
LEBANESE AMERICAN UNIVERSITY

SET-BASED APPROACH FOR EFFICIENT EVALUATION
AND ANALYSIS OF XACML POLICIES

By

HUSSEIN M. JEBBAOUI

A thesis
Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

School of Arts and Sciences

May 2014

iii

THESIS COPYRIGHT RELEASE FORM

LEBANESE AMERICAN UNIVERSITY NON-EXCLUSIVE DISTRIBUTION LICENSE

By signing and submitting this license, you (the author(s) or copyright owner) grants to Lebanese
American University (LAU) the non-exclusive right to reproduce, translate (as defined below),
and/or distribute your submission (including the abstract) worldwide in print and electronic
format and in any medium, including but not limited to audio or video. You agree that LAU may,
without changing the content, translate the submission to any medium or format for the purpose
of preservation. You also agree that LAU may keep more than one copy of this submission for
purposes of security, backup and preservation. You represent that the submission is your original
work, and that you have the right to grant the rights contained in this license. You also represent
that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.
If the submission contains material for which you do not hold copyright, you represent that you
have obtained the unrestricted permission of the copyright owner to grant LAU the rights
required by this license, and that such third-party owned material is clearly identified and
acknowledged within the text or content of the submission. IF THE SUBMISSION IS BASED
UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED BY AN AGENCY OR
ORGANIZATION OTHER THAN LAU, YOU REPRESENT THAT YOU HAVE FULFILLED
ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH CONTRACT
OR AGREEMENT. LAU will clearly identify your name(s) as the author(s) or owner(s) of the
submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Name: Hussein Jebbaoui

Signature:

Date: Apr. 5, 2014

iv

PLAGIARISM POLICY COMPLIANCE STATEMENT

I certify that:

• I have read and understood LAU’s Plagiarism Policy.
• I understand that failure to comply with this Policy can lead to academic and disciplinary

actions against me.
• This work is substantially my own, and to the extent that any part of this work is not my

own I have indicated that by acknowledging its sources.

Name: Hussein Jebbaoui

Signature:

Date: Apr. 5, 2014

v

Dedication

To my family

vi

ACKNOWLEDGMENTS

First of all, I would like to thank God for giving me the opportunity to complete this work
successfully. I would like to express my gratitude and appreciation to my advisor, Dr. Azzam
Mourad, for his excellent support and caring. It was a great privilege and honor to have worked
under his guidance and provision. I would also like to thank him for his friendship and
unconditional support.

I also would like to thank my committee members Dr. Samer Habre and Dr. Faisal Abu-Khzam
for their time and efforts serving on the defense committee.

Most importantly, I would like to thank my family. They have been there for me through the
years of my life, and their love, encouragement and support have made all the difference.

vii

Set-Based Approach for XACML Evaluation and Analysis

Hussein Jebbaoui

ABSTRACT

Policy-based computing is taking an increasing role in governing the systematic interaction
among distributed cloud and Web services. XACML has been known as the de facto standard
widely used by many vendors for specifying access control policies. Accordingly, the size and
complexity of XACML policies are significantly growing to cope with the evolution of web-
based applications. This growth raised many concerns related to the efficiency of real-time
decision process (i.e. policy evaluation) and the correctness of complex policies. This thesis is
addressing both concerns through the elaboration of SBA-XACML, a novel set-based scheme
that provides efficient evaluation and analysis of XACML policies. To the best of our
knowledge, we are the first addressing both problems simultaneously. Our approach constitutes
of elaborating (1) set-based language that covers all the XACML components and establish an
intermediate layer to which policies are automatically converted, (2) policy evaluation module
that provides better performance compared to the industrial standard Sun Policy Decision Point
(PDP) and its corresponding ameliorations, and (3) policy analysis module that allows to detect
flaws, conflicts and redundancies in XACML policies. Formal and practical experiments have
been conducted on real-life and synthetic XACML policies in order to demonstrate the
efficiency, relevance and scalability of our proposition. The experimental results explore that
SBA-XACML evaluation of large and small sizes policies offers better performance than the
current approaches, by a factor ranging between 2.4 and 15 times faster depending on policy
size. Moreover, they show how SBA-XACML analysis module allows detecting access flaws,
conflict and redundancy at policy and rule levels.

Keywords: Web Services Security, Set-Based Algebra, XACML, Policy Evaluation, Policy
Analysis, Real-Time Decision, Access Control

Table of contents

Chapter Page

I - Introduction . 1
1.1 Motivations and Problem Statement . 1
1.2 Objectives . 5
1.3 Contributions . 6
1.4 Thesis Organization . 7

II - Background . 9
2.1 Introduction . 9
2.2 Web Services . 10
2.3 Information Security . 11
2.4 Access Control . 13
2.5 Web Service Security . 15
2.6 XACML Description and Illustrative Example 17

2.6.1 XACML Evaluation and Authorization 17
2.6.2 XACML Policy Structure . 19
2.6.3 Illustrative Example . 21

2.7 Formal Description and Verification . 25
2.7.1 Syntax and Semantics . 25
2.7.2 Set Theory . 27
2.7.3 Formal Verification . 29

2.8 Related Work . 29
2.8.1 Policy Evaluation . 30
2.8.2 Policy Analysis . 32

2.9 Conclusion . 35

III -SBA-XACML Language and Evaluation . 36
3.1 Introduction . 36
3.2 Approach Overview and Architecture . 37
3.3 SBA-XACML Language Description . 39

3.3.1 SBA-XACML Based Policy . 40
3.3.2 SBA-XACML Request . 44
3.3.3 SBA-XACML Response . 45

3.4 Policy Evaluation Semantics . 45
3.4.1 Match Function . 46

viii

3.4.2 Rule Evaluation . 47
3.4.3 Policy Evaluation . 48
3.4.4 PolicySet Evaluation . 51

3.5 Policy Evaluation Algorithms . 55
3.5.1 Rule Evaluation Algorithm . 56
3.5.2 Policy Evaluation Algorithm . 57
3.5.3 PolicySet Evaluation Algorithm . 59

3.6 Case Study: SBA-XACML Policy Evaluation and Performance Analysis 62
3.6.1 SBA-XACML Policy Evaluation . 62
3.6.2 Experiments and Performance Analysis 66

3.7 Conclusion . 71

IV -SBA-XACML Analysis . 72
4.1 Introduction . 72
4.2 Policy Analysis Semantics . 73

4.2.1 Subset & Intersection Function . 74
4.2.2 Access Flaw Detection . 75
4.2.3 Redundancy Detection . 76
4.2.4 Conflict detection . 78

4.3 Policy Analysis Algorithms . 79
4.3.1 Rule Analysis Algorithm . 79
4.3.2 Policy Analysis Algorithm . 81
4.3.3 PolicySet Analysis Algorithm . 81

4.4 Case Study: SBA-XACML Policy Analysis 83
4.4.1 Access Flaw Detection . 85
4.4.2 Redundancy Detection . 92
4.4.3 Conflict Detection . 99

4.5 Conclusion . 107

V - Conclusion . 108

Bibliography . 111

ix

List of Figures

1 XACML Policy Structure . 3
2 Web Service Architecture . 10
3 Access Control Architecture . 14
4 XACML Data Flow Diagram . 18
5 XACML Rule and Policy Combining Algorithms 19
6 XACML Policy Language Model . 20
7 SBA-XACML Architecture . 37
8 Experimental Results on Real-World XACML Policies 68
9 Synthetic Policy Evaluation . 69
10 Real Policy Evaluation . 69
11 Policy Conversion . 70
12 Synthetic Policy Evaluation with Policy Conversion 71
13 Real Policy Evaluation with Policy Conversion 71

x

List of Tables

1 Match Function Semantics Rules . 46
2 Evaluation Semantics Rules of a Policy Rule 47
3 Evaluation Semantics Rules of a Policy (RCA=Permit-Overrides) 48
4 Evaluation Semantics Rules of a Policy (RCA=Deny-Overrides) 49
5 Evaluation Semantics Rules of a Policy (RCA=First-Applicable) 50
6 Evaluation Semantics Rules of a PolicySet (PCA=Permit-Overrides) 51
7 Evaluation Semantics Rules of a PolicySet (PCA=Deny-Overrides) 52
8 Evaluation Semantics Rules of a PolicySet (PCA=First-Applicable) 53
9 Evaluation Semantics Rules of a PolicySet (PCA=Only-one-Applicable) . . 54
10 Results of Semantics-Based Policy Evaluation 65
11 Subset Function Semantics Rules . 74
12 Intersection Function Semantics Rules . 75
13 Rules of Access Flaw Detection Semantics 76
14 Rules of Redundancy Detection Semantics 77
15 Rules of Conflict Detection Semantics . 78

xi

Listings

2.1 SOAP Request message without WS-Security 16
2.2 SOAP Request message with WS-Security 17
2.3 XACML Policy for a Bank Service Part I 22
2.4 XACML Policy for a Bank Service Part II 23
2.5 XACML Access Request . 24
2.6 XACML Access Response . 25
3.1 SBA-XACML Policy for a Bank Service 62
3.2 SBA-XACML Access Request . 64
3.3 SBA-XACML Response . 66
4.1 SBA-XACML Policy for a Bank Service 84

xii

Chapter One

Introduction

1.1 Motivations and Problem Statement

Distributed cloud and Web services are becoming very popular and constituting the primary

techniques for data exchange between distributed systems and partners. However, they are

still facing the risk of exploits due to the vast accessibility of these services over the In-

ternet [2]. Moreover, critical services are emerging such as banking and other business

transactions, which raise many security challenges. In this regard, policy-based comput-

ing is taking an increasing role in governing the systematic interaction among distributed

services. Particularly, access control is the most challenging aspect of Web service secu-

rity to determine which partner can access which service. Currently, an increasing trend

is to declare policies in a standardized specification language such as XACML, the OA-

SIS standard eXtensible Access Control Markup Language [18]. XACML has been known

as the de facto standard widely used by many vendors for specifying access control poli-

cies. It has been emerged as alternative solution to the traditional way of embedding policy

1

verification as part of the application features.

XACML is an XML-based standard for communicating and enforcing access control

policies between services and servers [18]. The XACML based policy has complex struc-

ture partitioned into three layers as illustrated in Fig. 1: The top layer contains policy sets,

the middle layer contains policies and the lower layer contains rules. Each of the three

layers has its own target, which contains a set of subjects, resources and actions. Every

policy set has a combining algorithm to make the final decision in case of a tie between its

policies, and every policy has a combining algorithm to make the final decision in case of

a tie between its rules. The PolicySet example illustrated in Fig. 1 contains one policy with

three rules. The policy P1 (line 3) has a rule combining algorithm "Permit-Overrides". P1

is applicable to requests with Resource equal to ServiceA (line 6). Rule R1 (line 9) permits

access to any request with Resource equal to ServiceA (line 14), Subject not specified and

Action not specified. Rule R2 (line 19) permits access to requests with Resource equal to

ServiceA (line 15), Subject equal to Joe (line 30) and Action not specified. Rule R3 (line

36) denies access to requests with Resource equal to ServiceA (line 42), Subject equal to

Joe (line 47) and Action not specified. Any request for ServiceA will be allowed because

rule R1 grants access to any request with Resource equal to ServiceA, while the remaining

rules are disregarded. According to the current XACML engine [18], each request is sub-

mitted to the Policy Enforcement Point (PEP) that formulates it using XACML language.

Consequently, the Policy Decision Point (PDP) checks at runtime the request with respect

to the policy in order to determine access or deny decision. The final decision is enforced

by the PEP. This whole process is referred to by policy evaluation.

2

[1]. <PolicySet PolicySetId="PS1" PolicyCombiningAlgId="permit-overrides">
[2]. <Target/>
[3]. <Policy PolicyId="P1" RuleCombiningAlgId="permit-overrides">
[4]. <Target>
[5]. <Resources>
[6]. <Resource>ServiceA</Resource>
[7]. </Resources>
[8]. </Target>
[9]. <Rule Effect="Permit" RuleId="R1">
[10]. <Target/>
[11]. <Condition>
[12]. <Apply FunctionId="function:string-equal">
[13]. <ResourceAttributeDesignator
[14]. AttributeId="resource:resource-id" DataType="string">ServiceA
[15]. </ResourceAttributeDesignator>
[16]. </Apply>
[17]. </Condition>
[18]. </Rule>
[19]. <Rule Effect="Permit" RuleId="R2">
[20]. <Target/>
[21]. <Condition>
[22]. <Apply FunctionId="function:and">
[23]. <Apply FunctionId="function:string-equal">
[24]. <ResourceAttributeDesignator
[25]. AttributeId="resource:resource-id" DataType="string">ServiceA
[26]. </ResourceAttributeDesignator>
[27]. </Apply>
[28]. <Apply FunctionId="function:string-equal">
[29]. <SubjectAttributeDesignator
[30]. AttributeId="subject:subject-id" DataType="string">Joe
[31]. </SubjectAttributeDesignator>
[32]. </Apply>
[33]. </Apply>
[34]. </Condition>
[35]. </Rule>
[36]. <Rule Effect="Deny" RuleId="R3">
[37]. <Target/>
[38]. <Condition>
[39]. <Apply FunctionId="function:and">
[40]. <Apply FunctionId="function:string-equal">
[41]. <ResourceAttributeDesignator
[42]. AttributeId="resource:resource-id" DataType="string">ServiceA
[43]. </ResourceAttributeDesignator>
[44]. </Apply>
[45]. <Apply FunctionId="function:string-equal">
[46]. <SubjectAttributeDesignator
[47]. AttributeId="subject:subject-id" DataType="string">Joe
[48]. </SubjectAttributeDesignator>
[49]. </Apply>
[50]. </Apply>
[51]. </Condition>
[52]. </Rule>
[53]. </Policy>
[54]. </PolicySet>

Fig. 1: XACML Policy Structure

With the growth of web-based applications, the size and complexity of XACML poli-

cies are significantly growing to cope with this evolution. Some real-life composed policies

may nowadays embed hundreds and even thousands of rules. This growth raised many con-

cerns related to the efficiency of real-time decision process and the correctness (i.e. flaw

and conflict free) of complex policies. This thesis targets both problems. First, as aforemen-

tioned, XACML evaluation engine is responsible of verifying all the rules of all the partici-

pating policies, in addition to resolving their corresponding combining algorithms, in order

to handle the decisions to the requests at runtime. Hence, enforcing large size XACML

policies will decrease the efficiency of policy evaluation engine, and consequently may cre-

ate performance bottleneck for the whole services. Several approaches [12,17,19,24] have

been proposed to amerliorate the performance of policy evaluation process of the original

3

XACML engine [18]. However, these propositions entail major modification on the Sun

PDP architecture [18] and assumptions in terms of continuous policy loading and cumu-

lative reception of all requests, which do not always hold in real world environment and

limit their efficiency and usefulness. More details about these limitations are presented in

Chapter Two, Section 2.8. Hence, decreasing the overhead of XACML evaluation process

still constitutes a real challenge.

Second, the complex structure of XACML makes policies candidate for insertion of

possible flaws, conflicts and redundancies between policies and rules. For instance, con-

sidering the PolicySet example in Fig. 1, both Rules R1 and R2 of policy P1 have same

Resource ServiceA and effect "Permit", with no Action specified. R1 does not limit ac-

cess to specific set of subjects, while R2 limits access to requests with Subject equal to

"Joe", hence it is safe to say that R2 is a subset of R1. The policy combining algorithm

is "Permit-Overrides". Based on the given policy specification, R1 and R2 may lead to

access flaw because the generic rule R1 will always take precedence and be evaluated be-

fore the restricted rule R2. Therefore the response will be always given by R1 that grants

access to any Subject, while R2 that limits the access to Subject "Joe" will be disregarded.

