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Abstract

We analyze the sensitivity to parameters and the general applicability of genetic
algorithms and simulated annealing algorithms for mapping data to distributed-memory
multicomputers, using the loosely synchronous computation model. The analysis
includes sensitivity to user parameters, fault tolerance capability, and applicability to
different multicomputer topologies. The user parameters are either objective function
dependent or algorithm dependent. The fault tolerance capability is demonstrated by
using the mapping algorithms for mapping data to a multicomputer that has some
failed processors. We assume a hypercube multicomputer architecture in most
experiments. However, comparative results for mesh, array, ring, tree, star graph, and
fully connected topologies are presented. The mapping algorithms used are sequential
hybrid genetic algorithm, versions of a distributed genetic algorithm, sequential
simulated annealing algorithm, and a simulated parallel simulated annealing algorithm.
The experimental results verify that these algorithms are insensitive to user parameters
in wide ranges, completely fault tolerant, and unbiased towards particular
multicomputer topologies. These results support the conjecture that physical
optimization algorithms are flexible and have general applicability, where these
properties are necessary for the automation of the mapping process.
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Chapter 1

Introduction

Let ALGORITHM be an algorithm intended to solve a problem with an underlying data
set, DATA, on a multicomputer, MCOMP. Then, the data mapping problem is the problem
of partitioning JATA into mutually exclusive subsets, each of which is mapped to a
processor node in MCOMP. The aim is minimizing the execution time of the parallel
ALGORITHM on MCOMP.

The assumptions made in this work are the following:

(a) MCOMP is a distributed-memory message-passing multicomputer whose processors
are connected by a static point-to-point interconnection network [Hwang 1993].

(b) The Routing used in MCOMP is wormhole routing [Hwang 1993].

(c) The computation model used is loosely synchronous computation model in which
processors perform compute-communicate cycles in a SPMD ( Single Program, Multiple
Data ) scheme [Fox et al. 1988].

Under such assumptions, the execution time on MCOMP is determined by the execution
time of the slowest processor. Thus, the data mapping problem is obviously an
optimization problem, and achieving data-parallelism involves nearly-equal distribution of
computation workloads over the processor nodes of MCOMP, as well as the minimization
of the amount of their inter-processor communication. The data mapping problem is NP-
complete, and no optimal solutions can be found in reasonable time. Instead, several
methods have been proposed to find acceptable and near-optimal solutions.

The methods that have been proposed to solve the data mapping problem fall into two
major categories: heuristics and physical optimization algorithms. Heuristic procedures are
mainly geometry based methods. The physical optimization algorithms are derived from
natural sciences. Heuristics include Recursive coordinate bisection, recursive spectral
bisection, recursive graph bisection, mincut-based, scattered decomposition, nearest-
neighbor techniques, greedy algorithms, and clustering methods [Berger and Bokhri 1987;
Chrischoides et al 1991; Ercal 1988; Fox 1988; Karmer and Muhlenbein 1989]. On the
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Chapter 1 Introduction

other hand, physical optimization algorithms include neural networks [Hopfield and Tank
1986; Fox and Furmanski 1988], simulated annealing [Kirkpatrick et al. 1983; Rutenbar
1989], genetic algorithms [Holland 1975; Goldberg 1989], and mean-field annealing
[Bultan and Aykanat 1992]. Genetic algorithms are derived from the theory of natural
evolution in Biology. Simulated annealing is based on the process of solid annealing in
statistical mechanics.

Heuristics for data mapping are fast. However, most of them are biased towards certain
problem structures and multicomputer topologies. Most heuristics are not guided by an
objective function the fact that leads to an unbalanced treatment of the computation and
communication terms. Physical optimization algorithms, particularly genetic algorithms
and simulated annealing, are slow in their execution. However, they do not make apriori
assumptions concéi’ning the underlying problem, and they are guided by an objective
function [Mansour and Fox 1991, 1992, 1994a, 1994b]. It has been claimed that they are
flexible and of general applicability [Mansour and Fox 1992]. Moreover, it is conjectured
that these algorithms do find suboptimal mappings for different situations, such as
mapping to faulty architectures and to a variety of multicomputer or topologies. However,
these claims and conjectures have not been supported by sufficient experimental work.

In this work, we explore and analyze, for the first time, the behavior of genetic and
simulated annealing algorithms for different situations. Qur analysis has three dimensions.
The first dimension deals with the degree of sensitivity of a mapping algorithm to its
parameters which require user intervention. The second constitutes the fault tolerance
capability of a mapping algorithm. An algorithm is said to be fault tolerant if it is capable
of mapping to an incomplete (faulty) MCOMP architecture. The third dimension studies
whether a mapping algorithm is biased towards a particular MCOMP topology. Our
experimental results verify that genetic algorithms and simulated annealing algorithms are
insensitive in wide ranges to most user parameters. They are completely fault tolerant, and
they apply to different multicomputer topologies. '

This thesis is organized as follows. Chapter 2 defines the data mapping problem in detail
along with our assumptions based on which an objective function is devised. In chapter 3,
we outline the genetic algorithms used in the analysis. The genetic algorithms are either
sequential or distributed. Chapter 4 outlines the simulated annealing algorithms we use.
Chapters 5 and 6 explores the first dimension of the analysis. In chapter 5, we study the
sensitivity of genetic algorithms to user parameters. In chapter 6, we repeat the same work
for simulated annealing. Fault tolerant mapping, the second dimension, is explored in

1-2



e
Chapter 1 Introduction
chapter 7 for genetic algorithms as well as simulated annealing. In chapter 8, we address
the third and last dimension, bias towards multicomputer architecture. Finally, we present
our conclusions and remarks in chapter 9.

.

-

.

»

»
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Chapter 2

Data Mapping Problem

Let ALGORITHM be an algorithm intended to solve a given problem with an associated
data set, 12474, on multicomputer MCOMP. The data mapping problem is the problem of
partitioning D4 7TA into mutually exclusive subsets, and mapping each of these subsets to a
processor in MCOMP. The aim is minimizing the execution time of ALGORITHM on
MCOMP. The execution time of the paraliel program depends on the algorithm itself, the
underlying data set, the computation model, and the multicomputer machine,

In this chapter, we define the data mapping problem in details. We also present our
assumptions and the objective function used.

1. Data and Multicomputer Representation

The data set can be represented mathematically as a graph GV, Ep). GV Ee) will be
referred to as the computation graph. The set of vertices V. corresponds to data objects
on which computations are to be performed. Elements of £, the set of edges, represent
the computation dependencies among the data objects. These dependencies are specified
by the algorithm which 1s intended to run on the given data set.

As an example, consider the problem of image processing described in figure 1. Figure
1(a) shows a shape digitized on a 24x24 array of pixels. It shows also some noise pixels.
The problem is to eliminate these noise pixels using the Jacobi algorithm shown i figure
1{b). Each pixel (data object) in the given data set will be represented as a vertex in the
computation graph corresponding to this problem as shown in figure 2. The presented
Jacobi algorithm identifies a noise pixel by determining the values of the eight surrounding
pixels. Thus, the computation value of a data object depends on the values of its direct
neighbors. Moreover, this dependence should be translated in the form of edges in the

computation graph.
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ORORS Graph Representation
000 O (O ofPixels
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Figure 2. Representation of a pixel as a computation graph vertex and data dependencies as edges.

The multicomputer topology can be represented also by the graph G, (V. Ey,). In this
graph, V7, constitutes the set of multicomputer nodes, while E,, constitutes the actual
physical interconnections between the nodes. The graphs in figure 3 represent two cubes
of 4 nodes and 8 nodes respectively.

. Processor
Node

(a) ()

Figure 3. (a) 4-node cube graph. (b) 8-node cube graph.

2. The Computation Model

To devise an appropriate objective function, we assume a loosely synchronous
computation model. This model is assumed in this work because the majority of large
scale computations fall into this category [Fox et al. 1988]. In such a model, processors
perform compute-communicate iterations, i.e., each processor runs the same algorithm on
a different subgraph, then they exchange information pertaining to boundary vertices
before proceeding with computation. Therefore, the total parallel execution time is
determined by the slowest processor. '

2-3
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3. Problem Definition

The data mapping problem, also called the data allocation problem, refers to partitioning
(e into [Fy,| subgraphs each of which is mapped, or allocated, to a node in Gy,,. Thus it is
an optimization problem which constitutes the determination of the onto function,

fVe— Vi

such that the execution time of ALGORITHM represented by an objective function is
minimized [Mansour and Fox 1992]. The mapping configuration is represented by the
array MAP] ], where

MAP[v] = p when the vertex v is among the vertices mapped to processor p.

Figure 1(a) proposes a mapping solution to the image processing problem. It is partitioned
into 4 sub-arrays so that each node in the multicomputer in figure 2(a) can run the Jacobi
algorithm on a 12x12 sub-array. The solution aims at balancing the load of the processors
by mapping equal number of pixels to each processor node. Each processor, now, runs the
Jacobi algorithm on the sub-array allocated (mapped) to it in much the same way a
sequential processor runs it on the whole array. The main difference is that the data set of
a node in a multicomputer is smaller, and each processor node will be obliged to do some
communication with other processors to determine the values of the boundary vertices.

For example, a pixel, (x,y) on the boundary, mapped to processor p/ (refer to figure 1(a))

has at least one neighbor, say (x,y+1), mapped to processor p2 with pl # p2. To
determine Pixel_Value(x,y), processor p/ has to request Pixel Value(x,y+1) which is only
known by processor p2. Thus, p2 has to send it to p/, so that the later may proceed with
computation.

4. The Objective Function

OFyp is a typical objective function corresponding to the time taken by the slowest
processor m computing and communicating in a loosely synchronous computation model
[Mansour and Fox 1992, 1994a, 1994b].
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OF g = Max,.., \W(p)+C(p)} (1)
W( p) corresponds to the computation workload of processor p. It is given by
]
W(p) = 2 w(v).5(v.p) )
vele
where
5( ) {1 if v is mapped to p
VP 0 otherwise
. w(v) is the computation time per vertex v. It is given by
w(¥) = fpoar. 1. G(V) (3)
where ffoar 13 the time taken by a processor to perform a floating point operation. Hence,
it is the smallest reasonable time of a machine operation. A corresponds to the number of
computation operations per an edge in £, in one iteration. g(y) is the degree of vertex v
in (. Substituting equation 3 in equation 2 yields
.
W(p) = toat. A. ZB(V).&'(V, p) 4)
velt
Let Sp) = 2.0(v).5(v, p). That is, S p) denotes the number of edges in £ which are
vele
mapped to processor p. Thus,
L
W p) = troa. 1.5 p) 5)
€ (P ) in equation 1 corresponds to the amount of communication processor p is
performing. Clearly, C( p) depends on the multicomputer specifications ,and hence it will
»

differ from one machine to another. An expression for C( p) which is suitable for modern
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multicomputers which implement wormhole routing is given in equation 6 [Hey 1990;
Hwang 1993]. It depends on the message latency and the number of processors a given
processor communicates with. Recall that the processor nodes in a hypercube are
numbered in such a way that the Hamming distance of two nodes gives the number of
hops between them. Except for chapter 9, we assume a cube topology in this work.

p) = tra. 2] p.B(p.q) + o+ 7. H(p.g)sen( Bp.q)) NG

getm

£ is the machine time needed to communicate one word. It is given by the number of
"froar s (1.€., it 18 divided by #pa ) required to communicate a word. & is the message start-
up time divided by #1e«. T is the number of "#w.« "s representing the communication time

per unit distance. Clearly, p, o, and 7 are machine dependent parameters. B( p, q) is the

number of vertices mapped to p and are boundary with g. It is given by

B(p.g)=b. 2.5(v.p).6(uq) 7

vaueVe
<vure ke

b represents the number of values to be communicated per vertex. H{ J q) in equation 6

corresponds to the Hamming distance between processors p and ¢. Finally

1,x>=0
sen(®) =15, g

C( . q) is considered to be a reasonable estimation. It is not precise, but it is popular in

the mapping literature. Precise measures are sometimes impossible to express accurately.
For example, link contention, communication-computation overlaps, and synchronization
delays are hard to quantify.

The speed up () of the multicomputer is defined as being the workload of a sequential
processor divided by the workload of the slowest processor in the multicomputer.

Warkload of a single processor

Warkload of the slowest processor in a multiprocessor

J.SY -
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It is thus

2 (p)
§=2 (8)
' OF 5

The solution quality (:7) is determined by the efficiency resulting from the mapping
solutions. It is defined as the speed up (5) divided by the number of processors involved
(|Vm)). Thus

> (w(p))

F<Vm

1= Wl OF oy

A. ZSV( p)

_ peEtn (9)
K Vol Mo, { 2.5 p) + C( p)}

Minimizing (OFy, is computationally expensive because J{p) and C(p) correspond to

conflicting requirements. In other words, it gives rise to a min-max criterion. Maximum
work load per processor corresponds to minimum communication and vice versa.
Nevertheless, OFyy 1s not smooth, which means that the computation of an incremental
change resulted from the remapping of a vertex from one processor to another is
expensive because it may require the calculation of the loads of all processors. We will
circumvent this problem by using a quadratic objective function, OFayr, which is
considered to be a good approximation of OF,, [Mansour and Fox 1992, 1994a, 1994b;
Fox et al. 1988 ].

