systems provide the framework for all quality-assuring measures and
strategies. It includes all of those steps necessary to begin a SQA effort in an
organization, from initial inception (the decision to have an SQA program) to actual

implementation (the point at which the actual QAS is fully in place and running).

11

Chapter 2 SQA Survey of Concept

2.1.6. Quality Assurance Plan

The Quality Assurance Plan is the central aid for planning and checking QA. It
contains all deliberately chosen QA measures for a software project, and consequently
it is the written proof of quality control. The QA Plan is a document outlining the
details of all procedures, policies, reviews, and audits which will be used to track
software projects through their life cycle, from initial request to actual operation,
assuring that quality is built in. It forms part of the overall project plan for a software

project.

2,1.7. Project Development Tasks of SQA

What are the main tasks of quality assurance? We can distinguish between quality

planning, quality control and quality testing,.

2.1.7.1. Quality Planning

Quality planning is a process of assessing the requirements of the product, and the
context in which they must be observed. For this, quality features must be selected,
classified and weighted. Quantification of the features plays an important part, since it
provides the evidence for compliance with the plan. Aids for measuring and evaluating,
quality metrics must be provided. Quality planning is product and process dependent
and must be agreed with the client or user.

The quality assurance planning includes the support in defining quality requirements,
the support in the creation of the project-specific quality assurance plan and advice on
the selection of constructive and analytical measures, the support when purchasing

software and when subcontracting to other companies.

12

-

Chapter 2 80A Survey of Concept

2.1.7.2. Quality Control

What is meant is the control, supervision, and correction of the implementation of
work with the goal of meeting the given requirements. Important aids to supervision
are quality tests. The results are used to recommend correction measures. Quality
control is closely linked with project management.

The supervision and evaluation of correction measures task includes the collection and
evaluation of shortcomings which were noted when assessing product quality, and the
following-up of requests for alterations and correction measures.

Juran provides a definition of quality control: “It is the process through which we
measure actual quality performance, compare it with standards, and act on the
difference” [Schulmeyer 1988].

Reifer equates software quality control with software verification: “It is the set of
verification activities which at any point in the software development sequence
involves assessing whether the current products being produced are technically
consistent and compliant with the specification of the previous phase” [Schulmeyer
1988].

Further narrowing leads to the following definition of software quality control:
“Independent evaluation fo assure fitness for use of the total software product”

[Schulmeyer 1988].

2.1,7.3. Quality Testing

Quality testing is the assessment to the extent to which a test object meets the given
requirements. We can distinguish between static and dynamic testing. Examples of
static testing are reviews and audits. To the category of dynamic testing belong, tests

and counts of test features through the use of tools.

13

Chapter 2 S0A Survey of Concept

The quality testing task includes the checking of phase results, analysis of applied
processes, aids and tools, audit of projects, and quality assessment of software

products.

2.1.8. SQA Objectives

The basic function of SQA, is to help the future user select those qualities important to
him, to ensure that both the user and the provider share the same understanding of
qualities, and to help the provider to ensure that those qualities are present in the final
product to a sufficient degree to make that product acceptable.

Quality assurance should not be viewed only as an auditing function, with the aim of
detecting errors or problems which have already occurred. The quality function should
aim to prevent problems before they occur through education, and the introduction and
support of appropriate procedures, standards, techniques and tools; to assure that
processes are in compliance with established quality procedures and that products are

being developed in accordance with approved product specifications and requirements.

2,1.9. Quality Models

The quality of a software product is the totality of characteristics and features which
relate to the suitability of this product to meet the prescribed requirements. In order to
test the specification and the target levels of quality requirements, aids are needed
which are related on the one hand to the development process and on the other to the
product. Quality models make specifications possible which take into account the
requirements of the software product as well as the process. Different quality models
have been developed, by Boehm, McCall, and others. So, they were introduced as
major aids for quality planning and evaluation. A hierarchical model of software quality

is based upon a set of quality Factors and their corresponding Criteria, each of which

14

Chapter 2 80QA Survey of Concept

has a set of measures or metrics associated with it. This type of model is illustrated

schematically in Figure 2.1.

/ Qually Factor

Quality Criterion Quality Criterion Quality Criterion
e.g. Reliability &.g. Maintainability e.g. Usability
Quality Metrics Quality Metrics Quality Metrics

Figure 2.1 A hierarchical model of quality

Since the main function of SQA is to ensure that the user is given a product that meets
its specified needs, to ensure that the user selects the qualities important to him/her, to
ensure that the provider and the user share the same understanding of qualities, and to
help the provider to ensure that the qualities are present in the final product, it is
important to talk about quality models. The reason for discussing quality models, is
that they provide a way for reaching a consensus on the software quality Factors and
their related Criteria which is a very important and preliminary step in ensuring against
a problem software product.

So, an important aspect of quality models is the partitioning of quality characteristics
which has metrics as its lowest level. Boehm was the first to suggest and show 21
characteristics and about 60 quality metrics in his model for evaluation of software
[Gillies 1992].

Depending on the prescribed quality model and the specific product requirements, a
specific number of characteristics, features, and metrics is determined for each project.
In general, requirements regarding ease of maintenance, portability are mostly

forgotten or ignored. Only functional requirements, performance requirements and

15

Chapter 2 S0A Survey of Concept

requirements of the user interface are specified. The reason is that the people
responsible for the specification do not have any aids for formulating these quality
requirements. Quality models and quality metrics provide the opportunity for
specifying these requirements.

We have seen that the quality assurance function is an iterative process, and we have
seen its elements whose outcome are quality Factors and Criteria. What are the

generally accepted Factors and Criteria that constitute software quality?

2.1.9.1. Factors of Software Quality

Factors may be described as higher-level, more general elements. Criteria in turn are
those characteristics which define quality Factors. Table 2-1 identifies, and offers
definitions of, eleven agreed upon Factors of software quality. This table is taken from
the study by McCall [Vincent 1988]. A listing of quality Factors include Correctness,
Reliability, Efficiency, Integrity, Usability, Maintainability, Testability, Flexibility,
Portability, Reusability, and Interoperability.

16

Chapter 2 S0A Survey of Concept

Quality Factor Definition
Correctness Extent to which a program satisfies its specification and fulfills the
nser's mission objectives
Reliability Extent to which a program can be expected to perform its intended
function with required precision
Efficiency The amount of computing resources and code required by a
program to perform a function
Integrity Extent to which access to software or data by unauthorized persons
can be controlled
Usability Effort required to learn, operate, prepare input, and interpret output
of a program
Maintainability Effort required to locate and fix an etror in an operational program
Testability Effort required to test a program to ensure it performs its intended
function
Flexibility Effort required to modify an operational program
Portability Effort required to transfer a program from one hardware
configuration and/or environment to another
Reusability Extent to which a program can be used in other applications related
to the packaging and scope of the functions that the program
performs
Interoperability Effort required to couple one system with another

Table 2-1 Factors of Software Quality

2.1.9.2. Criterion of Quality Factors

As we said above, Criteria are those characteristics which define the quality Factors. In
other words, quality Factors may be divided into independent Criteria which may be
easily measured. The total score of Criteria for a quality Factor will determine the
extent to which that Factor is present, that is the extent of a software product's quality
at that point. There are several reasons for developing a list of the Criteria for each
Factor: First, Criteria offer a more complete, concrete definition of Factors. Second,
Criteria common among Factors help to illustrate the interrelation between Factors.

Third, Criteria allow audit and review metrics to be developed with greater ease,

17

Chapter 2 S0A Survey of Concept

Finally, Criteria allow to pinpoint that area of a quality Factor which may not be up to
a predefined acceptable standard. Table 2-2 suggests a number of generally agreed

upon Criteria for software quality Factors.

18

Chapter 2 §0A Survey of Concept
Criterion Definition Related Factors
Traceability 'Those attributes of the software that provide a Correctness
thread from the requirements to the
implementation with respect to the specific
development and operational environment
Completeness Those attributes of the software that provide full Correctness
implementation of the functions required
Consistency Those attributes of the software that provide Correctness
uniform design and implementation techniques Reliability
and notation Maintainability
Accuracy ‘Those attributes of the software that provide the Reliability
required precision in calculations and outputs
Error Tolerance |Those attributes of the software that provide Reliability
' continuity of operation under nonnominal
conditions
Simplicity Those attributes of the sofiware that provide Reliability
implementation of functions in the most Maintainability
understandable manner(avoid practices that Testability
mcrease complexity
Modularity Those attributes of the software that provide a Maintainability
structure of highly independent modules Testability
Flexibility
Portability
Reusability
Interoperability
Generality Those attributes of the software that provide Flexibility
breadth to the functions performed Reusability
Expandability Those attributes of the software that provide for Flexibility
expansion of data storage requirements or
computational functions
Instramentation |Those attributes of the software that provide for Testability
[the measurement of usage or identification of
Errors
Self-Descriptiveness [Those attributes of the software that provide Maintainability
explanation of the implementation of a function Testability
Flexibility
Portability
Reusability
Execution Efficiency [Those attributes of the software that provide for Efficiency
minimum processing
Storage Efficiency |Those attributes of the software that provide for Efficiency

minimum storage requirements during operation

Table 2-2 Criteria of Software Quality Factors

19

Chapter 2 SQA Survey of Concept

Criterion Definition Related Factors
Access Control |Those attributes of the software that provide for Integrity
control of the access of software and data
Access Audit Those attributes of the software that provide for Integrity
an audit of the access of software and data
Operability ‘Those attributes of the software that determine Usability

operation and procedures concerned with the
operation of the software

Training ‘Those attributes of the software that provide Usability
transition from current operation or initial
familiarization
Communicativeness [Those attributes of the software that provide Usability
Wuseﬁll inputs and outputs which can be
assimilated
Software system |Those attributes of the software that determine its Portability
Independence dependency on the software environment Reusability

(operating system, inputs/outputs, etc.)
Machine Independence [Those attributes of the software that determine its Portability
Jdependency on the hardware system Reusability
Communications [Those attributes of the software that provide the | Interoperability
Commonality use of standard protocols and interface routines
Data Commonality |Those attributcs of the software that provide the | Interoperability
use of standard data representations
Conciseness Those atiributes of the software that provide the | Maintainability
implementation of a function with a minimum
amournt of code
Table 2-2 (Cont'd) Criteria of Software Quality Factors

Figure 2.2 provides an illustration of the relationship between these Criteria and the
Factors.

20

Chapter 2 80A Survey of Concept

CORRECTNESS

| Traceability | | Completeness

RELIABILITY

_——

Eirror Tolerance | L Consistency ’

Simplicity

Execution Efficiency | | Storage Efficiency T
Access Control l | Access Audit —l
USABILITY
Training | Communicativeness ’ Operability
MAINTAINABILITY

Consistency—H Simplicity lLConciseness H Modularity |LSe]f Descriptiveness ’

© Factor
[] Criteria

Figure 2.2 Factors of Software Quality and their Related Criteria

21

Chapter 2 SQA Survey of Concept

LModularity J EGenerality J l Expandability" Iielf Descriptiveness
Simplicity | l Modularity —l Llnstmmentation] J Self Descriptiveness 1

PORTARBILITY

Modularity ' Self Descriptiveness —’ | Machine Independence | | Software System
Independence
REUSABILITY
Generality Modularity Software System Machine Independence Self Descriptiveness
Independence

INTEROPERABILITY

Modularity | | Communications Commonality j I Data Commonalit}j

© Factor
L] Criteria

Figure 2.2 (Cont'd) Factors of Software Quality and their Related Criteria

2.1.9.3. Advantages and Disadvantages of Quality Models

Through the application of quality models many objectives are attained. First, the
different ideas of sofiware quality are made consistent. Second, there is uniform
communication. The user and the provider share the same understanding of quality.

Third, quality becomes concrete, it is definable and can be planned. Quality goals can

22

Chapter 2 80A Survey of Concept

be specitic by making available meaningful, quantifiable quality Criteria for the product
or process. Quality can be evaluated objectively. In this way, the development factor
quality can be planned and controlled. Management can see graphically to what extent
quality goals have been reached. The documentation of the product improves. Then,
meeting user requirements becomes easier to check. Proof of the effect of QA
measures becomes transparent and therefore simpler. Finally, quality models can also
help us to a better understanding of the relationships between Factors.

There are trade-offs to be considered between quality Factors. In the case of a negative
impact between Factors, the user will decide based on the importance of each affected
Factor to the end use of the software product, what the nature of the trade-offs will be.
If, for example, human lives are to be affected by the software product, a high degree
of Testability is desired, a Factor whose presence will enhance the Correctness and
Reliability of the product by allowing a thorough test to ensure that it will perform its
intended function. However, in some cases, some of the Efficiency Factor must be
sacrificed, because it conflicts with Testability.

A statement explaining the applications concerns and outlining the related quality
Factors and their Criteria trade-offs should be drafted for each software developed
under the SQA function {Wallmulier 1994].

Although quality models help to improve process quality. Typical process quality
problems are unsatisfactory project planning and control, underestimation of
development cost at the beginning of the project, and delayed delivery of the product.
By choosing suitable metrics for specific process factors such as project planning or
though standardized procedures within the project, process and product problems can
be more easily handled.

Despite these advantages there are a number of problems which must be solved. One
disadvantage is that the connection between metrics, Factors, and Criteria have not yet
been proved theoretically, and thus are only at the stage of hypothesis. The

development and validation of quality models is a current area of research in software

23

Chapter 2 8§04 Survey of Concept

engineering [Wallmiiller 1994]. The selection of meaningful quantifiable Criteria is
different and diverse for different development processes and is in its beginning.
However, despite many unsolved problems, quality models are already a useful

mechanism for improving the control of quality.

2.1.9.4. Views of Quality

One important aspect of quality planning and evaluation is a set of ideas on quality. As
it is known, quality is not absolute and is always based on predetermined requirements.
These predetermined requirements are dependent on the person who prescribes them.
People from different environments dealing with the development of a software
product have different ideas of quality. According to a study made by Dissman and
Zurwehn when constructing quality models, they define four groups of people who see
the situation from different views. These are the users, managers, designers and
programmers [Wallmiiller 1994].

For each of the various groups of people different quality views can be stated. Quality
views comprise a large number of communicating quality Factors which are relevant
for planning and evaluation of quality for the group.

The first group are the users of a software product. Quality requirements of this group
usually affect the interfaces of the product.

The second category of people are managers of a sofiware product. Managers are
those who provide software products which are reliable and maintainable and will keep
the customer satisfied. However they have deadlines and budget constraints to meet.
The requirements of this group are application oriented and concerned with the future
of the product.

The third group of people are the designers. They determine the technical structure of
the product as the combination of components and the functions of the components.

The quality goals of this group affect, the structuring of architecture, and aim at the

24

Chapter 2 S0A Survey of Concept

satisfaction of user and management requirements and control in the direction of
development and further development of the product.

The fourth group of people are the programmers. They create the actual components
of the system according to the prescribed functions in the form of programs and
modules. Their quality goals usually concern the detailed programming structure, the
programming style and the particular algorithms.

One can notice that these views may conflict with each other. While the customer is
interested to know to what extent the quality and application of the product are
affected by cost, time constraints, and technical risks, the project manager is interested
in reaching agreements regarding cost and time limits, and also an acceptable quality
level which is competitive with other user products.

The limits of quality models today lies partly in the inability to describe software
through quantifiable Criteria, and partly in the poor structuring and formal description
of development and maintenance processes. Many of the links between Factors,
Criteria and metrics in quality models rest on values based on experience, most of them
not systematically evaluated [Wallmiiller 1994].

Summarizing, we can say that, by taking into account the different views, applying a

quality model becomes easier and simpler.
2.1.9.5. Meaning of Quality Models in a QAS

Quality models are an actual research and development area of software engineering.
The central issues of QA, such as quality planning, quality control and quality testing,
can be solved only by metrics. Quality models offer a suitable foundation (Factors,
measurable and assessable Criteria).

The most important quality Factors for a project must be chosen. Thereafter they are
used for quantitative quality goals, assuming that the respective Criteria for these

quality Factors exist and that they are measurable. The relevant QA measures can then

25

Chapter 2 80A Survey aof Concept

be chosen in order to make sure that quality goals are reached. These measures
comprise the application of methods, tools and aids, and quality control lies in their
suitable practical application.

At certain points in time, intermediate evaluations are carried out in the form of quality
tests on phase deliverables, as it is planned in the QA Plan. They show us to what
extent quality goals have been reached in each phase. At the same time, they cause the
initiation of correction measures in order to reach the set quality goals. The aim is to
come to an acceptable quality level by using the systematic processes and practical aids

of software engineering [Gillies 1992].
2.1.10. Quality Assurance Principles

The creation of software is subject to the demand of high productivity. This involves
the goals of timescales, minimum cost and satisfactory product quality. If these goals
are met, we speak of economical software development. To achieve goals like high
productivity and the meeting of budgets, timescales and product quality requirements,
certain general principles of SQA must be observed. The following principles

concerning assurance of quality are at present acknowledged [Wallmiiller 1994,

Practical quality Factors
Of chief importance to quality is the observation of customer and user quality
requirements from the beginning of project planning. It is important that quality

Factors are concrete and if possible quantifiable.

Product and project-dependent quality planning

Insufficient attention is given to examining the real application process of the software
product to be planned and developed, such as the lifetime of the product and who the
potential user will be. All these factors influence the quality requirements of a project.

Depending on these quality requirements, the appropriate sofiware engineering

26

Chapter 2 SQA Survey of Concept

methods and tools can be applied and suitable QA measures taken. For example, in a
bank, the quality characteristics for a customer information system would be easy
handling and reliability.

In quality planning, if project uncertainties are not taken into account, quality
assurance plans are useless. The risk factors which influence product and quality
assurance planning include: the number of staff, the qualifications of staff, degree of
uncertainty of requirements, and the economic risk such as the time constraint for
product release on to the market. These risk factors are different in each project. In the
case of a risk, the respective QA measures must be chosen and project planning must

be modified or made more precise.

Checking of results of quality fests

It is an important part of successful quality control. Discrepancies from the planned
quality level will be revealed. The aim is to arrive at suitable correction methods in the
development process based on the findings in quality reviews. Reviews and audits

provide the necessary information for correction of the development process.

Multiple quality reviews
Here, we are dealing with informal tests. The capabilities of individuals are better
utilized. This occurs, for example, when the developer of an intermediate or end

deliverable of a phase asks his colleague to look at the documents and proofread them.

Maximum constructive quality assurance

While quality testing involves determining the existence or non-existence of quality, the
aim of constructive QA is to avoid errors in the development process. By the use of
suitable preventive measures, the product quality will be directly improved and the

quality tests will be reduced.

27

Chapter 2 S0A Survey of Concept

Early discovery and correction of errors and faults

An error in the requirement phase which is not discovered until the product is put into
operation by the end user costs about one hundred times more than early discovery in
the requirement phase. Therefore, the strategy must be to recognize and eliminate

errors as early as possible.