This contradicts with an access control policy objective that should enforce the more re-

stricted rule. Moreover, rules R2 and R3 may lead to conflict since they are exactly the

same but with opposite effects. In this context, the current XACML tools give major role

to security administrators for resolving some tie/conflict decisions through policies/rules

modifications and/or combining algorithms (e.g. Permit-Overrides and First-Applicable).

Although such manual remediation seems feasible for small scale policies, this is defi-

nitely problematic for large scale ones with hundreds and even thousands of policies and

4

rules. The problem grows more when several XACML policies from different parties are

integrated and composed together (e.g. in business process model and community of web

services), where contractions between combining algorithms are also risen. In this regard,

few approaches have been proposed addressing XACML policy composition and analy-

sis [5,8,10,16,25,31,32]. However, these propositions did not address the aforementioned

flaws and conflicts problems and are still missing some XACML elements such as rule

conditions and obligations.

1.2 Objectives

The main aim of this thesis is to provide an efficient solution for XACML analysis and

real-time decision evaluation to cope with the growth of web applications and service in

terms of size and complexity. The main corresponding objectives are:

• Address the XACML complexity problem by elaborating an alternative language

with standardized structure unlike XACML.

• Elaborate an efficient evaluation approach for realtime decisions on XACML policy

requests.

• Provide a formal analysis method for detecting access control flaws, conflicts and

redundancies during the creation phase of access control policies.

5

1.3 Contributions

In this thesis, we address the aforementioned complexity, performance and analysis prob-

lems by elaborating a novel and complete formalization of XACML based on sets. Formal

methods give advantages over other approaches because they provide a high level of assur-

ance, which is a key factor for the security of critical services. The formal specification of

policies and rules using sets is allowing us to efficiently perform evaluation and analysis

tasks. To the best of our knowledge, we are the first targeting both concerns simultane-

ously. The proposed SBA-XACML scheme is composed of a formal language including

an automatic converter and compiler, a policy evaluation module based on formal seman-

tics, and a policy analysis module based on formal verification semantics. All the approach

components have been implemented in one development framework that accepts XACML

policies and requests as inputs, converts them automatically to SBA-XACML constructs

when needed, performs analysis and reports the existence of flaws, and evaluates the re-

quests and policies to provide the final access decision. The provided formal and practical

experiments conducted on real-life and synthetic XACML policies explore the efficiency,

relevance and scalability of our proposition for policy evaluation and security flaws de-

tection. In this context, the main contributions of SBA-XACML and this thesis are three

folds:

• Set-Based intermediate representation of XACML constructs into readable mathe-

matical syntax that maintain the same XACML policy structure and account for all

its elements and their sub elements including rule conditions, obligations, policy re-

quest and policy response. The corresponding language and compiler offer automatic

6

and optional conversion from XACML to SBA-XACML constructs.

• Formal semantics and its implemented algorithms that take advantage of the mathe-

matical operations to provide efficient policy evaluation. Unlike current literature, the

adopted approach maintains the same architecture of the industrial standard XACML

Sun PDP [18] and respects the major properties and assumptions of real-life en-

vironments in terms of remote policy loading upon need and disjoint reception of

requests from distributed parties. The presented experimental results explore that

SBA-XACML evaluation of large and small sizes policies has better performance

than Sun PDP [18] and its corresponding ameliorations [12, 17, 19, 24].

• Formal semantics and its implemented algorithms for XACML policy analysis that

enable to detect access flaws, conflicts and redundancies at both policy and rule lev-

els.

1.4 Thesis Organization

The remaining of this thesis is organized as follows:

In Chapter Two, we present an introduction on the concepts of Web services, infor-

mation security, access control, Web services security, XACML, Formal Description and

Verification. Afterwards, we discuss some of the related works done in the area of XACML.

In Chapter Three, we describe the proposed SBA-XACML approach and language.

First, we present the approach schema and architecture, the language syntax and semantics.

7

Then, we state the algorithms for real-time decision evaluation. Finally, we share a study

to show the effectiveness and results of our proposal with respect to other approaches.

In Chapter Four, we present the proposed SBA-XACML Analysis. First, we describe

the policy analysis semantics. Then, we state the policy analysis algorithms. Finally, a

complete case study is illustrated to demonstrate the usefulness our proposal.

In Chapter Five, we summarize the accomplishment, contributions, future work and list

of publications gained from this thesis.

8

Chapter Two

Background

2.1 Introduction

This chapter is devoted to several concepts used in our research. First, we present an

overview about Web services, architecture and components. Second, we discuss the impor-

tance of Information security and its objectives. Third, we briefly explain the process of

access control and its architecture. Fourth, we provide an overview of Web service security

and a demonstration example. Fifth, we present the XACML description and an illustrative

example. Sixth, we discuss the formal description and verification. Finally, we present an

overview of the literature related to our work and their limitations.

9

are discovered via the UDDI registry and described via the WSDL file. The WSDL file

provides requesters with a set of operations and their definitions. Below is a list of the

main processes:

• WSDL (Web Service Description Language) is a file which contains the description

of the web service operations it supports. This file is developed and published after

the development of the Web service.

• UDDI (Universal Description, Discovery and Integration) is a registry of all Web

service’s meta-data including a pointer to the WSDL description of a service.

• Web service module is the component for providing services.

• Service consumer is the service requester.

The communications between service consumers and Web services are done through

SOAP (Simple Object Access Protocol) messages. The messaging structure is in XML

(eXtensible Markup Language). Web services are very flexible and easy to develop and

deploy. A Web service can call another Web service. They enable access to information

regardless of methods and devices.

2.3 Information Security

Information security is the process of securing information from unauthorized access. In-

formation security is concerned with data being transmitted from one host to another as

well as the physical data which resides on a server or a drive. It is the prevention of any

disclosure of information regardless of the state. In this thesis we are just concerned with

11

online information. There are several different methods which may cause theft, damage

and disclosure to information. Some of the methods are: weak access control policies,

malicious attacks, insiders, virus, etc.

Security measures must be taking to protect assets against attacks regardless of their

kind and state. Systems must be built with security measures from the start. Security is

not something that can be added to an existing system, it must be designed as a part of

the system from the start. Systems should be built to resist attacks but at minimum, a

system should be able to recover in case of a successful attack. Any system with good

information security if its data is never lost, damaged or disclosed. A successful attack can

damage reputation, lost revenue and future businesses. Risk analysis should be considered

to evaluate the existing system security and to correct any weaknesses and to apply the

proper security measures to prevent future attacks. It is very important that businesses

perform risk analysis to have a clear idea of where they stand with respect to security. Risk

analysis provides a report of where the weaknesses are and the type of threats they may

face. In addition, risk analysis gives an estimate of how much assets worth to be able to

spend on securing them.

Information security is the protection of information related assets. The main objec-

tives of information security are: confidentiality, integrity, availability, authenticity and

accountability.

• Confidentiality: prevent unauthorised disclosure of information.

• Integrity: prevent unauthorised modification of information.

• Availability: prevent unauthorised withholding of information or resources.

12

• Authenticity: verify the identity of an entity or source of information.

• Accountability: prove that an entity was involved in some actions

Information security is a wide topic but our focus in this thesis are the security issues

which are related to Web services. Web services are fairly new technologies but many

companies and agencies have been rushing in with many projects already been deployed

and used in production. Web services are simple to build and deploy for data sharing

and advertising. However, the security concerns are still the leading issue and the top

investment areas for government agencies and companies.

2.4 Access Control

The heavy reliance on Internet communications for data exchange, access control is a

mandatory measure to ensure that unauthorized users do not gain access and maintain

minimum access to authorized users to perform their duties. Access control is a critical

security measure because it involves both computer scientists and engineers to provide

proper security design and implementation. Access is not just about requiring a user name

and password when users request access to resources, they are much more complex. There

are multiple methods and technologies that can be implemented to support and administer

access for different areas. Access control mechanisms are always changing to be able to

resist against a variety of attacks.

An access control system monitors access requests and implements policies which es-

tablish who can, or cannot, execute which actions on which resources [28]. Its process is

13

towards biometrics. Biometric access control provides a higher level of securing access.

The term ’biometrics’ refers to a measurable characteristic that is unique to an individual

such as fingerprints, facial structure, iris, etc.

2.5 Web Service Security

Web service security has been in the research spotlight and its main concern is providing

better security for Web services with the objectives of confidentiality and integrity. Many

related standards have been proposed and used and many others in theory. The aim of these

is to provide web services with more robust security mechanisms. Protections required

for Web services at different layers as distributed applications because they face the same

security risks such as SQL Injection, Cross-Site scripting, broken authentication, Missing

Function Level Access Control, etc [13]. However, they are more vulnerable because they

expose more sensitive data between partners.

Web services use SOAP messages for data exchange between two end points but SOAP

does not provide a mechanism for ensuring data integrity or confidentiality either at rest or

during transit. Its communication security remains a critical task to be tackled and a costly

investment due to the complexity of securing Web services because their descriptions of

how they work is made public over the Internet. One of the leading security standards

for providing security at the message level for Web services is WS-Security (Web Service

Security).

WS-Security [1] is an extension to SOAP. It has been introduced and published by

OASIS in order to apply security in Web Services through using existing standards and

15

specifications. WS-Security is not a stand alone solution for securing data exchange but

it is a method that allows security standards to be used such as encryptions, digital signa-

tures, etc. It supports whatever security related data to be defined in the header of the SOAP

message. If XML Signature is used, the SOAP header can contain the Signature method,

the key and the resulting signature value. Likewise, the header can contain the encryp-

tion information if any elements within the message are encrypted. WS-Security does not

specify the format of the signature or encryption but instead, it specifies how one would

embed the security information laid out by other specifications within a SOAP message.

WS-Security is primarily a specification for an XML-based security meta-data container.

The following is an example of SOAP to demonstrate the difference between secure and

insecure messages.

Listing 2.1 shows a demonstration of SOAP messages without security applied [30].

Both username and password fields are inserted in plain text. In this case, anyone with a

sniffer is easily able to capture the user and password without too much efforts.

Listing 2.1: SOAP Request message without WS-Security

<wsse:UsernameToken>
<wsse:Username>scott</wsse:Username>
<wsse:Password Type="wsse:PasswordText">password</wsse:Password>

</wsse:UsernameToken>

Listing 2.2 shows a demonstration of SOAP messages with WS-Security applied [30].

It shows a SOAP message with WS-Security applied to the password. The username

is sent in plain text but the password is encrypted. The password digest is a SHA1 algo-

rithm hash based on the concatenation of the password, message creation time and a nonce.

SHA1 algorithm is one of the many available encryption algorithms for security.

16

Listing 2.2: SOAP Request message with WS-Security

<wsse:UsernameToken>
<wsse:Username>scott</wsse:Username>
<wsse:Password Type="wsse:PasswordDigest">KE6QugOpkPyT3Eo0SEgT30W4Keg=</wsse:Password>
<wsse:Nonce>5uW4ABku/m6/S5rnE+L7vg==</wsse:Nonce>
<wsu:Created xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">2002-08-19T00

:44:02Z
</wsu:Created>

</wsse:UsernameToken>

2.6 XACML Description and Illustrative Example

XACML (eXtensible Access Control Markup Language) [18] is the OASIS standard lan-

guage for access control policies. XACML is the default access control for web services.

Today, it is the most popular and well known access control mechanism. XACML is XML-

based standard for communicating access control policies between services and provides

XML schema for access control policies, requests and responses [9]. XACML is not just a

standard for describing access control policy in XML but also is a complete application for

evaluating any given request against a policy. We will discuss the XACML evaluation/au-

thorization and the structure of access control policy. The XACML data flow is depicted in

Fig. 4.

2.6.1 XACML Evaluation and Authorization

The XACML Evaluation and Authorization contain five processes: Policy Enforcement

Point (PEP), Policy Administration Point (PAP), Policy Decision Point (PDP), Policy In-

formation Point (PIP), and a context handler [18].

PAP: PAP is the repository for the policies and provides the policies to the PDP. PDP:

The system entity which handles the evaluation and returns the authorization decision to

PEP. PEP: The system entity that performs access control, by making decision requests and

17

authorization decision, the PEP handles them.

2.6.2 XACML Policy Structure

XACML access policy is ordered into 3 levels: <PolicySet>, <Policy> and <Rule>. Every

level in the policy has a target. The target element is used to determine whether the <Poli-

cySet>, <Policy> or <Rule> is applicable to the request. If the target does not match then

NotApplicable is returned. The <PolicySet> element contains a set of <Policy> elements

and a Policy Combining Algorithm (PCA) used for combining the results of the evaluation

of individual policies. The <Policy> element contains a set of <Rule> elements and a Rule

Combining Algorithm (RCA) used for combining the results of the evaluation of individual

rules. The Combining Algorithm works the same way at the policy and rule levels. Fig. 5

illustrates the Combining Algorithms for both Policy and rule levels.

Combining Algorithm Behavior Description

Deny-Overrides

If a single rule or policy evaluates to Deny then

regardless of the others the end result is “Deny”.

Permit-Overrides

If a single rule or policy evaluates to Permit then

regardless of the others the end result is

“Permit”.

First-Applicable

The end result is the result of the first applicable

rule or policy.

Only-one-Applicable

Applies only at the policy level. If one and only

one policy is applicable then the end result is the

evaluation result of the applicable policy. If more

than one policy is applicable then the end result

is “Indeterminate”. If no policies are applicable

then the end result is “NotApplicable”.

Fig. 5: XACML Rule and Policy Combining Algorithms

The <PolicySet> and <Policy> elements can have reference to other policies. They can

19

XACML is a well known mechanism for access control especially for Web applications

and Web services. It supports business specific customizations. It is very flexible but it is

very complex at the same time. It supports dynamic access control with policies applied at

runtime but still has its disadvantages. As of a result of its complexity, it is hard to analyze

in order to determine if any flaws exists in the based policy. Its richness in expressions

makes it harder to create standardized tools for examining for conflicts, access flaws and

redundancies. In addition, integrating multiple XACML policies is a nightmare.

2.6.3 Illustrative Example

In this section, we provide an XACML based policy, request, and response of the evaluation

process according to XACML syntax and Sun PDP engine [18]. We will adopt this example

throughout the thesis. A based policy for a Bank service is presented in listing 2.3 and

listing 2.4. The policy set contains two policies P1 and P2. P1 contains two rules R1

and R2. It has a rule combining algorithm permit − overrides. R1 permits access to

BankService/withdraw resource if the subject is Bob. R2 denies access to any resources

for any subjects. If policy P1 evaluates to permit, it has an obligation to send an email

to Customer_service@bank.com. P2 contains three rules R3, R4 and R5. It has a rule

combining algorithm permit − overrides. R3 permits access to BankService/deposit

resource for any subjects. R4 permits access to BankService/deposit resource if the

subject is Joe. R5 denies access to BankService/deposit resource if the subject is Joe.