()Fappr: ,;LZ ZSE(P) + L. Z(Y(p) (10)

peEVm peEVm

A4 represents the relative importance of the communication term to the computation term.

It is given by
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- £.2.0() (11)
" 4 ool Ve V1) Es_Vs

The derivation of £ is given in [Mansour 1992]. n« is a scalar value, 0 < faer < 1,
which should be selected by the user based on experience. £y Vi is also a user-defined
value which reflects the average ratio of boundary edges to boundary vertices in a
mapping solution.

Smooth objective functions are preferred in optimization methods. Moreover, OF,
possesses a locality property which makes the calculation of an incremental change due to
remapping of vertices from one processor to another inexpensive. This locality implies that
only the processors involved in the remapping and the remapped objects determine the
cost. Equation 12 presents AQFa which corresponds to the incremental change resulted
from the remapping of v from processor p7 to processor p2.

AOFar = 2220(W)[0(v) + 8/ p2) - S{ p1)] + plAC] (12)

The use of OFappr is very important to Genetic Algorithms and Simulated Annealing
because these algorithms employ vertex remapping extensively.
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Genetic Algorithms for Data Mapping

Genetic algorithms ((GAs) are based on the theory of natural evolution where species adapt
beneficially to the surrounding environment [Holland 1975; Goldberg 1989]. GAs work
on a population of possible solutions. These solutions are called individuals or
chromosomes, and they evolve over successive generations seeking an optimal solution.
The initial population is selected at random, and individuals in a generation reproduce and
mate to produce a new generation propagating favorable characteristics. This allows GA
to finally converge to a good optimum.

In this chapter, we briefly describe GAs dedicated to solve the data mapping problem .
First, we describe a sequential hybrid genetic algorithm, henceforth referred to as SGA.
Then, various versions of a distributed genetic algorithm (DGA) are presented.

1. Sequential Hybrid Genetic Algorithm

An outline of SGA proposed by [Mansour and Fox 1991] is given in figure 1. A data
mapping configuration is represented as a chromosome consisting of |V,| genes. The allele
value, i.e. the value assigned to a gene, is an integer between 0 and |/,,| -1, representing a
processor. Thus, CHROMOSOME[X] = Y implies that the data object X, an integer
between 0 and [V| -1, 1s mapped to processor Y. The fitness of the individual is given by

Fitess = %)Fappr' SGA employs panmictic reproduction, where the whole population is

considered as a single mating unit. First of all, individuals are sorted according to their
fitness values. The fittest is assigned the maximum rank value which is 1.2, while the least
fit individual is assigned the lowest rank value which is 0.8. Other individuals are ranked
equidistantly between these values. Individuals which were assigned ranking values greater
than 1 are assigned single copies in the list of reproduction trials. Then, the fractional parts
are treated as probabilities [Baker 1985]. Moreover, the fittest-so-far individual is always
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saved, and if it is better than the new generation's best individual, it is reinserted to the
new population to replace the worst individual. The genetic operators used in SGA are:
two-point crossover at 80% frequency, mutation at 1% frequency, and inversion at 0.5%
frequency [Mansour and Fox 1991]. SGA is hybridized in the sense that it incorporates a
greedy hill climbing heuristic where cach offspring individual performs self hill climbing
via the remapping of boundary objects from one processor to another. This perturbation,
the remapping, is only accepted if AOFum- < 0. [Mansour and Fox 1992, 1994b] argues
that the remapping of a data object takes place from overloaded processors to
underloaded ones only. Finally, SGA converges when there is no improvement in

efficiency for a number of generations.

Random generation of initial population, size POP;
Evatuate fitness of individuals;
repeat (for GEN generations)
Set u and genetic operator rates,
Rank individuals and allocate reproduction trials;
for i=1to POP step 2 do
Randomly select 2 parents from the list of reproduction trials;
Apply crossover, mutation, and inversion;
Hill-climbing by offsprings;
end for;
Evaluate fitness of offsprings;
Preserve the fittest-so-far;
until convergence;
solution = fittesi;

Figure 1. Outline for SGA.
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2. Distributed Genetic Algorithms

In SGA, evolution is panmictic and sequential, which is not the case with natural
evolution. In natural evolution, species evolve concurrently over discontinuous separated
sub-populations called demes [Crow 1986].

In the DGAs described in this section, the population is structured as a cube graph where
a node corresponds to a deme. Demes are numbered in exactly the same way processors
are numbered in a hypercube multicomputer [Hwang 1993]. Thus, two demes are said to
be neighbor demes if they are at a Hamming distance =1.

2.1. The Algorithm

DGA is outlined in figure 2. Initially demes are generated at random, and each deme is
generated using ditferent random number generator seeds. This allows DGA to start from
different and diverse points. The population is divided into |V, equal size demes which
mate independently and discontinuously. This process is repeated for DRFGEN
generations forming a drift phase. In the migration phase, some individuals migrate from
one deme to another. Choosing a fixed size deme, the migrants have to replace some
victims in the target deme [Mansour and Fox 1994a, 1994b].

2.2. Drift Phase

The DGA drift phase simply employs SGA in each deme [Mansour and Fox 1994a,
1994b].

2.3. Migration Phase

The migration phase depends on the migration policy used. In general, M% (of the deme)
migrants are copied in some neighbor deme replacing M% victims. We present five

versions of DGA which differ in the migration scheme, number of migrants, and nature of
migrants. In some of the versions illustrated below, a migration direction has to be chosen
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along which migration takes place. The migration direction is simply one of the cube

dimensions [Tanese 1987, 1989].

for DAM=0 1o |Vy,|-{ do

Evaluate fitness of individuals;
end for;
while (each deme is not converged) do
/* Drift Phase™®/
SJor DM=0to |Vy,i-1 do
repeat (for DRFGEN)
Apply SGA to DM;
end repeat;
end for;
/*Migration Phase*/

end while;
Solution = Fittest;

Random generation of initial deme, DM, of size DEME;

Apply a migration policy (section 2.3);

Figure 2. Outline for DGA.

2.3.1. ZDGA

The simplest migration policy is Do No Migration' [Tanese 1989] . This algorithm will be
referred to as ZDGA where M=0. Here we are relying on the drift phase to do the job.
Moreover, we will be maintaining diversity among the demes at its highest peek from the

beginning of evolution until its end.
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2.3.2. IwDGAl

A one-way migration policy is described in figure 3. The migration direction is determined
in a circular fashion over the dimensions of the cube-like population. Along a selected
direction, we have a set of deme couples.

Determine migration direction, MD;
for every deme couple (X,Y) on MD do

Determine N and D demes;

Copy M% best individuals in § fo replace worst M% victims in D;
end for;

Figure 3. One-way migration policy.

Each couple consists of a source deme, S, and a destination deme, D, which are at a
Hamming distance = 1 apart. Let (X,Y) be a couple of demes on the selected direction, we
adopt two policies to identify S and D demes. In the first policy, X is an S deme if and
only if the average fitness of X is greater than that of Y. The DGA corresponding to this
policy will be referred to as IwDGATla. In the second policy, X is an S deme if and only if
X contains the fittest individual among all individuals in X and Y. 1wDGAT1b denotes the
corresponding DGA.

2.3.3. 2wDGAI

This policy s depicted in figure 4. The pair of demes (X,Y) exchanges M% of their best
indtviduals replacing their worst M% individuals . That is why this policy is called a two-
way migration policy, and the corresponding DGA will be referred to as 2wDGAI
[Tanese 1987, 1989] .
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Determine migration direction, MD;

for every deme couple (X)Y) on MD do
Exchange M% best individual copies between X and ¥;
(copies replace the worst individuals)

end for;

Figure 4. Two-way migration policy.

2.3.4. SBDGAL

Migration in SBDGAL is based on the shifting balance theory [Wright 1977]. In each
neighborhood, the deme with the best individual is identified as the S deme, while every
other deme in that neighborhood is a D deme. This policy is summarized in figure 5.

for every neighborhood NH do
Identify the § deme;
Copy M% best individuals from S to every other deme in NH
replacing the worst M% individuals;
end for;

Figure 5. Shifting balance based migration policy.

2.3.5. More Variations

IwDGAZa, 1wDGA2b, 2wDGAZ2, and SBDGA?2 are four variations which deviate from
their ancestors 1wDGAla, 1wDGA1b, 2wDGAI, and SBDGAI1 respectively. In these
variations, M is selected at random in each migration cycle, and the M% migrants are
chosen at random with replacement. The migration direction is also selected at random in
IwDGAZ2a, 1wDGA2b, and 2wDGA2.
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3. Summary

Genetic algorithms are derived from the theory of natural evolution. Species mate and
reproduce propagating their favorable aspects to their offsprings.

In this chapter, we described a sequential hybrid genetic algorithm, SGA, and versions of a
distributed genetic algorithm, DGA, all dedicated to solve the data mapping problem.
SGA is based on classical GA. The DGA versions presented in this chapter employ a
distributed discontinuous population. SGA is reemployed in DGA in its drift phase. The
DGA versions differ in the migration policies they adopt. These policies were also
described.
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Simulated Annealing Algorithms for
Data Mapping

To force a material to come to a low-energy state in statistical mechanics, it is heated to a
temperature which allows many atomic rearrangements. It is then cooled slowly and
carefully, allowing it to achieve thermal equilibrium at each temperature, until the material
freezes and crystallizes, This process 1s called annealing, and simulated annealing (SA)
algorithms are based on the idea of this annealing process [Kirkpatric et al 1983; Rutenbar
1989]. The simulation of the behavior of the physical system at each temperature in the
cooling process is simulated by the Metropolis algorithm. SA staris with a randomly
generated initial solution. In each iteration, the solution is randomly perturbed. If such a
perturbation results in a negative or zero change in the system energy, then it 15 accepted.
To prevent premature convergence when frapped in a bad optimum, the simulated
annealing algorithm accepts positive changes in energy with a certain temperature-
dependent probability.

In this chapter, we present two simulated annealing algorithms that are adapted to solve
the data mapping problem [Hwang and Xu 1990; Mansour and Fox 1992, 1994a]. First,
we briefly describe a sequential simulated annealing algorithm, referred to as SSA. Then,
we present a simulation of a parallel simulated annealing algorithm, referred to as SPSA.

1. Sequential Simulated Annealing Algorithm

SSA is outlined in figure 1 [Mansour and Fox 1992]. The initial mapping configuration is
generated at random. SA determines the initial temperature in such a way that makes the

—AE,
probability of accepting a positive change, e 7 , very high, 0.8. On the other hand,
freezing is accomplished when the probability of accepting a minimum positive increase in
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the energy function is very small. The energy function, %, is given by the objective
function, OF . A perturbation corresponds to randomly selecting a data object and
remapping it at random. Accepted perturbations turn to be new starting points to the next
. perturbation. The perturb-accept or reject process is repeated until equilibrium 1s achieved.

Initial configuration, MAP{ | = Random mapping;
Determine the initial temperature, T(0),;
/* Anneal */
. while (1> THRESHI and Noee > THRESH2 ) do
7= 177);
repeat
Perturb (MAPY ]);
E = OFappr;
if (dE = 0) then
Accept move;
Update Configuration, MAP[ ],
else
Crenerate RND, a random number between 0 and {;
if (RND - ¢ /%) then
Accept and update;
else Reject;
until Eguilibrium;
Determine K
Tii+1) = K*T{i);
end while;

Figure 1. Outline for SSA.

The new temperature is determined as a fraction of the previous one. We choose a fixed
cooling schedule, K. The best-so-far is persevered to avoid losing good solutions. Finally,
SSA converges if Naee=0 or there is no improvement for a threshold of successive moves.
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2. Simulated Parallel Simulated Annealing Algorithm

An outline of SPSA is given in figure 2 [Greening 1990; Eglese 1990; Williams 1991;
Mansour and Fox 1994a]. SPSA is a simulation of the parallel simulated annealing
algorithm presented by {Mansour and Fox 1994a). The algorithm starts by mapping
MAP[] into the multicomputer, MCOMP, nodes. This is done by breaking MAP[] nto
contiguous segments, MS,, MS,;, ... , such that these segments are of equal sizes (if
possible). obviously, this is a naive mapping scheme which is far from optimal, but it is of
negligible time. Next, each node generates its own random sub-configuration. Initial and
freezing temperatures are determined globally using the global summation of Sv( p). Then,

SSA 1s repeated for every node until all nodes converge.