Integrated quality assurance

Quality assurance must be integrated into the entire development process. This leads to
QA measures being planned and organized with other development measures. The
basic principle is that each development activity consists of a constructive and a testing
part. Both parts are reflected in the respective documentation. For example,
requirements are listed by means of a suitable requirement definition method. By means
of a formal or informal requirement review, faults in the requirements are subsequently
removed. This principle makes the level of quality visible at each point in time, and is
important for the earlier phases. It is a prerequisite for checking whether quality goals

have been reached.

Independent quality testing

The central issue in quality testing is the discovery of errors and to show the current
actual quality and to deal with error elimination at a later stage. If developers have to
test their own work, it often leads to tension and psychological problems. This conflict
can be resolved through independent quality testing. By applying this principle, the
consequences of lack of objectivity can be avoided. One disadvantage can occur if it is

thought that it is the person who is being judged rather than the product.

Evaluation of applied quality assurance measures
At certain time intervals, it is necessary to check the applied quality assurance
organization and its measures. Audits result in corrections of the quality system and the

applied QA measures.

28

Chapter 2 8$0A Survey of Concept

It is important that management understands the quality principles mentioned above,
and takes quality seriously. When this happens, quality plan and program are likely to

succeed, and producing quality products on time and within budget is possible.

2.1.11. Quality Assurance Measures

The quality assurance measures forms the basis for the SQA team. Four categories of
QA measures can be distinguished: planning and administrative, constructive,
analytical, and psychology orientated.

Planning and administrative QA measures, where we are dealing with the construction,
introduction and maintenance of a quality assurance system.

Constructive QA measures are those which serve the creation of quality. They are
preventive and should avoid the creation of errors and quality faults from the start by
stipulating suitable principles (i.e. structuring in a document), methods (i.e. Jackson
system development), tools (testing tools, configuration management systems for
administration, pert chart for planning, CASE tools and QA tools), techniques (i.e.
prototyping), and process models (i.e. spiral and waterfall). They also include all
measures for error correction.

Analytical measures lead to the improvement of a product. 1t includes Verification and
Validation, Static tests which focus on reviews and audits, Dynamic tests that define
the testing methodology/activities and results, for each test (module, integration,
system, and acceptance), test plan, test design, test case specification, test procedure
specification, test execution, test analysis must be specific. The testing methods might
be black box or white box.

The category of Psychological QA measures concerns the person as a developer,
project leader, or project manager. We can distinguish between measures which

concern the work of the individual and those which concern team work.

29

Chapter 2 _ 80A Survey of Concept

2.1.12. Necessary Plans

The quality of a software product is determined by its development process and the
Factors it possesses. The development process can be structured in time by the
introduction of phases. Quality must be achieved in each of these phases. It is
important that there are requirements and that these are checked for their completeness
at the end of the phase. Certainly, the achieving of milestones is an important process
requirement for management. For example, the creation of a document is a milestone
at the end of a phase.

So, the development process, in particular its quality, plays an important part in the
creation of product quality. Prerequisites for good process quality are the extent of
systematic, methodical development, that is development standards, careful project
management, qualifications and training of staff, and the quality of aids used.

How and when errors are created in the process? The creation of faults and errors is
due to an accumulation effect. The project normally begins with collection, analysis
and definition of requirements. These requirements are recorded in the form of a
requirements specification. Experience has shown that part of the specification is
correct, while the other part containg errors.

In thé next phase, the design is created. The result is a design document. Part of the
design is correct, but another part contains errors which were created during this
phase, and another part of the design is based on faulty specifications.

The next step is programming. Part of the program is correct, but another part contains
errors. Another part of the program is based on faulty design, faulty specifications or
faulty requirements,

In the following integration and test phase, part of the program which functions
correctly, another part contains errors and can be corrected and which are being
corrected. Another part contains errors that cannot be corrected. Yet another part

contains hidden errors. Overall, the software product is not perfect. This imperfection

30

Chapter 2 80A Survey of Concept

is due to the cumulative effect of errors and faults and the overall effect can only be
observed at the end of the project.

The cumulative effect of errors can be reduced by suitable QA principles. One of the
most important principle is to apply tests at the beginning of the life cycle as well as to
test the process results. If this is not done, the correction of quality faults can become
very expensive, since the cost of correcting errors increases exponentially with the time
that an error remains in the product,

A major source of faults and errors lies in planning: that is in the planning of the
project as a whole and in the development process in particular. An examination of
problems in management of software projects by Thayer ef ol found that sixty percent
of problems are due to project planning and twenty percent to project control. From
this, we can see how important planning is for the achievement of a successful project
[Wallmiiller, 1994]

We start the software development process with specific requirements, such as the
requirement of a given product quality, or the requirement to complete the project by a
given time within a certain budget. How we can carry out the development process in a
way which allow us to meet these requirements is our aim. We are dealing with the
planning component in project management, and the interrelationship of project
management, quality assurance and configuration management.

One of the most important aids for quality-oriented project planning is the Project
Plan. The impoftant aspects of this plan are: project organization (the setting up of an
organization chart, determining responsibilities); project description (testing process,
requirement of project environment), development process in the form of a
development plan (division of development work into manageable parts, deadlines,
budget, and a list of risk factors); quality assurance in the form of a quality assurance
plan; CM with a Configuration Management Plan (CMP); and project-specific training
[Wallmiiller 1994].

So, Project management can be a source of problems and errors in connection with QA

and CM, and QA is a management issue.

31

Ch.apter 2 804 Survey of Concept

2.1.13. Degree of SQA involvement

The degree to which a SQA team gets involved in a project is not fixed. An SQA team
may remain completely independent from the development team in terms of tasks, or
may take a more active role in performing some of the developmental activities. Such
decisions must be tempered in the best interests of software quality management and
software development management as a function of the project.

So, it is important that there should be managerial independence between the
development team and the SQA group. That is to say, development should be under
one manager and SQA under a different manager, and neither manager should be able
to overrule the other.

The important thing is that SQA must never loose sight of its role as an independent
management team when it comes to matters of quality. No matter how involved it is in
the project itself, the sole justification for a quality team on a project is to assure that
processes are in compliance with established quality procedures and that products are
being developed in accordance with approved product specifications and requirements.
SQA plays a lead role in each phase. Before the next phase is entered, each phase must
be required to pass some form of test or inspection.

The implication is that SQA management must concern itself with how well the
specific objectives of each phase are being accomplished on a day-to-day basis. Such
concerns should be: what are the objectives of this phase? Are the objectives well
understood? If the objectives are unclear, from whom the resolution must be seeked?
The objectives must be stated and approved by the entire management team, and
coordinated among the project plans: software development plan, test plan, CMP,
SQA plan.

32

Chapter 3 Standards

Chapter 3
Standards

3.1. Managing Quality

The objective of quality management is to produce quality products by building quality
into the products rather than testing quality into the products. Quality management is
meant to ensure that faults do not occur in the first place. Quality management systems
are used for developing products and are designed to ensure that quality is being

designed and built into the products.

Quality management system, quality assurance system, and quality system are defined
to be “the system” of people, processes, procedures, tools, disciplines, and practices
that are directly involved in producing a product or providing a service, They are

systems for managing quality, 1.e., building quality into a product [Ince 1994].

International standards such as ISO 9001 and IEEE standard for Sofiware Quality
Assurance Plans (SQAP) [IEEE Std 730 1984], provide guidance to companies on

how they should organize their quality management system.

This chapter 1s split into two sections, each of which describes a specific standard. The
first section contains a discussion on ISO 9001, while the second contains a discussion
on IEEE standard for SQAP. Both standards provide guidance to sofiware developers
on how to implement, maintain, and improve a quality system capable of ensuring high-

quality software.

33

Chapter 3 Standards

3.2. The ISO 9000 Series of Standards

The ISO 9000 series of standards is a series of international standard quality standards,
developed by the international organization for standardization, that applies to the
quality management system and the process used to produce a product. The ISO 9000
standards are based on the premise that if the production process is right, the product
produced will be right. ISO 9000 establishes a basic set of quality system requirements
necessary to ensure that the process is capable of consistently producing products that
meet the expectation of the customer. ISO 9000 is a quality system standard
[Schmauch 1994].

The standards describe what, at a minimum, must be accomplished-they do not specify
how things must be done.

ISO 9000 raises quality awareness. If a company already has an established quality
management system, it can compare its quality system against the ISO 9000 standards.
If the quality system does not stack up well against the standard, serious thoughts must
be given to improve the quality system. However, if the company does not have a
formal quality management system, the ISO 9000 standards provide an excellent

starting point and framework against which to define the quality system.

A well-designed, well-implemented, and carefully managed ISO 9000 quality system
provides confidence that the output of the process will meet customer expectations and
requirements.

ISO 9000 does this by requiring that every activity affecting quality be conducted in a
three-part cycle: planning, control and documentation.

Activities affecting quality must be planmed to ensure that goals, authority, and
responsibility are defined and understood.

Activities affecting quality must be confrolled to ensure that specified requirements at
all levels are met, problems are anticipated and averted and corrective actions are

planned and carried out.

34

Chapter 3 Standards

Activities affecting quality must be documented to ensure understanding of quality
objectives and methods, smooth interaction within the organization, feedback for the
planning cycle, and objective evidence of quality system performance for those who
require it, such as customers. To ensure that goals, authority, and responsibility are

defined and understood.

The ISO 9000 series of standards contains three individual but related standards that
apply to quality management and quality assurance. The ISO 9000 series of standards
consists of five sections: [SO 9000, ISO 9001, ISO 9002, ISO 9003, and ISO 9004,
The standards are specified by ISO 9001, ISO 9002, ISO 2003 with ISO 9000
providing guidance related to which standard to use and ISO 9004 providing
amplification and guidance for implementing the standards. 1SO 9001 covering
processes encompassing product design/development, production, installation, and
servicing. ISO 9002 covering processes encompassing production and installation. ISO
9003 covering processes encompassing final inspection and test,

Because 1SO 9001 covers more aspects of development, more elements of the
standard apply to ISO 9001 than to ISO 9002 and ISO 9003. 1SO 9001 is a superset of
ISO 9002 which in turn is a superset of ISO 9003.

3.2.1. Why be interested in ISO 9000: its Benefits

There are numerous benefits for having ISO 9000 conforming quality systems. The
ISO 9000 series of standards provides an excellent basis against which to measure the
quality system. Quality system should be judged against ISO 9000 to ensure consistent
provision of quality products and service. First and foremost it is a matter of quality.
Since quality products are our objective, then ISO 9000 should be of interest to us.
Benefits of ISO 9000 include [Schmauch 1994]:

- a foundation for quality products: an ISO 9000 conforming quality system will

ensure that the development process has a level of control, discipline, and

35

Chapter 3 Standards

consistency in building quality into products, thereby reducing rework cost.
Continual improvement in the quality system, as required by the standard, will lead to

continual improvement in the quality of the products.

- increased productivity and reduced cost: many companies that have already
implemented ISO 9000 conforming quality systems are finding increases in
development productivity. This actually makes sense. Doing the job correctly the
first time under controlled, repeatable processes reduces the amount of rework and
corrective actions required for products produced by less controlled processes. It
reduces the amount of wasted time, energy, and money. It also reduces the amount
of misunderstanding between and among various developers, which slows down the

process.

- consistency: an ISO 9000 quality system will ensure the customers that not only
quality products will be produced, but producing better and better products will be

continual.

- improved competitiveness: conforming to the ISO 9000 quality assurance standards
is becoming essential to succeed in an increasingly competitive global marketplace.
ISO 9000 will indicate to customers that the products are more likely to meet claims
made about them than products with similar claims made by non-ISO 9000
competitors. Also, ISO 9000 is almost a requirement to the market. European
companies favor suppliers that have achieved or are in the process of achieving ISO

9000 registration.

- customers demand it: more and more, as ISO 9000 becomes more prevalent,
customers are demanding it. The ISO 9000 movement is being driven by purchasers
who are demanding more assurance that the products they purchase do what

manufacturers claim,

30

Chapter 3 Standards

- corporate image: ISO 9000 is being used to differentiate between quality
companies and the rest of the world. This may be a valid distinction. ISO 9000
conformance requires a demonstrated continuing commitment to quality. A company

with ISO 9000 conforming quality systems is a company that is committed to quality.

So, there are two broad ways to apply the ISO 9000 quality system standard. One way
is to implement it for quality management purposes-that is to obtain its benefits for
their own sake. The other way is to obtain a certification or registration to the ISO
9000 quality system standard. According to a study by Britain’s authoritative for
Quality Assurance, most firms seek ISO 9000 registration because of pressure from
customers [Johnson 1993].

As a result, fhe achievement of ISO 9000 standards is a powerful strategic tool,

whether the organization goes the certification route or not.
3.2.2. Standard Elements of ISO 9000

Since ISO 9001 is a superset of ISO 9002, which in turn is superset of ISO 9003, the
focus will be on ISO 9001, because it is the most comprehensive of the standards and
is mostly frequently applied to software development. The ISO 9000 series of
standards specifies 20 standard elements. ISO 9001 requires conformance to all 20 of
the elements, while ISO 9002 and ISO 9003 require conformance to 18 and 12
elements, respectively. The underlying essence of the ISO 9000 series is that the
quality system must be documented, controlled, auditable, monitored, improved, and
effective. In addition, management must be committed and employees must be
involved. If the processes are documented, controlled, auditable, effective, continually
monitored, and improved, and the management is committed and the employees are
involved, then the requirements of the ISO 9000 series of standards are being met.

A summary of the elements of ISO 9001 will be given [Schmauch 1994],

37

Chapter 3 Standards

Management responsibility

Management is responsible for establishing a quality policy and committing to it. The
quality policy must clearly define responsibilities, authority, and interrelations of those
with direct influence on quality. Management is responsible for communicating and
making sure that people are aware of and understand the quality policy. This
requirement pertains to all manufacturing environments, including software
development, and emphasizes that quality must be a major objective and that quality
goals and objectives must come from the top of the organization. Required verification
activities need to be identified and resources (qualified personnel and money) must be
provided for that activity. A manager who is responsible for the quality system must be
assigned; and management must periodically review the quality system to ensure its
continuing effectiveness. Assigning a management representative with authority to get

things done is one way management can demonstrate its commitment to quality.

Quality system

A quality system, conforming with the ISO 9000 series of standards, must be
established, documented, implemented, and maintained. A documented quality system
must be in a place that enables the delivery of quality products. A quality manual is
often used to document the quality system, and help to satisfy this element of the
standards. Establishing and maintaining a documented quality system is a mean of

ensuring that product conforms to specified requirements.

Contract review
Procedures must be in place, for the developer, to ensure that what is expected is
adequately defined, documented and clear, and understood so the expected results can

be produced.

38

Chapter 3 Standards

Design control

Documented procedures for the design and changes to the design must be in place for
controlling and verifying the design output to ensure that specified requirements will be
met. Plans for each stage of development activity are required, planning and carrying
out design reviews, assigning design verification to qualified personnel are also
required. The intent is to avoid proceeding into production with a design that will not
produce the expected results. In the world of software, it is quite often that the final
product turns out to be something other than what was originally intended.
Conformance to ISO 9000 standards, and this element and contract review, in

particular, should help prevent this.

Document control

There must be defined procedures to control all documents, including review,
approval, and change, and to ensure that the right level of information is available to
the right people at the right time. This ensures that everyone on the project is working
from the same level of document, such as specifications. Documentation that needs to
be controlled, must be identified. This includes all internal documentation that affects
the product and its quality. A master list of current documents must be maintained.
The list would contain the names of controlled documents along with the name of each

document owner, date of last update, review status, approvals.

Purchasing

If parts, used in the product or in the production of the product, are obtained from
outside the organization, it must be ensured that they work as expected before using
them. Subcontractors must also be selected based on their ability to produce what is
expected from them. The ISO 9000 series of standards clearly places the responsibility
for assuring the quality of the total product on the organization that delivers the final
product. The supplier is responsible for the quality of all the parts of the product

regardless of where or by whom they were produced. The intent of this element is to

39

Chapier 3 Standards

ensure that the supplier validates all parts that go into the product when the parts are

received.

Purchaser-supplied products

Procedures for verification, safe storage, and maintenance of products, or parts,
provided by the customer to be included in the product are required. This applies when
a customer’s product is being modified. The supplier must verify that the product
received 1s what is expected. This standards element requires the developer to verify
that what was provided by the purchaser is what was expected. If the developer
doesn’t know what he/she expected or cannot verify it, how can he/she possibly plan

what has to be done?

Product identification and traceability

Procedures for identifying and tracing the product during all stages of production,
delivery, and installation are required. It is important to satisfy this element of the
standard for the software development environment. Applying this element ensures
that the developer controls the constituent parts of the product during development,
and knows the exact content of products that have been delivered to customers so that
the right service is provided to the customers who have different versions of the

product.

Process control

It is important that the development process is carried out under controlled conditions,
including, monitoring progress, approval processes and equipment. This is a key
element in the standards. Several things need to be agreed upon. First, what is
production? It is the set of activities that follows design completion and ends with
product delivery. Second, what does it mean to be controlled? It is often easy to
recognize when something is out of control while it is more difficult to show

something is controlled. Control means that for all items relating to the product being

40

Chapter 3 Standards

developed or the production of the product, there is an owner, with authority to make
decisions and procedures for appropriate review, approval, and change. Third, this
element of the standard makes provision for special processes. Until there are ways to
produce zero-defect code, software will continue to fall under the category of special
processes. Special processes are processes for which results cannot be fully verified by
inspection and testing and the deficiencies become apparent after the product is in use.
Special processes require that they be continuously monitored and that documented
procedures be strictly followed. This achieved by step-by-step verification as the
product progresses through various stages of the development process and with

adherence to the documented processes and procedures.

Inspection and testing

Procedures for all levels of inspection and testing that have been identified as being
required must be defined. Records of testing activities must be maintained. So, the
testing that is required must be defined, documented, carried out, and it must be shown

that the required testing was successfully completed.

Inspection, measuring, and test equipment
A demonstration that tools for testing, verification, validation, measurement can serve

their intended purpose. Test tools must be validated and controlled.

Inspection and test status
During test stages, the test status of the various parts/product that are being developed
throughout the process must be identified. Part of having the process under control is

knowing and being able to show the status at any time.

Control of non-conforming producis
Procedures for controlling a product that does not conform to its specified

requirements must be established. Defects in software products can be discovered both

41

Chapter 3 Standards

before and after the product is delivered to customers. Procedures for dealing with the
product for which defects are discovered after it has been delivered are typically
addressed in response to element, servicing. When defects are discovered in a product
before the product is delivered, the most common practice is to rework the product

until it passes all required testing,

Corrective action

Procedures for investigating the causes for non-conforming products and ensuring
corrective actions must be established. It is worth noting that this element addresses
corrective action to the process used to develop the product, not to the product.
Procedures for corrective action to products that do not meet the specified
requirements are addressed in control of non conforming products, and servicing. This
element ensures continual monitoring, assessment, and improvement of the
development process and quality system. Records of product defects and problems and
customer complaints may be kept to satisfy this requirement. In addition, development

process metrics need to be kept.

Handliing, storage, packaging, and delivery

All parts and work items must be stored in a safe, secure, and controlled place.
Procedures to ensure that the intended product is sent to the customer, and that the
customer received what was sent must be established. The verification must be done

prior to customer ingtallation.