The policy set ID and policy combining algorithm PCA are stated in line 3. Lines 4 to

51 contain the policy P1. The rule combining algorithm RCA is permit−overrides (line

21

Listing 2.3: XACML Policy for a Bank Service Part I

[1]. <!--Bank Based Policy to Deposit and Withdraw -->
[2]. <?xml version="1.0" encoding="UTF-8"?>
[3]. <PolicySet xmlns="schema:os" PolicyCombiningAlgId="policy-combining-algorithm:permit-

overrides" PolicySetId="PS1">
[4]. <Policy PolicyId="P1" RuleCombiningAlgId="rule-combining-algorithm:permit-overrides

">
[5]. <Target>
[6]. <Subjects>
[7]. <Subject>
[8]. <SubjectMatch MatchId="function:string-equal">
[9]. <AttributeValue DataType="xml:string">Jerry</AttributeValue>
[10]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType="

xml:string" />
[11]. </SubjectMatch>
[12]. <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal

">
[13]. <AttributeValue DataType="xml:string">Bob</AttributeValue>
[14]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType="

xml:string" />
[15]. </SubjectMatch>
[16]. </Subject>
[17]. </Subjects>
[18]. <Resources>
[19]. <Resource>
[20]. <ResourceMatch MatchId="function:string-equal">
[21]. <AttributeValue DataType="xml:string">BankService/withdraw</

AttributeValue>
[22]. <ResourceAttributeDesignator AttributeId="resource:resource-id" DataType

="xml:string" />
[23]. </ResourceMatch>
[24]. </Resource>
[25]. </Resources>
[26]. <Actions>
[27]. <AnyAction />
[28]. </Actions>
[29]. </Target>
[30]. <Rule Effect="Permit" RuleId="R1">
[31]. <Condition>
[32]. <Apply FunctionId="function:and">
[33]. <Apply FunctionId="function:string-equal">
[34]. <ResourceAttributeDesignator AttributeId="resource:resource-id" DataType

="xml:string">BankService/withdraw</ResourceAttributeDesignator>
[35]. </Apply>
[36]. <Apply FunctionId="function:string-equal">
[37]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType="

xml:string">Bob</SubjectAttributeDesignator>
[38]. </Apply>
[39]. </Apply>
[40]. </Condition>
[41]. </Rule>
[42]. <Rule Effect="Deny" RuleId="R2" />
[43]. <Target/>
[44]. <Obligations>
[45]. <Obligation FulfillOn="Permit" ObligationId="Withdraw">
[46]. <AttributeAssignment AttributeId="example:attribute:mailto" DataType="xml:

string">Customer_service@bank.com</AttributeAssignment>
[47]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType="xml:

string">subject:subject-id</SubjectAttributeDesignator>
[48]. <ResourceAttributeDesignator AttributeId="resource:resource-id" DataType="

xml:string">resource:resource-id</ResourceAttributeDesignator>
[49]. </Obligation>
[50]. </Obligations>
[51]. </Policy>

22

Listing 2.4: XACML Policy for a Bank Service Part II

[52]. <Policy PolicyId="P2" RuleCombiningAlgId="rule-combining-algorithm:permit-
overrides">

[53]. <Target/>
[54]. <Rule Effect="Permit" RuleId="R3">
[55]. <Condition>
[56]. <Apply FunctionId="function:string-equal">
[57]. <ResourceAttributeDesignator AttributeId="resource:resource-id" DataType

="xml:string">BankService/deposit</ResourceAttributeDesignator>
[58]. </Apply>
[59]. </Condition>
[60]. </Rule>
[61]. <Rule Effect="Permit" RuleId="R4">
[62]. <Condition>
[63]. <Apply FunctionId="function:and">
[64]. <Apply FunctionId="function:string-equal">
[65]. <ResourceAttributeDesignator AttributeId="resource:resource-id"

DataType="xml:string">BankService/deposit</ResourceAttributeDesignator>
[66]. </Apply>
[67]. <Apply FunctionId="function:string-equal">
[68]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType

="xml:string">Joe</SubjectAttributeDesignator>
[69]. </Apply>
[70]. </Apply>
[71]. </Condition>
[72]. </Rule>
[73]. <Rule Effect="Deny" RuleId="R5">
[74]. <Condition>
[75]. <Apply FunctionId="function:and">
[76]. <Apply FunctionId="function:string-equal">
[77]. <ResourceAttributeDesignator AttributeId="resource:resource-id"

DataType="xml:string">BankService/deposit</ResourceAttributeDesignator>
[78]. </Apply>
[79]. <Apply FunctionId="function:string-equal">
[80]. <SubjectAttributeDesignator AttributeId="subject:subject-id" DataType

="xml:string">Joe</SubjectAttributeDesignator>
[81]. </Apply>
[82]. </Apply>
[83]. </Condition>
[84]. </Rule>
[85]. </Policy>
[86]. </PolicySet>

4). Lines 5 to 29 is the policy target. Subjects equal to Jerry and Bob specified in lines

9 and 13. Resource BankService/withdraw is defined in line 21. Actions are defined to

be any in line 27. Policy P1 contains two rules R1 and R2. Rule R1 starts in line 30 and

ends in line 41. R1 has a permit rule effect. The rule conditions are the subject = Bob

and resource = BankService/withdraw in lines 34 and 37 respectively. R2 defined in

line 42. Deny anything to anyone. Policy P1 has an obligation to perform if the policy

evaluates to permit. Obligations are defined in lines 44 to 50. The policy P2 starts in lines

51 to 85. It contains three rules R3,R4 and R5. The RCA of P2 is permit − overrides

23

and is listed in line 52. No Target is defined for P2. R3 starts in line 54 and ends in line 60

with rule effect equal permit. R3 has one condition, which is the resource id must match

BankService/deposit. Rule R4 starts in line 61 and ends in line 72 with rule effect equal

permit. R4 conditions are that the resource id which must match BankService/deposit

and subject id Joe. Rule R5 starts in line 73 and ends in line 84 with rule effect equal

Deny. R5 conditions states that the resource id must match BankService/deposit and

subject id Joe.

Listing 2.5 contains the XACML request. The request is calling for a resource

BankService/deposit with a subject Bob and action execute. Lines 4,9 and 14 contain

subject, resource and action respectively.

Listing 2.5: XACML Access Request

[1]. <Request xmlns="context:schema:os" xmlns:xsi="XMLSchema-instance">
[2]. <Subject SubjectCategory="subject-category:access-subject">
[3]. <Attribute AttributeId="subject:subject-id" DataType="xml:string">
[4]. <AttributeValue>Bob</AttributeValue>
[5]. </Attribute>
[6]. </Subject>
[7]. <Resource>
[8]. <Attribute AttributeId="resource:resource-id" DataType="xml:string">
[9]. <AttributeValue>BankService/deposit</AttributeValue>
[10]. </Attribute>
[11]. </Resource>
[12]. <Action>
[13]. <Attribute AttributeId="action:action-id" DataType="xml:string">
[14]. <AttributeValue>execute</AttributeValue>
[15]. </Attribute>
[16]. </Action>
[17].</Request>

Listing 2.6 contains the XACML response to the request in Listing 2.5 against the based

policy in listing 2.3 and listing 2.4 . The response is the final decision for the resource

BankService/deposit with a subject Bob and action execute.

24

Listing 2.6: XACML Access Response

[1]. <Response>
[2]. <Result ResourceID="BankService/deposit">
[3]. <Decision>Permit</Decision>
[4]. <Status>
[5]. <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
[6]. </Status>
[7]. </Result>
[8]. </Response>

2.7 Formal Description and Verification

A formal description consists of strings, symbols and rules forming a language. It is called

formal because it is based on mathematical notations. The strings and symbols are grouped

together according to a set of rules which are defined specifically for the language. A

formal description language includes both language syntax and semantics. We use such

languages to express rules and perform formal verification. In this section, we describe

each of these components.

2.7.1 Syntax and Semantics

Language Syntax provides the structure of how strings and symbols are combined together

according to the certain rules without any considerations to their meanings. Formal seman-

tics constitutes of rigorous mathematical study of the meaning of languages and models

of computation [22, 26]. It allows to prove the properties of a program. The formal se-

mantics of a language is specified by a mathematical model that illustrates the possible

computations described by the language. There are many approaches to formal seman-

tics that belong to three major classes: Operational semantics, denotational semantics and

axiomatic semantics. These three classes are presented in the increasing order of abstrac-

tion with respect to the concepts of meaning underlying them. The following is a brief

25

description for each one of them:

• Operational semantics describes the execution of the language directly rather than

by translation. It somehow corresponds to interpretation, where the implementation

language of the interpreter is a mathematical formalism. The operational semantics

may define an abstract machine and give meaning to the transitions between its states.

It may also be defined via syntactic transformations on phrases of the language itself.

• Denotational semantics translates each phrase in the language to another phrase in

another language. It somehow corresponds to compilation, where the target language

is a mathematical formalism.

• Axiomatic semantics gives meaning to phrases by expressing the logical axioms that

apply to them. Axiomatic semantics does not distinguish between a phrase meaning

and the logical formulas describing it. A phrase means exactly what can be proven

about it in some logic.

Since this thesis presents an operational semantics for XACML policies evaluation and

analysis, in the sequel we elaborate more about this approach and introduce the used struc-

tural operational semantics. Operational semantics is considered as a method to give mean-

ing to programs and operations in a mathematically rigorous way. It describes how a valid

process is interpreted as sequences of computational steps, which then constitute the mean-

ing of the whole process. The final step in the terminating sequence returns the value of

the process in the case of a functional process. A process could be also nondeterministic,

in this context there may be many computation sequences and many return values.

26

Structural operational semantics is an approach proposed to give logical means in defin-

ing operational semantics [23]. It consists of defining the behavior of a process in terms of

the behavior of its parts. Hence, it provides a structural, a syntax oriented and an inductive

view on operational semantics. Computation is represented by means of deductive systems

that turn the abstract machine into a system of logical inferences. This allows to apply

formal analysis on the behavior of processes. The proofs of process properties are derived

directly from the definitions of the language constructs because the semantics descriptions

are based on deductive logic. With structural operational semantics, the behavior of a pro-

cess is defined in terms of a set of transition relations. Such specifications take the form of

inference rules. The valid transitions of a composite piece of syntax is defined into these

rules in terms of the transitions of its components. Definitions are given by inference rules,

which consist of a conclusion that follows from a set of premises, possibly under control

of some conditions. An inference rule has a general form consisting of the premises listed

above a horizontal line, the conclusion below, and the condition, if present, to the right, as

follows [26]:

premise1 premise2 ... premisen

conclusion

If n=0, i.e., the number of premises is zero, then the line containing the premises is

omitted, and we refer to the rule as an axiom.

2.7.2 Set Theory

Set theory is the study of sets. A set is a group of items known as elements [4]. When

describing a set in Mathematics, all of its elements are listed in a row separated by commas

27

and enclosed with curly braces. The name of sets are usually presented in upper case.

For example, a set S containing the elements 1,4,2,8 and 9 could be shown as follows: S

= {1,4,2,8,9}. An element e in a set S is expressed in Mathematical notation: e ∈ S. The

symbol ∈ in set notation means is a member of. Any set S is a subset of itself and expressed

as S ⊆ S. The symbol ⊆ in set notation means a subset or equal.

A set can contain no elements. This type of sets is referred to as an empty set or null

set and is denoted by the symbol ∅. An empty set is a subset of any set. A set A is a subset

of a set B if every element in A is an element in B. It can be written as A ⊆ B to designate

such relationship, but if the set B contains elements which are not in the set A then we can

say that A is a proper set of B and it is written as A ⊂ B. Two sets A and B are equal if A

⊆ B and B⊆ A. If the two sets A and B are equal, we write A = B to designate the equality

relationship.

Operations which are performed on sets include union, intersection, cartesian product,

etc. A union is a Mathematical operation for sets and it is denoted by the symbol ∪. The

union of two sets is another set whose elements include the members of each original set.

The common elements between the two sets are only counted once. For example, a set A

= {1,2,3} and a set B = {7,2,8}. A ∪ B = {1,2,3,7,8}. An intersection is a Mathematical

operation for sets and it is denoted by the symbol ∩. The intersection of two sets is another

set whose elements are the common the elements of the two original sets. If the original

two sets share no elements then the intersection of the two is the empty set. For example, a

set A = {1,2,3} and a set B = {7,2,8}. A ∩ B = {2}. A cartesian product is a Mathematical

operation and it is denoted by the symbol ×. A cartesian product of two sets returns a

product set from the two sets. That is, for sets A and B, the Cartesian product A × B is the

28

set of all ordered pairs a, b where a ∈ A and b ∈ B. For example, a set A = {1,2} and a set

B = {7,8}. A × B = {1, 7,1, 8,2, 7,2, 8}.

2.7.3 Formal Verification

The main purpose of providing a formal description is to perform formal verification on the

described entity with respect to specific properties [7]. In order words, formal verification is

a mathematical method which focuses on verifying the correctness of a system with respect

to a set of specifications or properties. This process provides an opportunity to test and cor-

rect defects in the early phases of the development cycle. It has been increasingly used in

the development of critical systems such as, traffic lights, air traffic control, banking sys-

tems, etc. They have many advantages in providing higher quality and accuracy. However,

they have few disadvantages such as difficult for unknowledgable personnel, expensive and

time consuming. There are many methods for formal verification such as Process Algebra,

Petri Nets, Temporal Logic and Finite State Machine, etc.

2.8 Related Work

Our approach is targeting both XACML policy evaluation and analysis. To the best of

our knowledge, we are the first proposing a scheme for efficient policy evaluation, which

offers simultaneously policy analysis mechanisms for flaws and conflicts detection. In

this context, we provide in this section an overview of the related work in the literature

addressing both problems independently.

29

2.8.1 Policy Evaluation

Regarding policy evaluation, several approaches have been proposed to provide efficient

evaluation process. Liu et al. [12] proposed the XEngine which is a scheme for efficient

XACML policy evaluation. It is an extension to the SUN Policy Decision Point (PDP) [18].

Their approach improves the performance of the PDP by numericalization and normaliza-

tion of the XACML Policies. It consists of 3 steps. The first one is the conversion process

of all the strings of XACML based policy and requests to numerical values. The second

one is the normalization process which is the conversion of the output from the first step to

hierarchical structure and conversion of combining algorithm to First-applicable. The third

step is creating a tree structure from the second one. Their approach provides amelioration

with respect to policy evaluation performance. However, they do not support obligations

due to the conversion of all combining algorithms to first applicable [19]. Moreover, the

major modification on the Sun PDP architecture and main assumptions of their experiments

do not always hold in real world environment, which limit the efficiency and usefulness of

their proposition. First, assuming that the policies are always loaded in the memory contra-

dicts with the core concept of XACML [18] and is problematic for large size policies with

hundreds and thousands of rules. The policies should be loaded upon request for a short

period, where the policy repository can be accessed locally or remotely for security, privacy

and memory restriction purposes. Second, our experiments with their tools show that the

main overhead reduction is achieved when all the requests (i.e. up to 100,000 requests) are

received, converted and loaded in the memory at the same time, then all of them evaluated

against the already loaded policies. Again, such assumption does not always hold since

30

requests can be received from different parties at variant time-space. In this regard, the

provided experimental results explore that our approach provides better performance than

XEngine.

Marouf et al. [17] proposed a clustering and re-ordering techniques for optimizing

XACML performance. The proposed clustering method groups policies and rules based

on target subjects. The re-ordering process is based on statistical analysis of policy and

vibrant stream of requests. This process reduces the evaluation time because applicable

policies and rules are given higher priority to be evaluated first. Although this approach

seems interesting, the assumption of access requests following a consistent distribution and

policy re-ordering does not support obligations. Moreover, they share the same limitations

as XEngine in [12] in terms of major modification to Sun PDP architecture and experiments

assumptions. The provided results show that our approach offers better performance based

on their experiments in [17].