SPSA deviates from SSA which is highly sequential in the sense that perturbations occur
successively. In SPSA, perturbations occur concurrently, A node is locally evaluating

{accepting or rejecting) a perturbation with wrong values for Sv(p) and AC' used to

evaluate AOF, . This leads to three types of inconsistencies referring to concurrent

perturbations of data objects mapped to the same processor, wrong Sv(p) value in
different nodes, and outdated AC value in different nodes [Mansour and Fox 1994a]. A
correction mechanism is needed to manage for these inconsistencies because if they
accumulate they lead to degeneration. In other words, if the accumulation of these
inconsistencies is allowed, SPSA will either converge prematurely, or we will be obliged
to tncrease the number of passes to get reasonable solution qualities. Both choices are
unacceptable. The later makes SPSA computationally expensive, while the former is
unacceptable any way. The SPSA correction scheme is based on the unification of the
views of the multicomputer nodes at certain frequencies. These frequencies are fu, foduy,
and . faws 1s the frequency at which we update the local views of Naee and Nar in each
node to reflect their global values. Recall from SSA that Nac and Naw are needed in order
to determine equilibrium. fuu., is the frequency at which the multicomputer nodes
communicate the boundary information. In our simulation, this is done via copying the
local parts of nodes, MS;'s , into MAP[], the global configuration. The last frequency, f.
constitutes the frequency at which the global summation of Sv( p) is determined. Too high

correction frequencies resuit in high communication overhead. While too low correction
frequencies may lead SPSA to premature convergence. An empirical determination of their

values 1s necessary.
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/¥ Mapping MAP[] into MCOMP */
for every node (n) in MCOMP do

Determine MS, boundaries SB, and EB,, The Start Boundary and FEnd Boundary;
end for;

/* Initial random configuration *.
for every node (n) in MCOMP do

(renerate random configuration in MAP[SR,..EB,];
end for;

Determine initial temperature, T(0),
Determine freezing temperature, Tfreeze;
Determine boundary information;

Globally find summation for Sv( p} ;

while not converge ( every node in MCOMP ) do
for every node (n) in MCOMP do
while ( T(i} -~ Tfreeze and not converged(node n) ) do
repeat
Local S84 step;
Update Ny and Na. moves at s
Write MS, into MAP{SB,.. EB,] of fyaury,
Update S,(p)at fi;
until (equilibrium);
if (Noee -~ THRESH) then
Save the best-so-far according toOF,
end if
T = K * T(i-1);
end while

¥igure 2, Outline for SPSA.
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3. Summary

Simulated annealing algorithms are based on the annealing process of a solid in statistical
mechanics. In this process, the solid is heated and then cooled slowly until it freezes and
crystallizes. At each temperature the solid achieves thermal equilibrium.

Two simulated annealing algorithms were outlined in this chapter. The first, SSA, is
sequential in which perturbations occur successively. The second, SPSA, is a simulation of
a parallel simulated annealing algorithm. SPSA deviates from SSA; thus, the sequential
nature of the later leads to inconsistencies in the former. A correction scheme which
employs correction frequencies was presented. These frequencies shall be determined

experimentally.
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Sensitivity of GAs to User Parameters

In chapter 3, we presented SGA and versions of DGA which find good mapping solutions
such that the execution time of ALGORITHM on MCOMP is minimized. These GAs make
use of many parameters that require user intervention. Table 1 summarizes these
parameters restating a short definition of each.

In this chapter, we study experimentally the sensitivity of GA to each of these parameters
emphasizing the effect of misestimating their values to GA performance. Three test cases
are used in our experiments;: TCASE1L, TCASE2, and TCASE3. Table 2 summarizes the
characteristics of each test case, and the shapes of DA7A are shown in the mentioned
figures. We study the sensitivity of GA in terms of its solution quality and execution time.
The solution quality, 77, is evaluated using equation 9 in chapter 2. The execution time,
Lexes, 18 measured in seconds. We note that TCASE2 and TCASE3 are contracted once and
twice respectively using a graph contraction heuristic [Mansour 1992]. Finally, The
experiments are conducted on an AViiON 5000 UNIX machine.

Parameter Description
Juser Relative importance of communication to computation.
E b Ve Average ratio of boundary edges to boundary vertices.
A Computation operations per edge per iteration in ALGORITHM.
T MCOMP communication time per unit distance / t;,.
o MCOMP message startup time / tg_ ..
yo MCOMP time to communicate one word / t .
Population Size Size, in individuals, of the GA population.
Convergence Threshold Number of generations with no improvement in 7.
Migration Policy Migration phase policies used in DGA versions in chapter 3.
Drift Phase Length Length of the drift phase in DGA versions.

Table 1. GA parameters whose values involve user's choice,
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Chapter 5
I Ve Glove Contraction Figure
TCASEI 301 3 0 Figure 1(a)
TCASE2 545 11.5 Figure 1(b)
TCASE3 1266 5.5 2 Figure 1(c)
Table 2. Test cases,
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Figure 1. Shapes of DATA. (a) TCASEL (b) TCASE2. (¢c) TCASE3.
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Figure 2. Performance of SGA for different values of p,.., (x-axis) using TCASEL.
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Figure 3. Performance of SGA for different values of ji,,., (x-axis) using TCASE2,
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Figure 4. Performance of SGA for different values of p,,.. (x-axis) using TCASE3,
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I
TCASE2 —&— solution Quality
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Figure 5. Performance of SGA for different values of E, _V, (expressed in terms

of 8,,, on the x-axis) using TCASE?2,
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Figure 6. Performance of SGA for different values of E, _V, (expressed in terms

of 0., on the x-axis) using TCASE3,
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3. Sensitivity to A

The effects of misestimating A on SGA solution quality are shown in figures 7 and 8 for
TCASE2 and TCASE3 respectively. Assuming the correct A = 7, SGA is run using

wrong estimates for 4. But, its solutions are evaluated using the correct A.

For both data sets, TCASE2 and TCASE3, SGA shows insensitivity to the choice of A.
Values for A were underestimated in 85% error or less, and overestimated in 328% error

or less. Nevertheless, a 328% overestimation error, A = 30, in TCASE3 only causes a
drop of about 5% in solution quality. This makes SGA highly insdnsitive to the choice of

A

TCASE2

70% 1
60% 1
50%
40%

M 30y
20% |
10% |
0%

1Wrong Values

—Q—Corre(:t Value

1 4 5 6 8 9 10 20 3¢

Figure 7. Quality of the solutions found by SGA using wrong values for A {x-axis)
compared to the solution found using correct A ( test case TCASE2),

TCASE3 5

A Wrong Values

—&— Correct Value

1 4 5 6 8 9 10 30

Figure 8, Quality of the solutions found by SGA using wreng values for A (x-axis)
compared to the solution found using correct A ( test case TCASE3),
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4. Sensitivity to 7

We assume a correct 7 value to be 100. The SGA is run using wrong values. But, its
solutions are still evaluated using the correct value.

SGA experimental results for TCASE2 and TCASE3 are shown in figures 9 and 10
respectively. In both cases, we are using overestimation errors less than 200% and
underestimation errors less than 90%. SGA is found to be totally insensitive in TCASE2,
while TCASE3 favors overestimation. At the extreme, with an underestimation error =
90%, SGA shows a less than 10% decrease in solution quality. Thus, SGA solutions are
not highly affected by the choice of 7.

TCASE2

70%
60% |
50% |
40% |

M 304
20% 1
10% -

0% |

Z Wrong Values

—@— Correct Vaiue

10 50 70 90 110 130 150 300

Figure 9. Quality of the solutions found by SGA using wrong values for T (x-axis)
compared to the solution found using correct ¢ ( test case TCASE2).

TCASE3

70%
60% 1
50% 1
40% 1

Tl 30% +
20%
10%

0%

= Wrong Values

—&@—Correct Value

10 50 70 90 110 130 150 300

Figure 10. Quality of the solutions found by SGA using wrong values for © (x-axis)
compared to the solution found using correct t ( test case TCASE3),
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S. Sensitivity to ©

SGA uses wrong estimates for O in its execution. However its solutions are evaluated
using the correct value for &, which we assume to be 325.

Figures 11 and 12 show the sensitivity of SGA to O for TCASE2 and TCASE3
respectively. In TCASE2, O underestimation errors which are greater than 85% and
overestimation errors which are less than 320% show that the SGA is totally insensitive to
the choice of 0. Moreover, a 200% overestimation error yields only to a drop of less than
5% in solution quality. TCASE3 favors values for & which are near the assumed correct
value, i.e. between 150 and 450. This makes an underestimation errors' upper limit of
more than 50%, and an overestimation errors' upper limit of less than 40% totally
acceptable. In short, SGA is not sensitive to the choice of O with an error range of +50%

TCASE2

70%

60% +
50%
40% AWrong Values
N 309, +Correct Value

20%
10%
0% A

50 150 200 250 450 1000

Figure 11. Quality of the solutions found by SGA using wrong vatues for < (x-axis)
compared to the solution found using correct o ( test case TCASE2),

TCASE3
0% 7
60% +
§0%
40% 3 Wrong Values
n 30% —0—Correct Value

20%
10%
0%

50 150 200 250 300 350 400 450 1000

Figure 12, Quality of the solutions found by SGA using wrong values for o (x-axis)
compared to the solution found using correct o ( test case TCASE3),

5-8



Chapter 5

Sensitivity of GAs to User Parameters

6. Sensitivity to 0

The correct value for o is assumed to be 15. SGA solutions are found using wrong

estimates for 0, but they are evaluated using the assumed correct value of 2.

The results are shown in figures 13 and 14 for TCASE2 and TCASE3 respectively. The

solution quality in both cases is not sensitive to the choice of £ although both cases show

that a misestimation of © may lead SGA to find a better quality solution (more than 10%

sometimes). Moreover, worse quality solutions are rare, and they are only worse by less

than 5%. In both cases, errors were chosen in a range less than 85% for underestimations,

and less than 230% for overestimations. In this wide range SGA is insensitive to the

TCASE2

7z Wrong Values

—0—00rrect Value

2 7 9 11 13 17 18 21 23 50

Figure 13, Quality of the solitions found by SGA using wrong values for p (x-axis)

compared to the solution found using correct p ( test case TCASE?2),

TCASE3

Wrong Value
+Corred Value

2 7 L 1 13 17 19 21 23 &0

Figure 14. Quality of the solutions found by SGA using wrong values for p (x-axis)

~
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compared to the solntion found using correct p { test case TCASE3J).
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7. Sensitivity to Population Size

The population size is one of the critical parameters in any GA. There is no general rule
that determines exactly the population size; this parameter is problem dependent, and the
user has to set it before executing the GA. A small population leads to less diversity
among individuals and possibly to fast convergence to a bad optimum. On the other hand,
a large population makes GAs inefficient in terms of time although they are more likely to
converge to good optima.

Figure 15 shows the performance of SGA executed on TCASE]1 for different population
sizes. Too small populations lead SGA to converge to unacceptable solutions in negligible
time. On the other hand, the SGA solution quality curve exhibits a straight line-like
behavior for reasonable population sizes. The SGA execution time increases steadily with
the population size, Therefore, moderate population sizes are preferable. For example, a
100 individual popﬁlation gives almost the same solution quality given by a 250 individual
population in about 4 times less execution time.

The results of SGA for different population sizes in TCASE2 are shown in figure 16. This
case shows a straight line-like solution quality curve which implies that SGA is not
sensitive in this case to the choice of the population size as far as the solution quality is
concerned. However the SGA execution time curve shows an increasing trend which
makes large population sizes computationally expensive,

The results of SGA on TCASE3 depicted in figure 17 show a fluctuating solution quality
curve. This fact makes the choice of the population size really critical. For instance, a
population of 210 individuals yields 77 = 50% in more than 1500 seconds. Whereas a 200
individual population yields 77 = 70% in only 600 seconds. The SGA execution time curve
shows sharper fluctuations than the SGA solution quality curve at high population sizes
although it shows an increasing trend as the population size increases. This implies that
SGA execution time is highly sensitive to the population size.

In short, a moderate population size that depends on |V, and &, is preferable for it
offers good solutions in an acceptable time. Therefore, we will use the population sizes 50,
100, 150 for TCASE1, TCASE2, and TCASE3 respectively.
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TCASE1 —E8— Solution Quality
—@—Execution Time
;g:/o P . 500
% 1 400
50% 1
40% T T 300
N 2ne taxec
30% ¢+ - 200
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10% 1 100
0% & + + 0
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Figure 15. Performance of SGA for different populatien sizes (x-axis) using TCASEL1.
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Figure 16. Performance of SGA for different population sizes (x-axis) using TCASE2.
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50%
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Figure 17. Performance of SGA for different population sizes (x-axis) using TCASE3.
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8. Sensitivity to Convergence Threshold

SGA converges when there are no efficiency improvements for a number of generations,
which we call here the convergence threshold, and refer to as C7 for short.

Figures 18,19 and 20 show that the SGA solution quality is not affected by the choice of
C7T. However, they also show that the SGA execution time increases steadily and
sometimes rapidly as C7 increases. In general, choosing C7 to be too small, i.e. less than
10 generations, may drive the SGA to premature convergence. On the contrary, a too
large C'T guarantees a good solution quality, but it makes SGA computationally expensive.
In short, 7 must be large enough to avoid convergence to local optima and small
enough to save time. In our implementation, we use C7=15 generations.

TCASE1 —— Solution Quality
—&— Execution Time

om e T 180
B—o = 1 160
1 140
1 120
1 100
180

70% 1

60% 1 &=

50% t

40% 1
n 30% +

20% 1 & &0 _ gg

1% 1 {20

Oa/n s + + + + + M + + + 1 " 1 0
10 15 20 26 30 35 40 45 50 60 70 80 8¢ 100

tfexec

Figure 18. Performance of SGA for different values of C7' ( given in generations
on the x-axis) using TCASE1.,

TCASE2 '——-ﬁ— Solution Quality

—@—Execution Time
EE S 7000

60% 1
50% ¢
40%
T 30% 1
20% T
10% ¢ 1000

0% + + + + + + + D
10 20 50 80 100 120 200

Figure 19, Performance of SGA for different values of CT ( given in generations on
the x-axis) using TCASE2,

5-12



Chapter 5 Sensitivity of GAs to User Parameters

TCASE3 —f&— Solution Quality
—@— Execution Time
0%t ) |' 6000
el T 5000
o - 4000

0%y 3000 ¢
i exec
M 30% |
20% | 1 2000
10% 1000
0% + + + " ' + : 0
10 20 5 80 100 120 150 180 200

Figure 20. Performance of SGA for different values of CT ( given in generations
on the x-axis) using TCASE3.