Quality records
Identification of whatever records needed to demonstrate and improve the
effectiveness of the quality system. The standard does not specify what records must

be kept. This involves identifying and keeping both product and process metrics.

42

Chapter 3 Standards

Internal quality audits

Periodic internal audits of the quality system must be conducted by qualified personnel
to determine the effectiveness of the quality system. The audits must be carried
according to plans and documented procedures. These audits differ from ISO 9000
audits in that they must determine how effective the quality system is, which is not part
of an ISO 9000 audit.

Training
Training needs must be identified, required training must be provided, and records of

the training must be kept.

Servicing
Procedures for servicing the product, when it is specified in the contract, must be
established. It requires documented procedures for correcting defects and non-

conformities found in the product after it has been delivered to the customer.

Statistical techniques

Proofs must be provided to show that any metrics or measurements used during
development of the product or to determine the quality of the product and the
effectiveness of the quality system are correct and accurate. In addition to validating
metrics, validity of any predictive algorithm used (e.g. for predicting number of

remaining problems) and methods used to collect data is required.

3.3. IEEE Standard for SQAP

In this section, we introduce IEEE standard for SQAP [IEEE Std 730 1984], an
internationally accepted standard which provides the basis of quality assurance plans.
The purpose of this standard is to provide uniform, minimum acceptable requirements

for preparation and content of SQAP’s.

43

Chapter 3 Standards

The organization or person responsible for SQA shall prepare a SQAP that includes

the sections listed below, ordered in the prescribed sequence.

Additional sections may be added at the end, as required. Some of the material may
appear in other documents. If so, then reference to those documents should be made in

the body of the plan.

Purpose (section 1 of the SQAP)

This section states the specific purpose and scope of the particular SQAP. 1t lists the
names of the sofiware product items covered by the SQAP and the intended use of the
software, It states the portion of the software life cycle covered by the SQAP for each

software item specified.

Referenced Documents (section 2 of the SQAP)
This section provides a complete list of all documents which are referenced elsewhere
in the text of the plan. It must also be stated where these documents can be obtained

and who is responsible for them.

Management (section 3 of the SQAP)
This part of the plan describes the organizations, tasks, and responsibilities of the
development process.

Organization

The organization created, influencing and controlling the quality of the
software, is shown by means of an organizational structure diagram with additional
written annotations. They contain a description of each group of the created
organization which carries out quality assurance tasks; responsibilities which can be
delegated; responsibilities for reports; identification of those groups which are
responsible for the product release; identification of those groups which examine the

SQAP; all procedures which may be invoked for solving conflict between

44

Chapter 3 _ Standards

organizational groups; the size of magnitude of the quality assurance organization; and
all deviations from quality policy formerly stipulated by the organization, or deviations
form measures and standards for quality assurance. Organizational dependence or
independence of the elements responsible for SQA from those responsible for software

development shall be clearly described.

Tasks

All elements in this organization should be described in full detail, so that the
tasks which are listed in the SQAP are allocated directly to the elements of the
organization. Thus, the portion of the software life cycle covered by the SQAP, the
tasks to be performed with special emphasis on SQA activities, and the relationships
between these tasks and the planned major check-points shall be described.
The description of tasks in QA, in particular the sequence of the tasks must cover the
entire software life cycle. This must include the names of the people publishing the

SQAP and distributing, maintaining and releasing it.

Responsibilities
The description of responsibilities identifies which quality assurance groups are

responsible for which quality assurance tasks.

Documentation (section 4 of the SQAP)
This part of the plan includes three sections, the second of which includes six sub-

sections.

Purpose
This section identifies the documentation governing the development,

verification and validation, use, and maintenance of the software. In addition, it states
how the documents are to be checked for adequacy. That is, all reviews and audits are

noted which comment on the suitability and quality of the documentation. It identifies

45

Chapter 3

Standards

the reviews and audits by which the adequacy of each document shall be confirmed,

with reference to section 6 of the SQAP.

Minimum Docymentation Requirements

To ensure that the implementation of software satisfies the requirements, the

following documentation is required as a minimum.

- Software Requirements Specification (SRS)

Software Requirements Specification (SRS) which clearly and precisely
describe each of the essential requirements (functions, performance,
design constraints) of the software and the external interfaces. Each
requirement is defined such that its achievement is capable of being
verified by a prescribed method, like inspection, analysis or test.

- Software Design Description (SDD)

Software Design Description (SDD) which describes how the software
will be structured to satisfy the requirements in the SRS. The SDD
describes the major components of the software design including
databases and internal interfaces. The SDD shall be prepared first as the
Preliminary SDD and subsequently expanded to produce the Detailed
SDD.

- Software Verification and Validation Plan (SVVP)

Software Verification and Validation Plan (SVVP) which describes the
methods (like, inspection, analysis or test) to be used to verify the
requirements in the SRS have been approved by an appropriate
authority, that the requirements in the SRS are implemented in the
design expressed in the SDD and further into the code, and that the

code, when executed, meets the requirements expressed in the SRS.

46

Chapter 3

Standards

Other

- Software Verification and Validation Report(SVVR)

Software Verification and Validation Report (SVVR) which describes
the results of the execution of the SVVP. It includes the results of all
reviews, audits, and tests required by the SQAP.

- User Documentation

User documentation, like manual and guide, specifies the required data
and control inputs, input sequences, options, program limitations and
other activities necessary for successful execution of the software. All
error messages shall be identified and corrective actions described. A
method of describing user-identified errors or problems to the
developer is described. Software with no user interaction has no need
for user documentation.

- Software Configuration Management Plan

The Software Configuration Management Plan (SCMP) documents
methods to be used for identifying software items, controlling and
implementing changes, and recording and reporting change
implementation status. This documentation is either provided explicitly

in this section, or refers to an existing SCMP.

Other documentation may include Procedures Manual, and User's Guide.

Standards, Practices, and Conventions (section 5 of the SQAP)

This part of the plan includes two sections: purpose and content.

Purpose

In this section, all standards, practices, and conventions to be applied are

identified. In addition, it states how compliance with these items is to be monitored and

assured.

47

Chapter 3 Standards

Content

The subjects covered shall include the basic technical, design, and programming
activities involved, such as documentation, module naming, programming, inspection,
and testing.
A minimum of standards, practices, and conventions must exist for requirements
specifications, design, implementation (special coding and comments), testing and
documentation. Selected SQA product and process metrics such as Branch metric,
Decision point metric, Domain metric, Error message metric, Requirements

demonstration metric must be provided.

Reviews and Audits (section 6 of the SQAP)
This part of the plan includes three sections, the second of which includes ten sub-

sections.

Purpose

In this section, technical and managerial reviews and audits to be conducted are
listed with the date of execution. It also states how these reviews and audits are to be
accomplished. It states also what further actions are required and how they are to be

implemented and verified.

Minimuim Requirements

As a minimum, the following reviews and audits should be conducted.
- Software Requirements Review
Software Requirements Review (SRR) which is held to ensure the
adequacy of the requirements stated in the SRS.
~ Preliminary Design Review
Preliminary Design Review (PDR) which is held to evaluate the
technical adequacy of the preliminary design of the software as depicted
in a preliminary version of the SDD.

48

Chapter 3

Standards

- Critical Design Review

Critical Design Review (CDR) which is held to determine the
acceptability of the detailed software designs as depicted in the SDD in
satisfying the requirements of the SRS.

- Software Verification and Validation Plan Review

Software Verification and Validation Plan Review (SVVPR) that is held
to evaluate the adequacy and completeness of the verification and
validation methods described in the SVVP.

- Functional Audit

Functional Audit that is held prior to the software delivery to verify that

all requirements specified in the SRS have been met.

-~ Physical Audit

Physical Audit which is held to verify that the software and its
documentation are internally consistent and are ready for delivery.

- In-Process Audits

In-process Audits of a sample of the design are held to verify
consistency of the design, including: code versus design documentation,
interface specifications-hardware and software, design implementation
versus functional requirements, functional requirements versus test
descriptions,

- Managerial Reviews

-Management Reviews are held periodically to assess the execution of

this plan. These reviews are held by an organizational element
independent of the unit being reviewed, or by a qualified third party.
This review may require additional changes in the SQAP.

- SCMP Review

The Software Configuration Management Plan Review (SCMPR) is
held to evaluate the adequacy and completeness of the configuration

management methods defined in the SCMP.

49

Chapter 3 Standards

- Post Mortem Review
This review is held at the conclusion of the project to assess the
development activities implemented on that project and to provide

recommendations for appropriate actions.

Other
Other reviews and audits may include the User Documentation Review (UDR).
This review is held to evaluate the adequacy, completeness, clarity, correctness and

usability of user documentation.

Test (section 7 of the SQAP)
This section identifies all the tests not included in the SVVP for the software covered

by the SQAP and states the methods to be used.

Problem Reporting and Corrective Action (section 8 of the SQAP)

This section describes the practices and procedures to be followed for reporting,
tracking, and resolving software problems in both development and maintenance
process. It also specifies who in the organization is responsible for the execution of

these procedures.

Tools, Techniques, and Methodologies (section 9 of the SQAP)
This section identifies the special software tools, techniques, and methodologies
employed on the specific project that supports SQA, state their purpose, and describe

their use.

Code Control (section 10 of the SQAP)
This part of the plan defines the procedures, methods and tools used to maintain, store,
secure and document already validated versions of identified software during all phases

of the software life cycle. This can be done with the use of a Computer Program

50

Chapter 3 Standards

Library. It may be provided as a part of the SCMP. If so, an appropriate reference shall

be made.

Media Control (section 11 of the SQAP)

This section states the methods and tools to be used to identify the media for each
computer product and the documentation required to store the media, including the
copy and restore process, and to protect computer program physical media from
unauthorized access or inadvertent damage or degradation during all phases of the
software life cycle. This may be provided as part of the SCMP. If so, an appropriate

reference shall be made.

Supplier Control (section 12 of the SQAP)

This section states the provision for assuring that software provided by suppliers meets
established technical requirements. In addition, this section states the methods that will
be used to assure that the software supplier receives adequate and complete
requirements. For previously developed software, this section states the methods to be
used to assure the suitability of the product for use with the software items covered by
the SQAP. For software that is to be developed, the supplier is required to prepare and
implement a SQAP in accordance with this standard. This section also states the
methods to be employed to assure that the developers comply with the requirements of

this standard.

Records Collection, Maintenance, and Refention (section 13 of the SQAP)
This section identifies the SQA documentation to be retained, states the methods and
facilities to be used to assemble, safeguard, and maintain this documentation, and

designates the retention period.

Training (section 14 of the SQAP)

This section identifies the training activities necessary to meet the needs of the SQAP.

51

Chapter 3 ' Standards

Risk Management (section 15 of the SQAP)
This section specifies the methods and procedures employed to identify, assess,

monitor, and control areas of risk arising during the portion of the software life cycle
" covered by the SQAP.

¢
A

52

Chapter 4 Suggested Quality System

Chapter 4

Suggested Quality System

In this chapter a quality system is suggested based on the standards discussed in the
previous chapter. The suggested program is split into sections each of which forms an
item. A description of each item is provided to present an understandable quality
system. The quality system is designed for a small to medium scale Lebanese company.
It is designed to be effective for the company and as comprehensive as necessary to
meet the company quality objectives not the standards. Unnecessary items are not
included just to satisfy the standards. Conversely, if there are quality considerations
that are needed, they will be included in the quality system though they may not be
required by the standards.

The 1ISO 9000 series of standards was originally developed for the manufacturing
environment. It is not written to any specific industry and is intended to be relevant to
all types of business. Recognition that the process for development and maintenance of
software is different from that of most other types of industrial products has lead to the

fact that serious considerations are taken when designing quality systems for software.

The aim of the quality system is to ensure that the product meets the customer’s
quality requirements. It is based on the premise that associated with each software
development project is a life-cycle consisting of a set of phases. In the proposed quality
system, the life-cycle begins with the proposal phase followed by the requirement
phase, planning phase, design phase, implementation, integration and test phase, and
finally ends with the maintenance phase.

As mentioned earlier, software development is a very complex process which requires

the use of many different disciplines for the development of a product to satisfy its

53

Chapter 4 Suggested Quality System

requirements. The necessary disciplines are Project Management, Quality Assurance,
Conﬁguration Management and Software Engineering for the implementation process.
Since the purpose is to present the role of the SQA group in each activity in the quality
system, the emphasis is on the QA discipline. However, to bring about a quality
product, the elements of SQA must be coordinated with the elements of the other
disciplines. For this reason, the planning component in project management, and the
interrelationship of QA and CM, and Sofiware Engineering are of importance.

Throughout the chapter, necessary plans are presented.

Following is a presentation of the quality system.

4.1. Management Responsibility

This part of the system is concerned with the fact that the company should have a
quality system, that management should support that system and that a very senior
member of staff-designated management representative, Quality Manager (QM)-should
be responsible for the system. Three requirements are essential for the success of the

quality system.

4.1.1. Quality Policy

The company must define and document its quality policy, and objectives for, and
commitment to, quality and customer satisfaction. The quality policy must be
supported by the highest levels of management. A documented quality policy, signed
by the highest level of management serves this purpose. However, it must be more than
“lip service” by the person who signs it. The quality policy states the organization’s
quality goals and objectives and the strategy for achieving them, along with the
facility’s quality image and reputation. Every qualify professional has asserted that the

54

Chapter 4 Suggested Quality System

success of a quality system is directly related to the consistency and intensity of top
management’s commitment [Schmauch 1994]. Management defines it quality policy
and executes it through an organization of people and resources. Management also
participates actively in the quality system by conducting verification and review
activities. The quality policy must be publicized regularly so that it is understood at all
levels of the facility. Quality policies do not have to be lengthy to be effective.

4.1.2. Organizational Structure

There are many ways to organize a software project. The larger the project the more
critical the organizational structure becomes. Badly organized projects lead to

confusion, and confusion leads to project failure.

Software project is the process of planning, organizing, staffing, monitoring,
controlling, and leading a software project. Rarely can all these tasks be performed by
the Project Manager (PM), in fact, they should not. The control and monitoring
activities can be assigned to project support groups. These support groups not only
disburden the PM and the development engineers from the support tasks, but they also
perform these tasks better by concentrating their efforts on specific support functions.
Three major technical support functions are required in every software development
project: Configuration Control (CC) to manage the changes to the software product
being developed, QA to monitor and control the quality of the product, and testing to

verify compliance with the product’s requirements.

The basic structure of a project in which below the PM are just two general functions:

development and support is illustrated in Figure 4.1,

55

Chapter 4 Suggested Quality System

PM

| Project Development Team I | Project Support Functions [

Figure 4.1. Project Basic Structure

This basic software project structure is valid for very small projects (up to five
developers), though occasionally it can still be found in larger projects.

A detailed organizational chart including all major support functions is illustrated in

Figure 4.2.
General Manager
II’M Quality Manager
System Englineering Manager
Software Eng./Development Team QA Team || Test Team CC Team

Figure 4.2. Detailed Organizational Chart

This organizational structure is suitable also for large projects (with a staff exceeding
twenty). Smaller projects may not require a separate test team, CC and QA groups.
Very large projects (exceeding a staff of forty) can often be managed more easily by

dividing the project into sub-projects [Bennatan 1992].

The project’s organizational structure is dependent on the type of project being

developed. Some of the issues that must be considered are:

56

Chapter 4 Suggested Quality System

-Project size: the larger the project, the more important the organization. Large
projects have significant human communications and coordination overhead, and

therefore require more support functions.

-Hardware/software development projects: the simultaneous development of
hardware and software is not easy. Planning, integration and testing are much more

complicated, and require dedicated support groups.

-High reliability systems: any system is sensitive to issues of reliability require a
major effort in QA and a separate QA organization. This includes military to life-

saving systems and marketable software products.

-Corporate structure: the project’s organization is largely dependent on the overall
structure of the company within which the project 1s being developed. Many of the
project support functions can be provided by centralized groups within the company.
The size of a support group is clearly dependent on the size of the project; for
example, a large project may require a group of two or three configuration control
engineers, a medium size project may require one configuration control engineer and

a small project may assign this task to a development engineer.
These decisions must be made by the PM during the initial stages of the project.
Project support functions that are well planned at the start of the project will
contribute to effective project management throughout the project.

4.1.2.1. Roles, Responsibility and Authority

The responsibility, authority and the interrelation of all personnel who manage,

perform and verify work affecting quality are defined.

57

Chapter 4 Suggested Quality System

Project Manager (PM) : directs, controls, administers and regulates a project to build
a hardware/software system. He is responsible to the customer. Most of the people
working on a project would report to the PM, although for some disciplines we might
have a reporting relationship. The engineering groups would have an indirect reporting

relationship to the PM.

System Engineering Team : is the collection of individuals (both managers and
technical staff) who have responsibility for specifying the system requirements;
allocating the system requirement to the hardware, software, and other components;
specifying the interfaces between the hardware, sofiware, and other components; and
monitoring the design and development of these components to ensure conformance

with their specifications. However, the emphasis is on the Software Engineering Team.

Sofiware Engineering Team : is the collection of individuals (managers and technical
staff) who have responsibility for performing the software development and
maintenance activities (requirements analysis, design, code, and test) for a project. The
technical people are the analysts, programmers, engineers who perform these activities,

but who are not managers.

SQA Team : is the collection of individuals (managers and staff) who plan and
implement the project’s QA activities to ensure the software process steps and

standards are followed.

Software Configuration Management Team (SCM/CC) : is the collection of
individuals (managers and staff) who plan, coordinate, and implement the formal CM

activities for the software project.

System Test Team : is the collection of individuals (managers and staff) who have

responsibility for planning and performing the system testing of the software, whether

58

Chapter 4 Suggested Quality System

independent or not, to determine whether the software product satisfies its

requirements.

It is the PM’s responsibility to organize the project support groups and to document
their planned activities in the Project Development Plan (PDP). If these groups already
exist within the organization, then their support needs to be coordinated and scheduled
for the project. If the groups do not exist then they must be established within the

project development team.

Responsibility must always go side by side with authority. All project staff members
must be given authority to act within their area of responsibility. The QM must have
the authority to approve or reject product components, and development engineers
must have the authority to make design decisions related to the components that they
are developing. However, no authority is absolute, and higher level personnel within
the project must constantly review these decisions and step in when they feel an error

is being made.
4.1.2.2. Independence in the Organizational Structure

As to the organizational independence, the company must take care of the functions
that call for orgamizational independence. Should organizational independence be

needed, the following two disciplines are involved: the SQA group and the test group.

For small projects, the support functions can be combined together. Organizational
independence is not needed. Merging these functions means assigning the
responsibilities to the same person. However, independence of the support groups
within the organization is required.

The SQA group has a reporting channel to senior management that is independent of

the PM. The independence of the SQA group is necessary so its members can perform

59

Chapter 4 Suggested Quality System

their jobs without being influenced by project schedule and cost pressures. Internal
independence provide the individuals performing the SQA activities with the
organizational freedom to be the “eyes” and “ears” of senior management on the
project, protect the individual performing the SQA activities from adverse personnel
actions when there is a need to escalate deviations outside the project and provide
senior management with confidence that objective information on the process and
products of the project is being reported.