Ngo et al. [19] proposed Multi-Data-Types Interval Decision Diagrams for XACML

Evaluation Engine. Their approach is based on data interval partition aggregation along

with new decision diagram combinations. They claim that their proposed approach does not

only improve the evaluation response time, but also provides correctness and completeness

of evaluation. Their proposed approach seems interesting, however it is only experimented

on small scale policies up to 360 rules, unlike our and other approaches [12, 17].

Pina Ros et al. [24] proposed an optimization for XACML policies evaluation based

on two trees. The first tree is a matching tree which is created for a quick finding of

applicable rules. The second tree is a combining tree which is used for evaluation of the

applicable rules. They proposed a binary search algorithm for finding the matching tree.

31

This approach supports requests with multi-valued attributes, however the matching tree

does not support policies with multi-valued attributes.

Based on the study of the current literature with respect to policy evaluation perfor-

mance, it is trivial that this domain is still and will continue to be a challenging niche for

researchers. Our approach differs from the aforementioned ones in different aspects. First,

it is maintaining the same policy structure of XACML and architecture of Sun PDP, where

policies are converted into intermediate mathematical and readable syntax. This allowed us

to benefit from the formal description for efficient policy evaluation and analysis purposes.

Second, unlike all the current approaches, our scheme is respecting the major properties

and assumptions made by Sun PDP [18] with respect to real-life environment, where poli-

cies are loaded from local or remote location upon need, and the XACML requests are

received one at a time from distributed parties. Third, our experiments in section 3.6 show

that our proposition outperforms the current approaches.

2.8.2 Policy Analysis

Moving to policy analysis, several approaches have been proposed in this regard. Kolovski

et al. [10] proposed a formalization of XACML using description logics (DL), which are

a decidable fragment of First-Order logic. They perform policy verification by using the

existing DL verifiers. Their analysis service can discover redundancies at the rule level.

A rule is redundant if its decision is always overridden by other rules higher up. This

approach may alos speed up the evaluation process by removing rules that do not affect

the final decision. However, they do not address access flaws and conflicts and do not

32

support multi-subject requests, complex attribute functions, rule Conditions and Only-One-

Applicable combining algorithm.

Fisler et al. [8] proposed a suite called Margrave. It verifies whether an access control

policy satisfies a given property and computes the semantic difference of two XACML

policies. Margrave can perform a change-impact analysis on the policy to determine the

impact of changing one or more rules on the whole policy. However, their proposal does

not address policy analysis with respect to access flaws, conflicts and redundancies, and

does not work on all types of XACML policies.

Tschantz et al. [31] present a set of properties for examining the reasonability of access

control policies under enlarged requests, policy growth, and policy decomposition. Their

approach focuses on the request and corresponding response behavior under different cir-

cumstances and policy reasoning for scalability. However, their they do not address policy

analysis with respect to access flaws, conflicts and redundancies

Mazzoleni et al. [16] proposed an authorization technique for distributed systems with

policies from different parties. Their approach is based first on finding similarities between

policies from different parties based on requests. Then, it provides an XACML extension

by which a party can provide the integration preferences. This approach focuses on policy

integration from different parties and do not address policy analysis for flaws, conflicts and

redundancy existence.

Bertino et al. [25] introduced an algebra for fine-grained integration that supports spec-

ification of a large variety of integration constraints. They introduced a notion of com-

pleteness and prove that their algebra is complete with respect to this notion. Then, they

proposed a framework that uses the algebra of fine-grained integration of policies expressed

33

in XACML. Their approach, however, does not cover rule conditions and obligations and

focuses on integration between different parties, unlike ours which focuses on analyzing

policy sets individually and after integration. Moreover, they mention that there are no

guarantees to know if the algebraic expression will hold as expected.

Wijesekera et al. [32] have proposed algebra for manipulating access control policies

at a higher level, where the operations of the algebra are abstracted from their specification

details. This algebra is motivated by discretionary and role based access control. However,

they do not address XACML and do not provide implementation for their algebra.

Bonatti et al. [5] introduced the concept of policy composition under constraints, which

aims at combining authorization specifications originating from different independent par-

ties. They proposed algebra for composing access control policies using a variable free

authorization terms which are subject, object and action. They suggest logic program-

ming for implementation. However, this approach focuses on policy composition from

distributed parties and do not target XACML.

Our approach differs from the aforementioned ones in different aspects. First, it is

providing a set-based algebra syntax and semantics that accounts for all the XACML el-

ements, including rules conditions and obligations. Second, it is allowing us to provide a

policy analysis framework for detecting different kind of flaws and conflicts in XACML

policies, which are not yet addressed by the current propositions. Third, in addition to

the analysis features, the elaborated algebra is offering us the capabilities to build efficient

policy evaluation scheme.

34

2.9 Conclusion

In this chapter, we presented an overview of Web services, Information Security, Access

Control, Web services security and XACML. We also introduced the formal verification

concept and its importance. Finally, We summarised the literature related work around

XACML and their limitations.

35

Chapter Three

SBA-XACML Language and Evaluation

3.1 Introduction

Access control is widely used in Web applications and Web services. It maintains the

control of which principle (user or process) has access to which resources in a system and

its policies are written in specification language such as XACML [18]. Today, XACML is

most used access control mechanism for Web services. However, with the growth of web-

based applications, the size and complexity of XACML policies are significantly growing

to cope with this evolution. This growth raised many concerns related to the efficiency of

real-time decision process. We proposed a set based language to simplify the complexity

and increases the responses time for real-time evaluation.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of the

approach and architecture. Section 3.3 describes the SBA-XACML language and its com-

ponents. Section 3.4 provides the formal semantics for policy evaluation. Section 3.5 de-

tails the evaluation algorithms. Section 3.6 provides the policy evaluation and performance

36

algorithms. He can also evaluate the requests and get the corresponding responses using

the module embedding the evaluation algorithms.

SBA-XACML Language & Compiler: SBA-XACML is a formal language based on

sets and composed of all the elements and constructs needed for the specification of XACML

based policy, request and response. Sections 3.3 presents the complete definition and syn-

tax of SBA-XACML elements and attributes. SBA-XACML compiler includes XACML

parser and converter to SBA-XACML. It takes XACML policy set and request as inputs,

parses their XACML elements and generates SBA-XACML constructs according to the

language syntax and structure. The compiler is implemented using PHP (PHP Hypertext

Preprocessor). It can be used independently to convert XACML to SBA-XACML, or as

embedded in our framework with the policy evaluation and analysis modules to convert

XACML to SBA-XACML at run time.

Policy Evaluation Module: This module allows to evaluate a SBA-XACML request

against a set of SBA-XACML policies. It is composed of policy-level and rule-level eval-

uation algorithms (see Section 3.5) that realize the elaborated policy evaluation semantics

presented in Section . The policy-level algorithm is responsible for evaluating the policies

and triggers the rule-level one in order to evaluate the rules in each policy. It is implemented

in PHP and accepts as inputs a SBA-XACML request and a policy set.

Policy Analysis Module: This module allows to analyse policies for detecting access

control flaws, conflicts and redundancies. It is composed of policy-level and rule-level

analysis algorithms that realize the elaborated analysis semantics both presented in Section

38

4.3. The policy-level algorithm is responsible for analysing policies and triggers the rule-

level one in order to analyze the rules in each policy. The analysis module works effectively

if scheduled as a trigger on the repository to run whenever any modification is performed

on policies. It can be scheduled to run in parallel with the evaluation module as well. It is

implemented in PHP and accepts as input a policy set.

3.3 SBA-XACML Language Description

A Set is an accumulation of distinct mathematical elements that describes the fundamen-

tal characteristics and includes the regulations of sets and other operations such as union,

intersections, complementation, equality and inclusion. It additionally provides systematic

procedures for evaluating expressions and performing calculations, involving these opera-

tions and relations. SBA-XACML is a Set-based language. In this following, we present

its constructs, operators and structure: (PS; P (R; Rq); Rs (”Permit”; ”Deny”; ”NotAp-

plicable”; ”Indeterminate”); op (⊆; ⊂; ∧; >; ∨; ∩)), where

• PS : represents a policy set (or based policy) which is composed of one or more

policies.

– P : represents a policy which is composed of one or more rules.

∗ R : represents a rule.

• Rq : represents a request.

• Rs : represents a response that contains the final decision.

39

– ”Permit”, ”Deny”, ”NotApplicable” and ”Indeterminate” are policy constants

and represent the final decision embedded in the response.

• op : represents an operator.

– ⊆ : represents a subset or equal.

– ⊂ : represents a subset.

– ∧ : represents logical operator ”and”.

– ∨ : represents logical operator ”or”.

– > : represents the precedence order between operations.

– ∩ : represents the intersection between two sets.

In sections 3.3.1, 3.3.2 and 3.3.3, we present the SBA-XACML syntax for the based

policy, request and response respectively.

3.3.1 SBA-XACML Based Policy

XACML based policy which they also refer to as a policy set PS, is ordered into 3 levels:

PolicySet, Policy, and Rule. Every element can contain a Target. PolicySet element

contains other PolicySet(s) and/or Policie(s). Policy contains Rule(s). PolicySets

and Policies have their Obligations to fulfill whenever a Response is reached to either a

Permit or Deny decision. In the sequel, we present the definitions and syntax of all the

elements.

40

3.3.1.1 Common Elements Definitions and Syntax

The following are the common elements that are used at the policy set, policy and rule

levels.

A target TR is an objective and is mapped to SBA-XACML within the context of rule,

policy and policy set according to the following syntax:

TR = {S,R,A}

(Construct 1)

where S is a set of subjects, R is a set of resources and A is a set of actions.

Obligations OBLs contain one or more obligation(s) OBL. An obligation is an action

that takes place after a decision has been reached to either Permit or Deny. It is mapped

to SBA-XACML within the context of policy and policySet according to the following

syntax:

OBLs = OBL− Set

(Construct 2)

OBL = {OBLID,FFOn, {{AttID,DT, V }}}

(Construct 3)

where OBL − Set is the the set of obligation OBL to be performed, OBLID is the

id identifying the obligation, FFOn is the Fulfill On attribute which is used as a key to

determine when the obligation must be enforced and it must be either permit or deny,

AttID is the attribute id of the obligation to be carried out, DT is the data type and V

is the value. If the policy or policy set being evaluated matches the FFOn attribute of its

obligations then the obligations are passed to be enforced otherwise obligations are ignored.

41

3.3.1.2 PolicySet (PS) Definition and Syntax

A PolicySet PS is a container of policies. PS may contain other policy sets, policies

or both. It can also be referenced by other policy sets. It is mapped to SBA-XACML

according to the following syntax:

PS ::=< ID, SP, PR, PCA, IPS,OBLs, TR >

(Construct 4)

where ID is the policy set id, SP is the set of policies that belongs to policy set PS,

PR is the precedence order of policies that belongs to PS, PCA is the policy combining

algorithm, IPS is the policies or policy set that are referenced by PS, OBLs is the set

of obligations (refer to Section 3.3.1.1 for details) and TR is the target (refer to Section

3.3.1.1 for details).

Example 1: Consider a policy set PS1 with two policies P1 and P2. PS1 has a

PCA = deny − overrides. PS1 has a target subject = Bob, resource = FileA and

action = Read. It has no reference to other policies and no obligations. The policy set

PS1 is mapped to SBA-XACML as follows:

PS ::=< PS1, {P1, P2}, {P1 > P2}, {deny − overrides}, {}, {}, {{Bob}, {FileA}, {Read}} >

3.3.1.3 Policy (P) Definition and Syntax

A policy P is a single access control policy. It is expressed through a set of rules. A policy

contains a set of rules, rule combining algorithm, target and obligations. It is mapped to

SBA-XACML according to the following syntax:

42

P ::=< ID, SR, PR,RCA,OBLs, TR >

(Construct 5)

where ID is the policy id, SR is the set of rules that belongs to policy P , PR is the

precedence order of rules that belongs to P , RCA is the rule combining algorithm, OBLs

is the set of obligations (refer to Section 3.3.1.1 for details) and TR is the target (refer to

Section 3.3.1.1 for details).

Example 2: Consider a policy P1 with two rules R1 and R2. P1 has a

RCA = permit − overrides, a target subject = Bob, resource = FileA and action =

write and without any obligations. The policy P1 is mapped to SBA-XACML as follows:

P ::=< P1, {R1, R2}, {R1 > R2}, {permit− overrides}, {}, {{Bob}, {FileA}, {write}} >

3.3.1.4 Rule (R) Definition and Syntax

A rule R is the most elementary element of a policy. A rule contains rule conditions, target

and rule effect. It is mapped to SBA-XACML according to the following syntax:

R ::=< ID,RC, TR,RE >

(Construct 6)

where ID is the rule id, RC is the set of rule conditions, TR is the target (refer to

Section 3.3.1.1 section for details), and RE is the rule effect.

A rule condition RC is a boolean function over subjects, resources, actions or functions

of attributes. It is mapped to SBA-XACML within the context of a rule according to the

following syntax:

43

RC = {Applyfunction, {parameters}}

(Construct 7)

where Applyfunction is the function used in evaluating the elements in the apply and

parameters are the input to the function being applied, each of which is an evaluatable.

Example 3: Consider a rule R1 with ruleeffect = permit. R1 has no target defined.

Its only condition is that anyone accessing File1 is allowed at any time. The rule is mapped

to SBA-XACML as follows:

R ::=< R1, {{string −

equal, {ResourceAttributeDesignator, string, F ile1}}}, {}, {}, {}}, {Permit} >

3.3.2 SBA-XACML Request

A requestRq is a call for access to some resources. It is mapped to SBA-XACML according

to the following syntax:

Rq ::=< Sr,Rr,Ar >

(Construct 8)

where Sr is the set of subjects, Rr is the set of resources and Ar is the set of actions.

Example 4: Consider a request calling for access with subject Bob, resource ServerA

and action read. The request is mapped to SBA-XACML as follows:

Rq ::=< {Bob}, {ServerA}, {Read} >

44

3.3.3 SBA-XACML Response

A response Rs is a decision to a request against a based policy. It is mapped to SBA-

XACML according to the following syntax:

Rs ::=< D,OBLs >

(Construct 9)

where D is the decision of the response and OBLs is the set of obligations to be exe-

cuted within the response (refer to Section 3.3.1.1 section for details).

Example 5: The response to the request in Example 4 is mapped to SBA-XACML as

follows:

Rs ::=< {permit}, {} >

3.4 Policy Evaluation Semantics

In this section, we present the formal semantics of a SBA-XACML policy evaluation fol-

lowing the above inference rule structure and deductive logic. Given a policy set PS and

a request Rq, the response Rs is derived by the evaluation −→
eval

of all premises combined

between each other using designated operators op as follows:

(premise1) op (premise2) op ... op (premisen)

< PS,Rq > −→
eval

Rs

The policy and rule evaluation semantics rules, which constitute the premises in the

above rule, have also similar structure and follows the deductive logic until reaching the

basic defined premise (i.e. condition). Throughout the rest of the thesis, please note the

45

difference between a semantic rule that express the evaluation at a particular level, and

a policy rule which is a construct in SBA-XACML. All the semantics rules follow the

bottom up structure, where all the common ones are presented first, then followed by the

rule level, policy level and policy set level ones. In this context, we start first by defining

the MatchFunction semantics rule since it will be used throughout all levels.

3.4.1 Match Function

In this section, we present the matching semantics rules for a request Rq with subject set

Sr, resource set Rr and action set Ar against a target TR with subject set S, resource set

R and action set A. The semantics of matching a request and a target is determined by

comparing the request subject set Sr with target subject set S, request resource set Rr with

target resource set R and request action set Ar with target action set A.