9. Sensitivity to Migration Policy

The migration scheme, number of migrants, and nature of migrants are the three factors
that identify the migration policy of a DGA. In each of the subsequent sections, we study
the sensitivity of DGA to each of these three factors. The number of migrants is expressed
as a percentage of the deme size, and it is denoted by M. In the implementation of each
DGA version, we use |Vy! demes and populations of 96 and 128 individuals for test cases
TCASE2 and TCASE3 respectively. This means that the DGA's have 8 demes each of 12
individuals in TCASE2, and 16 demes each of 8 individuals in TCASE3. In most of the
subsequent discussion, we incorporate the solution of SGA for comparison purposes using
the same parameters as in the DGAs.

9.1. Migration Scheme

Figures 21 and 22 depict the solution quality of various DGA versions for TCASE2 and
TCASE3 respectively. For all versions we use M = 30% except for ZDGA where M is
always equal to 0. These two figures exhibit high DGA solution quality insensitivity to the
migration scheme,

Execution time results, which are depicted in figures 23 and 24 for TCASE2 and TCASE3
respectively, show also that the DGA execution time is insensitive to the migration

scheme.
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_ TCASE2
70% 1
60%
. 50%
40%
30%
20% -
10% 1 _
0% 1 ] ; :
ZDGA 2wDGA1 SBDGA1 1wDGA1b twDGA1a
Figure 21, Comparing the solution quality of versions of DGA and SGA using TCASE2,
»
TCASE3
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50%
40%
n 30% 1
20% A
10% -
- 0% -
ZDGA 2wDGA1 SBDGA1 1wDGA1b TwDGA1a
Figure 22, Comparing the solution quality of versions of DGA and SGA using TCASES.
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ZDGA 2wDGA1 SBDGA1 1wDGA1b  1wDGAla
Figure 23. Comparing the execution time of versions of DGA and SGA using TCASE2.
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TCASE3
350 4 < L4 4 ©
300 -
. 250 1
200 {
fexec
150 1
100
50
0 2 Lo E: . & ol
ZDGA 2wDGA1  SBDGA1  1wDGA1b  1wDGAla
Figure 24. Comparing the execution time of versions of DGA and SGA using TCASE3,
. 9.2. Number of Migramts
Values of M are chosen in the range 0% to 100%, except for ZDGA, and 2wDGA. For
2wDGA, M > 50% is meaningless, and any DGA with M = 0% resolves to ZDGA.
9.2.1. IwD(GALb and wlX(GAla.
The solution qualities of these two versions are shown in figures 25 and 26 for TCASE2
S and TCASE3 respectively. Their insensitivity to M can be directly inferred from these
figures.
No general rule can be inferred from the execution time curves shown in figures 27 and
28. However, the execution time of these DGA's for any value of M is always less than
that of SGA. '
TCASE?2 2 1wDGA1b
EmEEE 1wDGA1a
70% T —@—SGA
'Y 60% 4 - " :
50% +
40% |
M 30y
20% |
10% |
0% -+ :
0% 10% 20% 30% 35% 46% 50% 60% 70% 80% 85% 95% 100%
Figure 25, Solution quality of 1wDGA1b and 1wDGAla for different vaines of M
(x-axis) compared with SGA (test case TCASE2),
Y
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TCASE3 1WDGA1b
B 1wDGATa
70% —&—SGA
0%
50%
40%
" 30%
20%
10%
0%
0% 16% 25% 35% 50% 65% 75% 85% 100%

Figure 26. Solution quality of IwDGAIDb and 1wDGAla for different valnes of M
(x-axis) compared with SGA (test case TCASE3).

1wDGAtTa
TCASE2
B 1wDGA1b
—¢—SGA
1400 § o—& ® &
&—¢—0—6—9% $——0—9
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0% 10% 20% 30% 36% 45% 50% 60% 70% 80% 95% 100%

Figure 27. Execution time of 1lwDGA1b and 1wDGAla for different values of M
{x-axis) compared with SGA (test case TCASE2).
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300
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200 -
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100 -
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Figure 28. Execution time of 1wDGAIb and 1wDGAla for different values of M
(x-axis) compared with SGA (test case TCASE3). '
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922 2wDGAL

i

The solution quality of 2wDGA]1 is insensitive to M. Results are shown in figures 29 and
30 for TCASE2 and TCASES3 respectively.

2wDGAL 15 also not highly sensitive to M in terms of its execution time. Refer to figures

31 and 32.

70%
60%
50%
40%

M 309,
20%
10%
0%

0%

10%

TCASE2

2wDGA1
—@—SGA

20% 30% 35% 45% 50%

Figure 29, Solution quality of 2wDGA1 for different values of M ;(x-axis) compared
with SGA (test case TCASEZ),

70%
60%
50%
40%

M 304
20%
10%

0%

TCASE3

0% 16% 26% 5% 50%

Figure 30, Solution quality of 2wDGAL1 for different values of

M (x-axis) compared with SGA (test case TCASE3).
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TCASE2
1400 1
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texec
600
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200 ;
0 e ‘ 3
0%  10%  20%  30%  35%  45%  50%
Figure 31. Execution time of 2wDGAL1 for different values of M (x-axis) compared
with SGA (test case TCASE2).
.
TCASE3
350
300 ;
250 1 f
200 5 3
texec
150 1 & —@—SGA
100 4 f
50
. 0
0%  15%  25% 368%  50%
Figure 32, Execution time of 2wDGAI for different values of
M (x-axis) compared with SGA (test case TCASE3).
b 9.2.3. SBDGAI
SBDGALI is insensitive to M in terms of solution quality as well as execution time. The
experimental results are depicted in figures 33 to 36.
In short, DGA is insensitive to the number of migrants, M.
»
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TCASE3

Wre—80¢—0—0—0—0—0—0—9
300
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200
texec
150
100 -

50 4

0% 15% 28% 35% 50% 68% 75% B85%

100%

Figure 36, Execution time of SBDGAI for different values of M (x-axis) compared
with SGA (test case TCASE3).

9.3. Nature of Migrants

We introduced 1wDGA2a, 1wDGA2b, 2wDGA2, and SBDGAZ to be able to test the
sensitivity of DGA's to the nature of the migrants. In these algorithms, we do not choose
the migrants as the best M% individuals. Instead, we just choose random M% individuals
with replacement, which is worse than doing it without replacement. Consequently,
victims are also chosen in the same random manner. Having shown the insensitivity of
DGA's to M, we also choose the number of migrants randomly in each migration phase.
Extending this random strategy, we also select the migration direction randomly in
IwDGA2a, 1wDGAZb and 2wDGA2. In this manner, we will be studying the sensitivity
of DGA's not only to the nature of the migrants, but also to other contributors such as the
migration direction and random generator seeds.

Figures 37 and 38 show the solution quality results of these randomly based migration
DGA's compared to ZDGA. The graphs imply that selecting any migrants in any manner
along any direction does not lead to any changes in the DGA solution quality.

On the other hand, the execution time curves ( figures 39 and 40 ) show that random-
based migrations are most of the time slower than their ancestors.
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9.4. Summary

In the previous three sections, we experimentally showed that the DGAs are insensitive to
the choice of a migration policy. Nevertheless, we showed that DGAs do not require the
existence of such a policy for the used test cases. We note that these results can not be
generalized. The hybridized nature of these algorithms is one of the reasons behind this
insensitivity. Moreover, we chose a moderate |Vl in each test case. Had |V, been
greater, the deme size becomes smaller and the deme individuals turn to be of less
diversity the fact that necessitates the existence of a migration policy. Therefore, we will
use 2wDGA] as our DGA representative. This algorithm is expected to have minimal
communication overhead had it been implemented on a multicomputer ( except if it is
compared with ZDGA ).

TCASE2

70% 1

60% +

50% { |

40% [ZrrEl DGA's
N 304 —@—ZDGA

20%

0%
0% 4 <!
1wDGAZa TwDGA2bh 2wDGAZ SBDGA2

Figure 37. n for versions of DGA using TCASE2.

TCASE3

70%
60% 1
50% |
40% |
M 304 |
20% |
10% 1
0% 4

A DGA's

—&@—7ZDGA

1wDGA2b 2wDGA2 SBDGA2

Figure 38, n for versions of DGA using TCASES.
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1wbDGA2a 1wDGAZb 2wDGAZ2 SBDGA2
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Figure 39, 1,,.. for versions of DGA using TCASE2,
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300
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200 +
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100 ¢

50 1

1wDGA2b

TCASE3

2wDGA2

—@—7DGA

SBDGAZ

Figure 40, ¢, for versions of DGA using TCASE3.

10. Sensitivity to Drift Phase Length

The performance of IwDGA1b, 2wDGA1, and SBDGA is depicted in figures 41 to 46 for
different drift lengths measured in generations. Drift length values are chosen in the range
of 1 individual to deme size individuals in test cases TCASE2 and TCASE3.

17 curves for each of these versions exhibit high insensitivity to the drift length. while 7.,
curves are affected irregularly the fact that does not lead us to any general conclusion.
Therefore, we will use henceforth the drift length value to be (deme size) / 3.
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Figure 41. Performance of 1wDGAID for different drift lengths { given in
generations on the x-axis) using TCASE2,
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Figure 42, Performance of iwDGA1b for different drift lengths ( given in
generations on the x-axis) using TCASE3.
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Figure 43, Performance of 2wDGAI for different drift fengths { given in
generations on the x-axis) nsing TCASE2,
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Figure 44, Performance of 2wDGA1 for different drift lengths ( given in

generations on the x-axis) using TCASE3,
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Figure 45, Performance of SBDGALI for different drift lengths ( given in

generations on the x-axis) using TCASE2,
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Figure 46. Performance of SBDGAL1 for different drift lengths ( given in generations

on the x-axis) using TCASE3.
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11. Summary and Conclusions

In this chapter, we studied the sensitivity of SGA and DGA versions to the parameters
whose values involve user's choice. These parameters are summarized in table 1
accompanied with a short definition for each. The test cases employed in this study are
presented in table 2. Sensitivity is studied in terms of 77, the solution quality, and 7., the

execution time. The results are summarized in table 3.

Parameter GA Range

7 Lovee Adopted Value
Fuser SGA 1.2, 0.8} I NR 0.5
Es Vs SGA [20%, 100%] 1 NR 50%
A SGA [-85%, 328%] I - 7
T SGA [-90%, 200%)] I . 100
o SGA + 50% I - 325
£ SGA [-85%, 230%] I - 15
Population size SGA - 1 8 30,100,150
CT SGA > 13 1 5 15
Migration Policy DGA - i 1 Two way migration
{(Migration Scheme) (2wDGAL)
Migration Policy DGA - I NR 30%
(Number of Migrants}
Migration Policy DGA - I 1 Best Individuals
(Nature of Migrants )
Drift phase length DGA [1, demesize] I NR demesize/3

Table 3, Summary of GA sensitivity results. I : Insensitive, S : Sensitive. NR : No general Rule. (For
% ps o, and T the range shows under estimation errors (preceded by a - ) and over estimation errors.

GA solution quality is rarely affected by user misestimation of a parameter. SGA is highly
insensitive to the objective function related parameters (4, .., Ep_Vp, A). Moreover, the
user misestimation of the machine dependent parameters (7, O, ©) does not affect SGA

solution quality. However, parameters such as population size and convergence should be
experimentally chosen to yield good solutions in reasonable time. DGA is insensitive to the
choice of the migration policy (migration scheme, number of migrants, and nature of
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migrants). although we showed also that DGA does not even require the existence of such
a policy at all, we believe that this conclusion can not be generalized. Moreover, the drift
length choice does not affect DGA solution quality.

The GA execution time results did not lead us, most of the time, to a general conclusion
or rule. With most of the parameters, GA execution time is irregularly affected. While with
others, such as the population size and convergence threshold, GA execution time

increases as the values of these parameters increase.

The overall assessment is that GA’s solution quality 1s not substantially sensitive to the
user interventton. However, its execution time may be affected. This fact necessitates the
choice of some parameters experimentally.
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Sensitivity of SAs to User Parameters

SSA and SPSA i)resented in chapter 4 aim at minimizing the execution time of
ALGORITHM on a multicomputer, AJCOMP. These SAs depend on several parameters
that need to be set by the user. These parameters are restated in table 1 with short

definitions.

The sensitivity of SA to user intervention is studied experimentally in this chapter
emphasizing the effect of misestimating these parameters on SA performance. The same
test cases used in chapter 5 are used in this chapter. The characteristics and shapes of
these test cases can be referred to in table 2 and figure 1 both in chapter 5. The SA
performance is studied in terms of two measures. The first is solution quality, 77, and
presented in equation 9 of chapter 2. The second is SA’s execution time, fe.., measured in
seconds. As it was the case in chapter 5, TCASE2 is contracted once, and TCASE3 is
contracted twice [Mansour 1992]. The experiments are conducted on an AViiON 5000
UNIX machine.