The test group prepares and plans the system and acceptance test cases and
procedures. Such independence ensures that the testers are not appropriately
influenced by the design and implementation decisions made by the software
developers or maintainers. Test procedures and testing are always best when
conducted by a separate team. The decision on whether supervision of testing activities
can be assigned to SQA depends on many factors, including the independence of the
SQA team, the size of the project and the complexity of the project. When testing is
performed by an independent test team, SQA’s involvement will be minimal. In most
cases it is the responsibility of the SQA team to plan and supervise the testing of the

system.

While test teams function primarily during the integration and test phases of the
development cycle, the QA team functions throughout the project’s development

cycle.

So, it is undesirable for SQA to be performed by a member of the development team.
However, small organizations and projects often cannot justify the cost of a dedicated
SQA group. This problem can be solved by having a single SQA engineer responsible
for two or three small projects.

The SQA engineer or QM activities cover the review and approval of the development

methodology, evaluation and selection of development tools, the software

60

Chapter 4 Suggested Quality System

documentation, the planning, supervision and approval of testing, and the

administration of CC.

Merging SQA and CC is not uncommon, and both responsibilities may be assigned to

the same person.

4.1.3. Management Review

It is important that the quality system be subject to continual review and assessment of
its appropriateness and effectiveness. To attain required quality, management has to
specify its objectives, establish plans and procedures to accomplish them, assign duties,
delegate authority, set up adequate methods and standards, and evaluate results
objectively. In order to ensure that these requirements for quality continue to be met,
the management should periodically and systematically conduct formal reviews. The
findings of the quality system reviews should be analyzed to determine the actions to
maintain the system’s effectiveness.

Whenever problems are not identified at their earliest point by the quality system,
appropriate remedial actions must be taken. Changes to the software development
environment leads to a re-examination of the quality system. Such changes include
changes in the hardware platform or system software, changes in the software
development platform (new language, CASE tools), changes in busmess direction
affecting the software development function, and changes to internal software
development standards and procedures.

Such changes are documented then discussed with developers and agreed upon prior

to implementation.

6l

Chapter 4 Suggested Quality System

4.2. Quality Planning

The second element of the quality system is quality planning.

The SQA person works with the software project during its early stages to establish
plans, standards, and procedures that add value to the software project and satisfy the
constraints of the project and the organization’s policies. By participating in
establishing the plans, standards, and procedures, the SQA person helps ensure they fit
the project’s needs and verifies that they will be usable for performing reviews and
audits throughout the software life-cycle. He reviews the project activities and audits
software work products and provides management with visibility as to whether the
software project is adhering to the established plans, standards, and procedures.
Compliance issues are addressed within the software project and resolved if possible.
Non-compliance issues that cannot be resolved within the software project are

addressed by senior management.

In order to meet quality requirements, many activities are required of the PM and the
QM at the commencement of a new project, and throughout the project life-cycle.
Quality planning is performed in two phases: initial planning and final planning,

Since SQA must play a lead role from the beginning of each phase, the management of
each phase must be weighted equally in terms of importance to achieve a final quality
product. No phase must be considered lightly or be weighted more than any other
relative to the final product. If management accepted each phase in terms of what each
phase must accomplish and directed efforts within each phase to accomplish its specific
objectives, then no one phase would receive preferential treatment, or inadequate

attention,

62

Chapter 4 Suggested Quality System

4.3. Initial Planning Phase

Management’s first chance at planning an effective role for SQA is during the initial
planning phase, also called proposal or concept phase, where the objectives of quality
must first be defined. Defining quality objectives is particularly important to software
quality and must be specifically and uniquely tailored to the project. In this sense, the
what and how of SQA must be related to developmental processes and described for
each phase of the sofiware life cycle,

The proposal phase, then, is management’s (both development and quality) first look at
the plans and objectives for development. This is not a phase whose only objective is
winning contracts. How tasks will be performed (process quality) and what the end
products must do (product quality) are being firmly established in a legal and

contractual sense,

It is important to point out that there is the case where no contract is involved, or at
least only some form of informal agreement is in existence. This normally occurs when
the computer department of a company produces a software system for another part of
the company. While the business trend is towards internal contracts, the computer
service departments are still producing software without any formal notion of a

contract.

The customer should cooperate with the organization developing the product to
provide all necessary information in a timely manner and resolve pending items. The
customer assigns a representative with the responsibility for dealing with the developer

on contractual matters-when the project is contracted out.

The customer’s representative authority include defining the customer’s requirements
to the developer, answering questions from the developer, approving developer’s

proposals, concluding agreements with the developer, ensuring the customer’s

63

Chapter 4 Suggested Quality System

organization observes the agreements made with the developer, defining acceptance
criteria and procedures, and dealing with supplied software items that are found

unsuitable for use.

Several items on quality are found to be relevant in the contract, or any other
document produced at the end of this phase-initial version of the PDP. These items
include the acceptance criteria, handling of changes in customer’s requirements during
the development, handling of problems detected after acceptance including quality
related claims and customer’s complaints, activities carried out by the customer,
especially the customer’s role in requirement specification, and acceptance, facilities,
tools and software items to be provided by the customer, standards and procedures to
be used. The QM should be an active participant during this phase to provide insight
based on his previous experience into preventing problems, defining major risk areas,
defining the way review processes and inspections are to be conducted, defining the
need and use of procedures, and assessing how to modify existing procedures to fit a
project. This is not intended to provide a complete set of SQA activities during the
proposal phase but to emphasize the need for SQA personnel to be active participants
in defining and proposing what must be accomplished and how these developmental
activities will be processed to properly coordinate the planned activities of SQA with

all the concerned organizational areas [Bennatan 1992].

The contract or any other documentation is reviewed at a meeting of representatives

from quality and project management,

As a result, this phase provides the basis for the definition of the software
requirements, and initial planning and preparation of estimates. It serves as an early
version of the PDP. The quality aspects that are considered in this phase are often
conducted informally. A description of the PDP is given in the following phase since

this phase is not formal.

64

Chapter 4 Suggested Quality System

4.4. Final Planning Phase

Although the initial phase is not a mandatory formal development phase, and is often
conducted informally, it is a phase during which the need for the software system is
determined and the basic concept of the software system evolves. Following the initial
phase is the final phase. This phase includes all the mandatory phases of sofiware
development. The following sections describe the management issues affecting quality

associated with each phase, and the quality activities related to project elements.

4.4.1. The Software Requirements Phase

The software requirements phase is the first formal mandatory phase of software
development. This phase provides a detailed description of the software system to be
developed. It is according to the requirements specification that the software is tested
at the end of the project to demonstrate that the required product has indeed been
produced. The requirements specification answers the question what while attempting
to avoid the question how.

The requirements phase forms the basis for the first major system baseline, the design
of the system, and the Acceptance Test Procedures (ATP).

This phase produces one main product document that is the software requirements
specification document, and two project planning documents, the PDP, and the
software test plan.

This phase is perceived as the most difficult and important phase of the software
development cycle. There is a basic conflict of interest between the customer and the
management since the customer is reluctant to finalize the requirements because of the
knowledge that once this is done any further changes may be costly and the
management needs to finalize the requirements as soon as possible because progress

will be slow as long as the product is not fully defined, and this is costly.

65

Chapter 4 Suggested Onality System

Several problems are encountered during this phase. Such problems include the
frequent changes of requirements, closing requirements which is not always easy and
requires expetience, patience and firmness. It is the PM’s job, to be resolute and
decisive in requiring all parties to sign off the requirements for the project, because this
phase cannot be completed without a formally approved requirement document,
Another problem encountered during this phase is the staffing because locating suitable
development team members can be a difficult task. Tt is always a problem for the PM.
Assignment of team members should be completed during this phase. Equipment
procurement, and binding estimates should be completed before the end of this phase.
Staffing and equipment problems impact the estimates and the schedule in the PDP. All
these problems delay the project.

Since the SQA group must play a role right from the start of the development process,
after the customer has established the system requirements, the engineering group will
perform checks-assessments-as to their adequacy. The QM uses the assessments to
revise the process of establishing requirements, change methodologies, or enforce the
procedures originally planned. Prototypes could be used to test the requirements, any
vague or suspect requirements should be deleted.

The requirement phase formally concludes with the project’s first major review:
Software Requirement Review (SRR). This review declares the requirement document
as the first approved project baseline. During the review, representatives of the
requirements team are present, as are representatives of the customer organization.
The meeting is usually chaired by the QM. The aim of the review is to ensure that the
requirements are correct. The reviewers go through the specification document,
ensuring that there are no misunderstandings as to what is meant by each statement in
the document.

Obtaining formal approval for the requirements specification is the most difficult task
of this phase. The requirements must evolve gradually. Several draft versions of the
specifications might be submitted until convergence to the final approved document.

As to the PDP, an initial draft is prepared, and it is updated throughout the life of the

66

Chapter 4 Suggested Quality System

project to reach a final PDP. Since the PDP is one of the requirement phase outcome,
and although it progresses in parallel with the requirement phase, it is presented in the

following separate phase, the planning phase.
4.4.2. The Project Planning Phase

During the planning phase, the software PDP is drawn up. It is one of the first formal
documents produced by the PM. Within this document, the PM describes in detail how
the project will be developed, what resources will be required, and how these
resources will be used. A major aspect of the plan is estimating the duration of the
project and how much it will cost. In other words, the project schedule is one of the

most important parts of the PDP.

The following is a brief outline of some of the subjects covered in the PDP [Bennatan

1992]:

-System overview: a general overview of the project is included in the first section of

the document.

-Software development management. this section includes four sub-sections. It
describes the project organization and resources that will be used to develop the
product, the organization of the development facilities that will be used to support

the development effort, the project organizational structure, and the personnel.

~Schedule and milestones: this section provides the necessary information to prepare
the development schedule. It includes the schedufed activities, milestones and
baselines, and budgei administration. 1t also involves a schedule of planned major

QA activities in relation to project milestones.

67

Chapter 4 Suggested Quality System

While the schedule provides answers to two basic planning questions: whar and when,
the remaining sections discuss fow.

The discussion in the sow sections provides information on: risk analysis, security,
interface with external sources, procedure for reviews, corrective action process,
standards, development methodologies used, testing, and SCM.

Certainly, not all subjects are applicable to all projects. For‘ example, the interface with
external sources involves activities such as interfacing with subcontractors, and

vendors. Some projects do not require this activity.

An initial PDP is prepared. 1t is further refined as the project goes through progressive
stages.

The QM meticulously checks every aspect of the plan, and pays particular attention to
the duration and cost estimates on which the plan as a whole is based. One way to do
this 1s for management to obtain two or more independent estimates of both duration
and cost at the start of the planning phase, and then to reconcile any significant
differences. With regard to the document, an excellent way to verify it is by means of a
review similar to the review of the specification document, conducted by the QM.

If the duration and cost estimates are satisfactory, then the customer gives the

permission for the project to proceed. The next phase is to design the product.
4.4.3. The Design Phase

During this phase, the requirements are analyzed and the method of implementation is
determined. Just as the requirement phase addressed the question whar?, the design
phase addresses the question Z2ow? The response to this question is documented in the

software design specification document.

This phase provides the basis for the second major system baseline, the implementation

of the system, and an updated development plan. It produces the following documents:

63

Chapter 4 Suggested Quality System

design specification (for large projects: top level design specification and detailed
design specification), integration plan, and test case specification, describing in detail

each individual low level test,

The design phase can be or is often divided into two separate phases: top level design

and detailed design.

The design specification document establishes the project’s second major baseline. In
the case of two design phases, the detailed design specification is regarded as the major
design baseline, and the top level design specification is regarded as a secondary

baseline.

At the end of this phase, many of the project’s unknowns become known, thus
providing a significant improvement in the PDP estimates. Various project
development parameters, such as the integration schedule and resources and the actual
test cases for the test phase, can now be planned. The updated development plan can
therefore be regarded at this stage as being significantly more reliable. In parallel with
the design of the system, the development and integration platforms are ins;talled
including all the equipment required for system development and integration, estimates
are significantly improved, project risk analysis is reviewed and updated, the project
development schedule is updated. All these activities are included in a new major

revision of the PDP [B ennatan 1992].

The design phase concludes with the sign-off of the design specification document.
This usually occurs at a formal design review, referred to as the critical design review
(CDR). If an intermediate top level desigri specification is prepared, then this document
is signed-off at an initial preliminary design review (PDR). In view of the technical

nature of most design documents, it is not usual for the customer to be present.

69

Chapter 4 Suggested Quulity System

Members of the design team and the SQA person work through the design as a whole
as well as each separate module, ensuring that the design is correct. The types of faults
to look for include: logic faits, interface faults, lack of exception handling (processing
of error conditions), and most important, non-conformance to the specifications. In
addition, the review team should always be aware of the possibility that some

specification faults were not detected during the previous phase.

The SQA person must carefully look for contradictions, ambiguities, and
incompleteness. He ensures that the specifications are feasible (any specified hardware
component is fast enough, or that the customer’s current on-line disk storage capacity
is adequate for handling the new product), he ensures that the specification document

i3 a true reflection of the customer’s requirements.

A critical aspect of testability is traceability. This means that every part of the design
can be linked to a statement in the specification document. The SQA person will go
through the design and have powerful tool for checking not just that the design is in
accordance with the specification document, but that every statement of the

specification document is reflected in some part of the design [Ince 1994].

This phase is characterized by delays because many changes in requirement and design
are introduced, owing to late ideas, unfeasibility of requirement, additional new
information, and by confusion because the team grows rapidly, the project hierarchy
and responsibilities may not yet be clear. The design phase for the PM is a period of
organization during which the project team structure is finalized and the assignment of
responsibilities is completed. These tasks must be completed by the PM before the end
of the design phase, as the confusion that may have accompanied the previous project

phases cannot be carried over into the implementation phase.

70

Chapter 4 Suggested Quality System

When the design phase concludes with a formal review, the customer shares the

responsibility for the design.

Although the Implementation phase and the Integration phase must be carried out in
parallel, but since the purpose here is to present the role of SQA in each activity, we

will separate them.
4.4.4. The Implementation Phase

During this phase the software modules are coded and initial unit tests are performed.
Unit testing is carried out by the programmer on each individual module immediately
after it is coded. The modules are run against test cases. The modules are then
approved by software quality control and submitted to configuration control, which
then releases modules for integration. While the programmer performs the informal
testing, the QA group tests the modules methodically.

A detailed and well-structured design specification leads to relatively smooth and
straight forward coding. In addition to runuing test cases, a code review is a powerful
and successful technique for detecting programming faults. Here, the programmer
guides the members of the review team through the listing of the module. The review
team must include an SQA representative. The procedure is similar to reviews of

specifications and designs.

The implementation phase links the design phase and integration phases of the system,
and usually overlaps significantly with each of these other two phases. Overlapping will
often occur when many parts of the system design are completed relatively quickly,
leaving some of the design issues open for quite a while. Overlapping can shorten the
development schedule significantly.

Overlapping of the design and implementation phases requires great care in assuring

that only design-complete modules are approved for early implementation. There is the

71

Chapter 4 Suggested Quality System

risk that any later changes to the design of these modules may require re-coding, thus
wasting resources. There is also the risk of the design being changed. With good
planning and configuration control, these problems can be overcome.

On the other side, overlapping of coding and integration is less risky, and if planned
correctly, can be an excellent time saver. The order of implementation of the modules
should be well-planned to assure that they are released in the order required for
integration.

The mplementation phase includes the following activities: the development of the
software code, preparation for integration and test of the system (next phase), the
development of the maintenance phase, risk situations may materialize and actions

taken according to plans, and the PDP is reviewed and updated.

The documents that are developed during this phase include, documenting coding
decisions, unit tests and resolution of implementation problems, maintenance plan and
documentation including all necessary documentation needed in system maintenance,
initial versions of the user documentation, including reference manuals and operator

guides.

During implementation, the atmosphere is characterized by the pressure to get going
and show something, conflicts with the SQA and CC. These conflicts are due to
increased involvement of these supervisory organizations or groups and their role in
enforcing standards and orderly development proéedures, and increased development

team activity as the delivery dates become close.

In general, the implementation phase is a transitional period from specification to
building. The atmosphere is dependent on the success of the previous specification
phase and the expected success of the following integration and test phases.

Contribution factors include inadequate requirements definition, insufficient resources

72

Chapter 4 Suggested Quality Systiem

assignment, insufficient development time, some unresolved technical problems, and

lacking of management support.

If the design phase is implemented well, most technical problems should be resolved by
the end of design. If this is not so, confusion may follow due to the necessity to
program and to solve technical problems simultaneously. This situation fall into the

code and fix method.
4.4.5, The Integration and Test Phase

The purpose of integration testing is to check that the modules combine together to
achieve a quality product that satisfies its specifications. During integration testing,
particular care must be paid to testing the module interface. This checking is performed
by the SQA person.

When the integration testing has been completed, product testing is performed by the
SQA person to ensure a successful acceptance test. The functionality of the product as
a whole is checked against the specifications, First, black-box test cases for the
product as a whole are run. Second, the robustness of the product as a whole is tested.
In addition, the product is subjected to stress testing, that is making sure that it
behaves correctly when operating under a peak load. It is also subjected to volume
testing, making sure that it can handle large input files. Third, the SQA person checks
that the product satisfies all its constraints. For example, if the specifications state that
the response time for 95% of the queries when the product is working under full load
must be under three seconds, then it is the responsibility of the SQA person to verify
that this is the case indeed. All these constraints will, of course, be checked during
acceptance testing, and if the product fails to meet a major constraint during the
acceptance testing, then the development organization will lose a considerable amount

of credibility. Fourth, the SQA person reviews all documentation that in terms of the

73

Chapter 4 Suggested Quality System

contract is to be handed over to the customer together with the code. The SQA person
checks that the documentation conforms to the standards laid down in the PDP. In
addition, the documentation is verified against the product. For instance, the SQA
person has to determine that the user manual indeed reflects the correct way of using

the product.

Once the SQA person assures management that the product can handle anything the
acceptance testers can throw at it, the product is handed over to the customer
organization for acceptance testing, A

The acceptance testing is the final aspect of integration testing. The purpose of the
acceptance testing is for the customer to determine whether the product indeed
satisfies its specifications as claimed by the developers.

Aéceptance testing is done either by the customer organization, or by the SQA person
in the presence of customer representatives, or by an independent SQA group hired by
the customer for this purpose. The four major components of acceptance testing,
namely testing Eorrectness, robustness, performance, and documentation, are exactly
what is done by the developer during product testing. This is not surprising, because
product testing is a rehearsal for the acceptance test.

Acceptance testing is done on actual data, rather than test data. No matter how carefil
the development team or the SQA person might be, there is a significant difference
between test cases, which are artificial, and actual data.

A software product cannot be considered to satisfy its specifications until the product

has passed its acceptance tests.

The integration and test phase is the most difficult and the most important to plan. Any
schedule delays at this point can be critical. It is important for the PM to produce the
initial version of the system as soon as possible, since management has seen little to
justify their investment. Conflicts with the customer occur since in this phase the

customer can see an initial version of what the product will look like. Different

74

Chapter 4 Suggested Quality System

interpretations of the requirements emerge and need to be resolved by higher
management level. Integration problems may require to return to the design phase

which might lead to frustration.