Table 1: Match Function Semantics Rules

((Sr ∩ S) 6= ∅) ∧ ((Rr ∩R) 6= ∅) ∧ ((Ar ∩A) 6= ∅)

< TR,Rq > `
match

True

(Rule 1)

((Sr ∩ S) = ∅) ∨ ((Rr ∩R) = ∅) ∨ ((Ar ∩A) = ∅)

< TR,Rq > `
match

False

(Rule 2)

Rules 1 and 2 in Table 1 describe the different matching cases for a request Rq with

a target TR. In Rule 1 a target TR matches a request Rq if the requested subject set Sr

intersects with the target subject set S, the requested resource set Rr intersects with the

target resource set R and the requested action set Ar intersects with the target action set A.

46

Table 2: Evaluation Semantics Rules of a Policy Rule

(< TR,Rq > `
match

True) ∧ (RC = True) ∧ (RE = Permit)

< R,Rq > −→
eval

Permit

(Rule 3)

(< TR,Rq > `
match

True) ∧ (RC = True) ∧ (RE = Deny)

< R,Rq > −→
eval

Deny

(Rule 4)

(< TR,Rq > `
match

False) ∨ (RC = False)

< R,Rq > −→
eval

NotApplicable

(Rule 5)

In Rule 2 a target TR does not match a request Rq if the requested subject set Sr does not

intersects with the target subject set S, the requested resource set Rr does not intersect with

the target resource set R or the requested action set Ar does not intersect with the target

action set A.

3.4.2 Rule Evaluation

In this section, we present the evaluation semantics rules for a request Rq at the rule level.

Semantics Rules 3, 4 and 5 in Table 2 describe the different evaluation cases for a policy

rule R. In semantics Rule 3, a policy rule R evaluates a request Rq to Permit if the target

matches with the request elements (see details in semantics Rule 1) and rule conditions

RC evaluate to True and rule effect RE is Permit. In semantics Rule 4, a policy rule R

evaluates a request Rq to Deny if the target matches with the request elements (see details

in semantics Rule 1) and rule conditions RC evaluate to True and rule effect RE is Deny.

47

In semantics Rule 5, a policy rule R evaluates a request Rq to NotApplicable if either the

target does not match with the request elements (see details in semantics Rule 2) or rule

conditions RC evaluate to False.

3.4.3 Policy Evaluation

In this section, we present the evaluation semantics rules for a request Rq at the policy level.

Table 3: Evaluation Semantics Rules of a Policy (RCA=Permit-Overrides)

(RCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃R ∈ SR; < R,Rq > −→
eval

Permit)

< P,Rq > −→
eval

Permit,OBLs

(Rule 6)

(RCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀R ∈ SR; < R,Rq > −→
eval

Deny)

< P,Rq > −→
eval

Deny,OBLs

(Rule 7)

(RCA = Permit−Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀R ∈ SR; < R,Rq > −→
eval

NotApplicable))

< P,Rq > −→
eval

NotApplicable

(Rule 8)

Rules 6, 7 and 8 in Table 3 describe the cases where the rule combining algorithm

(RCA) is Permit − Overrides. In Rule 6, a policy P evaluates a request Rq to Permit

with a list of obligations OBLs if the target matches with the request elements (see details in

semantics Rule 1) and there exists a rule R in the set of Rules SR that evaluates to Permit

(see details in semantics Rule 3). In Rule 7, a policy P evaluates a request Rq to Deny with

a list of obligations OBLs if the target matches with the request elements (see details in

48

Table 4: Evaluation Semantics Rules of a Policy (RCA=Deny-Overrides)

(RCA = Deny −Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃R ∈ SR; < R,Rq > −→
eval

Deny)

< P,Rq > −→
eval

Deny,OBLs

(Rule 9)

(RCA = Deny −Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀R ∈ SR; < R,Rq > −→
eval

Permit)

< P,Rq > −→
eval

Permit,OBLs

(Rule 10)

(RCA = Deny −Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀R ∈ SR; < R,Rq > −→
eval

NotApplicable))

< P,Rq > −→
eval

NotApplicable

(Rule 11)

semantics Rule 1) and all rules in the set of Rules SR that evaluates to Deny (see details in

semantics Rule 4). In Rule 8, a policy P evaluates a request Rq to NotApplicable if either

the target does not match with the request elements (see details in semantics Rule 2) or all

rules in the set of Rules SR that evaluates to NotApplicable (see details in semantics Rule

5).

Rules 9, 10, 11 in Table 4 describe the cases where the rule combining algorithm (RCA)

is Deny − Overrides. In Rule 9, a policy P evaluates a request Rq to Deny with a list of

obligations OBLs if the target matches with the request elements (see details in semantics

Rule 1) and there exists a rule R in the set of Rules SR that evaluates to Deny (see details

in semantics Rule 4). In rule 10, a policy P evaluates a request Rq to Deny with a list of

obligations OBLs if the target matches with the request elements (see details in semantics

Rule 1) and all rules in the set of Rules SR that evaluates to Permit (see details in semantics

49

Rule 3). In rule 11, a policy P evaluates a request Rq to NotApplicable if either the target

does not match with the request elements (see details in semantics Rule 2) or all rules in

the set of Rules SR that evaluates to NotApplicable (see details in semantics Rule 5).

Table 5: Evaluation Semantics Rules of a Policy (RCA=First-Applicable)

(RCA = First−Applicable) ∧

(< TR,Rq > `
match

True) ∧

(∃R1, R2 ∈ SR; ((PR = R1 > R2) ∧ (< R1, Rq > −→
eval

Permit)))

< P,Rq > −→
eval

Permit,OBLs

(Rule 12)

(RCA = First−Applicable) ∧

(< TR,Rq > `
match

True) ∧

(∃R1, R2 ∈ SR; ((PR = R1 > R2) ∧ (< R1, Rq > −→
eval

Deny)))

< P,Rq > −→
eval

Deny,OBLs

(Rule 13)

(RCA = First−Applicable) ∧

((< TR,Rq > `
match

False) ∨ (∀R ∈ SR; < R,Rq > −→
eval

NotApplicable))

< P,Rq > −→
eval

NotApplicable

(Rule 14)

Rules 12, 13 and 14 in Table 5 describe the cases where the rule combining algorithm

(RCA) is First − Applicable. In Rule 12, a policy P evaluates a request Rq to Permit

with a list of obligations OBLs if the target matches with the request elements (see details

in semantics Rule 1) and there exists two rules R1 and R2 in the set of rules SR such

that the precedence PR = R1 > R2 and R1 evaluates to Permit (see details in semantics

Rule 3). In Rule 13, a policy P evaluates a request Rq to Deny with a list of obligations

OBLs if the target matches with the request elements (see details in semantics Rule 1) and

50

there exists two rules R1 and R2 in the set of rules SR such that the precedence PR = R1

> R2 and R1 evaluates to Deny (see details in semantics Rule 4). In Rule 13, a policy P

evaluates a request Rq to NotApplicable if either the target does not match with the request

elements (see details in semantics Rule 2) or all rules in the set of Rules SR that evaluates

to NotApplicable (see details in semantics Rule 5).

3.4.4 PolicySet Evaluation

In this section, we present the evaluation rules for a request Rq at the policy set level.

Table 6: Evaluation Semantics Rules of a PolicySet (PCA=Permit-Overrides)

(PCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃P ∈ SP ; < P,Rq > −→
eval

Permit)

< PS,Rq > −→
eval

Permit,OBLs

(Rule 15)

(PCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀P ∈ SP ; < P,Rq > −→
eval

Deny)

< PS,Rq > −→
eval

Deny,OBLs

(Rule 16)

(PCA = Permit−Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀P ∈ SP ; < P,Rq > −→
eval

NotApplicable))

< PS,Rq > −→
eval

NotApplicable

(Rule 17)

Rules 15, 16 and 17 in Table 6 describe the cases where the policy combining algorithm

(PCA) is Permit − Overrides. In Rule 15, a policy set PS evaluates a request Rq to

Permit with a list of obligations OBLs if the target matches with the request elements

(see details in semantics Rule 1) and there exists a policy P in the set of policies SP that

51

evaluates to Permit (see details in semantics Rules 6, 10, 12). In Rule 16, a policyset PS

evaluates a request Rq to Deny with a list of obligations OBLs if the target matches with

the request elements (see details in semantics Rule 1) and all policies in the set of policies

SP that evaluates to Deny (see details in semantics Rules 7, 9, 13). In Rule 17, a policy

set PS evaluates a request Rq to NotApplicable if either the target does not match with the

request elements (see details in semantics Rule 2) or all policies in the set of policies SP

that evaluates to NotApplicable (see details in semantics Rules 8, 11, 14).

Table 7: Evaluation Semantics Rules of a PolicySet (PCA=Deny-Overrides)

(PCA = Deny −Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃P ∈ SP ; < P,Rq > −→
eval

Deny)

< PS,Rq > −→
eval

Deny,OBLs

(Rule 18)

(PCA = Deny −Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀P ∈ SP ; < P,Rq > −→
eval

Permit)

< PS,Rq > −→
eval

Permit,OBLs

(Rule 19)

(PCA = Deny −Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀P ∈ SP ; < P,Rq > −→
eval

NotApplicable))

< PS,Rq > −→
eval

NotApplicable

(Rule 20)

Rules 18, 19 and 20 in Table 7 describe the cases where the policy combining algorithm

(PCA) is Deny − Overrides. In Rule 18, a policy set PS evaluates a request Rq to Deny

with a list of obligations OBLs if the target matches with the request elements (see details in

semantics Rule 1) and there exists a policy P in the set of policies SP that evaluates to Deny

(see details in semantics Rules 7, 9, 13). In Rule 19, a policy set PS evaluates a request Rq

52

to Permit with a list of obligations OBLs if the target matches with the request elements

(see details in semantics Rule 1) and all policies in the set of policies SP that evaluates to

Permit (see details in semantics Rules 6, 10, 12). In Rule 20, a policy set PS evaluates a

request Rq to NotApplicable if either the target does not match with the request elements

(see details in semantics Rule 2) or all policies in the set of policies SP that evaluates to

NotApplicable (see details in semantics Rules 8, 11, 14).

Table 8: Evaluation Semantics Rules of a PolicySet (PCA=First-Applicable)

(PCA = First−Applicable) ∧

(< TR,Rq > `
match

True) ∧

(∃P1, P2 ∈ SP ; ((PR = P1 > P2) ∧ (< P1, Rq > −→
eval

Permit)))

< PS,Rq > −→
eval

Permit,OBLs

(Rule 21)

(PCA = First−Applicable) ∧

(< TR,Rq > `
match

True) ∧

(∃P1, P2 ∈ SP ; ((PR = P1 > P2) ∧ (< P1, Rq > −→
eval

Deny)))

< PS,Rq > −→
eval

Deny,OBLs

(Rule 22)

(PCA = First−Applicable) ∧

((< TR,Rq > `
match

False) ∨ (∀P ∈ SP ; < P,Rq > −→
eval

NotApplicable))

< PS,Rq > −→
eval

NotApplicable

(Rule 23)

Rules 21, 22 and 23 in Table 8 describe the cases where the policy combining algorithm

(PCA) is First−Applicable. In Rule 21, a policy set PS evaluates a request Rq to Permit

with a list of obligations OBLs if the target matches with the request elements (see details

in semantics Rule 1) and there exists a policy P1 and P2 in the set of policies SP such that

53

the precedence order PR = P1 > P2 and P1 evaluates to Permit (see details in semantics

Rules 6, 10, 12). In Rule 22, a policy set PS evaluates a request Rq to Permit with

a list of obligations OBLs if the target matches with the request elements (see details in

semantics Rule 1) and all policies in the set of policies SP that evaluates to Deny (see

details in semantics Rules 7, 9, 13). In Rule 23, a policy set PS evaluates a request Rq to

NotApplicable if either the target does not match with the request elements (see details in

semantics Rule 2) or all policies in the set of policies SP that evaluates to NotApplicable

(see details in semantics Rules 8, 11, 14).

Table 9: Evaluation Semantics Rules of a PolicySet (PCA=Only-one-Applicable)

(PCA = Only − one−Applicable) ∧

(< TR,Rq > `
match

True) ∧ (∃!P ∈ SP ; < P,Rq > −→
eval

Permit)

< PS,Rq > −→
eval

Permit,OBLs

(Rule 24)

(PCA = Only − one−Applicable) ∧

(< TR,Rq > `
match

True) ∧ (∃!P ∈ SP ; < P,Rq > −→
eval

Deny)

< PS,Rq > −→
eval

Deny,OBLs

(Rule 25)

(PCA = Only − one−Applicable) ∧

(< TR,Rq > `
match

False) ∨ (∀P ∈ SP ; < P,Rq > −→
eval

NotApplicable)

< PS,Rq > −→
eval

NotApplicable

(Rule 26)

(PCA = Only − one−Applicable) ∧

(< TR,Rq > `
match

True) ∧ ((∃P1, P2 ∈ SP ;

(< P1, Rq > −→
eval

Deny ∨ Permit) ∧ (< P2, Rq > −→
eval

Deny ∨ Permit)))

< PS,Rq > −→
eval

Indeterminate

(Rule 27)

54

Rules 24, 25, 26 and 27 in Table 9 describe the cases where the policy combining

algorithm (PCA) is Only − one − Applicable. In Rule 24, a policy set PS evaluates a

request Rq to Permit with a list of obligations OBLs if the target matches with the request

elements (see details in semantics Rule 1) and there exists one and only policy P in the set of

policies SP that evaluates to Permit (see details in semantics Rules 6, 10, 12). In Rule 25,

a policy set PS evaluates a request Rq to Deny with a list of obligations OBLs if the target

matches with the request elements (see details in semantics Rule 1) and there exists one and

only policy P in the set of policies SP that evaluates to Deny (see details in semantics Rules

7, 9, 13). In Rule 26, a policy set PS evaluates a request Rq to NotApplicable if either the

target does not match with the request elements (see details in semantics Rule 2) or all

policies in the set of policies SP that evaluates to NotApplicable (see details in semantics

Rules 8, 11, 14). In Rule 27, a policy set PS evaluates a request Rq to Indeterminate

if the target matches with the request elements (see details in semantics Rule 1) and there

exists at least two policies P1 and P2 in the set policies SP such that P1 evaluates to either

Permit or Deny and P2 evaluates to either Permit or Deny.

3.5 Policy Evaluation Algorithms

In this section, we present the algorithms realizing the SBA-XACML policy evaluation

semantics. We divided the evaluation module into three algorithms. Each one of them

evaluates the request at a separate layer in the based policy. The rule evaluation algorithm

is presented in Algorithm 1, the policy evaluation algorithm in Algorithm 2 and the policy

set evaluation algorithm in Algorithm 3.

55

3.5.1 Rule Evaluation Algorithm

The rule evaluation algorithm in Algorithm 1 evaluates the request at the lowest level in the

policy set. It takes two inputs: a rule R and a request Rq. The output is the rule decision

which is Deny, Permit, or NotApplicable.