Parameter Description
Jluser Relative importance of communication to computation.
Ey Ve Average ratio of boundary edges to boundary vertices.
A Computation operations per edge per iteration in ALGORITHA.
T MCOMP communication time per unit distance / ;.
o MCOMP message startup time / 1, ..
1% MCOMP time to communicate one word / ty, .
Convergence Threshold Number of passes with no improvement in 7,

Soary Frequency at which boundary information is exchanged.

Jov Frequency at which Sv(p) is updated.

Table 1. SA parameters whose values involve user's choice.
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1. Sensitivity to ti,,,,

The value of ffuser is set by the user such that . We show experimentally that SSA is not

highly sensitive to the user misestimtation of Lfuser .

The sensitivity of SSA to fduser is depicted in figures 1 to 3 for the three test cases. In
TCASE]1, 7 is totally insensitive to the choice of fduse-. 17 in TCASE2 shows a difference

between the highest and lowest points which is less than 10%. However, TCASE3 shows
sharp fluctuations in 77 curve, but the difference between the highest and lowest points is
about 12%. Thus, SSA solution quality is not highly sensitive to the choice of fuser .,

lexee curves for each of the three test cases are totally irregular leading to no general
conclusions. A choice Lhuser= 0.5 is acceptable for all test cases.

2. Sensitivity to E; V3

£y Vb is expressed in terms of Qavg, and its values are chosen between 10% and 100%

of @ . 1 and t,.. for these values of Es_ Vs are shown in figures 4 and 5 for TCASE2

avg’

and TCASE3 respectively.

The solution quality is always acceptable for s Vs between 20% and 90% of 6, in

TCASE2. However, it exhibits large fluctuations in TCASE3 (20% for £» Vb = 10%
and 50% of @ ). Excluding extreme points, F» }+ in the remaining range ( 20% to

avg

80% of Qavg) show a maximum drop (increase) of 10% in 7).

fexec CUrves lead to no conclusions. In one word, SSA is not highly sensitive to the choice
of E» Vs which we choose to be 50% of 0, .
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Figure 1. Performance of SSA for different values of ., (x-axis) using TCASE]L.
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Figure 2. Performance of SSA for different values of p,,,, (x-axis) using TCASE2.
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Figure 3. Performance of SSA for different values of j,, (x-axis) using TCASE3,
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Figure 4. Performance of SSA for different values of E, V), (expressed in terms of
0.y, on the x-axis) using TCASE2.
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Figure 5. Performance of SSA for different values of E,_V,; (expressed in terms of
Oavg 0n the x-axis) using TCASES,
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3. Sensitivity to A

We assume a correct 4 value to be 7. SSA is run using wrong values. But, its solutions
are still evaluated using the correct value, 7. These wrong values are overestimated in at
most 328%, and underestimated in at most 85% errors.

The experimental results for TCASE2 and TCASE3 are shown in figures ¢ and 7
respectively. In both figures, the misestimation has no effect on A. For example,
misestimations in TCASE2 lead to a drop of at most 2%, namely when the
underestimation error is 85%. While in TCASE3, an overestimation of 328% drive 77 to

decrease at most 5%. Thus, SSA is highly insensitive to the user misestimation of A.

TCASE2

Wrong Values

—& — Correct Value

1 4 6 8 10 20 30

Figure 6. Quality of the selutions found by SSA using wrong values for A (x-axis)
compared to the solution found using correct A (test case TCASE2),

TCASE3

60%
50% 1|
40% -

1) 30% 1
20%
10%
0%

A Wrong Values

—&@— Correct Value

1 4 6 g 10 20 30

Figure 7. Quality of the solutions found by SSA using wrong values for A (x-axis)
compared to the solution found using correct X (test case TCASE3).
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4, Sensitivity to 7

The effects of misestimating 7 are shown in figures 8 and 9 for TCASE2 and TCASE3
respectively. The correct value for 7 is assumed to be 100. SSA solutions are found using
- wrong estimates for 7 ; however, they are evaluated using the assumed correct value. In
both test cases, we use at most 200% and 90% for overestimation and underestimation

errors respectively.

In both cases, SSA is insensitive to the mischoice of 7. TCASE2 shows that 7 values less
than 100, the assumed correct value, lead 77 to drop at most 2%. Whereas values greater
than the correct value, give exactly the same solution generated by the correct value.
TCASE3 shows that the choice of 7 has no effect at all on 77. The only exception is when

»
7 =10 (underestimation error = 90%) where the solution quality is found to be better by
less then 2%. In one word, SSA is completely insensitive to the choice of 7.
TCASEZ2
60% ¢
50%
40%
1 30% EZ 7 Wrong Values
—&—Correct Value
20% 1
L 10% 1
ooy, A, E E
10 50 70 90 110 130 300
Figure 8. Quality of the solutions found by SSA using wrong values for © (x-axis)
compared to the solution found using correct © (test case TCASE2),
TCASE3
o 60% -
50% 1
40%
30% e Wrong Values
n ’ —@— Correct Value
20% -
10%
0%
10
Figure 9. Quality of the solutions found by SSA using wrong values for © (x-axis)
P compared to the solution found using correct © (test case TCASE3J).
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5. Sensitivity to ©

The correct value of & is assumed to be 325. SSA solutions are found using wrong
estimates for @, but they are evaluated using the assumed correct value, 325.

Figures 10 and 11 show the sensitivity of SSA to & for test cases TCASE2 and TCASE3
respectively. SSA in TCASE2 is totally insensitive to the misestimation of . For all
under and overestimated values, 77 is always found to be exactly equal to the solution
found using the assumed correct value. TCASE3 shows that SSA solution quality is
totally insensitive to the choice of ¢ in the range [150,1000]. Moreover, an
underestimation error of 85% only yields 77 to decrease by about 5%. Therefore, SSA is
highly insensitive to the choice of T

TCASE2

60%
50% 1
40% 1
n 30% 1
20% 1
10%
0%

2 Wrong Values

—&— Correct Vaiue

250 400 450

Figure 10. Quality of the solutions found by SSA using wrong values for & (x-axis)
compared to the solution found using correct o (test case TCASE2).

TCASE3

60%
50%
40%

T 30%
20%
10%
0%

B

AWrong Values

—@&— Correct Value

50 150 200 250 400 450 1000

Figure 11. Quality of the solutions found by SSA using wrong values for T (x-axis)
compared to the solution found vsing correct © (test case TCASE3).
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6. Sensitivity to O

SSA uses wrong estimates for p n its execution. However, its solutions are evaluated
using the correct value for 0O, assumed to be 15. Errors are chosen in a range less than

85% for underestimations, and less than 230% for overestimations.

Experimental results are shown in figures 12 and 13 for test cases TCASE2 and TCASE3
respectively. TCASEZ favors underestimations upon which 77 increases by less than 5%.
Sometimes overestimations lead 77 to drop less than 2%. TCASE3 also shows the
insengsitivity of SSA to the choice of . Decreases in 77 are rare and minimal. For
instance, at © =19, 77 shows the maximum drop which is about 5%. Therefore, SSA is
not affected by the choice of p.

TCASE2

60% ¢
50% -
40% A

n 30% 4
20% A
10% A
0% A

P Wrong Values

—&@— Correct Values

2 7 g M1 13 47 19 21 23 50

Figure 12. Quality of the selutions found by SSA using wrong values for p (x-axis)
compared to the solution found using correct p (test case TCASE2},

TCASES3
60% +
50% A
40% 1

z4 Wrong Values
n 30% 1
Correct Values
20% 1
10% 1
0% -

2 7 9 M 13 17 19 21 23 50

Figure 13. Quality of the solutions found by SSA using wrong values for p (x-axis)
compared to the solution found using correct p (test case TCASE3).
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7. Sensitivity to Convergence Threshold
SSA converges when there is no improvement in solution quality for a threshold of
annealing passes. This convergence threshold is referred to in this section as C7.
a
As CT increases, SSA becomes slower while offering no improvement in solution quality.
This can be directly inferred from figures 14 to 16. TCASE1 shows that a small C'T (=5)
drives us to sacrifice a 15% drop or more in 77. For CT = 10, 77 curves are straight lines,
while ... curves are positively sloped. Thus, SSA solution quality is insensttive to the
choice of (7T as far as CT = 20, and fexec increases as (U7 increases. We will use (7= 20
henceforth, a reasonable choice which yields high solution qualities in a relatively small
time. :
9
TCASE1 —&— Solution Qualityr
—&— Execution Time
70% 7 T 35
60% 1 300
50% 1 250
40% 1200
M 304 } 150 "*€°
20% 1 100
10% 1 60
0% t + ' 0
. 5 10 40 80 100
Figure 14, Performance of SSA for different values of CT' (given in passes on the
x-axis) using TCASE1L.
TCASE2 - — Solution Quality
—@—Execution Time
60% - 2000
509 | B & ' 1800
» ' 1600
40% | 1400
1y 30% - . :ﬁgg fexec
20% - 800
, 600
10% 1 400
0% . : ; ; - 200
10 20 50 80 100 200
Figure 15, Performance of SSA for different values of CT {given in passes on the
x-axis) using TCASEZ.
»
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TCASES —E#— Solution Quality| -
—&@— Execution Time
70% _ i 1200
6 00/0 aE e Tt | 1000
" 50% 1 1 800
40% 1
n 1 600 ftexec
30% ¢
20% 1 400
10% F 200
0% + + + 0
10 16 20 30 50 30 150 200
Figure 16. Performance of S5A for different values of CT (given in passes on the
x-axis) using TCASE3.
a

8. Sensitivity to fpdry

We noted in chapter 4 that fp4ry should be determined experimentally. In this section, we
let frmvs = £, = 1/2 Ngce , this denotes that the number of moves and summation for Sy(p)
are commumnicated once every two accepted perturbations. Figure 17 shows a comparison
of the solution qualities of SSA and SPSA for different values of 1//dry using TCASEZ.
This shows that SPSA solution quality is most likely to near to that of SSA at high fpdry

L (low I/fbd;y ). The solutions at low fbdry are still acceptable for 1/fbdry < 500. The
reason for this can be inferred from figure 18 which depicts the total computation time of
SPSA denoted as #comp. tcomp increases as fhdry decreases the fact that gives SPSA the
chance to converge to acceptable solutions even though fpdry is too low. for Vfpdry < 99,
ficomp is acceptable and almost stable. At very high frequencies, lmjdry < 10, SPSA
demands too many communication, Figure 19 shows the total number of times SPSA
demands communication among all processor nodes. In this figure, fedpgyy and fedsy

™ denoted the total communication demand for boundary information and Sy(pj global
summation respectively. Clearly, at low fbdry (> 70) tcdbdry becomes neghgible.
However, fedyy increases steadily. This increase 1s influenced by the increasing ..., curve
in figure 18. Recall that fsy in this section is set constant. Thus the more SPSA executes,
the more Sy(p) is globally summed. Therefore, too low fadry makes SPSA expensive
because of its high computation time. fagry should be chosen in the middle where
computation and communication times are low while solutions are of good quality. This
suggests : 1/70 < fadyy < 1/10.
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9. Sensitivity to fsp

We let, in this section, frpvs = 2 and fpgry = fsv so that fpdry makes no influence on
SPSA. The results for TCASE2 are shown in figures 20, 21, and 22. Figure 20 shows that
SPSA solutions are near or better than SSA solutions at high fsy, particularly 1/fsy < 18.
Otherwise, the solution quality shows a decreasing trend for low fsy. fcomp is trregular;
however it shows an increasing trend as fsy decreases. Refer to figure 21 for an
illustration. The communication demand 1s shown in figure 22. Note that rcdbdry = fedey
so we will refer only to fcdl,. ted,, is very high at mgh for ( 1/ f5y < 5 ) the fact that drives
SPSA to be expensive. Therefore, a chotce of 5 < 1/fsy < 18 is recommended.

Gﬂﬂ/o-.
P Ry N

40% -
n 30% +

20% T

10% ¥

0% e
B kM T ;@ M~ I T
- e ™ ™

550
450
350
250
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130
160
140
123
121
110

90

70

50

30

Figure 17. A comparison of the solution qualities of SSA and SPSA for different values of
1fbdry (x-axis) using TCASE2,

600 1
500 1
400 1
texec 300 1
200 1

100 +

0

18
16
13
10
7
4
1

160
130
121
100
70
40

Figure 18, SPSA Total computation time, #1.,,,,,, versus llﬁ,dry (x-axis) using TCASE2.
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6§00 -
400 -
300 1
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tcdsv

Figure 19, SPSA total communication demands for communicating boundary information

and globally summing Sv(p} versus 1/fpdry (x-axis) using TCASEZ.
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Figure 20. A comparison of the solution gualities of SSA and SPSA for different values of

1/f¢yp (x-axis) using TCASE2,
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Figure 21. SPSA Total computation time, .., versus 1/fg, (X-axis) using TCASEZ,
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Figure 22, SPSA total commmunication demand for global summation Sv(p) versus 1/
(x-axis) using TCASE2,

10. Summary and Conclusions

We studied in this chapter the sensitivity of SAs to the parameters that require user
intervention. A summary of these parameters is given in table 1 restating a short definition
of each. We employed in the experimental work 3 test cases of different characteristics.
these test cases are presented in table 2 of chapter 5. A summary of the experimental
results is given in table 2.