Many of the pressures can be avoided by assuring good design, an efficient module
coding plan, a well-organized development team, and a good integration plan. Many
unexpected problems are encountered during this phase since the events described
earlier in the project as risks now materialize. These include last minute failures due to
design and implementation problems which emerged, third party problems, including
late delivery from vendors and defects in their subsystem, last minute changes problem
exists in all phases, and changes become more costly, budget overruns problem is
derived from changes and design errors and project planning errors, staff motivation
problem which occur toward the end of the phase, and project acceptance problems
since the conflicts arise concerning the completion of the project. Many of these

problems can be avoided by preparing for them early in the project.
4.4.6. The Maintenance Phase

The TEEE definition of software maintenance includes the correction of faults that
existed in the software before its delivery, as well as changes to improve performance

or to adapt the product to a changed environment [Wallmiiller 1994].

Two aspects to the testing of changes to a product in operations mode that must be
done by the SQA person before a product is distributed. The first is checking that the
required changes have been correctly implemented. The second aspect is ensuring that,
in the course of making the required changes to the product, no other inadvertent
changes were made. Thus, once the SQA person has determined that the desired
changes have been implemented, the product must be tested against previous test cases

to make certain that the functionality of the rest of the product has not been

75

Chapter 4 Suggested Quality System

comi)romised. This procedure is called regression testing. To assist in performing
regression testing, it is necessary that all previous test cases be retained, together with
the results of running those test cases.

Moreover, the documentation must be updated to reflect the changes made. All these
steps must be followed as a result of corrective maintenance which is initiated by a
fault report, or as a result of perfective and adaptive maintenance which are initiated by
a change in the requirements [Wallmiiller 1994].

Testing during the maintenance phase is both difficult and time-consuming, and the
SQA person should not underestimate it. Once the new version has been approved by
the SQA person, it can be distributed.

Modifying software includes all characteristics of developing software. It includes all
the phases of a full development project. Many of the development problems prevalent
during the basic development phases are common in this phase. Modifications need to
be described, designed, implemented, integrated and tested and budgeted.
Configuration control is important to manage the various changes to software, and
control many releases and versions of the system.

Project management is not always carried over from the development of the software
product to the maintenance phase. Maintenance requires a smaller team and a different

type of management.
4.5.'Quality Controls

The third element is quality control.

The determination of quality should not be postponed until development is complete.
Effective software quality control requires frequent assessments throughout the
development cycle. Thus, effective quality control coupled with a good requirements
specification clearly increases the quality of the final product.

At this stage, the PM has identified the quality factors that are important during

planning. Quality controls are needed to check that particular quality factors are

76

Chapter 4 Suggested Quality System

present in the system. This is achieved using analytical QA measures. Important aids to
this element are quality tests. The quality tests are divided into two categories: static

and dynamic tests.

4.5.1. Static Tests vs. Dynamic Tests

While static tests include reviews and audits, dynamic tests include execution of a
program to test whether it behaves in accordance with the specification.

Although the activity to create a test is considered as a powerful bug preventer, the
review and audit checklists are an even more powerful bug preventer than software
testing, and they are the primary tool of the SQA effort. System test design cannot
really begin until the first stage of the implementation phase, at this point there will be
sufficient product defail available to allow the drafting of the test plan. Life cycle
reviews and audit checklists, in contrast run the entire length of the product cycle,

from initial conception through completion [Wallmiiller 1994].

4.5.2. Reviews vs. Audits

Before looking in detail at the reviews and audits, we should make a brief distinction
between their natures.

Reviews are designed to check the development of the software system and to make
sure that the steps which have been, and are to be taken, and the standards outlined for
them, are in accordance with organization policies, procedures, and all system
requirements. Reviews are dynamic, in the sense that they deal with the on-going
development of the software system, and preventive, in that they aim at stopping
problems before they appear as bugs in the software product [Wallmiiller 1994].
Audits, in contrast, are designed to check the state of the system being developed at a
certain point, and to ensure that the current product is in accordance with organization

policies, procedures, and all system requirements. Audits are static in that they deal

77

Chapter 4 Suggested Quality System

with the past development of the system leading to the current software product, and
corrective, in that they aim at correcting any bugs currently in the software and any

problems actually present in the supporting materials [Wallmiiller 1994].
4.5.3. Reviews

From the planning phase, several documents are produced. At the end of each phase, a
review is conducted by the QM using checklists relevant to each document and phase.
Project reviews are where major project development decisions are finalized. These
critical decisions are documented in the development specification documents, and are
referred to as baselines. They become the primary source of reference for further
development of the software product. As a minimum, the following reviews should be

conducted.
4,5.3.1. SRS Review

Inadequate requirements delay projects, and can cause their termination. An important
aim during review of the SRS is the testing of whether certain quality features are met.
The basic characteristics of a good SRS are:; unambiguity, completeness, verifiability,
consistency, modifiability, traceability, and usability during the operations and
maintenance phase.

These characteristics are tested by means of a checklist which contain the following
questions:

Is each requirement clear and does it have the same interpretation to all who read it?
Are all requirements documented, assuring that no verbal understanding remain? Can
we prove that each requirement has been met? Does any requirement conflict with any
other requirement? s the requirements specification documented in a way that enables
it to be easily corrected or changed later? Are the origins of each requirement clear,

and can the testing and design documents be later traced to requirements? Has the

78

Chapter 4 Suggested Quality System

requirements specification been written so that it can be understood not only by the
organization writing it, but also by the sofiware maintenance organization? Are the
specified response times realistic? Are all necessary hardware resources specified?
Have all the functions that the user needs been identified and specified? Has the
acceptable level for accuracy been specified for results? Are the requirements
comprehensible for those who have to design the project?

There are tools that have test functions to support the testing of the above questions.

4.5.3.2. Design Reviews

Depending on the type of design, there is a distinction between high-level design
reviews (PDR) and detailed design review (CDR). Design reviews have the following
aims: determination and evaluation of the respective state of a design (completeness of
feature), and discovery of errors and contradictions (contradictions between

specification and design, or between module interfaces).

Checklists exist for PDR and CDR related to performance, user interfaces, data,
functionality, documentation, standards, and syntax of design description. The
checklist includes questions such as:

Are there any hints of non-fulfillment of performance requirements? Are the screen
layouts not overloaded with information? Are the screen outputs clear? Are the layouts
of the user interfaces uniform? Has user input been kept to a minimum? Are there
missing or unused variables in a module? Are there missing or erroneous data types in
a module? Are logical conditions non-existent, superfluous or faulty in a module? Is
the design description incomplete, ambiguous? Are the algorithms in a module clearly
specified? Has the syntax of the design notation been applied incorrectly? Does the

design description contain spelling errors? Has a standard chosen not been adhered to?

79

Chapter 4 Suggested Quality System

4.5.3.3. Post-Operation Review

The Post-Operation Review (POR) is accomplished during the operational and
maintenance phase, after the Physical Audit (PA), and not sooner than ninety, nor later
than one hundred and eighty, days after the delivery of the software product to the user
[Vincent 1988]. Prior to the POR, the system designers and development team
members will place the software system in operation, and the test team will perform
any supplemental site tests required by the test plan. During the POR , the
system designers will review and interpret the results of the supplemental site tests, and
explain any problems encountered in the testing and the way to solve them.,

Among the primary objectives of the POR are these: to verify the adequacy and
completeness of system support manuals, to verify the adequacy of management plan,
and its proper implementation and use, to ensure that all supplemental site testing is
carried out completely and accurately, to verify that all test documentation is properly
prepared to ensure that all problems, deficiencies discovered during testing have
adequate solutions proposed and implemented, to ensure the continued quality of the
software product through continued quality review, and the monitoring of problems
and corrections, to ensure the maintainability of the product through a monitoring of
design changes. Upon approval by the QM, the Operational Baseline{OB) is
established. This baseline is set at the conclusion of the development cycle and finalizes

the development of the software product.

4,5.4, Audits

In connection with quality, two kinds of audits can be differentiated: Functional Audit
(FA), and Physical Audit (PA).

80

Chapter 4 Suggested Quality Sysiem

4.5.4.1. Functional Audit

The FA is conducted after product testing is run. It is primarily concerned with the
actual functioning of the software product, ensuring that all required fixes have been,
or are being, implemented, that the testing required to this point was properly
conducted, and that test results indicate that the software product meets performance
spéciﬁcations and requirements, including those required software quality factors
[Vincent 1988].

Among the primary objectives of the FA are to ensure that major system modules are
properly linked and tested, to verify that the test, as conducted, represent an adequate
functional and system level test, to verify that all test documentation is properly
prepared, to ensure that all problems, deficiencies discovered during testing have
adequate solutions proposed and implemented, to ensure that all requirements
specifications as outlined in the documentation are actually met. Upon approval by the

QM, the Product Baseline(PB) is established.
4.5.4.2, Physical Audit

The PA is accomplished during the operation phase of the life cycle, after AT is run.
The primary intent of the PA is to verify that all products are in compliance with
organization standards, policies, and procedures, and to ensure that these reflect
required user, and quality standards. However, its emphasis will be on ensuring that the
software and its documentation are internélly consistent, and that the software product
is ready for delivery [Vincent 1988].

Among the primary objectives of the PA are to verify that the AT, as conducted,
represent an adequate system and integration test, to verify that all test documentation
is properly prepared, to ensure that all problems, deficiencies discovered during testing
have adequate solutions proposed and implemented, to ensure that all modifications

made to the product are in accordance with the specifications and requirements settled

31

Chapter 4 Suggested Quality System

in the PB to ensure that all system manuals are in good order, and in conformance with
the final product configuration, to ensure that all support programs and hardware are
in good order, and in conformance with the final product configuration, to ensure that
all implementation plans are in good order, and are acceptable to the user, the quality
and project management. Once the QM has given its approval, the software product

will be released to the user for initial operation.

4.5.5. Testing

Testing requires a considerable amount of effort. During testing, the test object is
executed. A program is tested with a selection of input values. This serves to test
whether the program behaves in accordance with the specification. Testing is one of
the most important verification processes.

Four testing activities are required: unit testing, integration testing, system testing, and
acceptance testing.

The responsibility of the QM lies in the execution of certain tasks related to testing.
These include the creation, and maintenance of test plans, the organization of testing
activities, the development of test specifications and test procedures, the creation and
maintenance of test cases, the creation and maintenance of test documents, the
procurement of test tools and aids, the execution of test reviews, and the testing of

post-release changes.

A test process exists to carry out each of the testing activities. It consists of a certain

action with its corresponding resuit.

4.5.5.1. Test Planning

With this activity, a document is created which records the goals, the size, the method,

the resources, the schedule and the responsibilities for the intended tests.' This

82

Chapter 4 Suggested Quality System

document is the test plan where important features for the quality of testing are
identified.

Each test must have quantifiable aims since testing without set goals is a waste of time
and money, test goals must be quantifiable, each test case must be repeatable, for each
test case there should be exact instructions for execution and evaluation, for each test
case there should be an expected test result, testing must be conducted economically
since a test object cannot be tested for all possible inputs.

During test planning, test goals are defined, and attempts are made to reach them
through the selection of suitable test cases. Determining test cases makes test methods
necessary. A test goal is a measurable metric which is used for assessing the results of
a test. They enable an objective test procedure and facilitate management of the tests.
Two test methods exist for the derivation of test cases; black-box and white-box. The
most important black-box methods are function-coverage, equivalence class method,
boundary value analysis, and the cause-effect graphing method. As to the white-box
methods, there exist test methods based on coverage metrics such as statement
coverage, branch decision coverage, condition coverage, coverage of all combinations
of conditions and path coverage, and there exist test methods based on complexity
metrics like those of McCabe such as cyclomatic complexity, essential complexity and

actual complexity [Wallmiiller 1994].

Not only test goals are defined but test termination criteria are also set during test
plé.nning. Two ways of terminating the test process. The first method is through a
given number of errors which had to be found, the second is through observation of
the error rate in the course of the testing phase.

Good test planning leads to tests which result in trust in the test object and a test
process with a high probability of problem and error discovery. Test planning can
begin as early as the requirements phase. The planning of system testing can take place
after the release of requirement specification. The planning of integration testing can

begin at the design stage. Module testing in the detailed design phase (module design)

83

Chapter 4 Suggested Quality System

ts only function-oriented (black-box method), and test case design for white-box tests

is carried out during the implementation of the module [Wallmiiller 1994].

4.5.5.2. Test Design

In the test design, detailed instructions related to test methods are given. It must be
stated clearly how the goals contained in the test plan are to be reached. It spécifies
which methods are to be applied and in which way. A test design would specify what
test software is needed, and what hardware base is needed. It also defines which test
objects in which tests and on the basis of which criteria to be used to come to a
decision on whether the test object does or does not pass the test. The test design

gtves rise to test specifications and test procedures.

4.5.5.3. Test Case Determination

Test cases are specified based on the test design. It states in detail which test object in
the execution of each test case is to be fed with what input, and what output should be

generated.

4.5.5.4. Test Procedure Planning

With this activity, the steps for the actual execution of the test are defined. The
requirements for the execution of the test runs, the sequence of the test runs, and
records and termination tasks for each test run are specified in detail. The output is a
test procedure document.

The test case specification and test procedure specification documents can be

combined together.

84

Chapter 4 Suggested Quality System

4.5.5,5, Test Execution

The planned test runs are executed and their associated test log is established. All
incidents and problems which require an examination are recorded in the test case

report.
4.5.5.6. Test Report

Test results are analyzed. The aim is an evaluation of the executed test and a decision
on whether the test goal has been reached or whether the test has to be repeated. The

outcome of each test is documented in a test report.
4.5.6. Resources for Quality Control

Through testing and reviews, the function of analytical QA is performed. This requires
that the test process be controlled as part of the development process. Without suitable
control mechanisms for the test process, the management does not have the necessary
information to enable them to assess project progress and problems that arise. What

are the quality control mechanisms?
4.5.6.1. Tools and Aids

Few tools are specifically designed for quality control. These tools support quality
control in all phases of software development. They are special tools for supporting
SQA in error prevention, error recognition, error evaluation, and CC [Wallmiiller
1994].

Tools for error prevention include documentation aids that provide partially automatic
document writers, spelling checkers and thesaurus, data dictionaries, database

generators, and syntax-driven editors.

85

Chapter 4 Suggested Quality System

Tools for error recognition and for error evaluation include static analyzers for
complexity analysis (data flow analyzers, interface analyzers, and control - flow
analyzers), software design tools, debugging aids, and file comparators, tools for
checking standards, test case generators, and performance analyzers. Early warnings
regarding possible execution time problems can be provided by simulators, execution
time analyzers and performance monitors. Substantial software system testing can

often be performed automatically by test suite generators and automatic test executors.

4.5.6.2. Metrics

Much attention has been devoted to questions associated with the measurement of
quality. The quality assurance of products must be based on measurement. The earlier
the measurement of quality begins, the earlier problems will be located [Fenton 1993].
The set of measurable values associated with the quality of a product is referred to as
the product’s quality mefrics. Software quality metrics can be used to determine the
extent to which a software product meets its requirements. The use of quality metrics
increases the objectivity of the evaluation of product quality. Human evaluation of
quality is subjective, and is therefore a possible source of disagreement, particularly
between customer and developer.

A number of methods for establishing software quality metrics are currently being
developed, though no generally accepted standard has yet emerged. For example, an
initial draft of IEEE Std-1061 (1990) includes a detailed discussion of software quality
metrics in general [Wallmiiller 1994].

The basic approach for applying software quality metrics requires: the identification of
all required software quality attributes which is usually derived from software
requirement specification, the determination of measurable values to be associated with
each quality attribute, a description of the method by which each measurable value will
be measured, and a procedure for documenting the results of measuring the quality of

the software product.

86

Chapter 4 Suggested Quality System

A set of many values can be used to determine the overall quality of a software
product. However, a single measure can be created to represent the overall quality of
the software product. This requires a weighted method for combining the measured
quality attributes into a single measure of quality for the product.
Some examples of software metrics are:
-Reliability : the percentage of time that the system is successfully operational (23
out of 24 hours produces: 100* (23/24) percent).
-Recoverability: the amount of time it takes for the system to recover after failure (1
hour to reload from backups and 30 minutes to reinitialize the system).
-User-friendliness: the amount of training time needed for a new user.

-Maintainability: the percentage of corrections being right.

In the test process, measurable metrics exist. Test goals are considered an effective
measurable metric which are used for assessing the scope and the results of a test. With
reference to Schmitz, the following two test metrics can be defined. A test coverage
metric (TCM) and a test result metric (TRM) [Wallmiiller 1994].

Examples of TCM for the specification of test goals are:

Number of executed branches

Number of existing branches
The actual test goal for a module test might be 50% TCM.
As a test goal in module testing is the extent of test coverage. In system testing, many
test goals are observed such as completeness, volume, load, security, and user-
friendliness.
Examples of TRM are the mean time between errors found, or the necessary

calculation time for a test.

The application of these metrics depends on the availability of tools for determining

these factors,

87

Chapter 4 Suggested Quality System

So, the measurement of software quality is not be performed only at the end of a
project. The degree of quality should be measured at regular intervals during
development. Thus, any major reduction in the overall measure of quality should act as
a warning for the PM that corrective action is required. High quality at the end of the

project is achieved by assuring high quality throughout the development of the project.

4.5.6.3. Quality Records

For the PM, it is essential to be constantly informed of the true status of the project.
This is achieved by assuring the regular flow of objective and accurate information.
Such information is acquired from reports by the QM.

Quality records are documentation which provide assurance that certain quality factors
are present in the system. They include project status reports, project status meetings,

test reports, and project reviews forms [Ince 1994].

4,5.6.3.1. Project Status Reports

Status reports should be required from every member of the development team. The
reports are submitted periodically, usually weekly or bi-weekly, and contain three
sections [Bennatan 1992]:
-activities during the report period: each subsection within this section describes a
major activity during the report period.
-planned activities for the next report period: each subsection within this section
describes a major activity planned for the next report period.
-problems: each subsection within this section describes a major problem that either
occurred during the report period, or that was reported previously and has not yet
been resolved. This means that problems will be repeatedly reported until they are
resolved. This section must explain why this report’s section 1does not correspond

to the previous report’s section 2.

83

Chapter 4 _ Suggested Quality System

It contains also the date of report, the report period, the report name, and the name of

the person submitting the report.

The preparation of a periodic status report should take about twenty minutes.
Developers should submit their status reports to their team leader. The team leader
then combines the reports of the team into a single status report, while maintaining the
same report structure. This activity should take the team leader about thirty minutes.
The PM also receives status reports from other groups. The PM then prepares the
project status report by combining the individual reports received into a single report.
The project status report is then submitted to top management.

Project status reports are not submitted at the same frequency as internal project status

reports. Project reports may be submitted bi-weekly or monthly.
4.5.6.3.2. Project Status Meetings

In addition to the major life-cycle reviews discussed, project status meetings or reviews
are conducted at intervals during the project life cycle. These reviews form the basis of
any in-phase project reports as well as alerting the QM to any problems which may
require an in-phase review, and providing background materials for milestone reviews.
Project status meetings are held periodically and regularly, for example once a Wéek. It
is attended by the QM, the PM and the development team representatives. The PM
prepares for the status meeting by reviewing the status reports submitted, and
scrutinizing the problem section.