Algorithm 1 Rule_Evaluation(R,Rq)

Input : 1) A Rule R with Target TR = {S,R,A} and (2) A Request Rq = {Sr,Rr,Ar}

Output : Rule decision ∈ {RE, NotApplicable} where RE ∈ Permit, Deny

1: // Rule Applicability Check
2: if ((Sr ∩ S) 6= ∅) ∧ ((Rr ∩R) 6= ∅) ∧ ((Ar ∩A) 6= ∅) then
3: // loop through Rule Conditions
4: for i := 1 to m do
5: //At least one Rule Condition evaluated to false
6: if ∃ i, 0 < i ≤ m, RC = ”false” then
7: return NotApplicable;
8: else
9: //All Rule Conditions evaluated to true

10: return RE;
11: end if
12: end for
13: else
14: //Rule NotApplicable to the request
15: return NotApplicable;
16: end if

The Rule Evaluation in Algorithm 1 takes two inputs: a rule R and a request Rq. It

begins by checking whether the rule is applicable to the request (line 2). The Applicability

check is done by comparing the request set of subjects, set of resources and set of actions

against the rule target. If the applicability check returns true then the rule conditions are

evaluated (line 6), otherwise ”NotApplicable” is returned to the Policy Evaluation in Al-

gorithm 2 (line 15). Rule effect is returned if all rule conditions evaluate to true (line 10)

otherwise "NotApplicable" is returned to the Policy Evaluation in Algorithm 2 (line 7).

56

3.5.2 Policy Evaluation Algorithm

The policy evaluation algorithm in Algorithm 2 evaluates the request at the middle layer.

It calls the rule evaluation Algorithm 1 to handle the evaluation at the lower layer. It takes

two inputs: a policy P and a request Rq. The output is the policy decision which is Deny,

Permit, or NotApplicable.

The policy evaluation algorithm in Algorithm 2 takes two inputs: a policy P and a

request Rq. The algorithm is composed of three steps: the applicability check of the policy,

the evaluation of rules and rule combining algorithm RCA. The applicability check is done

by matching the request subjects, resources and actions with policy target (line 1). If (line 1)

returns true, we call step 2, otherwise NotApplicable is returned to the policy set evaluation

in Algorithm 3. The evaluation of rules is done by the order they are listed in the policy. The

rule evaluation algorithm Algorithm 1 is called in line 3. The response returned is passed to

step 3, where RCA can have one of the following values: Permit− Overrides, Deny −

Overrides or First−Applicable. If the RCA is Permit−Overrides and step 2 returns

one Permit, then the returned response is Permit. If RCA is Permit − Overrides and

step 2 returns Deny for all rules, then the returned response is Deny. If RCA is Permit−

Overrides and step 2 returns NotApplicable for all rules, then the returned response is

NotApplicable. If RCA is Deny − Overrides and step 2 returns one Deny then the

returned response is Deny. If RCA is Deny − Overrides and step 2 returns Permit

for all rules, then the returned response is Permit. If RCA is Deny − Overrides and

step 2 returns NotApplicable for all rules, then the returned response is NotApplicable.

If RCA is First− Applicable and step 2 returns one Deny or Permit, then the returned

57

Algorithm 2 Policy_Evaluation(P,Rq)

Input : 1) A Policy P with Target TR = {S,R,A} and (2) A Request Rq = {Sr,Rr,Ar}

Output : Policy decision ∈ {Deny,Permit,NotApplicable}

1: if ((Sr ∩ S) 6= ∅) ∧ ((Rr ∩R) 6= ∅) ∧ ((Ar ∩A) 6= ∅) then
2: for i := 1 to m do
3: // Call Rule Evaluation Algorithm
4: REi =
5: if (RCA = ”Deny-Overrides”) then
6: // if at least one rule evaluates to Deny
7: if ∃ i, 0 < i ≤ m, REi = ”Deny” then
8: return Deny;
9: else

10: // If all rules evaluate to permit
11: if ∀ i, 0 < i ≤ m, REi = ”Permit” then
12: return Permit;
13: else
14: return NotApplicable;
15: end if
16: end if
17: end if
18: if (RCA = ”Permit-Overrides”) then
19: // At least one rule evaluates to Permit
20: if ∃ i, 0 < i ≤ m, REi = ”Permit” then
21: return Permit;
22: else
23: // All deny
24: if ∀ i, 0 < i ≤ m, REi = ”Deny” then
25: return Deny;
26: else
27: return NotApplicable;
28: end if
29: end if
30: end if
31: if (RCA = ”First-Applicable”) then
32: //First Applicable rule evaluates to permit
33: if ∃ i, 0 < i ≤ m, REi = ”Permit” then
34: return Permit;
35: else
36: //First Applicable rule evaluates to deny
37: if ∃ i, 0 < i ≤ m, REi = ”Deny” then
38: return Deny;
39: else
40: return NotApplicable;
41: end if
42: end if
43: end if
44: end for
45: else
46: //Policy is not Applicable by target
47: return NotApplicable;
48: end if

58

response is Deny or Permit respectively. If RCA is First−Applicable and step 2 returns

NotApplicable for all rules, then the returned response is NotApplicable.

3.5.3 PolicySet Evaluation Algorithm

The policy set evaluation algorithm in Algorithm 3 calls the policy evaluation algorithm

Algorithm 2 to handle the evaluation at the middle layer. The algorithm takes two inputs:

a policy set PS and a request Rq. The output is the final response to the request Rs.

The PolicySet Evaluation in Algorithm 3 takes two inputs: a policy set PS and a request

Rq. The algorithm is composed of three steps: the applicability check of the policy set, the

evaluation of policies and policy combining algorithm PCA. The applicability check is

done by evaluating the request subjects, resources and actions with the policy set target in

line 2. If it returns true, then step 2 is called otherwise Rs = NotApplicable is returned

as the request response. The evaluation of policies is done by the order they are listed

in the based policy. The policy evaluation algorithm Algorithm 2 is called in line 6. The

returned response is passed to step 3, where the PCA can have one of the following values:

Permit−Overrides, Deny−Overrides, First−Applicable or Only−one−Applicable.

If the PCA is Permit − Overrides and step 2 returns one Permit, then the returned

response is Permit. If the PCA is Permit − Overrides and step 2 returns Deny for all

policies, then the returned response is Deny. If the PCA is Permit−Overrides and step

2 returns NotApplicable for all policies, then the returned response is NotApplicable. If

the PCA is Deny − Overrides and step 2 returns one Deny, then the returned response

is Deny. If the PCA is Deny − Overrides and step 2 returns Permit for all policies,

59

Algorithm 3 PolicySet_Evaluation(PS,Rq) Part 1

Input : (1) A PolicySet PS with Target TR = {S,R,A} and (2) Request Rq = {Sr,Rr,Ar}

Output : Request response Rs ∈ {Permit, Deny, NotApplicable, Indeterminate}

1: // PolicySet Applicability Check
2: if ((Sr ∩ S) 6= ∅) ∧ ((Rr ∩R) 6= ∅) ∧ ((Ar ∩A) 6= ∅) then
3: // loop through Policies
4: for i := 1 to m do
5: // Call Policy Evaluation function
6: PEi = POLICY_EVALUATION(Pi,Rq);
7: if (PCA = ”Deny-Overrides”) then
8: // if at least one policy evaluates to Deny
9: if ∃ i, 0 < i ≤ m, PEi = ”Deny” then

10: return Deny;
11: else
12: // If all policies evaluate to permit
13: if ∀ i, 0 < i ≤ m, PEi = ”Permit” then
14: return Permit;
15: else
16: return NotApplicable;
17: end if
18: end if
19: end if
20: if (PCA = ”Permit-Overrides”) then
21: // if at least one policy evaluates to Permit
22: if ∃ i, 0 < i ≤ m, PEi = ”Permit” then
23: return Permit;
24: else
25: // If all policies evaluate to Deny
26: if ∀ i, 0 < i ≤ m, PEi = ”Deny” then
27: return Deny;
28: else
29: return NotApplicable;
30: end if
31: end if
32: end if
33: if (PCA = ”First-Applicable”) then
34: // if at least one policy evaluates to Deny
35: if ∃ i, 0 < i ≤ m, PEi = ”Deny” then
36: return Deny;
37: else
38: //if at least one Policy evaluates to Permit
39: if ∃ i, 0 < i ≤ m, PEi = ”Permit” then
40: return Permit;
41: else
42: return NotApplicable;
43: end if
44: end if
45: end if

60

Algorithm 3 PolicySet_Evaluation(PS,Rq) Part 2
46: //PCA = Only-one-Applicable
47: if (PCA = ”Only-one-Applicable”) then
48: // iff one policy evaluates to Deny
49: if ∃! i, 0 < i ≤ m, PEi = ”Deny” then
50: return Deny;
51: end if
52: // Iff one Policy evaluates to permit
53: if ∃! i, 0 < i ≤ m, PEi = ”Permit” then
54: return Permit;
55: end if
56: // If all policies evaluate to NotApplicable
57: if ∀ i, 0 < i ≤ m, PEi = ”NotApplicable” then
58: return NotApplicable;
59: else
60: //More than one applicable policies
61: return Indeterminate;
62: end if
63: end if
64: end for
65: else
66: //PolicySet NotApplicable to the request
67: return NotApplicable;
68: end if

then the returned response is Permit. If the PCA is Deny−Overrides and step 2 returns

NotApplicable for all policies, then the returned response is NotApplicable. If the PCA

is First−Applicable and step 2 returns one Deny or Permit, then the returned response

is Deny or Permit respectively. If the PCA is First − Applicable and step 2 returns

NotApplicable for all policies, then the returned response is NotApplicable. If the PCA

is Only−One−Applicable and only one policy is applicable, the response is either Deny

or Permit, otherwise the response is Indeterminate.

61

3.6 Case Study: SBA-XACML Policy Evaluation and Per-

formance Analysis

In this section, we first present a case study illustrating the usability of SBA-XACML policy

evaluation process through semantics rules and experiments. Then, we provide the results

of the performance analysis comparing our results to the current approaches. We will be

utilizing the XACML example presented in Chapter Two, Section 2.6.3.

3.6.1 SBA-XACML Policy Evaluation

In this section, we provide the generated SBA-XACML based policy and request, and

the response of the evaluation process according to the SBA-XACML policy evaluation

semantics in Section 3.4. Listing 3.1 contains the generated SBA-XACML based policy

corresponding to the XACML one in Listings 2.3 and 2.4 of Chapter Two, Section 2.6.3.

Listing 3.1: SBA-XACML Policy for a Bank Service

[1].PS::=<PS1,{P1,P2},{P1>P2},{Permit-overrides},{},{},{{},{},{}}>
[2].P::=<P1,{R1,R2},{R1>R2},{Permit-overrides},{},{{Withdraw,Permit,{mailto,string,

Customer_service@bank.com},{subject-id,string,subject-id},{resource-id,string,resource
-id}}} ,{{Jerry,Joe},{BankService/withdraw},{Any}}>

[3].R::=<R1,{{and,{string-equal,{ResourceAttributeDesignator,string,BankService/withdraw
}},{string-equal,{SubjectAttributeDesignator,subject-id,string,Bob}}}},{{},{},{}},{
Permit}>

[4].R::=<R2,{},{{},{},{}},{Deny}>
[5].P::=<P2,{R3,R4,R5},{R3>R4>R5},{Permit-overrides},{},{},{{},{},{}}>
[6].R::=<R3,{string-equal,{ResourceAttributeDesignator,string,BankService/deposit

}},{{},{},{}},{Permit}>
[7].R::=<R4,{{and,{string-equal,{ResourceAttributeDesignator,string,BankService/deposit

}},{string-equal,{SubjectAttributeDesignator,subject-id,string,Joe}}}},{{},{},{}},{
Permit}>

[8].R::=<R5,{{and,{string-equal,{ResourceAttributeDesignator,string,BankService/deposit
}},{string-equal,{SubjectAttributeDesignator,subject-id,string,Joe}}}},{{},{},{}},{
Deny}>

Line 1 is the policy set PS. The policy set ID is PS1. It has two policies P1 and

P2. P1 is ordered before P2. The policy combining algorithm is Permit − Overrides.

62

PS1Bank has no reference to other policies. It has no obligations to perform and the target

subjects, resources and actions are any. Line 2 is the Withdraw policy. The policy ID is

P1. It has two rules R1 and R2. R1 is ordered before R2. The rule combining algorithm

is Permit−Overrides. P1 has one obligation to perform and the target subjects are Bob

and Jerry, resource is BankService/withdraw and actions are any. Line 3 is the rule R1.

The rule ID is R1. R1 has a set of conditions. The conditions are: the subject ID must be

equal to Bob and the resource ID must be equal to BankService/withdraw. The target

subjects, resources and actions are any. R1 has a permit effect. Line 4 is the rule R2. The

rule ID is R2. R2 has no conditions. R2 has no target specified. R2 has a deny effect.

Line 5 is the deposit policy. The policy ID is P2. It has three rules R3, R4 and R5. The

precedence order is R3, R4 and R5. The rule combining algorithm is permit− overrides.

P2 has no obligation to perform and the target elements are not defined. Line 6 is the rule

R3. The rule ID is R3. R3 has one condition. The condition states that the resource ID

must be equal to BankService/Deposit. The target subjects, resources and actions are

not specified. R3 has a permit effect. Line 7 is the rule R4. The rule ID is R4. R4 has a

set of conditions. The conditions are: the subject ID must be equal to Joe and the resource

ID must be equal to BankService/Deposit. The target subjects, resources and actions

are not specified. R4 has a permit effect. Line 8 is the rule R5. The rule ID is R5. R5

has a set of conditions. The conditions are: the subject ID must be equal to Joe and the

resource ID must be equal to BankService/Deposit. The target subjects, resources and

actions are not specified. R5 has a deny effect.

Listing 3.2 contains the generated SBA-XACML request corresponding to one in List-

ing 2.5 of Chapter Two. The request subject is equal to Bob, resource equal

63

BankService/Deposit and action equal execute.

Listing 3.2: SBA-XACML Access Request

[1].Rq1::=<{Bob},{BankService/Deposit},{execute}>

Based on the SBA-XACML policy evaluation semantics in Section 3.4 and its imple-

mented algorithms in Section 3.5, the elaborated framework will evaluate the request Rq1

in Listing 3.2 with respect to the based policy PS1 presented in Listing 3.1 generated from

Listings 2.3 and 2.4. Since the evaluation of each semantics rule is based on evaluating

its premises, we will describe the evaluation steps in order by the premises of policy sets,

policies and rules as summarized in Table 10. To avoid repetition and for space limitation,

we will present only the matching semantics rules that affect the final decision. The rules

in Table 10 should be read from bottom to top as follows:

(1) The based policy is composed of a PolicySet PS1. It has PCA = {Permit-Overrides},

its target TR matches request Rq1 as illustrated in (2) and it has a policy P2 that

evaluates to Permit as depicted in (3). Hence, based on the semantics Rule 15 that

applies in this case, all the three premises are satisfied and the final decision is Permit.

(2) PS1 has no target defined which means TR = {} or TR = {S = Any , R = Any, A = Any}.

Rq1 = {Sr = Bob, Rr = BankService/Deposit, Ar = execute}. By applying semantics

Rule 1, Bob is a subset of Any, BankService/Deposit is a subset of Any and execute

is a subset of Any, therefore PS1 matches the request Rq1.