Parameter SA Range n Lovec Adopted Value
fuser SSA [0.1,0.9] 1 NR 0.5
Ey Ve SSA [20%, 100%] I NR 50%
2 SSA | [-85%. 328%] T . 7
T S55A [-90%, 200%] I - 100
o SSA [-85%,,230%) I - 325
0 SSA [-85%, 230%)] i - 15
CT SSA =20 1 S 20
Jodry SPSA {1/70,1/10] S S 8
Jsv SPSA [1/18,1/5] S S 8

Table 2. Summary of SA sensitivity results. I ; Insensitive. S : Sensitive. NR : No general Rule. (For
Ay ps o, and © the range shows under estimation errors (preceded by a - ) and over estimation errors.
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SSA is highly insensitive to the objective function parameters, i.e, &, .. £p Vp, and A.
It is also highly insensitive in terms of its solution quality to the machine dependent
parameters , 7, &, and ©. The convergence threshold does affect SA solution quality as
well as its execution time. It must be determined experimentally. The correction
frequencies of SPSA are preferred to be high enough to guarantee good solution quality
and low enough to prevent the algorithm from being computationally expensive due to
high communication demand.

As it was the case with GAs, execution time results do not lead, most of the time to
general conclusions. This is because the execution time is irregularly affected except for
the convergence threshold and the correction frequencies where it is affected regularly.

Therefore, SA is insensitive to user infervention to set certain parameters. The solution
quality is not substantially affected, but this is not the case with execution time.
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Chapter 7

Fault Tolerant Mapping

A mapping algorithm is said to be fault tolerant if it is capable of mapping DATA4 mto an
incomplete multicomputer, MCOMP. In this case, MCOMP has at least one faulty
processor. Faulty processors are not able to perform computations; however, routing can
still be performed through them. This assumption is suitable for modern multicomputers
which implement wormhole routing. Recall that wormhole routing is accomplished via
special hardware attached to processors and not by the processors themselves {Hwang
1993].

This chapter demonstrates the fault tolerance capability of the physical optimization
algorithms : GAs and SAs. 2wDGA1 will be used, and will be referred to simply as DGA.
We also use the SAs: SSA and SPSA.

1. Motivation

Most of the proposed heuristics in the data mapping literature are bisection-based
methods. Clearly, these algorithms are not fault tolerant [Berger and Bokhri 1987,
Chrischoides et al 1991; Ercal 1988; Fox 1988; Karmer and Muhlenbein 1989). For
example, RCB assumes that the underlying topology has N processors where & is always a
power of 2 [Chrisochoides et al. 1994].. Had one, say, of these processors fail, the
resulting topology is incomplete and & is not a power of two any more. Consequently,
These heuristics are not able to find a mapping to an incomplete architecture.

On the other hand, physical optimization algorithms, in particular'GAs and SAs, are fault
tolerant, and we will experimentally support this belief in the subsequent sections.
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2. Implementation Issues

Given a set of faulty processors in MCOMP, denoted as }, we make two modifications to
DGA in order to become fault tolerant. DGA must not generate in its initial population an
allele value which is in F; i.e. CHROMOSOME[v] ¢ V, Vv e F.. Also, the mutation
genetic operator must not mutate (change) an allele value such that the new value is in V.

Similarly, SSA and SPSA are made capable of fault tolerance after two modifications.
The initial mapping configuration must not contain a vertex mapped to a processor in V;
(in other words, MAP[v] ¢ V; Vv e V., ). Moreover, perturbations can not remap a
vertex to a processor in V.

These modifications are minor, and with them, DGA, SSA, and SPSA become fault
tolerant as we shall see below.

3. Experimental Results

In the following experimental work, we use the same test cases summarized in table 2 of
chapter 5. The set of faulty processors, Vr, is chosen every time arbitrarily. | V| =1, 2,
and 3 for TCASE1 (|V,, = 4). For TCASE2 ({V,| =8), | Vy|=1, 3, 5, and 7. Finally, | V| =
1, 5, 7, and 10 for TCASE3 (|}, = 16). Note that when | V; | = 0, the topology is
complete; complete topology cases are incorporated for comparison purposes.

3.4. GA

The results of DGA are depicted in figures 1 to 3. DGA is completely fault tolerant even
when MCOMP has only one functioning processor, i.e. | ¥y| =3 and 7 in TCASE! and
TCASE2 respectively. DGA was able to map the whole computation graph, without being
partitioned, into one processor in MCOMP with neghgible time. Under these conditions,
'the' optimal solution has been found with 100% solution quality. More detailed results are
given in Table 1 which shows the number of local vertices and edges, communication cost,
and cross edges for each functioning processor. The results in Table 1 show how DGA
still balances the combined workloads of computation (represented by the number of
edges) and communication (represented by communication cost).
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Figure 1, Performance of DGA when mapping to incomplete topologies in TCASE1
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Figure 3. Performance of DGA when mapping to incomplete topologies in TCASE3
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Test Case : TCASEL. .

Faulty procs. gl foree | Processor | Vertices | Edges | Comm. Cost | Cross Edges
1 100 348 1190 18
{0} 69% 1 43 2 o8 354 1130 14
3 103 364 1030 16
0 107 374 695 18
{2} 74% | 45 1 79 297 1285 31
3 115 395 605 13
{1,2,3} 100% { 7 0 300 1066 0 0
Test Case : TCASE2,
Faulty procs. M oo | Processor | Vertices | Edges | Comm, Cost | Cross Edges
0 108 1246 2720 246
2 125 1413 1910 183
£1,5,7} T2% | 493 3 92 1082 3255 248
4 97 1145 3380 273
6 123 1386 2495 196
I 191 2168 1865 194
£0,3,4,6,7} 86% | 264 2 191 2157 1930 157
3 163 1947 2340 291
Test Case : TCASE3. _
Faulty procs. n fewee | Processor | Vertices | Edges | Comm, Cost | Cross Edges
0 127 684 2055 62
4 111 640 2300 64
3 123 681 1250 39
6 103 574 1495 44
7 133 703 1280 41
£1,2.3,13,14} | 65% | 266 8 101 564 2760 82
9 107 619 2555 67
10 115 635 1585 57
11 128 712 895 34
12 116 601 2010 53
15 102 563 2885 71
1 135 748 1600 60
2 137 736 2335 82
5 140 773 2255 59
6 137 754 2245 70
£0,3,4,7, 70% | 283 3 150 844 1280 44
11,12,15} 9 150 793 1220 33
10 137 758 2125 38
13 137 785 2230 65
14 143 785 2155 61

Table 1. Detailed results of DGA when mapping to incomplete topologies,
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3.2 54

Fault tolerance capability of SSA is demonstrated in figures 4 to 6. It can be inferred that
SSA is also completely fault tolerant even when |] = 3 and 7 in TCASE1T and TCASE2
respectively. These are the cases where A/COMP has only one functioning processor. The
mapping to a single processor was obviously very fast. Detailed results are shown in table
2 involving the number of local edges and vertices mapped to each processor, as well as

the cross edges and communication costs of each processor.

SPSA is also fault tolerant. This can be inferred from figures 7 and 8 and the detailed

results 1n table 3.

n
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Figure 4. Performance of SSA when mapping to incomplete topologies in TCASE1
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Figure 5, Performance of SSA when mapping to incomplete topologies in TCASE2

(x-axis shows | F;|).
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Figure 6. Performance of SSA when mapping to incomplete topologies in TCASE3
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Test Case : TCASEL.

Faulty procs. n t.ree | Processor Vertices Edges | Comm. Cost | Cross Edges
1 106 372 545 10
{0} 76% | 327 2 108 383 530 7
3 87 311 1105 17
{ 112 393 575 15
{2 74% | 289 1 83 303 1225 33
3 104 370 635 13
£1,2,3}% 100% | 100 0 300 1066 0 0
Test Case : TCASE2,
Faulty procs. gl fowec | Processor | Vertices | Edges | Comm, Cost | Cross Edges
] 100 1071 2245 173
2 108 1246 3540 336
{1,5.7} 70% | 1608 3 121 1363 1160 163
4 99 1193 2695 287
6 117 1399 2725 283
1 167 2011 244}5 319
10,3.,4,6,7} 83% | 1701 2 177 1994 1855 160
5 201 2267 1815 165
Test Case : TCASE3,
Faulty procs. n t.ec | Processor | Vertices | Fdges | Comm, Cost | Cross Edges
0 107 603 2500 77
4 119 635 1935 89
5 132 739 1345 59
6 119 640 1720 44
7 120 670 1935 84
{1,2,3,13,14} | 66% | 301 3 92 521 2660 117
9 114 614 1855 56
10 128 704 1825 60
11 126 669 2055 95
12 99 564 1880 54
15 110 617 1960 73
1 135 753 1780 il
2 128 709 1150 39
5 154 837 605 23
6 144 756 1060 26
£0,3,4.7, 73% | 652 g 134 750 2020 82
11,12,15% 9 139 793 1845 73
10 131 734 2025 94
13 157 849 665 27
14 144 795 1165 39

Table 2. Detailed results of SSA when mapping to incomplete topologies.
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Test Case : TCASEL,

Faulty procs. M fuee | Processor | Vertices | Edges | Comm. Cost | Cross Edges
1 120 427 755 27
{0} 65% 61 2 95 332 695 22
3 86 307 1420 49
0 96 341 1535 49
{21 59% | 61 1 100 357 1737 77
3 105 368 1475 42
1,23} 100% | 18 0 300 0 0
Test Case : TCASE2.
Faulty procs. 1 towe | Processor | Vertices | Edges | Comm. Cost | Cross Edges
0 125 1399 2705 233
4 103 1220 3765 436
{1,2.3} 65% { 1419 5 79 946 3520 332
6 94 114 3385 272
7 144 1593 2305 169
1 216 2403 3500 541
{0,3,46,7} 72% | 2626 2 177 1987 1215 159
5 152 1882 1865 382

Table 3. Detailed results of SPSA when mapping to incomplete topologies.

4, Summary and Conclusions

In this chapter, we demonstrated experimentally the ability of 2ZwDGALI, SSA, and SPSA
to map to faulty or incomplete architectures. We have shown that only slight modifications
are needed to make these algorithms fault tolerant.




Chapter 8

Mapping to Different Topologies

Different computation models and algorithmic characteristic and the variety of
multicomputer topelogies and architectures make the task of automating the mapping
process very difficult. The existence of mapping algorithms that are unbiased towards
certain architectures and topologies is very important because it accomplishes a big step
towards mapping automation. Through out this work, we were assuming that the
underlying multicomputer (MCOMP) topology is a cube. However, existing
multicomupters have various topologies such as arrays, rings, trees, and meshes [Hwang
1993: Bertsekas and Tistsiklis 1989; Saghi et al. 1993]. In this chapter, we will drop this
assumption to demonstrate the ability of GAs and SAs to map to different multicomputer
topologies. We will show experimentally that these algorithms are not biased towards a
particular topology. The work is motivated by the fact that most proposed heuristics in the
mapping context are biased towards particular multicomputer topologies especially cubes.
For example, recursive spectral bisection and recursive coordinate bisection can only map
to cubes, where the number of processors is a power of two, and possibly to 2 meshes.

In the following sections, We will provide a summary of famous topologies revising the
function H{p,q) presented in equation 6 of chapter 2 for each topology. Then,
experimental results are shown. The algorithms used are 2wDGAI1 (DGA for short), SSA,
and SPSA

1. Major Topologies

The major topologies summarized in this section are depicted in figure 1. We characterize
them by the number of nodes, number of edges, diameter, and bisection width. We let
|Vl = N. The diameter gives the longest possible distance ( in edges ) between two nodes
in the topology. The bisection width constitutes the number of cross edges resulting after
partitioning the topology into two subgraphs.
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()
()
(©
F
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(d)

Figure 1. Multicemputer Topologies (a) linear array (b) binary tree (c) ring {(d) hypercube
(e) 2-D mesh (f) complete graph (g) star graph.

(e}
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The linear array is the simplest topology. It consists of & processor nodes, nodes for
short, connected by N-7 links. The node degree is 2 except for terminal nodes where the
degree is 1. The diameter of the linear array is N-/ and its bisection width is 1. The
distance between any two nodes in a linear array topology is given by :

Harr'ay (P,Q) - ip'q | '

A bidirectional ring consists of N nodes connected by N links. The node degree and the
bisection width are both equal to 2. The diameters is |V / 2] and the distance between
two arbitrary nodes is given by

HBring (P,Q) :Mm{fp“‘?l; N - m-ql} '

A fully connected (or complete) topology is formed out by connecting each node to every
other node via a direct link. Thus, the node degree is & - 7 and its diameter is 1, the
shortest possible diameter. For N nodes, the fully connected topology requires N (N - 1) /
2 links. Finally, Hza (p,q) is always = 1.

A balanced binary tree topology requires N - [ links to connect the N nodes. The node
degree is at most 3 and at least 1, and the bisection width is 1. The diameter of the
topology equals 2 ( [ fog» N1-1 ). The distance between any two nodes in the binary tree
is computed using Floyd's algorithm [Brassard and Brately 1988]. Therefore,

Hrree (p:g) — Floyd@,Q)

Fat trees are variations on conventional trees in which the tree becomes thicker as we go
up towards the root. In other words, the channel width becomes larger at the root to
alleviate the traffic to the root problem in ordinary trees [Hwang 1992; Hillis and Lewis
1993].