The meeting begins with a report of project activities and general issues by the PM.
Then each participant should be given about five to ten minutes to report on the
activity of his area of responsibility. The discussion of problems should not be
restricted to the person reporting the problem and the PM. All problems may be
addressed to all participants, thus making their experience available throughout the

89

Chapter 4 Suggested Quality System

project. It is not the QM’s role to provide solutions to the problems, but rather to
guide the team members toward solutions,

Solutions should be worked out whenever possible during the status meeting. Any
problem not resolved within five minutes should be postponed for discussion by the
relevant parties after the status meeting [Bennatan 1992].

The proceedings of all project status meetings must be recorded. The record contains
the date of meeting, name of meeting, present participants, absent participants, action
items(name, action, date for completion), major decisions and items discussed.

Items discussed include project management changes and personnel changes, design
status, development schedule status, coding status, software problem reports and
corrections status, integration schedule status, testing status, progress on previous

problems, and new action items/problems.

The record of the project status meeting is typed and distributed no later than by the
end of the day. This is particularly important when there are action items to be

completed on the same day.
4.5.6.3.3. Review Control Forms

Two forms are. proposed in controlling and documenting the formal SQA milestone

reviews and andits.

Review preparation form

The QM with the review team-composed of development personnel review the project
documentation using the appropriate SQA review checklists. The review is conducted

using a review preparation form illustrated in Figure 4.3,

90

Chapter 4 Suggested Quality System

Review Preparation Form

Project:
Review Number: Date:
Reviewers:
Pre-review meeting: [] Yes []No

Review for testing of :
[] Requirement Definition [] Code [] Test Cases
[] Design [1Test Plan [] Other
Discovered Faults/Problems

Fault Position Description Type Corrective Action

i

Types of faults: interface (IF), logic (LO), input/output (I/0), documentation (DO),
syntax (SY), test coverage (TC), standard (ST), other (O).

Figure 4.3. Review Preparation Form

Review Evaluation Form

After review completion, the QM prepares a review evaluation form illustrated in
Figure 4.4. The QM discusses the review or audits results and record suggestions for
any corrections or changes in the light of the findings, and schedule a second review, if
applicable. When all changes and corrections have been made, the review team
conducts a review using appropriate checklists. The QM reviews the review results
and, if applicable, record any further suggestions for corrections or changes to be made

in the light of the new findings.

91

Chapter 4 Suggested Quality System

At this point, the QM may approve the product as its is, or approve with the provision
that recommended changes and corrections are implemented. These changes will be
reviewed at the next scheduled life cycle review. Alternatively, the QM may refuse to
close the review, instead calling for the changes and corrections to be implemented and

another review scheduled.

At the formal close of the review, the QM prepare a report to top management
summarizing the findings, results, and actions and all forms relating to the review, in

the SQA projéct file.

Review Evaluation Form

Project: Review Number:
Life Cycle Phase:
Checklist Number:

Comments/Analysis:

Review Phase Complete: [] Yes [INo
Next Review Date [if applicable]:

Signature:

Figure 4.4. Review Evaluation Form

4,6, Summary

QA is not a phase of the life cycle, it is an ongoing process to ensure that the product
development process is being carried out according to the procedures laid down,

The quality system presented emphasized on two major disciplines: project
management and quality management.

Following is a summary of the system,

92

Chapter 4

Suggested Quality System

MAJOR REQUIREMENT

Management Responsibility

QualityPlanning

SUB-REQUIREMENT DETAILED ACTIVITIES AFFECTING
QUALITY

Quality Policy
Orgamization Structure

Management Review

Requirement Phase
1. PDP (development methodology
used, selection of tools, sofiware
documentation)

2. Test Plan (system test planning)

3. SRS Document

4. SRR

5. PDP Review

Design Phase

1. Design Specification Document

2. DSR{(PDR or CDR)

3. Updated PDP (coding standards,
tools, techniques, code reviews,
methodologies) + integration
schedule

4. PDP Review

5. Updated Test Plan (component,
integration, system),

Implementation Phase

1. Updated Test Plan (Test cases+
procedures: component, integration,
system, acceptance)

2. Unit Testing (code Review, test
cases run)

3. PDP Review

4. User Documentation

5. Maintenance Plan

93

Chapter 4

Suggested Quality System

MAJOR REQUIREMENT

Quality Planning(cont 'd)

Quality control

SUB-REQUIREMENT

Integration and Test Phase

Moaintenance Phase

Static Tests

Dynamic Tests

DETAILED ACTIVITIES AFFECTING
QUALITY

Integration Testing (module
interface checking)

Product Testing (correctness,
robustness, performance,
documentation)

Acceptance Testing

Regression Testing (previous test
cases rumn)

Documentation updates (due to
corrective, adaptive or perfective
maintenance)

SRR(unambiguities, completeness)
use checklists and tools
PDR+CDR (performance, user

interfaces, functionality,
documentation)

POR after AT and PA
{completeness of manual,

documents, testing activities,
monitoring - of problems and
corrections)

FA after PT (correctness of product
functionality and its quality factors
and the testing Ievel, and
documents)

PA after AT (correctness of AT
run, documentation, proposition and
implementation of solutions)

Test Planning (goals, methods,
schedule for intended tests)

Test Designing (detailed
instructions for test methods, test
software and “hardware
specification, criteria used for test
pass/fail)

94

Chapter 4

Suggested Quality System

MAJOR REQUIREMENT SUB-REQUIREMENT

Quality Control(cont 'd)
Dvnamic Tests(cont 'd)

Quality Control Resources Tools and Aids

Metrics

Quality Records

DETAILED ACTIVITIES AFFECTING
QUALITY

3. Test Case and Procedure Planning
{description of the execution of
each test, input and expected
output, and the actual execution of
tests)

4, Test Execution and Reporting
(analysis of results received from
test execution, test pass/fail)

1. Documentation aids, software
design tools, debugging aids,
checking standards tools, test case
generators)

1. Identification of quality attributes
2. Associated values

3. Method for values measurement

1. Project status reports

2. Project status meeting (status
reports review)

3. Review control forms (review
preparation form + review
evaluation form)

95

Chapter 5 Case Study

Chapter 5
Case Study

5.1. Introduction

This chapter provides a guidance for implementing the quality system proposed in the
previous chapter. Although the quality system involves many elements, this case study
emphasizes on and presents a sample of the QA activities that were conducted
throughout the product development cycle in order to assure a quality product. It is

intended to aid the SQA person and give him insight in performing his task.

The 'implementation was conducted at Mikati group, a Lebanese telecommunication
company, in its billing department whose task is to develop billing software for the
group. The case study concerns the CALLBACK billing software. The project is
considered as an “in-house” software development where the customer requesting the
development is taken to be part of the group. This service is provided by one of Mikati
group Overseas company EASYDIAL.

5.2. Management Responsibility

Two requirements are necessary: Quality policy definition and the organizational

structure.

96

Chapter 5 Case Study

5.2.1. Quality Policy

Management’s first step in producing quality products is to define and document its

quality policy. The quality policy at Mikati group is defined as follows:
Mikati group

The revenues and the profit of every company in this group depend on the quality of
the products which we produce. This group is committed to meeting our customer’s
and subscriber’s expectations in terms of the quality of the products and the services
which we provide. Our customers and subscribers expect faultless products and
services. Our intention is to achieve this by preventive measures and the application of

an effective software quality assurance program.

We recognize that quality is everyone’s responsibility. The entire team must adhere to

the company’s quality policy and are obligated to make it a success.

Signed by

General Manager

Date

3.2.2. Organizational Structure

Since the company decided to introduce a quality program, then a person responsible
for this program is designated. In this project, only one person can fulfill this task. het
is called the SQA person, or QM. He has a reporting channel to senior management,

the GM, that is independent of the PM. The internal independence of the QM is

97

Chapter 5 Case Study

necessary so he/she can perform histher job without being influenced by project

schedule and cost pressures.

The QM has a job description statement, as all employees in the company, stating his

responsibilities. This is illustrated in Figure 5.1,

Job Description

Job Title: Quality Manager

Department: Computer department

Reportsto : General Manager

Function:

To provide insight in the introduction of a quality program, control the
development process, and provide assurance that the product satisfies customer
requirements.

Responsibilities:

1- Participation in the development of plans, such as the project development
plan.

2- Approval of the development methodology and tools.

3-" Planning and supervising and approval of testing.

4- Ensure that adequate reviews are carried out.

5- Ensure that appropriate software documentation are present.

6- Conduct audits to ensure that the developed product is in accordance with the
organization policy.

7- Administration of configuration control.

8- Provide management with confidence that objective information on the
process and products of the project is being reported.

Figure 5.1 QM Job Description

In every organization, anybody having anything to do with the development of the
software, contributes to the quality. All responsibilities and authorities are clearly
established and understood. Along with his responsibilities, the QM has the authority
to approve or reject product components, and to give permission for the project to

proceed from its current phase to the following phase.

98

Chapter 5 Case Study

Working relationships between all personnel who manage, perform and verify work
affecting quality are best represented and clearly defined in the company organizational

stricture.

The organizational structure at the company is illustrated in Figure 5.2.

PM (0)%1

| EDP. Manager |

Figure 5.2 Company Organizational Structure

The GM is responsible to the president. He is also responsible for setting the
company’s quality policy and establishing new organizations, and thus notification of

new projects.

The PM directs, controls, administers and regulates a project to build a
hardware/software system. He is responsible to the customer, which is, in this case,
another organization in the company, and he is responsible for preparing the project
plan. A reporting relationship exists. The E.D.P. Manager reports to the PM.
Although, he sometimes reports to the GM. As to the PM, he reports to the GM.

The £.D.P. Manager has responsibility of performing the software development and

maintenance activities (requirements analysis, design, code, and test) for a project.

The QM has the responsibility of planning and implementing the project’s QA
activities, including testing, to ensure the software process steps are followed and
quality products, satisfying their requirements, are developed. He reports to the GM,
and he works closely with the PM and the E.D.P. Manager.

99

Chapter 5 Case Study

5.3. Quality Planning

In order to meet quality requirements, many activities are required of the PM and the
QM at the commencement of the project and throughout the project life-cycle. The
management of each phase is weighted equally to achieve a final quality product. The
QA activities performed throughout each phase and at the end of each phase are
presented. As to the PM’s activities, they are discussed briefly, making references to

standards when necessary, since the emphasis is on the QA activities.

As mentioned in the previous chapter, the second element of the quality program:

quality planning, is performed in two phases: initial planning and final planning.

5.4. Initial Quality Planning Phase

Normally, in this phase, the proposal phase, the objective is to win contracts. How the
tasks will be performed and what the end product must do are established in a legal
and contractual sense. The contract is reviewed by the company developing the

product to ensure that [Bennatan 1992]:

1- the requirements are adequately defined and documented, and quality
requirements are established.

2- any requirements differing form those in the offer are resolved, and all
deliverables are identified.

3- it has the capability to meet contractual requirements, that the product can
be delivered with all its requirements satisfied within the time-scales

specified by the customer and to a specified cost.

The developing company should be confident that the software can be delivered within

the constraints specified by the customer. These constraints include system-specific

100

Chapter 5 Case Study

constraints such as response time, memory occupancy limits, file occupancy limits,
compatibility with other software or hardware, and the satisfaction of a set of
functional requirements. They also include specific project constraints such as required

duration and cost.

Although the proposal phase is not considered a formal phase, all the above is
necessary and applies when a project is contracted out, because in this case, this phase
provides the basis for the definition of the software requirements and initial planning
and preparation of estimates. At such an early phase, there is a need to calculate a
rough cost for the project. Standards exist which enable the tasks in the project to be
identified and approximate costs given. These tasks are at a high level, and they expand

if the project proceeds [Bennatan 1992].

When the supplier is awarded a contract for a software project, a formal contract is
issued and signed by all parties. Then, all aspects of the contract are reviewed- both

legal and technical.

In our case study, no contract is involved since the computer department is producing
the billing software for one of the group’s company. As a result, the life-cycle of the
project begins at the requirement phase which is the first formal development phase in

the final planning phase, proposed in our quality program.

It is important to point out that there must be some form of internal agreement or
contract between the computer department and the company requesting the software
because the software department should behave as professionally as an external

software company.

101

Chapter 5§ Case Study

3.5. Final Quality Planning Phase

This phase includes all the mandatory phases of software development. In this phase,
what are the SQA activities conducted by the QM and how they are conducted is
described. The management issues affecting quality associated with each phase are also

described.

5.5.1. The Software Requirements Phase

The life-cycle begins with the software requirements phase. This phase provides a
detailed description of the billing software system to be developed. This description is
laid out in the SRS document according to which the software is tested at the end of

the project to demonstrate that the required product has indeed been produced.

EASYDIAL company designated a representative- one of its team members for dealing

with the E.D.P. department and clarifying any ambiguous issues. His tasks include:

1- defining the software requirements to the developer.
2- answering questions from the developer.
3- approving developer’s proposals.

4- defining acceptance criteria.

This phase produced two documents: one main product document that is the Software
Requirements Document (SRD), and one project planning document, the PDP.
Although a test plan might be produced at this stage, however, system test design
cannot really begin until the first stage of the implementation phase. At this point there
will be sufficient product detail available to allow the drafting of the test plan. So, no

test plan is produced at this stage.

102

Chapter 5 Case Study

5.5.1.1. SRD Production and Review

The standard used to produce the SRD is that proposed for the Lebanese market
[Hajjar 1996]. The SRD is given in Appendix A.

After establishing the system requirements, the QM performed checks as to their
adequacy. He conducted reviews for checking the process of establishing these
requirements, change methodologies, or enforce the procedures set by the standard.
Any vague or suspect requirements were deleted. The reviews conducted were chaired
by the QM, in the presence of the E.D P. Manager and EASDYDIAL’s representative.
The aim of the review was to ensure that the requirements are correct. The reviewers
went through the specification document, ensuring that there are no misunderstandings
as to what is meant by each statement in the document, using a checklist and a review
preparation form.

Table 5-1 illustrates a sample checklist that was used in the SRR.

Software Requirement Review Checklist

Project;
Checklist Number:

1- Are all requirements included?

2- Is each requirement clear and does it have the same interpretation to all who read it?

3- Are all requirements documented, assuring that no verbal understanding remain?

4- Can we prove that each requirement has been met?

5- Does any requirement conflict with any other requirement?

6- Is the requirements specification documented in a way that enables it to be easily
corrected or changed later?

7- Are all necessary hardware resources specified?

8- Have all the functions that the user needs been identified and specified?

9- Has the acceptable level for accuracy been specified for results?

10- Are the requirements comprehensible for those who have to design the project?

Table 5-1 SRR Sample Checklist

163

Chapter 5 Case Study

The requirements has evolved gradually. Some of the requirements were found
ambiguous during the review, others were missing. As an example of an ambiguous
requirement is that stating that reports are generated. This statement was updated to
specify the types of reports needed which are important for controlling the subscriber
calls and providing the status of the company. After review completion, the QM
prepared a review evaluation form. The review was discussed and suggestions
recorded on the review preparation form, for the corrections and changes in the light
of the findings, and the QM scheduled a second review. When all changes and
corrections have been made, the review team conducted the second review using the
same checklist. The results were reviewed and the QM approved the document. So,
two versions of the specifications were produced until convergence to the final
approved document. At this point, the second and final review declared the
requirement document as the first approved project baseline. It was approved by the
QM.

5.5.1.2. PDP Production and Review

The standard used to produce the PDP is that suggested in [ISO 9000-3 1991]. This
plan was developed by the PM. It identifies the resources and schedule required to
develop the billing software. it shows how the phases are implemented and identifies:

- the inputs and outputs to each phase

- schedule and resources for each phase

- progress control and status methods

- tools and methods to be used

- verification procedures for each phase (reviews, audits and testing)

The PDP produced for this project is given in Appendix B. It is essential to note that it

is not a detailed PDP and it serves only as a sample on which the QM will work on and

104

Chapter 5 Case Study

will have to review. The aim is to state that a PDP must be produced by the PM to be
reviewed by the QM.

After the PDP has been produced, the QM checked every aspect of the plan. He
conducted a review in the presence of the PM. The aim of the review is to check the

most important aspect of the plan, which is the project schedule.

A sample of the checklist that was used by the QM during the PDP review is presented
in Table 5-2.

105

Chapter 5 Case Study

The aim of the review is to convey the status of the project as compared with the plan.
It is very crucial to the project management because when there is a failure to status
the development effort against the PDP, then the organization loses control and cannot
make the necessary changes in the engineering process to deliver a product that meets
requirements within schedule. The changes include adjustment of resources and
schedule. Management, through reviews, is aware of any influences that affect the
project’s budget and schedule or the quality of the product.

The PDP approved by the QM, the permission for the project to proceed was given.
The next phase is the design phase.

5.5.2. The Design Phase

The design phase is the second phase in the software development cycle. This phase is
split info two parts: system or architectural design and detailed design.

During this phase, an architectural, detailed design, user interface, database design and
error handling design are created that describe the software solution for the
requirements specified in the SRS. In addition, in the second stage of this phase, the
detailed design phase, an initial version of the test plan is drawn. '

As a result, the outputs of this phase are the SDD and a test plan, and this phase is
completed when the following have been reviewed and received approval: SDD and
test plan, along with a review of the PDP.

While the system design is concerned with the development and specification of an
architecture for the modules and the development of data architecture which specifies
how the data is to be implemented in terms of variables, files and tables, the detailed
design is the process of filling out details within the system design in terms of a
program design language. However, the detailed design may be skipped and only the
system design can be carried out. Thus, preferring to transform the system design into

program code directly, for small projects [ISO 9000-3 1991].

107

Chapter 5 Case Study

In the sample documents that are presented: the SDD and test plan, only the major
function of the billing software: the billing processing function, presented in the SRS

document, is designed and tested.

5.5.2.1. SDD Production and Review

The design of the product dictates to a great degree its quality. The activities in the
design phase must be carried out in a disciplined manner, in order to produce a product
according to specifications rather than depending on the test and validation activities

for assurance of quality.

The standard used to produce this document are the guidelines proposed by ISO9000-
3 [ISO 9000-3 1991] given in Appendix C.

This phase cannot conclude until a review of the design document is conducted to set
the second major bascline. The review was held and chaired by the QM. A sample

checklist used is presented in Table 5-3.

108

Chapter 5 Case Study

Software Design Document Review Checklist

Project:
Checklist Number:

1- Has the standard chosen not adhered to ?

2- Is the system identifiable as modules and are these listed?

3- Is the software specification complete, consistent, and unambiguous?

4- s there traceability of the requirements through the specifications?

5- Has user input been kept to a minimum?

6- Are there any indication of non-fulfillment of performance requirements?

7- Are user interfaces uniform?

8- Are the screen outputs clear?

9- Are the screen layouts not overloaded with information?

10- Are there missing or unused variables in a module?

11-Is the design description incomplete, ambiguous?

12- Are the algorithms in a module clearly specified?

13- Is the system designed in such a way that it can be progressively built up and
tested?