(3) Policy P2 is composed of three rules. It has RCA = Permit-Overrides, its target TR

matches with the target of request Rq1 as illustrated in (4) and it has a rule R3 that

64

Table 10: Results of Semantics-Based Policy Evaluation

(({Bob} ∩ {Any}) 6= ∅) ∧ (({BankService/Deposit} ∩ {Any}) 6= ∅) ∧ (({execute} ∩ {Any}) 6= ∅)

< R3.TR,Rq1 > `
match

True (Semantics Rule(1))

(6)

(< R3.TR,Rq1 > `
match

True) ∧ (R3.RC = True) ∧ (R3.RE = Permit)

< R3, Rq1 > −→
eval

Permit (Semantics Rule(3))

(5)

(({Bob} ∩ {Any}) 6= ∅) ∧ (({BankService/Deposit} ∩ {Any}) 6= ∅) ∧ (({execute} ∩ {Any}) 6= ∅)

< P2.TR,Rq1 > `
match

True (Semantics Rule(1))

(4)

(P2.RCA = Permit−Overrides) ∧

(< P2.TR,Rq1 > `
match

True) ∧ (< R3, Rq > −→
eval

Permit)

< P2, Rq > −→
eval

Permit (Semantics Rule(6))

(3)

(({Bob} ∩ {Any}) 6= ∅) ∧ (({BankService/Deposit} ∩ {Any}) 6= ∅) ∧ (({execute} ∩ {Any}) 6= ∅)

< PS1.TR,Rq1 > `
match

True (Semantics Rule(1))

(2)

(PS1.PCA = Permit−Overrides) ∧

(< PS1.TR,Rq1 > `
match

True) ∧ (< P2, Rq1 > −→
eval

Permit)

< PS1, Rq1 > −→
eval

Permit (Semantics Rule(15))

(1)

evaluates to Permit as depicted in (5). Hence, based on the semantics Rule 6 that

applies in this case, all the three premises are satisfied and the evaluation of P2 with

respect to Rq1 is Permit.

(4) P2 has no target TR defined which means TR = {S = Any , R = Any, A = Any}. Rq1 =

{Sr = Bob, Rr = BankService/Deposit, Ar = execute}. By applying semantics Rule

1, Bob is a subset of Any, BankService/Deposit is a subset of Any and execute is a

subset of Any, therefore P2 matches the request Rq1.

(5) The target TR of R3 matches with the target of request Rq1 as illustrated in (6). R3 has

65

one rule condition RC = {string-equal,{RAD, string, BankService/deposit}}, which

means the resource requesting access must be equal to BankService/Deposit. RC =

True because the Resource R of Rq1 is equal to BankService/Deposit. The rule effect

RE of R3 is Permit (RE=Permit). Hence, based on the semantics Rule 3 that applies

in this case, all the three premises are satisfied and the evaluation of R3 with respect

to Rq1 is Permit.

(6) R3 has no target defined which means TR = {S = Any , R = Any, A = Any}. Rq1 = {Sr

= Bob, Rr = BankService/Deposit, Ar = execute}. By applying semantics Rule(1),

Bob is a subset of Any, BankService/Deposit is a subset of Any and execute is a

subset of Any, therefore R3 matches the request Rq1.

The response to the request in Listing 3.2 against the based policy in Listing 3.1 is

presented in Listing 3.3. The evaluation results of our approach always returns the same

results given by XACML Sun PDP [18].

Listing 3.3: SBA-XACML Response

[1].Rs::=<{permit},{}>

3.6.2 Experiments and Performance Analysis

We have implemented the SBA-XACML framework using PHP. Our experiments were

carried out on a notebook running Windows XP SP3 with 3.50GB of memory and dual

core 2.8GHz Intel processor. The experiments were performed at 100,000 tests each and

the average number was calculated and used. They were conducted on both real world and

66

synthetic policies to show the scalability and performance on very large ones. Synthetic

policies are created in such a way that every policy and every rule in the policy set is

evaluated to reach the final decision (i.e. taking always the worst case). The Synthetic

policy sets range from 400 to 4000 rules which are split evenly over 100 policies. In order

to be able to exhaust the entire policy set, we specified (1) a policy combining algorithm

Deny-Overrides, (2) rule combining algorithm Deny-Overrides for each policy, (3) the

deny rule as the last rule in the policy and (4) non empty target element. Please note that

moderate specification (i.e. decision is taking early without checking all the rules) of the

synthetic policies will lead to better performance. We compare our proposed framework to

the commercial XACML engine Sun PDP [18] and XEngine [12].

The processing time of Sun PDP consists of XACML policy loading, request loading

and request evaluation to provide the decision. There is no pre-processing time for Sun

PDP. As for XEngine, the pre-processing time consists of policy loading, numericalization

and normalization, while processing time consists of request loading, numericalization and

evaluation to provide the decision. Regarding our approach, the pre-processing consists of

converting policy set from XACML to SBA-XACML, which is optional and executed only

once when deploying the policies. The processing time includes (1) accepting a request

and converting it to SBA-XACML, (2) loading policies and (3) evaluating the request to

providing the decision. We repeated this policy evaluation process for 100,000 different re-

quests with and without the pre-processing procedures and provided the average evaluation

time of synthetic and real world policies.

We chose not to use the experiments methodology used by XEngine because it does

not reflect real world environments. Their tools and experiments show that all the requests

67

(i.e. up to 100,000 requests) are received, converted and loaded in the memory at the same

time, then evaluated against the already loaded policies. Again as aforementioned, such

assumption does not always hold since requests can be received from different parties at

variant time-space. Fig. 8 contains three real world policies. We included the number

of rules in each policy set, the average pre-processing time (conversion time) for SBA-

XACML and XEngine, the average processing time for single-valued and multi-valued

requests for SBA-XACML, XEngine and Sun PDP.

Policy #Rules

Conversion Time

(msec)

Average Processing Time (msec)

Single-valued Requests Multi-valued Requests

SBA-

XACML XEngine

SBA-

XACML XEngine

Sun

PDP

SBA-

XACML XEngine

Sun

PDP

IIIA027 2 20 290 1 7 37 2 7 37

IIIA028 4 27 313 1 9 39 3 9 40

Continue-a 298 94 562 8 23 60 9 23 60

Fig. 8: Experimental Results on Real-World XACML Policies

3.6.2.1 Policy Evaluation Experimental Results

In the following, we discuss the experimental results for single-valued and multi-valued

requests on both synthetic and real world policies. Fig. 9 shows the results for synthetic

policy evaluations for single-valued and multi-valued requests. For single-valued requests,

Fig. 9a shows that our approach is faster than both the XEngine and Sun PDP by 3.2 and 8

times respectively for policy sets with 400 rules, and by 2.4 and 2.7 times faster for policy

sets with 4000 rules. For multi-valued requests, Fig. 9b shows that our approach is faster

than both the XEngine and Sun PDP by 3.5 and 9.4 times respectively for policy sets with

400 rules, and by 2.5 and 3.5 times faster for policy sets with 4000 rules.

68

Chapter Four

SBA-XACML Analysis

4.1 Introduction

Creating XACML policies is a simple task to do with existing tools but there is no verifica-

tion process to alert for access flaws. How do we know if the new policies created do not

create conflicts and grant access to the wrong users? How do we verify if recently deleted

rules or policies do not create access flaws or conflicts? XACML documents can become

very large and complex even when you do not have a complex system. As a result, veri-

fying access policies can become an impossible task to do. The only possible solution for

XACML to verify if policies are free of access flaws, conflicts and redundancies, is to test

the access of every possible scenario. It is not logical to test the entire system every time

you add a new rule or delete a policy. The proposed approach enables policy administrators

to automatically analyze access policies and detect access flaws, conflicts and redundancies

without much efforts and resources.

72

The rest of the chapter is organized as follows. In Section 4.2, we present the anal-

ysis semantics. In Section 4.3, we illustrate the SBA-XACML analysis algorithms. In

Section 4.4, we exhibit a case study to show the effectiveness of our proposition. In Sec-

tion 4.5, we conclude the chapter.

4.2 Policy Analysis Semantics

In this section, we present the formal semantics of a SBA-XACML policy analysis follow-

ing the above inference rule structure and deductive logic. Given a policy P, the analysis

report RP is derived by the evaluation −→
eval

of all premises combined between each other

using designated operators op as follows:

(premise1) op (premise2) op ... op (premisen)

< P1, P2 > −→
eval

RP

The policy and rule analysis semantics rules, which constitute the premises in the above

rule, have also similar structure and follows the deductive logic until reaching the basic de-

fined premise (i.e. condition). Throughout the rest of the thesis, please note the difference

between a semantic rule that express the analysis at a particular level, and a policy rule

which is a construct in SBA-XACML. All the semantics rules follow the bottom up struc-

ture, where all the common ones are presented first, then followed by the rule level, policy

level and policy set level ones. In this context, we start first by defining the Subset and

IntersectionFunction semantics rule since it will be used throughout all levels.

73

4.2.1 Subset & Intersection Function

In this section, we present the subset and intersection semantics rules for SBA-XACML

rule R1 with subject set S1, resource set R1 and action set A1 and SBA-XACML rule R2

with subject set S2, resource set R2 and action set A2. The semantics is determined by

comparing the subject set S1 with subject set S2, resource set R1 with resource set R2 and

action set A1 with action set A2.

Table 11: Subset Function Semantics Rules

(S1 ⊆ S2) ∧ (R1 ⊆ R2) ∧ (A1 ⊆ A2)

< (TR1, TR2) > `
subset

True

(Rule 1)

(S1 6⊂ S2) ∨ (R1 6⊂ R2) ∨ (A1 6⊂ A2)

< (TR1, TR2) > `
subset

False

(Rule 2)

Rules 1 and 2 in Table 11 describe the different cases of subset rules. In Rule 1, A target

TR1 is a subset of target TR2 if target TR1 subject set S1 is a subset of target TR2 subject

set S2 and target TR1 resource set R1 is a subset of target TR2 resource set R2 and target

TR1 action set A1 is a subset of target TR2 action set A2. In Rule 2, A target TR1 is not

a subset of target TR2 if target TR1 subject set S1 is not a subset of target TR2 subject set

S2 or target TR1 resource set R1 is not a subset of target TR2 resource set R2 or target TR1

action set A1 is a subset of target TR2 action set A2.

Rules 3 and 4 in Table 12 describe the different cases of intersection rules. In Rule 3,

two targets TR1 and TR2 intersect if target TR1 subject set S1 and target TR2 subject set

S2 share common elements and target TR1 resource set R1 and target TR2 resource set R2

74

Table 12: Intersection Function Semantics Rules

((S1 ∩ S2 6= ∅)) ∧ ((R1 ∩R2 6= ∅)) ∧ ((A1 ∩A2 6= ∅))

< TR1, TR2 > `
intersect

True

(Rule 3)

((S1 ∩ S2 = ∅)) ∨ ((R1 ∩R2 = ∅)) ∨ ((A1 ∩A2 = ∅))

< TR1, TR2 > `
intersect

False

(Rule 4)

share common elements and target TR1 action set A1 and target TR2 action set A2 share

common elements. In Rule 4, two targets TR1 and TR2 do not intersect if target TR1 subject

set S1 and target TR2 subject set S2 share no common elements or target TR1 resource set

R1 and target TR2 resource set R2 share no common elements or target TR1 action set A1

and target TR2 action set A2 share no common elements.

4.2.2 Access Flaw Detection

In this section, we present the policy access flaw analysis semantics rules for SBA-XACML

policy set.

Semantics Rules 5,6,7 and 8 in Table 13 describe the different access flaw analysis cases

for a policy set PS. In Rule 5, two rules R1 and R2 return flaw if R2 target TR2 is a subset

of rule R1 target TR1 (see details in semantics Rule 1) and rule R2 rule condition RC2 is

a subset of rule R1 rule condition RC1 and both rules R1 and R2 have the same rule effect

RE1 equal RE2. In Rule 6, for every pair of rules R1 and R2 in policy P such that R1 and

R2 are appended to the Flaw Set FS if R1 and R2 evaluate to flaw (see details in semantics

rule 5). In Rule 7, given a pair of policies P1, P2 in policy set PS, P1 and P2 are appended

75

Table 13: Rules of Access Flaw Detection Semantics

(< TR2, TR1 > `
subset

True) ∧ (RC2 ⊆ RC1) ∧ (RE1 = RE2)

< R1, R2 > −→
R.FA

FlawR1,R2

(Rule 5)

(∀ R1, R2 ∈ SR; FS ←−FS ∪ (< R1, R2 > −→
R.FA

FlawR1,R2))

< P > −→
P.FA

FS

(Rule 6)

(RCA.P1 = RCA.P2) ∧ (< TR1, TR2 > −→
Intersect

true) ∧ (∀ R1 ∈ SR1, R2 ∈ SR2; FS ←−FS ∪ (< R1, R2 > −→
R.FA

FlawR1,R2))

< P1, P2 > −→
P.FA

FS

(Rule 7)

(∀ P ∈ SP ; FS ←−FS ∪ (< P > −→
P.FA

FS)) ∪ (∀P1, P2 ∈ SP ; FS ←−FS ∪ (< P1, P2 > −→
P.FA

FS))

< PS > −→
PS.FA

FS

(Rule 8)

to the Flaw Set FS if the rule combining of P1 is equal to the rule combining of P2 and the

targets of P1 and P2 intersect (see details in semantics Rule 3) and there exists R1 in P1

and R2 in P2 such that R1 and R2 evaluate to flaw and appended to the Flaw Set FS (see

details in semantics Rule 5).In Rule 8, given policy set PS, the Flaw Set FS is the union of

all flaws between any two flawed rules R1, R2 in one policy and between two flawed rules

R1, R2 from two different policies and every two flawed policies P1 and P2. (see details in

semantics rule 6,7).

4.2.3 Redundancy Detection

In this section, we present the policy Redundant analysis semantics rules for SBA-XACML

policy set.

Semantics Rules 9,10,11 and 12 in Table 14 describe the different redundant analysis

cases for a policy set PS. In Rule 9, two rules R1 and R2 are redundant if R1 target TR1

and rule R2 target TR2 intersect (see details in semantics Rule 3) and rule R1 rule condition

76

Table 14: Rules of Redundancy Detection Semantics

(< TR2, TR1 > `
intersect

True) ∧ ((RC2 ∩ RC1) 6= ∅) ∧ (RE1 = RE2)

< R1, R2 > −→
R.RA

RedundantR1,R2

(Rule 9)

(∀ R1, R2 ∈ SR; RS ←−RS ∪ (< R1, R2 > −→
R.RA

RedundantR1,R2))

< P > −→
P.RA

RS

(Rule 10)

(RCA.P1 = RCA.P2) ∧ (< TR1, TR2 > −→
intersect

true) ∧ (∀ R1 ∈ SR1, R2 ∈ SR2; RS ←−RS ∪ (< R1, R2 > −→
R.RA

RedundantR1,R2))

< P1, P2 > −→
P.RA

RS

(Rule 11)

(∀ P ∈ SP ; RS ←−RS ∪ (< P > −→
P.RA

RS) ∪ (∀ P1, P2 ∈ SP ; RS ←−RS ∪< P1, P2 > −→
P.RA

RS))

< PS > −→
PS.RA

RS

(Rule 12)

RC1 and rule R2 rule condition RC2 intersects and both rules R1 and R2 have the same rule

effect RE1 equal RE2. In Rule 10, for every pair of rules R1 and R2 in policy P such that

R1 and R2 are appended to the Redundant Set RS if R1 and R2 are redundant (see details

in semantics rule 9). In Rule 11, given a pair of policies P1, P2 in policy set PS, P1 and

P2 are appended to the Redundant Set RS if the rule combining of P1 is equal to the rule

combining of P2 and the targets of P1 and P2 intersect (see details in semantics Rule 3)

and there exists R1 in P1 and R2 in P2 such that R1 and R2 are redundant and appended

to the Redundant Set RS (see details in semantics Rule 9). In Rule 12, given policy set PS,

the Redundant Set RS is the union of all redundancies between any two redundant rules R1,

R2 in one policy and between two redundant rules R1, R2 from two different policies and

every two redundant policies P1 and P2. (see details in semantics rule 10,11).