For a dxd mesh ( 2D-mesh ) consisting of N nodes, d —/N , the diameter =2 (\/ﬁ - 1),
the number of links = 2 - ZW , and the bisection width is \/ﬁ . Finally, we assume in

2D-meshes that nodes p and ¢ have the coordinates (x,,y,) and (x,,),) respectively then,

HJD-me.rh (p,CI) = ] xp'qu + |YP‘yq ‘ -
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3D-meshes (dxdxd mesh) have a diameter of 3( YN - 1), a number of links of 3 -
33/N , with a bisection width of ¥N . Also assurning the coordinates of p are (x,,1,2,)
and of g are (x,),2,) then,

H.?Dwmash (P,C]) :‘xp-qu + !yP_yf1'| + iZP_z‘}i"

The mesh properties discussed above assume equal number of processors on all mesh
dimensions. these properties can be easily generalized to cope with d/xd2(xd3) meshes
where df # d2 (# d3). Experimentally, we will make use of such meshes. For example, we
will use 2x4, 2x8, and 2x2x4 meshes.

A k-cube consists of N = 2* nodes connected by 2N links. the diameter is %, the node
degree is £, and the bisection width is 2k [Desrochers 1988;Hwang 1993; Fox et al. 1988;
Bertsekas and Tsitsiklis 1989]. The distance between nodes p and g in cubes has been
presented earlier in chapter 2. Recall that

Heowe (p,q) = Hamming distance (p,q).

A k-star topology [Misic and Jovanovic 1994; Day and Tripathi 1994] consists of N = &/
nodes labeled with N permutations of & symbols. There is a link between two nodes in a
star if their numbers ( which are permutations ) differ only n the first position and in one
other position. The node degree is ( & - 7 }/, and the diameter is |.372¢% - 1 )] Finally,

Hao (p.g) = star_routing(p,q) .
star_routing(p,q) is illustrated in appendix A, ,
The properties of these commonly used topologies is summarized in Table 1.

Topology |Vl |Ed Node Degree | Bisection Width Diameter
Linear Array N N-1 of most 2 ] N-1
Ring N N 2 2 IN/2S
Binary Tree N N-1 af most 3 ! 2(¢ /fogz N/-1)
2D-Mesh N IN - 2 N~ af most 4 N 2N )
3D-Mesh N 3N - N7 at most & N 3N D)
k-Cube N=2* IN k 2k k
k-Star N=Fk! (k-1)/ {3201
Fully Connected N N(N-1)/2 N-1 1

Table 1. Summary of the properties of famous multicomputer topologies.
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2. Experimental Results

We introduce two additional test cases which constitute variations of the test cases
summarized in table 2 of chapter 5. They are TCASE2a and TCASE3a. TCASE2a 1s the
data set of TCASE2 mapped to a multicomputer of 6 (3!) nodes, and TCASE3a is
TCASE3 mapped to a multicomputer of 24 (6!) nodes. These two test cases are
introduced to demonstrate the ability of DGA, SSA, and SPSA to map to the star graph

topology.

We note that a 2-cube and a 2x2 mesh are of equivalent topological properties. However,
a 4-node ring is topologically different from these two because of node numbering.
(Starting from node 0 and counting clockwise, a 2-cube and 2x2 mesh are numbered 0, 2,
3, and 1, where a ring is numbered 0, 1, 2, and 3).

Tt should be noted that the objective function we used, as well as all the functions exposed
in the mapping kterature, do not account for link contention, synchronization overhead,
and queuing delay. That is why we were not able to test GAs and SAs against topologies
such as the fat tree. Devising an objective function which takes into consideration the
mentioned measures is still a research issue. And, any improvement shall take place in this
area will have its direct influence on GAs and SAs so that the solutions of such algorithms
are more accurate.

2.1. GA

The ability of DGA to map to different multicomputer topologies is illustrated in figures 2
to 6. Detailed results are depicted in tables 2 to 9.

DGA shows comparable solution qualities for all chosen test cases (TCASEL, TCASEZ,
TCASE3, TCASE2a, and TCASE3a).

In TCASE1, DGA solution details for a 2-cube and a 2x2 mesh are exactly the sane, and
they are different for a ring because of the reason stated above. Solutions for array, ring,
and tree topologics are better than that of a complete topology in this case because |V, is
small.
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In TCASE2, TCASE3, TCASE2a, and TCASE3a, the complete topology shows the best
solutions in spite of the fact that this topology drives the algorithm to an unbalanced
treatment of the computation and communication aspects. This fact gives DGA the
property of general applicability. This can be inferred form the detailed results in tables 4
to 17 where DGA load distribution is excellent while maintaining minimum

communication.

The solution qualities for the array and ring topologies decrease as |V,,| increases due to
the poor properties of these architectures at high dimensions.

Solutions for the star graph are excellent and compares to those of a complete graph
topology. Finally, we note that solutions for binary tree are also excellent the fact that
leads us to conclude that DGA applies also for fat trees. Recall that the objective function
we are employing does not take into consideration link contention.

In one word, DGA shows no bias towards a particular multicomputer topology or

architecture.

2.2 84

Results for SSA are shown in figures 6 to 9. Detailed results are exhibited in tables 10 to
17.

Except for the complete topology, SSA solution are comparable for all other topologies.
The complete topology leads SSA to treat only the computation part of the objective
function after an incremental change. This can be inferred from the detailed resuits where
load distribution is excellent, but communication costs are high (refer to tables 10 to 17).

TCASE1 shows that SSA solutions for 2-cube and 2x2 mesh are the same. Results in
TCASE2 are very near to each other. However, array, linear array, binary tree, and 2x8
mesh are of inferior solutions if compared to cube, 4x4 mesh, and 2x2x4 mesh in
TCASE3.

Finally, SSA shows excellent mappings o the star graph topology. Therefore, SSA shows
no bias towards certain topologies.

SPSA results are depicted in figures 10 to 12 and tables 22 to 24,
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» TCASE1

S

]
Cube 2x2 Mesh Complete Array Ring Tree
(Topologies of 4 processor Nodes)
Figure 2. DGA mapping TCASE1 to different multicomputer topolegies (|7, = 4).
TCASE2
0,
- 63% 587 58% So%—
Cube 2x4 Mesh Complete Array Ring Tree
(Topofogies of 8 processor Nodes)
‘ K3 ® . 3 %
Figure 3. DGA mapping TCASE? to different multicomputer topologies ({V,,| = 8).
»
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» TCASE3

B2%, "
55% 54% 54% cno,  DO% 64% 8P

Cube (4x4) (2x8) Comp Array Ring Tree (2x2x
Mesh Mesh lete 4)

{Topologies of 16 processor Nodes}

Figure 4. DGA mapping TCASE3 to different multicomputer topologies (|17,,| = 16).

67% 0% 70,  68%
®

Star Compl Ring Tree - Star Compl Ring Tree

ete ete
LY (TCASEZa) {TCASE3a)
Figure 5. DGA mapping TCASE2a and TCASE3a to different multicomputer topologies
(V| = 6 and 24 respectively).

»
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. TCASE1

]
Cube 2x2 Mesh Complete Array Ring Tree
{Topologies of 4 processor Nodes}
Figure 6, SSA mapping TCASEL1 to different multicomputer topologies (|I,] = 4).
TCASE2
L
58% 56% 56%
Cube 2x4 Mesh Complete Array Ring Tree
» {Topologies of 8 processor Nodes}
Figure 7. SSA mapping TCASE2 to different multicomputer topologies (|| = 8).
»

89
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- TCASE3

£3%
6% " 5%

Cube (4x4) (2x8) Comp Array Ring Tree (2x2x
Mesh Mesh lete 4)

{Topofogies of 16 processor Nodes)

Figure 8. SSA mapping TCASES3 to different multicomputer topologies ({/.] = 16).

B6% 66% 6%
»
Star Compl Ring Tree - Star Compl Ring Tree
ate ete
(TCASE2a) (TCASE3a)
’ > . .
Figure 9. SSA mapping TCASE2a and TCASE3a to different multicomputer topologies
(|F,.] = 6 and 24 respectively).
»
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I TCASE1
5T% 7% 8%
g Cube 2x2 Mesh  Complete Array Ring
{Topologies of 4 processor Nodes}
Figure 10. SPSA mapping TCASE1 to different multicomputer topologies (|V,,| = 4).
TCASE2
)
Cube 2x4 Mesh Complete Array . Ring
{Topologies of 8 processor Nodes)
- ;
Figure 11. SPSA mapping TCASE2 to different multicomputer topologies (|| = 8}.
]
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TCASE2a

61%

§0%

Star Complete

Ring

Figure 12. SPSA mapping TCASE2a to different multicomputer topologies (|J,] =6 ).

Processor Array Cube Ring Tree Complete
p0 (75,272) (75.272) (53,205) (94,333) (75,272)
pl (58,189) (58.189) (66,228) (72,258) (58,189}
p2 (92,327) (92,327) (91,320) (68.242) (92,327}
p3 (76,278) (76,278) (89,313) (67.,233) (76,278)

Table 2, DGA solutions for TCASE1L: local worklo

ads (vertices, edg

es) for selected topologies.

processor Array Cube Ring Tree Complete
po (13,1100 (20,1220) (35,1285) (9,560) (20,1120}
pl (15.1115) (29,1780) (22,1150 (18,1090) (29,1680)
p2 (18,1190) (9,660) {10,560) (8,730) (9,560}
p3 (20,1205) (18.1190) (23,650} (17,1275 (18,1090)
Table 3. DGA solutions for TCASE1: communication {cress edges, communication costs) for selected
topologies.
Processor Array Cube 2x4 Mesh Tree Complete
po (74,854) (60,739) (72,845) (76,879 (54,655)
pl (74,803) (59,673) (56,665) (60,713) (67,799)
p2 (75,862) (68,789) (82,865) (69,801) (64,760)
p3 (62,757) (66,754) (57,693) (56,688) (81,891
pd (75,796) (86,930) (76,823) (78,846) (54,655)
p>5 (56,673) (65,782) (67,792) (84,911) (88,933)
pb (64,766) (65,778) (70,812) (53,652) (65,773)
p7 (65,761) (76,827) (65,787) {69,782) (72,806)

Table 4. DGA solutions for TCASE2: local workloads (vertices, edges) for selected topologies.
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Processor Array Cube 2xd Mesh Tree Complete

po (182,3475) (239,3585) (207,3425) (197,2980) (219,3735)
pl (145,1923) (199,4600) (211,4720) (219,3770) (205,2825)
p2 (214,3340) (193,3045) (147.2170) {183,3630) {192,3145)
p3 (223,3925) (198,3565) (227.3650) (220,4080) (1711720
p4 {170,3670) (156,2315) (141,2225) (154,2655) (211,3235)
p5 (221,4505) {204,3765) (196,2820) (164,2930) (149,2130)
po (200,4130) (212,3195) (196,3533) (218,4735) (191,3190)
7 (215,407 (151,2155) (201,3880) {(184,2705) (204,2720}

Table 5. DGA solutions for TCASE2: communication (cross edges, communication costs) for selected

topologies.

Processor Cube 4x4 Mesh 2x2xd Mesh Ring Complete

p0 (84,456} (67.376) (78.411) (78,438) {68,387)
pl (90,465) {83,450) (86,473) (67,383) (99,523)
p2 (87,488) (88,511) (68,374) {69,381) (73,403)
p3 (70,401) (84,452) (78,408) (80,445} (79,431}
P4 (76,426) (86,462) (79,442) (93,524) (81,459
p5 (86,480) (68,389) (72,399 (85,447 (83,468)
pé {67.362) (77.426) (78,452) (72,408) (82,458)
p7 (89,500) (80,442) (82,431) (78,430) (74,413
p8 (76,425) (90,484) (75,414) (68,369) (82,439
P9 (81,428) (72,401} (77,429) (81,450) (85,447)
pl0 (68,361) (81,461) (81,463) (90,500 (91,499)
pll (80,429) (77,420) {79,451) (66,377 (76,422)
pl2 (91,509 (63,325) (90,476) {93,493 {64,373)
pl3 (77,430) (87.465) (79,442) (91,485) (87,465)
pid (70,397) (85,478) (84,466) (80,490) (68,388)
pls (74,419) (78.,434) {80,445) (75,427) (74,401)