14~ Are the modules developed in such a way that they are testable, maintainable and

usable?

Table 5-3 SDD Review Sample Checklist

During the review, discrepancies were recorded on the review preparation form,

Corrective actions taken, and the QM approved the SDD. Thus, the second major

baseline was set,

However, in this phase, an initial version of the test plans are drawn for different tests.
The QM participates in the development of such plans. He supervises and approves

their development.
- 8.5.2.2, Test Plans, Test Design Development and Reviews

A test plan is developed at this stage to describe in detail the tests required to ensure
that the product has met its functional requirements, and performs in the manner

expebted.

109

Chapter 5 Case Study

These plans are developed for each level of testing. They correspond to the developed
product of the phase. Normally, the requirement phase produces system and
acceptance test plans. However, since no sufficient data is available to allow the
production of the test plans, the test plans are produced in this phase-the design phase

for each of the following tests: component, integration, system and acceptance.

Certainly, since we are dealing with a small project, the test activities are narrowed
down and can be combined to minimize the time frame required for their fulfiliment.

Instead of having five activities, they are reduced to three activities:

- Test plan and test design creation

- Test cases and test procedures creation

- Test execution
The reason behind this suggestion is that the test design refines the test plan approach,
identifies specific features to be tested by the design, and define its associated test
cases and procedures. To eliminate the duplication of information, we have combined

them.

For our project, a test plan is developed for testing each component of the billing
system, and taking into consideration the test design. As a result, instead of having two
documents for the same test, we generate one document: the test plan with the detailed
information relative to the design. Similar test plans are prepared for integration and
system testing. No acceptance testing is considered necessary, since the data used
during testing is real CDR’s. Once the monthly invoices are issued and they are
correct, the system is accepted. At this point, we can notice the change in the schedule
set in the PDP.

However, the activities in the schedule are of importance in the case of large projects

and they must be taken into consideration.

110

Chapter 5 Case Study

For the purpose of this study, the focus is on the reviews of the test plans. So, no test

plans are presented.

To ensure their correctness and completeness, test plans need to be reviewed by the

QM.
A sample of the test plan checklist used by the QM is presented in Table 5-4, taking

mnto consideration the test planning and test design.

111

Chapter 5 Case Study

Test Plan and Design Review Checklist

Project:
Checklist Number:

I~ Has the standard chosen not adhered to ?

2- Has a schedule of the testing activity been derived?

3- Has the tasks to be performed been specified?

4- Have the people responsible for the testing activities been designated?
5- Has the test environment been specified?

6- Have the inputs and outputs of such a plan been specified?

7- Have the features to be tested been specified?

8- Have the features not to be tested been specified?

9- Have the entry and exit criteria for each phase of testing been specified?
10- Is any testing tool required?

11-Is the test plan in parallel with the design?

12- Have test goals been set?

13- Have test cases been defined to reach the test goals?

14- Have test methods been determined to derive test cases?

15- Has an estimate of the number of test cases and their duration been derived?

Table 5-4 Test Plan and Design Review Sample Checklist

Test plans developed and reviewed and approved by the QM, the next phase is the

implementation.

5.5.3. The Implementation Phase

During this phase, the software design is implemented and the various modules that
make up the software are tested at the unit level and the functional level. The purpose
is to implement the design and prove that the modules created fulfill the functionality
of their design. They are integrated later into a system. In addition, test cases and

procedures are generated for component, integration and system testing,

With the participation of the QM, test cases and procedures are created for the
component, integration, and system tests, whose plans and designs were created in the

previous phase.

112

Chapter 5 Case Study

The test cases specify in detail for each test case executed on a specific object, the
input, and the expected output. In addition, the test procedure describes how to
actually run the test.

While generating the test cases and procedures, the QM is certain that three key points
are not missing:

1- the inputs and outputs are detailed for each test case

2- atest procedure is specified for each test case

3- the expected results are specified for each test case

The third activity, performed by the developer, after coding and test case and
procedure generation, is the actual execution of module testing. After the test is run,
the expected results are compared to the actual results determining whether the
module tested has passed the test. While conducting these tests on the modules of the

billing software, bugs were detected and fixed.

As coding progresses, the integration phase begins to overlap with the implementation
phase. The modules that are tested are released in the order required for integration.
Then, integration testing is executed according to the procedures set. When the
integration testing is complete for all the software modules pieced together, then the

system is ready for the system testing and the testing phase begins.

5.5.4. The Testing Phase

Normally, this phase represents the final testing process and is split into two activities:
system and acceptance testing. However, as mentioned earlier, since the billing system
testing is run on real data, then system testing can be considered as acceptance testing.

During this phase, the billing software is tested to ensure that call records are
processed correctly, subscribers charged according to the set billing process, and

invoices issued correctly. Errors were found. They were fixed by the developers, and

113

Chapter 5 Case Study

the CDR reprocessed. This phase is complete when all the requirements are met.
Finally, a test report is generated by the QM providing management with the reliable,
needed informatton confirming the readiness of the software for release.

During system testing, the QM using a checklist, ensures that some key points are

tested. Table 5-5 presents a sample system testing checklist.

System Testing Sample Checklist

Project:
Checklist Number:;

1- Does the system meet all its functional and non-functional requirements?
2- Was the system subject to volume testing?

3- Was the system subject to load testing?

4- Was the user-friendliness of the system tested?

5- Was the security of the system tested?

6- Was the system efficiency tested?

7- Was the user documentation tested for accuracy?

Table 5-5 System Testing Sample Checklist

After the management approval of the software system, the billing software is ready to

be delivered to the company requesting it, and the maintenance phase begins.

5.5.5. The Maintenance Phase

This phase is considered as part of the CM. However, we concentrate on the reviews

and audits that are conducted after product release to the customer.

Normally, in this phase, the QM conducts audits. After the system testing is run, and
after product release, the QM conduct the FA. It is primarily concerned with the actual
functioning of the software product. Its purpose is to ensure that [Vincent 1988]:

1- all required fixes have been, or are being, implemented

2- the testing required was properly conducted

114

Chapter 5 Case Study

the test results indicate that the software product meets performance specifications
and requirements, including those required software quality factors

all test documentation is properly prepared

all problems, deficiencies discovered during testing have adequate solutions

proposed and implemented

Upon approval by the QM, the third baseline-product baseline is established.

After acceptance test is run, the PA is conducted. The primary intent of the PA is to
[Vincent 1988]:

verify that the product is in compliance with the organization standards and policy
ensure that the product reflects required user, and quality standards

ensure that the software and its documentation are internally consistent

ensure that all problems, deficiencies discovered during testing have adequate
solutions proposed and implemented

ensure that all modifications made to the product are in accordance with the
specifications and requirements settled in the product baseline to ensure that all
system manuals are in good order, and in conformance with the final product
configuration

epsure that all support programs and hardware are in good order, and in
conformance with the final product configuration

ensure that the software product is ready for delivery

ensure that all implementation plans are in good order, and are acceptable to the

user, the quality and project management

Once the QM has given its approval, the software product will be released to the user

for initial operation.

115

Chapfer 5 Case Study

At this point, the POR is accomplished during the operational and maintenance phase,
after the PA, and not sooner than ninety, nor later than one hundred and eighty, days
after the delivery of the software product to the user.

Prior to the POR, the system designers and development team members place the
software system in operation, and the test team performs any supplemental site tests.
During the POR, the system designers review and interpret the results of the
supplemental site tests, and explain any problems encountered in the testing and the

way to solve them.

Among the primary objectives of the POR are to [Vincent 1988]:

1- verify the adequacy and completeness of system support manuals

2- verify the adequacy of management plan, and its proper implementation and use

3- ensure that all supplemental site testing is carried out completely and accurately

4- verify that all test documentation is properly prepared

5- ensure that all problems, deficiencies discovered during testing have adequate
solutions proposed and implemented

6- ensure the continued quality of the software product through continued quality
review, and the monitoring of problems and corrections

7- ensure the maintainability of the product through a monitoring of design changes

Upon approval by the QM, the operational baseline is established. This baseline is set
at the conclusion of the development cycle and finalizes the development of the

software product.

None of the above mentioned audits, and review were conducted on our project. The
project was completed and entered its maintenance phase when the QM approved the
system testing. The requirements were met. The billing system billed the subscribers

correctly with an efficient processing of the calls, and a security system in place.

116

Chapter 5 Case Study

This case can be considered as a special case because the testing was conducted
directly on real data, second the relationship between the organization developing the
product and the organization requesting it does not require such audits and review to
be conducted after the product is released. So, normally, the management of the
organization developing the product must decide-based on these factors whether to

conduct such audits and review after product release.

117

Chapter 6 Conclusions

Chapter 6

Conclusions

Software producers are expected to produce high quality products on time and within
budget. In Lebanon, we are way far from reaching this goal since the complexity of
software is still underestimated by management and developers, who try to improve
quality by testing instead of developing quality step by step, and development is

conducted in the absence of a systematic development process.

So, the quality of software is facing a problem and it stems from the quality of the
development process. By focusing and improving the quality of the process, we

improve the quality of the software product.

Based on a study conducted by Hajjar in Lebanon it was found that [Hajjar 1996]:

the software engineering practices do not use any standard methods, the software
development phases are not clearly subdivided, no actual plans are used or updated,
methodologies in requirement analysis fail to present clear and proper requircments
and thus quality criteria, testing is misinterpreted since it is regarded as a method to
prove that there aren’t any errors rather than a method to find errors, and no measures

are used to assess the quality of the software development.

In other words, unfortunately, the development process in Lebanon is applied based on
subjective assessments and self-made rules, details methodologies, documentation and
planning issues are not the main concern, but rather the software as a whole. Add to
this, that assuring quality in software is regarded as a burden that can delay the product

from emerging and increasing its cost. Whenever, the sofiware works, free of any

118

Chapter 6 Conclusions

errors and whenever the customer is satisfied, that is field proof that the software is of

good quality.

Certainly, this conception is incorrect and must be changed. This has lead to the need
of the Lebanese software firms for a quality system to be introduced into their
companies, so that planning and production is carried out systematically to help

produce an acceptable software on time and within budget.

Currently, in Lebanon, we cannot jump a big leap in to practicing and implementing a
set of international standards, such as ISO and IEEE collection on software
engineering. But, we can certainly try to initiate our own quality system that meets the
Lebanese market and that is accepted by companies’ managers. This was the aim of

our research.

This thesis has represented a quality system for small-to-medium Lebanese firms in
order to attain an acceptable level of quality if not an international level in the software
production industry. It contained the minimum acceptable requirements for the
introduction of quality system and has focused on the minimum activities to be carried
out in each of the development phases. Like ISO series of standards, this quality
system is based on the premise that if the production is right, the product produced will
be right. The aim was to produce a simple and direct quality system integrated into the
entire development process and accepted by all Lebanese firms” managers. We have
tried to show how things are done through the case study presented. The system was
implemented in three months, and the company noticed the importance of the quality
system. It has adopted and carried out most of the activities required by the system,

which are applicable at the company.

Software engineers in Lebanon should realize the importance of SQA. Quality

assurance must be looked upon as a long term investment. While it will result in

119

Chapter 6 Conclusions

extension of the project cycle, it will save time and resources during the operation and
maintenance phases. They must be aware that the achievement of quality is the
responsibility of every person involved in the delivery of the software product. So,
everyone has a role to fill it and the extent to which they fill it determines and leads to

better software product.

The suggestions presented in this thesis present a starting point to initiate a quality
system adapted to the Lebanese firms. However, based on our experience in
implementing this system we found out that some refinements are needed. Such
refinements include adapting selected development standards to the Lebanese market,
the integration of CM and a system of metrics within the quality system which were
not considered for the purpose of the thesis, testing activities, reviews and audits were
minimized, documentation-one of the most important element for the success of the

quality system, and maintenance were not discussed in detail.

Finally, I would like to conclude this thesis by a fact that quality is never by accident, it

is always the result of an intelligent effort.

120

Appendix A SRD for the Callback Billing System

Appendix A
SRD for the Callback Billing System

1. Introduction

The introduction includes an identification and an overview sections,

1.1. ldentification and Scope

This is the Software Requirement Specification document, where the task to be
performed by the software are refined into some form of requirement analysis. The
software requirements produced are clear and explain what the software is expected to

do.

1.2. Overview

A billing system is required for the callback service offered at EASYDIAL for their
international access calls. The switch providing the service is located in New York, and
the billing is based on the 2-leg billing process: (leg a} and (leg b} where (leg a) is the
link from the switch to the country where the subscriber is, and (leg b) is the link from
the switch to the country called by the subscriber.

121

Appendix A SRD for the Callback Billing System

2. Program Set Descriptions and Objectives

The system is billing the subscribers and thus must produce an invoice for each one of
them, along with a summary invoice and a detailed invoice and to provide necessary

reports after billing process in order to get the company's status and profit margin

3. Functional Requirements

Functionality's three components are:

3.1. Input Requirements

- One file forms the basis and the starting point to the billing process. This file is the
Call Detail Record (CDR) billing file which collects and records the subscriber
identification and usage time on calls made through the switch. This file is used for
subscriber billing, and is made available to the billing department for processing as

agreed with the EASYDIAL's representative (once a week or once a month}.

- The CDR billing file contains CDR's, each of which contains calling and terminating

numbers, duration of long distance calls for billing use.

A CDR occurs for each call attempt, that is whenever a subscriber calls the switch, and
waits for a callback, and then gets instructions about how to access the system and
starts dialing.

- A CDR is 165 bytes long and is formatted in ASCII. Table A-1 illustrates CDR

record format with a description of each field.

122

Appendix A SRD for the Callback Billing System
Field #{CDR Field Description Length| Type
1 |CDR type (C=calling card, I=Callback) 1 | Char
2 |Indate Date call comes into switch 6 | Num
3 |Intime Time call comes into switch 6 | Num
4 |Answer date Date (leg b) is answered 6 | Num
5 [Answer time Time (leg b) is answered 6 | Num
6 |Dial date Date (leg b) dialing begins 6 | Num
7 |Dial time Time (leg b) dialing begins 6 | Num
8 |Outdisc date Date (leg b} disconnected 6 | Num
9 |Outdisc time Time (leg b) disconnected 6 | Num
10 |Indisc date Date (leg a) disconnected 6 | Num
11 |Indisc time Time (leg a) disconnected 6 | Num
12 (Calldisc date Date call disconnected from switch 6 | Num
13 |Calldisc time Time call disconnected from switch 6 | Num
14 [Acct code Account code used for call 10 | Num
15 |CDRID CDR identifier DID(callback) PIN(calling} 10 | Num
card)
16 |Destnum Destination (leg b) number dialed 20 | Num
17 |Am Ani of caller or callback number 20 | Num
18 |International Was this an international call (Y/N) -1 | Char
19 |Dnis DNIS for call 20 | Num
20 |Complete Was call answered (Y/N) 1 | Char
21 |Duration Duration of cail in seconds 10 | Num

Table A-1 CDR Description Format

- Bach CDR is considered either a successful call or an unsuccessful call (attempted

call) depending on field #20.

- The billing is based on the 2-leg billing process: (leg a) and (leg b)
where :
(leg b) is defined as the duration in field # 21 of a call. It is zero in the case of an
attempt.
(leg a) is defined as the duration of (leg b) + a time delay equals to the time a
customer takes to listen to the recorder before start dialing. (leg a) processes in
parallel with (leg b), and can be derived from field #13 and field #3 as their difference

[field #13 - field#3].

However, the value of (leg a) changes and depends on whether the call was the first
one made and whether it was an attempt or not.

123

Appendix A SRD for the Callback Billing System

- Successful calls charging

In the same gession, a subscriber can make consecutive calls. That is, when the
subscriber calls the service and he is called back and is given a dial tone, he can make
one or several calls in the same session. These calls will be either successful or
attempts,

However, the subscriber is given ONLY 90 seconds free on the FIRST call placed, if
(leg a) duration is greater than the duration given as free- 90 seconds. If this is the
case, then the final value of (leg a) is (leg a) = (leg a) - 90. Otherwise, (leg a) value
remain unchanged and it is less than or equal to 90.

Normally, the final value of (leg a) is greater than the value of (leg b). If this was not
the case, then the final value of (leg a) is set to the value of (leg b).

- Attempted calls charging

In the case of an attempt, (leg b) is zero since the subscriber may have not answered
the callback call, or after dialing completion, a busy tone was given or the called party
did not answer. In this case, the subscriber is charged only (leg a) duration which is
derived as follows.

The subscriber is given 60 seconds free ONLY if the current call under process is the
FIRST one in the session. If this is the case and (leg a} is greater than 60, then (leg a)
is computed as (leg a) = (leg a) - 60. Otherwise, (leg a) is set to zero.

- (leg a) and (leg b) tariff determination

After derivation of the final (leg a) duration and (leg b), the tariff corresponding to
each one of these values must be determined. The tariffs are derived from two main
rate tables. One rate table corresponding to (leg a) and another one corresponding to
(leg b). Both tables are determined as New York origin because the switch location is

New York.

124

Appendix A SRD for the Callback Billing System

(leg a) tariff is determined as the tariff from New York to the called back country-
where the subscriber is, and (leg b) tariff is determined as the tariff from New York to
the called country.

- the Formula applied to calculate a call charge becomes:

(leg a) * (rate a) + (leg b) * (rate b)

3.2. Performance Requirements

This requirement include static requirements and dynamic requirements.

3.2.1. Static requirements
The billing software i1s designed to support one user or multi-user environment. As to
the number of files handled, in our case one CDR file is generated for each day. These
files are processed so that all the CDR’s are gathered in one file for later processing.
Several files are also needed.

-subscriber file

-parameter file

-itemize file

-invoice file

-history file

3.2.2. Dynamic requirements

The number of records to be processed each month is approximately 75000 CDR,
varying depending on the increasing number of subscribers. This is a variable number
and depends on many factors. Some of the factors is the number of calls made by each

subscriber and thus the performance of the system.

125

Appendix A SRD for the Callback Billing System

3.3. Output Requirements

As a result of processing the CDR billing files, the output produced is one file whose
records are processed on subscriber basis. Each subscriber is charged for the calls he
made during the month. At the end of the month, bills are produced for each subscriber
whose charge is greater than zero. Two types of invoices are produced: a summary
invoice, and a detailed or itemized invoice.

After processing each CDR file, a history file is necessary to record the first and the
last records in each processed file. It is necessary to prevent duplication and the

processing of the same file more than once.

4. Non-Functional Requirements

Several characteristics are determined for each project. The characteristics that are
important for this project are correctness, reliability, efficiency, and integrity. Design
constraints are also considered as non-functional requirements.

4.1. Correctness Requirement

The software has to be correct and must fulfill its objectives: to bill the subscriber

correctly and produce correct invoices.
4.2, Reliability Requirement
The software is not expected to fail. However, there are some cases where failure

occurs. For example, in the case of a change in the CDR format or some error in the

data file such as an uncompleted call record.

126

Appendix A SRD for the Callback Billing System

4.3, Efficiency Requirement

This requirement falls into two categories: execution efficiency and storage efficiency.
It is concerned with the use of resources such as the processor time, and storage
capacity.