Table 6. DGA solutions for TCASE3: local workloads (vertices, edges) for selected topologies.
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Processor Cube x4 Mesh 2x2xd Mesh Ring Complete
po {28,1190) (74,2785) {17,860} {(44,1835) (57,2150}
pl (29,1175) (26,735) (39,1350) {61,1855) (17,560)
p2 {44,1295) (63,2085) {60,2580) {49,2765) (41,1180)
p3 (51,2295) (46,2450) (40,2175) (33,1920) (51,1680)
p4 (40,1975) (42,1295) (46,2050 (38.1835) {49,1665)
p3 (34,1405) (49,1325) (43,1380) (15,645) (52,1680)
po (52,2705) (70,2225) (70,2030) (62,2370) (38,1150)
p7 {44,1950) (38,1165) {45,2035) (46,2435) (43,1605)
p8 (35,1320} (50,2265) (34,1420) (57.28350) (23,620)
po (50,2490} (35,1220) (59,1770) (36,1535) (15,543)
plo (15,845) (51,1995) (47,1935) (48,1750) (41,1180}
pil (61.2070) (32,1520) (57,2125) (51,2680) (36,1575)
pl2 (47,1950) (39,2175) (36,1975) (15,1145) {53,1680)
pl3 (38,1990) (41,2405) (36,1120) (17.1175) (17,560)
pld (59,2595) (64,2300) (46,1950) (19,975) (50,2135)
pls {49,2065) (36,1320) (33,1320) {(47,2450) (51,2120)
Table 7. DGA solutions for TCASE3: communication (cross edges, communication costs) for selected
topologies.
Processor Star Complete Tree Ring
po (96,1029) (101,1153) (87,1056) (87,1042)
p!l (80,975) (100,1120) (93,1080) (84,997)
p2 {79,943) (107,1172) (95,1075) {105,1143)
p3 (83,951) (76,904) (78,902) (82,963)
p4 (91,1087} (80,944) (92,1013) (96,1065)
PS5 (116,1287) (81,979) (100,1146) (91,1062)
Table 8. DGA solutions for TCASE2a; local workloads (vertices, edges) for selected
topologies.
Processor Star Complete Tree Ring
po (169,2360) (203,2325) (240,3190) (230,3260)
pl (249,3740) (196,2235) (232,3060) (227,2485)
p2 {261,3950) (170,1735) (233,3140) (181,2945)
p3 (245,3245) (270,302(0 (238,4010) (227,3695)
p4 (229,3085) {266,2945) (155,1715) (155,1615)
ps (175,2290) (261,3080) (212,2270) (224,3170)

Table 9. DGA solutions for TCASE2a; communication {cross edges, communication costs)

for selected topologies.
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processor Array Cube Ring Tree Complete
p0 (63,229) (68,240) (77.273) (74,269 (76,274)
pl (65,226) (82,284) {69,252) (7"1,257) (77,276)
p2 (73.,262) {75,266) (78,275) (72,248) (73,255)
p3 (98,349) {(76,276) (77,266) (84,292) (75,261)

Table 10. SSA solutions for TCASE1: local workloads (vertices, edges) for selecied topologies,

processor Array Cube Ring Tree Complete
po (19,635) (22,1090) (25,1180) {17,1090) (198,3240)
pl (32,1225} (16,985) (20,1090) (23,1120) (190,3300)
P2 (34,1210) (36,1270) (19,1090) (10,545) (189,3270)
3 (21,650) (30,1195) (24,1105) (16,575) (195,3330)
Table 11. SSA solutions for TCASE1: communication (cross edges, communication costs) for selected
topologies,
Processor Array Cube 2x4d Mesh Tree Complete
PO (61,621) (83,922) (58,627) (73,85%) {66,790)
pl (73,847) (72,807) (63,736) (78,969) (70,777)
p2 (71,877} (60,715) (63,720} {76,904) {68,781)
p3 {76,926) (60,706) (70,814) (84,1014) (70,783)
péd {69,804) (72,810) (72,872) (45,51D {67,783)
p5 (71,846) (67,752) (64,779} (66,091) (68,782)
po {72,818) (76,910) {66,738) (43,492) (68,793)
p7 {52,533) (55,650) (89,986) (80,833) (67,783)

Table 12, S5A solutions for TCASE2: local workloads (vertices, edges) for selected topelogies.

Processor Array Cube 2x4 Mesh Tree Complete
po (119,1460) (174,2930) (163.2230) (284,4465) (620,7565)
pl (267,3425) (165,2740) (200,2275) (345,4005) (619.7640)
p2 (287,3205) {243,4020) {218.4720) (310,3345) (631,7715)
p3 (270,3280) (218,3495) {234,3585) (296,3385) {619,7580)
pd (304,4040) (200,2920) (246,3060) (141,2180) (608,7400)
ps (312,3415) {200,2365) (253,3555) (121,2105) (628,7520)
po {254,2635) 240.3615) (190,2890) (150,2240) (621,7670)
p7 {113,1520) (238,4810) {170,2330) (143,161 (597.,7550)

Table 13. SSA solutions for TCASE2: communication (cross edges, communication costs) for selected

topologies.
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Processor Cube 4x4d Mesh 2x2x4 Mesh Ring Complete
pi (76,434) (77.424) {75,399) (87,485) (81,431)
pl (79,453) (78.437) {71,394) (74,421) (77.432)
p2 (86,455) (73,414) (79,452) (85,476) (81,429)
p3 (93,516) (72,415) (84,482) (79,433) (81,437)
p4 (79,423) (78,411) (74,388) (94,488) (76,424)
p5 (82,459) (78,422) {67,373) (83,433) (77,437}
po (91,47%9) (82,453) (84,467) (87,479 (77,429)
p7 (81,447) (75,416) (84,472) {72,403) (82,450
p8 (72,405) (83,457) (81,448) (86:,498) (80,437
po (80,441} (81.436) (83,471) (80.458) (80,446)
plo (80,434) (74.415) (70,391) {64,349) (82,444)
pll {(68,3835) (80,453) (89,488) {86,480) (81,444)
pl2 (63,339) (89,469) (87,480) (78,423) (76,434)
pl3 {30,452) (85,455) (77.429) (69,356) {79,436)
pld {70,365) (84,468) (68,343) (73,406) (78,431)
pls (86,489) (77.431) (93,499 (69,388) (78,435)

‘Table 14. SSA solutions for TCASE3: local workloads (vertices, edges) for selected topelogies.
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Processor Cube x4 Mesh 2x2x4 Mesh Ring Complete
po (50,1810) (36,1150) (17,560) {67,2570) (251,8850)
pl (69,2340) (39,1610) {40,1165) (83,3555) (254,8910)
p2 (17,560) (36,1725) (54,2263) (68,1900) (243,8730)
p3 (34,1220) (59,1840) (74,1875) (77,3780) (247,8805)
pd (17,560) (17,560) (16,545) {54,2975) {240,8803)
p3 (47,1895) (28,1075) (83,2360) (75,3200) (254,3910)
p6 (19,575) (39,1750) (47,2060) (99.3335) (255,8955)
p7 (35,1135) (48,1120) {(44,1180) {103,3680) (258,8985)
p3 (45,1620 (33,1650) (40,1690) (114,3005) (251,8760)
pY (37,1545) (48,1695} (59,1740} {94,2080) (264,9000)
plo (34,1120) (53,1695) (53,2220) (53,1255) (256,8955)
pll {(49,2305) (49,1630) {40,1590) (44,1180) (252,8970)
pl2 (61,2145) {17,560) (32,1600) {27,1075) (256,8985)
pl3 (62,1870) (17,575) (57,2165) (40,1150) (268,8790)
pl4 (31,1530) (38,1135) (43,2670) (62,1825) (239,8775)
pl5 (49,1650} (47,17655) {25,1060) (42,1210) (247,8880)
Table 15, SSA solutions for TCASE3: communication (cross edges, communication costs) for selected
topologies,
Processor Star Complete Tree Ring
po {86,1022) (96,1040) (93,1103) (95,1098)
pl (92,968) (87,1026) (96,1188) (80,853)
p2 (91,1046) (93,1057) (107,1262) (85,888)
p3 (93,1126) {90,1048) (106,1143) (92,1106}
pd (105,1277) (90,1043) (59,683) (104,1277)
3 (78.833) (89,1058) (84,893} (89,1050)
Table 16. SSA solutions for TCASE2a: local workloads (vertices, edges) for selected
topologies,
Processor Star Complete Tree Ring
p0 (334,3535) (770,7435) (343,4225) (288,2185)
pl {142,1025) (808,7180) (368,3000) (133,1535)
p2 (286,2170) (789,7630) (286,2170) (134,980)
p3 (306,2800) (796,7075) (153,1730) (294,2755)
p4 (281.2080) (789,7180) (157,1625) {287,2125)
p3 (133,1550) {(790,7135) (137,1565) (330,3475)

Table 17. SSA solutions for TCASE2a: communication {cross edges, communication costs)

for selected topologics.
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processor Array Cube Ring Complete
p0 (65,236) {65,235) {96,341) (74,256)
pl (72,252) GLITT (68,236) (83,296)
p2 (56,196) (75,176) (70,251} (62,222)
p3 (108,382) (110,378) {67.238) (82,292)

Table 18. SPSA

solutions for TCASET: local workloads (vertices, edges) for selected topologies.

processor Array Cube Ring Complete
po (28,1295) (21,1090 {13.,620) (106,2520)
pl (38,1240) {7,500) (24,1150) (110,2640)
p2 (26,1720) (30,1210) (21,1105 {90,3385)
p3 (10,545) {10,605) (10,545) (118,2670)

Table 19, SPSA solutions for TCASE1: communication (cross edges, communication

costs) for selected topologies.

Processor Array Cube 2xd Mesh Complete
po (55,570) (38,449 (32,390) (34,374
pl (71,813) (46,522) (84,902) (92,1080)
p2 (71,867) (85,1020) {78,936) (98,1144)
p3 (55,638) (98,1058) (69,817) (40,456)
pé (86,1021) (55,604) (65,762) (103,1150)
ps {66,794) (79,927) (66,764) (32,352)
po (87,1006) (78,944) (67,772) (48,578)
p7 {54,563) (66,748) (84,929) (98,1138)

Table 20, SPSA solutions for TCASE2: local workloads (vertices, edges) for selected
topologies.

Processor Array Cube 2xd Mesh Complete
po (112,1460) (185,4480) (166,2740) (288,5000)
pl (251,2575) (162,3150) (160,1675) (842,8535)
p2 (309,3400) (256,3105) (246,3120) (864,8915)
P3 {282,3845) (154,3210) (257,3720) (374,5630)
pé {343,3595) {230,3450) {262,4215) (836,9020)
ps (310,3310) {231,3555) {210,3465) (296,5135)
po (282,3395) (246,4155) (200,2380) (458,6125)
p7 {119,1475) (190,4540) (169,2200) (830,8720)

Table 21. SPSA solutions for TCASE2: communication (cross edges, communication costs) for
selected topologies.
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Processor Star Complete Ring
p0 (84,964) (106,1197) (110,1333)
pl (74.876) (58,699) (100,1189)
p2 (99,1147) {111,1298) (85,899)
p3 (132,1459) (101,1169) (60,627}
pd (81,992) (95,1060} (105,1224)
p3 (75,834) (74,849) {85,1000)

Table 22. SPSA solutions for TCASE2a; local workloads (vertices,

edges) for selected topologies,

Processor Star Complete Ring
p0 (274,3425) (893,8155) {319,2920)
pl {216,3050) {577,5695) {299,3410)
p2 {221,2035) (964,8455) (135,980)
p3 (177,1750) (893,7883) (115,920)
pd (300,3500) (822,7525) (280,3515)
p3 {240,3230) (711,6625) (290,2695)

Table 23. SPSA solutions for TCASE2a: communication (cross edges,
communication costs) for selected topologies.
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3. Summary and Conclusions

We presented comparative results of DGA, SSA, and SPSA to map to various
multicomputer topologies. This include linear arrays, rings, binary trees, cubes, complete
graphs, meshes, an star graph topologies. DGA is of general applicability and it shows no
bias towards particular topologies. SSA’s and SPSA’s solutions are also comparable
except for the complete topology which leads to unbalanced treatment of the computation
and communication terms of the objective function. In one word, GA and SA are of
general applicability and they do not show a bias towards particular topologies.
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Chapter 9

Conclusions

The sensitivity to parameters and general applicability of genetic algorithms and simulated
annealing for mapping data to multicomputers were analyzed. I'hree dimensions were
considered in the analysis: sensitivity to all user parameters, fault tolerance capability, and
applicability to different multicomputer topologies. Experiments were conducted for three
test cases each has its own properties.

GAs were found to be insensitive in wide ranges to the objective function parameters as
well as to the machine dependent parameters. GA parameters, such as the population size
and the convergence threshold, must be determined experimentally. This is because they
may lead GAs to be computationally expensive. DGAs are insensitive to the migration
policy which consists of the number of migrants, nature of migrants, and migration
direction. Moreover, GAs are completely fault tolerant even for high failure rates. Finally,
GAs are applicable to different multicomputer architectures such as trees, rings, and even
the star graph topology. In this sense, GAs are of general applicability.

SAs, on the other hand, were also insensitive to user parameters. Much like GAs, SAs are
insensitive to objective function parameters and to machine dependent parameters.
Parameters such as convergence threshold must be determined experimentally to yield
good solutions in acceptable time. The correction frequencies of SPSA must also be
determined experimentally. At low frequencies, solutions are excellent, but communication
time is very high. However, at high frequencies, Solutions are still acceptable but
computation time is very high. Moreover, SAs are also completely fault tolerant, and
finally they show general applicability to different topologies.

This work established an experimental support of the conjecture that GAs and SAs are
flexible and of general applicability. The existence of such algorithms is necessary to the
automation of the mapping process.
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Appendix A

Routing in Star Graph Topologies

Routing in star graphs is accomplished via applying procedure Star Routing. The
procedure incorporates two rules which form a generalization of the rules defined by [Day
and Tripathi 1994] which route to the identity permutation /234 .. n.

Procedure Star_Routing(Source Destination)

while Source # Destination do
if Source[1] = Destination[1] then
/* Rule 1 */
Exchange Source[1] with Source[i] such that Source[i} # Destination]i};
Increase the number of hops (distance);’
else
/* Rule 2 */
Exchange Source[1] with Source[i] where Destination[i] = Source[1];
Increase the number of hops (distance);’
endwhile,
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