The software has a better performance if it is run on a high-speed processor and has a

large storage capacity since the data that need to be processed is large.

4.4. Integrity Requirement

There are some functions in the software that must not be accessed by all users. These
functions need to be protected from unauthorized access. These include files creation,
rate table additions and updates, and tariff reports production.

4.5. Design Constraints

Three design types are considered: software design constraints, hardware design

constraints and user design constraints.
The language used to develop the software i1s Micro Focus COBOL version 3.2 under
SCO UNIX version 3.1 on an Intel Pentium platform. The software operates only

under such environment.

As to the hardware design constraints, no constraints are imposed on the hardware

under which the software is to be developed.

As to the user design constraints, no constraints are imposed on the user of the system.

127

Appendix A

SRD for the Callback Billing System

5. Approvals

Project Manager

E.D.P. Manager

Quality Manager

Date

Date

Date

128

Appendix B Project Development Plan

Appendix B

Project Development Plan

1. Introduction

This section includes an overview of the project and its deliverables.

1.1. System Overview

The project to be developed is a billing software for the callback service. The callback
service is a system through which the subscriber will be called back by a vocal server
located in the U.S. providing him with a U.S. dial tone. This tone can be used to call
internationally while being charged according to specific rates applied in this area
toward other international destinations. The billing software charges the subscriber for

the calls he makes.

1.2. Project Deliverables

The billing software is the only item to be delivered to EASYDIAL company.

2. Software Development Management

This section specifies the project organizational structure, and defines responsibilities
for the various project elements.

In our case, the organizational structure is the same as the one presented in section 5.2.

of this chapter. So to avoid repetition, they are not presented in this section of the plan.

129

Appendix B Project Development Plan

Normally, they must be stated also in this section: the project organization and
resources used to develop the product, and the organizations that are used to support

the development effort, along with their responsibilities.

3. Schedule and Milestones

This section includes the scheduled activities, milestones and baselines, and budget
administration. It also involves a schedule of planned major QA activities in relation to

project milestones.

3.1. Scheduled Activities

Many ways to represent the schedule: list of activities, diagrams, or graphs. The most
common methods of schedule representation are PERT network diagrams, GANTT
charts and list of milestones. The method used to schedule this project is a scheduled
activity list. The schedule 1s intended to provide information related to the activities
and time of implementation. It is useful for assigning activities (low-level tasks) to

project personnel.

Table B-1 contains the project schedule list of activities.

130

Appendix B Project Development Plan
Ac;cglty Activity Name Description ?;:2 S’:‘i Dependency By
1 Requirement System
requirement
1.1 Equipment Equipment 5-Jan 20-Jan 1.4 PM
procurement
1.2 Staffing Assign team 5-Jan 20-Jan 1.4 PM
members
1.3 Estimates Obtaining an initial 5-Jan ~ 25-Jan 1.4 PM
budget to fund
basic development
equipment
1.4 PDP Prepare the project 5-Jan ~ 25-Jan PM
plan
1.5 Review PDP Updated PDP 26-Jan 31-Jan 14 Review
team
1.6 Review SRS 26-Jan 31-Jan Review
team
2 Design System design
2.1 Test plan Prepare test 1-Feb 25-Feb Test team
plan{component,
integration,
system,
acceptance)
22 Test design ~ Prepare test 1-Feb 25-Feb 2.1 Test team
design(component,
integration,
system,
acceptance)
2.2 Review PDP Updated PDP 26-Feb 28-Feb Review
team
23 Review SDD 26-Feb 28-Feb Review
team

Table B-1 Sample Activity List

131

Appendix B Project Development Plan

Acﬁ;qty Activity Name Description]SI')t:t: 5;(2 De([))rel:nd By
3 Implementation System coding
3.1 Software coding Development of code 8-Feb 15-Mar ED.P.
dept
3.2 Test cases Prepare test 8-Feb 15-Mar Test
generation cases(component, team
integration, system,
acceptance)
33 Test procedures Prepare test 8-Feb 15-Mar 3.2 Test
generation procedures(component, team
mtegration, system)
3.4 Test execution Component test execution 15-Feb 28-Feb 3.2,3.3 Test
team
3.5 PDP Review Updated PDP 10-Mar 15-Mar Review
team
4 Integration and Systern mtegration and
testing testing
4.1 Module Construction of software 15-Feb 28-Feb EDP.
integration system from various dept
components
4.2 Integration Integration test execution 20-Feb 15-Mar 4.1 Test
testing team
43 Test procedure Prepare test procedure for 15-Mar 30-Mar Test
acceptance testing team
4.4 Product testing Full functional system- 15-Mar 30-Mar Test
system test execution team
4.5 Acceptance Live system run- 30-Mar 30-Apr 43 Test
testing acceptance test execution team
4.6 Test report Prepare test reports 30-Apr 5-May QM

Table B-1 (Cont'd) Sample Activity List

This plan is required at the initial stages of the project. Unfortunately, a full list of
activities is usually not available until well into the design phase. Therefore an initial
version of the project schedule usually starts with a list of high level activities, and this
initial schedule is repeatedly refined as more information becomes available.

132

Appendix B Project Development Plan

3.2. Milestones and Baselines

Certainly, not all activities are of equal importance. Some activities signify major
events in the project development cycle. The completion of the requirement
specification is a major milestone, as is the completion of the software design
specification.
The most important project event is the conclusion of the project, signified by the
successful completion of the AT. These important events needs special attention and
are recorded in a separate list of major project milestones. Normally, milestones are
used as points of payments. However, since our project is considered to be an in-house
project, the milestones are used for the measurement progress on the project and for
determining baselines.
Since milestones are described as major events, then baselines are described as major
milestones. Baselines refer to critical points during software development where major
decisions are finalized. Project reviews are where such decisions are finalized. Three
major baselines;
- The Functional baseline which is set at the end of the requirement phase-at the
system requirement review-to finalize the system functional requirements.
- The Allocated baseline which is set at the end of the design phase-at the design
review.
- The Product baseline which is set at the conclusion of the development cycle and

finalizes the development of the software product.
3.3. Budget Administration
This section deals with the budget required to develop the product. Estimates are

drawn, and they are checked, in the PPD review, to see if they are reasonable and if

any updates are needed. For the purpose of this study, it is not discussed in detail.

133

Appendix B Project Development Plan

4. Risk Analysis and Management

This section identifies the risks, the way to monitor them, and the corresponding
actions to be taken if they occur. The list of factors that should be considered include
contractual risks, technological risks, risks due to size and complexity of the product,
risks in personnel acquisition and retention, and risks in achieving customer acceptance

of the product. No risk factors were identified in our case.

5. Methods, Tools and Techniques

Methods for ensuring that all activities are carried out correctly are defined. These
refer to reviews, audits and tests. In addition to the standards, and tools, if used.

In our case, the process used to develop the product is that of the Waterfall model.
The requirement specification document is developed according to the standard
developed for the Lebanese market. As to the other documents and plans-PDP, design
specification document, and test plan-they are developed and conducted according to
the corresponding IEEE or ISO standard. A tool is not needed to develop the

software.

6. Statusing and Reporting

The engineering process is controlled by means of accurate status and reviews held at
specific stages of the development. A regular weekly review of the project status as
compared with the plan is required by project management. In addition, regular
monthly reviews of project status vis-a-vis the plan are required.

If possible, quantifiable numbers reflecting the current amount of work completed are
presented at these meetings and compared with the plan. These activities are scheduled

for implementation.

134

Appendix B

Project Development Plan

7. Approvals

Project Manager Date
E.D.P. Manager Date
Quality Manager Date

135

Appendix C SDD for the Callback Billing System

Appendix C
SDD for the Callback Billing System

1. Introduction

This section includes two sub-sections: scope and overview.

1.1. Scope

The design phase is the process which translates the requirement specification into a

detailed representation of a software system.

1.2. Overview

This document translates the requirements of the billing system specified in the SSD
into a detailed design of the system. The purpose is to design the software product
architecture and its detailed design. The software is designed using structured analysis.

The programming language used is MicroFocus COBOL.
2. System Architectural Design
The billing system is decomposed into many software programs. A brief description of

the program’s inputs, outputs and processing is presented only for the billing

processing program.

136

Appendix C SDD for the Callback Billing System

2.1. CDR processing program
2.1.1. Inputs
Many input data is required for this program:
- CDR file containing the call records to be processed: CDR file
- parameter file containing the rate tables and area codes: PARAM file
- itemize file containing the processed calls on subscriber basis: ITEMIZE file
- subscribers file containing cumulative call information related to subscribers:
SUB file
- history file containing log entry for every CDR file processed: HISTORY file

2.1.2. Processing
This program processes the records in the CDR file on a call-by-call basis.
Each record is analyzed to determine:;
- Call type, whether calling card or call back which in turns determines the rate
table to access in order to calculate call charges.
- Date and time the call was made.
- Identify the calling party and check for validity of subscriber.
- Calculate (leg a) in terms of minutes.
- Calculate {leg b) in terms of minutes.
- Analyze callback number and identify area code of originating country.

- Analyze destination number and identify area code of called country.

2.1.3. Outputs
No specific outputs are produced as a result from this program, however, many

files are updated: SUB, ITEMIZE and HISTORY.

137

Appendix C SDD for the Callback Billing System

3. Detailed Design

The programs in the billing system are decomposed into several modules. A
description of each module’s inputs, outputs and processing is presented. Only the

modules of the CDR processing program are described.

3.1.CDR processing program

3.1.1. Duplication Module
One-Inputs
The first record of CDR is read, and a log entry is formatted as follows:
- Call date
- Call Time
- Calling Party
- Call Duration

Two- Processing
The log entry is checked for existence in the HISTORY file, if it does exist,
this means the input CDR file is previously processed, the process is

aborted, otherwise, the process is continued until end of input file,

Three- OQutputs
In case CDR is previously processed a warning message is output to the

billing operator, else a new log entry is output to the HISTORY file.

3.1.2. Call Charging Module
One- Inputs

CDR records are input in sequence one after the other.

138

Appendix C SDD for the Callback Billing System

Two- Processing

call duration derivation of (leg a) and (leg b)

Initially, (leg b) is provided through duration field of the input record.
(leg a) is calculated as follows:
-both fields (calldisc time) and (in time) are determined in terms of seconds
starting midnight
-if (in time) < (calldisc time), (leg a)=(calldisc time) - (in time)
otherwise the call started before midnight and ends on the next day in this
case (leg a)=(calldisc time)+86400-(in time)
-the call is checked, if the first in a session then if it is a completed call then
(leg a)=(leg a) - 90, otherwise, if it is an attempted call, then
if (leg a) > 60 seconds then (leg a)=(leg a) - 60 otherwise (leg a) is set to

Zero

call charges

-callback number and destination numbers are analyzed in order to
determine originating and terminating country codes, then these codes are
used to access PARAM file to obtain (rate a) and (rate b) then:

call charge = (leg a) * (rate a) -+ (leg b) * (rate b)

Three- Outputs
A charged call record is written to the ITEMIZE file, and at the same time
the SUB file is updated with the call charges for the related subscriber.

4, User Interface
User interface is kept to a minimum. For the CDR processing program, only one

screen is designed, where the user operation is to provide and enter the CDR file name

in a field in the screen and to hit the ENTER key for the billing program to run.

139

Appendix C SDD for the Callback Billing System

Error handling cases were taken into consideration as discussed in the detailed design.
A field in the screen is reserved for the error message that is output in the case where

the user enters a non-existent file or a duplicate file- a CDR file already processed.

5. Approvals

Project Manager Date
E.D.P. Manager Date
Quality Manager Date

140

Glossary

Glossary

AT : Acceptance Test

ATP : Acceptance Test Procedure
CC : Configuration Control

CDR : Call Detail Record

CDR : Critical Design Review

CM : Configuration Management
CMP : Configuration Management Plan

E.D.P. : Electronic Data Processing

FA : Functional Audit

GM : General Manager

ISO : International Standards Organization
OB : Operational Baseline

PA : Physical Audit

PB : Product Baseline

PDP : Project Development Plan
PDR : Preliminary Design Review

PM : Project Manager

POR : Post Operation Review
QA : Quality Assurance

QAS : Quality Assurance System
oM : Quality Manager

SCMP : Software Configuration Management Plan
SCMPR : Software Configuration Management Plan Review
SDD : Software Design Description/document

i41

Glossary

SQA
SQAP
SRR
SRS
SVVP
SVVPR
SYVR
TCM
TRM
UDR

: Software Quality Assurance

: Software Quality Assurance Plans

: Software Requirement Review

: Software Requirement Specification

: Software Vertfication and Validation Plan

: Software Verification and Validation Plan Review
: Software Verification and Validation Report

: Test Coverage Metric

: Test Result Metric

: User Documentation Review

142

References

Bennatan. 1992, Sofiware Project Management; A Practitioner’s Approach,
McGraw-Hill.

Fenton. 1993. Software Metrics: A Rigorous Approach, Chapman and Hall.
Gillies. 1992. Software Quality: Theory and Management, Chapman and Hall.

Hajjar. 1996. Software Engineering Practices in Lebanon and Suggestions for
Lebanese Requirements Analysis and Software Testing Standards.

IEEE Standard 829-1983. IEEE Standard for Software Test Documentation,
Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1008-1987. 1EEE Standard for Software Unit Test, Institute of
Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1016-1987. TEEE Recommended Practice for Software Design
Descriptions, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1016.1-1987. IEEE Guide to Software Design Descriptions, Institute
of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1058.1-1987. IEEE Standard for Software Project Management Plan,
Institute of Electrical and Electronics Engineers, Inc., New York.

Ince. 1991. Software Quality and Reliability, Chapman and Hall.

Ince. 1994. ISO 9001 and Software Quality Assurance, McGraw-Hill.

ISO 9000-3. 1991. Quality Management and Quality Assurance Standards-Part 3:
Guidelines for the Application of ISO 9001 to the Development, Supply and
Maintenance of Software. International Organization for Standardization (ISO).
Johnson. 1993. ISO 9000: Meeting the New International Standards, McGraw-Hill.
Schmauch. 1994. ISO 9000 for software developers, ASQC.

Schulmeyer, McManus. 1988. Handbook of Software Quality Assurance. Van
Nostrand Reinhold Company.

Smith. 1990. Achieving Quality Software: Including its Application to Safety-Related
Systems, Chapman and Hall.

Vincent, Waters, Sinclair. 1988, Software Quality Assurance, vol. 1, Prentice Hall.

Vincent, Waters, Sinclair. 1988. Software Quality Assurance, vol. 2, Prentice Hall.

Wallmiiller. 1994, Software Quality Assurance: A practical Approach, Prentice Hall.

Bibliography

Australian Standards 1991-1993. Published by Standards Australia, North Sydney.

Bandinelli S., Fuggetta A. 1995. Modeling and Improving an Industrial Software
process, [EEE Transactions on Software Engineering, vol. 21, pp.440-468.

Bennatan. 1992. Software Project Management: A Practitioner’s Approach,
McGraw-Hill.

Bersoff. 1984. Elements of Software Configuration Management, Software
Engineering , Vol.10, pp. 79-87.

Bevan N. 1995. Measuring Usability as Quality of Use, Software Quality Journal 4,
pp.115-130.

Dalal, Horgan, Kettenring. 1993. Reliable Software and Communication: Software
Quality, Reliability, and Safety, Institute of Electrical and Electronics Engineers.

Debou C., Haux M., Jungmayr S. 1995. A Measurement Framework for Improving
Verification Processes, Software Quality Journal, 4. pp.207-225.

Demarco. 1982. Controlling Software Project, Yourdon Press.
Fenton. 1993. Software Metrics: A Rigorous Approach, Chapman and Hall.

Fenton, Whitty, lizuka. 1995, Software Quality Assurance and Measurement: A
Worldwide Perspective, International Thomson Computer Press.

Freedman, Weinberg. 1984. Reviews, Walkthroughs, and Inspections, Software
Engineering , Vol.10, pp. 68-72.

Frewin, Hatton. 1986. Quality Management-Procedures and Practices, Software
Engineering Journal, Vol.1, pp. 29-38.

Gilb. 1988. Principles of Software Engineering Management, Addison-Wesley.
Gillies. 1992. Software Quality: Theory and Management, Chapman and Hall.

Hajjar. 1996. Software Engineering Practices in Lebanon and Suggestions for
Lebanese Requirements Analysis and Software Testing Standards.

IEEE Software Engineering Standards Collection, Edition 1994, The Institute of
Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 828-1990. IEEE Standard for Software Configuration Management
Plans, Institute of Electrical and Electronics Engineers, Inc., New York,

IEEE Standard 829-1983. IEEE Standard for Software Test Documentation,
Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1008-1987. IEEE Standard for Software Unit Test, Institute of
Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1016-1987. IEEE Recommended Practice for Software Design
Descriptions, Institute of Electrical and Electronics Engineers, Inc., New York,

IEEE Standard 1016.1-1987. IEEE Guide to Software Design Descriptions, Institute
of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1058.1-1987. IEEE Standard for Software Project Management Plan,
Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE Standard 1059-1993. Guide for Verification and Validation Plans, Institute of
Electrical and Electronics Engineers, Inc., New York,

Ince. 1991. Software Quality and Reliability, Chapman and Hall.

Ince. 1994. 1SO 9001 and Software Quality Assurance, McGraw-Hill.

ISO 9000-3. 1991. Quality Management and Quality Assurance Standards-Part 3:
Guidelines for the Application of ISO 9001 to the Development, Supply and
Maintenance of Software. International Organization for Standardization (ISO).

Johnson. 1993. ISO 2000: Meeting the New International Standards, McGraw-Hill.

Kitchenham, Fleeger. 1996. Software Quality: The Elusive Target, JEEE Sofiware,
pp. 12-24. .

Lewin, Rosenau. 1988. Software Project Management: Step by step, Marsha Lewin
Associates, Inc. Publications.

Ohmori A. 1993. Softiware Quality Deployment Approach: Framework Design,
Methodology and Example, Software Quality Journal, 3. pp. 209-240.

Perry, Ermel, Shields. 1994. Insider’s Guide to Software Development, David
Ewing.

Saiedian. 1995. SEI Capability Maturity Model’s Impact on Contractors, Institute of
Electrical and Electronics Engineers, Inc., New York.

Schmauch. 1994, LSO 9000 for software developers, ASQC.

Schneidewind N. 1995. Controlling and Predicting the Quality of Space Shuttle
Software using Metrics, Software Quality Jowrnal, 4. pp.49-68.

Schulmeyer, McManus. 1988. Handbook of Sofiware Quality Assurance. Van
Nostrand Reinhold Company.

Smith. 1990. Achieving Quality Software: Including its Application to Safety-Related
Systems, Chapman and Hall.

Vincent, Waters, Sinclair. 1988. Software Quality Assurance, vol. 1, Prentice Hall.
Vincent, Waters, Sinclair. 1988. Software Quality Assurance, vol. 2, Prentice Hall.

Wallace. 1989. Software Verification and Validation: An Overview, Institute of
Electrical and Electronics Engineers, Vol.6, pp. 10-17.

Wallmiiller. 1994, Software Quality Assurance: A practical Approach, Prentice Hall.

	test21
	test21a
	test21b
	test21c
	test21d