77

4.2.4 Conflict detection

In this section, we present the policy conflict analysis semantics rules for SBA-XACML

policy set.

Table 15: Rules of Conflict Detection Semantics

(< TR1, TR2 > `
intersect

True) ∧ ((RC1 ∩ RC2) 6= ∅) ∧ (RE1 6= RE2)

< R1, R2 > −→
R.CA

ConflictR1,R2

(Rule 13)

(∀ R1, R2 ∈ SR; RS ←−CS ∪ (< R1, R2 > −→
R.CA

ConflictR1,R2))

< P > −→
P.CA

CS

(Rule 14)

(RCA.P1 = RCA.P2) ∧ (< TR1, TR2 > −→
intersect

true) ∧ (∀ R1 ∈ SR1, R2 ∈ SR2; CS ←−CS ∪ (< R1, R2 > −→
R.CA

ConflictR1,R2))

< P1, P2 > −→
P.CA

CS

(Rule 15)

(∀ P1, P2 ∈ SP ; CS ←−CS ∪ (< P1 > −→
P.CA

CS) ∪ (< P2 > −→
P.CA

CS) ∪ (< P1, P2 > −→
P.CA

CS))

< PS > −→
PS.CA

CS

(Rule 16)

Semantics Rules 13,14,15 and 16 in Table 15 describe the different conlfict analysis

cases for a policy set PS. In Rule 13, two rules R1 and R2 conflict if R1 target TR1 and rule

R2 target TR2 intersect (see details in semantics Rule 3) and rule R1 rule condition RC1

and rule R2 rule condition RC2 intersects and rule R1 with effect RE1 which is the opposite

of rule R2 with effect RE2. In Rule 14, for every pair of rules R1 and R2 in policy P such

that R1 and R2 are appended to the Conflict Set CS if R1 and R2 conflict (see details in

semantics rule 13). In Rule 15, given a pair of policies P1, P2 in policy set PS, P1 and

P2 are appended to the Conflict Set CS if the rule combining of P1 is equal to the rule

combining of P2 and the targets of P1 and P2 intersect (see details in semantics Rule 3)

and there exists R1 in P1 and R2 in P2 such that R1 and R2 conflicted and appended to

78

the Conflict Set CS (see details in semantics Rule 13). In Rule 16, given policy set PS, the

Conflict Set CS is the union of all conflicts between any two conflicting rules R1, R2 in one

policy and between two conflicting rules R1, R2 from two different policies and every two

conflicting policies P1 and P2. (see details in semantics rule 14,15).

4.3 Policy Analysis Algorithms

In this section, we present the algorithms realizing the the SBA-XACML policy analysis

semantics. The analysis module is divided into three algorithms: (1) the Rule Analysis

Algorithm is presented in Algorithm 4,(2) the Policy Analysis Algorithm in Algorithm 5

and (3) PolicySet Analysis Algorithm in Algorithm 6.

4.3.1 Rule Analysis Algorithm

In this subsection, We present the Rule Analysis Algorithm in Algorithm 4. It takes rules

R1 and R2 as input. It checks for flaws, conflicts and redundancies between R1 and R2.

The output is the Flaw, Conflict, Redundant or null.

The Rule Analysis in algorithm 4 takes two rules R1 and R2 as input and compares their

targets, Rule conditions and rule effects to determine if there exists any flaws, conflicts and

redundancies between the two rules. It returns the proper response to the Policy Analysis

Algorithm in Algorithm 5. If the target of rule R2 is a subset of the target of rule R1 (line

3), the rule condition set of R2 is a subset of the rule condition set of R1 (line 5), R1 and

R2 have the same effect (line 7) and R1 takes a precedent order over R2 then the rule R1

is considered as access control flaw and it should be removed. If the subject set of R1

79

Algorithm 4 Rule_Analysis(R1, R2)

Input : Two Rules R1 with Target TR1 = {S1,R1,A1}, rule condition RC1, rule
effect RE1 and R2 with Target TR2 = {S2,R2,A2}, rule condition RC2, rule effect RE2

Output : Rule analysis ∈ {Flaw, Conflict, Redundant or Null}

1: Flaw check if a rule R2 is a subset of R1
2: // Is R2 target is a subset or equal to R1 target
3: if (S2 ⊆ S1) ∧ (R2 ⊆ R1) ∧ (A2 ⊆ A1) then
4: //Check rule conditions for R1 and R2
5: if (RC2 ⊆ RC1) then
6: // Check if R1 and R2 have the same effect
7: if (RE1 = RE2) then
8: // R2 is a subset of R1
9: return "Flaw";

10: end if
11: end if
12: end if
13: // Do the targets for R1 and R2 share common subjects,resources,actions
14: if ((S1 ∩ S2) 6= ∅) ∧ ((R1 ∩R2) 6= ∅) ∧ ((A1 ∩A2) 6= ∅) then
15: //Check if rule conditions for R1 and R2 intersect
16: if ((RC1 ∩RC2) 6= ∅) then
17: // check if R1 and R2 have opposite effect
18: if (RE1 6= RE2) then
19: // R1 and R2 Conflict with each other
20: return "Conflict";
21: else
22: // R1 and R2 have same effect
23: return "Redundant";
24: end if
25: end if
26: end if
27: return ;

intersect with subject set of R2, resource set of R1 intersect with resource set of R2 and

action set of R1 intersect with action set of R2 (line 13) and R1 and R2 have opposite effect

(line 17) then R1 conflicts with R2 but if R1 and R2 have the same effect then R1 and R2

are redundant. Empty set is returned if no issues were found between the two rules (line

26).

80

4.3.2 Policy Analysis Algorithm

In this subsection, We present the policy analysis algorithm in Algorithm 5. It takes two

policies P1 and P2 as input. The output is Flaw Set FS of all flaws at rule and policy level,

Conflict Set CF and Redundancy Set RS.

The policy analysis algorithm in Algorithm 5 takes two policies P1 and P2 as input

and produces a set of all access flaws FS, conflicts CS and redundancies RS. The algorithm

is composed of two parts. The first part of the algorithm checks for flaws, conflicts and

redundancies within each policy (lines 2-18). It calls the rule analysis algorithm in Al-

gorithm 4 on (line 5) to check every two rules for flaws, conflicts and redundancies. The

returned response from the Rule Analysis Algorithm is appended to the proper set (lines

7-15). The second part of the algorithm checks for flaws, conflicts and redundancies be-

tween rules from different policies if the rule combining of both policies P1 and P2 have

the same combining algorithms and the targets of both policies P1 and P2 intersect which

means the subjects of P1 share common subjects with P2 subjects, resources of P1 share

common resources with P2 resources, and actions of P1 share common actions with P2

actions (lines 20-43). It calls the rules analysis on (line 26) to check every two rules R1

from P1 and R2 from P2 for flaws, conflicts and redundancies. The returned response from

the Rule Analysis is appended to the proper set.

4.3.3 PolicySet Analysis Algorithm

In this subsection, We present the PolicySet Analysis Algorithm in Algorithm 6. It takes a

policy set PS as input. It calls the Policy Analysis Algorithm presented in Algorithm 5 to

81

Algorithm 5 Policy_Analysis(P1, P2)

Input : Policy P1 with Target TR1 = {S1,R1,A1} and P2 with Target TR2 = {S2,R2,A2}

Output : Flaw Set FS, Conflict Set CS and Redundancy Set RS

1: //Check rules in each policy
2: for l := 1 to 2 do
3: for i := 1 to PlNumberofRules−1 do
4: for j := 2 to PlNumberofRules do
5: RA = RULE_ANALYSIS(Rli, Rlj);
6: // RA response
7: if (RA = "Flaw") then
8: FS = FS ∪ FlawRli,Rlj

;
9: end if

10: if (RA = "Redundant") then
11: RS = RS ∪ RedundantRli,Rlj

;
12: end if
13: if (RA = "Conflict") then
14: CS = CS ∪ ConflictRli,Rlj

;
15: end if
16: end for
17: end for
18: end for
19: //Compare Rule Combining of P1 and P2
20: if (RCAP1 = RCAP2) then
21: //Common subjects, Resources and Actions from P1 and P2
22: if (((S1 ∩ S2) 6= ∅) ∧ ((R1 ∩R2) 6= ∅) ∧ ((A1 ∩A2) 6= ∅)) then
23: // Check rules for Conflicts, Flaws and Redundancies
24: for l := 1 to P1_NumberofRules do
25: for m := 1 to P2_NumberofRules do
26: RA = RULE_ANALYSIS(Rl, Rm);
27: // RA response
28: if (RA = "Flaw") then
29: FS = FS ∪ FlawRl,Rm

;
30: FS = FS ∪ FlawP1,P2

;
31: end if
32: if (RA = "Conflict") then
33: CS = CS ∪ ConflictRl,Rm ;
34: CS = CS ∪ ConflictP1,P2 ;
35: end if
36: if (RS = "Redundant") then
37: RS = RS ∪ RedundantRl,Rm

;
38: RS = RS ∪ RedundantP1,P2

;
39: end if
40: end for
41: end for
42: end if
43: end if
44: return ;

82

analyze the policies at the middle layer in the based policy. The output the analysis report

which contains all Flaws at the policy and rule level FS, Conflicts CS and Redundancies

RS.

Algorithm 6 PolicySet_Analysis(PS)

Input : A Policy Set PS

Output : Analysis report

1: // Initialize sets for Flaws, Redundancies and Conflicts
2: Global FS = ∅;RS = ∅;CS = ∅;
3: //Loop through policies in PS
4: for i := 1 to PSNumberofPolices−1 do
5: for j := i+ 1 to PSNumberofPolices do
6: // Call Policy Analysis
7: PA = POLICY_ANALYSIS(Pi, Pj);
8: end for
9: end for

The PolicySet Analysis Algorithm in Algorithm 6 takes a policy set PS as input and

produces a report of all access flaws between policies and rules. It initializes global set

FS,CS and RS on (line 2) for appending flaws,conflicts and redundancies found at both

policy and rule levels. It calls the Policy Analysis Algorithm in Algorithm 5 on (line 7) for

checking flaws, conflicts and redundancies between every two policies.

4.4 Case Study: SBA-XACML Policy Analysis

In this section, we present a case study illustrating the usability of SBA-XACML policy

analysis process through semantics. We will be utilizing the XACML example presented

in Chapter Two, Section 2.6.3, Listings 2.3 and 2.4. Listing 4.1 contains the generated

SBA-XACML based policy corresponding the listings mentioned above.

83

Listing 4.1: SBA-XACML Policy for a Bank Service

[1].PS::=<PS1,{P1,P2},{P1>P2},{Permit-overrides},{},{},{{},{},{}}>
[2].P::=<P1,{R1,R2},{R1>R2},{Deny-overrides},{},{},{{},{},{}}>
[3].R::=<R1,{{and,{string-equal,{ResourceAttributeDesignator,string,BankService/withdraw

}},{string-equal,{SubjectAttributeDesignator,subject-id,string,Bob}}}},{{},{},{}},{
Permit}>

[4].R::=<R2,{},{{},{},{}},{Deny}>
[5].P::=<P2,{R3,R4,R5},{R3>R4>R5},{Permit-overrides},{},{},{{},{},{}}>
[6].R::=<R3,{string-equal,{RAD,string,BankService/deposit}},{{},{},{}},{Permit}>
[7].R::=<R4,{{and,{string-equal,{RAD,string,BankService/deposit}},{string-equal,{

SubjectAttributeDesignator,subject-id,string,Joe}}}},{{},{},{}},{Permit}>
[8].R::=<R5,{{and,{string-equal,{RAD,string,BankService/deposit}},{string-equal,{

SubjectAttributeDesignator,subject-id,string,Joe}}}},{{},{},{}},{Deny}>

Line 1 is the policy set PS. The policy set ID is PS1. It has two policies P1 and

P2. P1 is ordered before P2. The policy combining algorithm is Permit − Overrides.

PS1 has no reference to other policies. It has no obligations to perform and the target

subjects, resources and actions are any. Line 2 is the policy P1. The policy ID is P1.

It has two rules R1 and R2. R1 is ordered before R2. The rule combining algorithm is

deny − Overrides. P1 has no obligations and no target. Line 3 is the rule R1. The rule

ID is R1. R1 has a set of conditions. The conditions are: the subject ID must be equal to

Bob and the resource ID must be equal to BankService/withdraw. The target subjects,

resources and actions are any. R1 has a permit effect. Line 4 is the rule R2. The rule ID

is R2. R2 has no conditions. R2 has no target specified. R2 has a deny effect. Line 5 is

the policy P2. The policy ID is P2. It has three rules R3, R4 and R5. The precedence

order is R3, R4 and R5. The rule combining algorithm is permit − overrides. P2 has

no obligation to perform and the target elements are not defined. Line 6 is the rule R3.

The rule ID is R3. R3 has one condition. The condition states that the resource ID must

be equal to BankService/Deposit. The target subjects, resources and actions are not

specified. R3 has a permit effect. Line 7 is the rule R4. The rule ID is R4. R4 has a set

of conditions. The conditions are: the subject ID must be equal to Joe and the resource

84

ID must be equal to BankService/Deposit. The target subjects, resources and actions

are not specified. R4 has a permit effect. Line 8 is the rule R5. The rule ID is R5. R5

has a set of conditions. The conditions are: the subject ID must be equal to Joe and the

resource ID must be equal to BankService/Deposit. The target subjects, resources and

actions are not specified. R5 has a deny effect.

Based on the SBA-XACML policy analysis semantics in Section 4.2, the elaborated

framework will analyze the based policy PS1 presented in Listings 4.1 for access flaws.

Since the analysis of each semantics rule is based on analyzing its premises, we will de-

scribe the analysis steps in order by the premises of policy sets, policies and rules.

4.4.1 Access Flaw Detection

In this section, we show the access flaw analysis steps and provide the results for policy set

PS1 based on the formal analysis semantics presented in 4.2.

PolicySet PS1 flaw analysis starts here, hence Our options are limited to Rule 8

Step 1. (PS1-Premise1 Evaluation)

Rule 8 premise 1 requires the analysis of every policy individually to determine the results

of premise 1. PS1 has two policies P1 and P2. Since P1 takes a precedence order over

P2 then the analysis starts with P1. The evaluation of PS1-Premise1 limits our options to

Rule 6.

Step 1.1. (P1-Analysis)

P1 Analysis starts here.

85

Step 1.1.1. (P1-Premise1 Evaluation)

Rule 6 requires analysis of rules to determine the results. P1 has two rules R1 and R2.

The results of P1-premise1 depends on the evaluation of Rule 5.

Step 1.1.1.1 (R1,R2-Analysis)

Rules R1 and R2 Analysis starts here.

Step 1.1.1.1.1 (R1,R2-Premise1 Evaluation)

Both R1 and R2 have no targets defined which means

TR1 = {{Any},{Any},{Any}} and TR2 = {{Any},{Any},{Any}}.

By applying subset semantics Rule(1):

({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any})

< (TR2, TR1) > `
subset

True

Targets TR1 and TR2 are the same therefore TR2 is subset or equal to TR1.

Step 1.1.1.1.2 (R1,R2-Premise2 Evaluation)

Rule R2 has no conditions defined, RC2 = {} and rule R1

has 2 conditions, RC1 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Bob}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Bob. RC2 is not

a subset of RC1 because RC2 has no restrictions on any resources or subjects.

Premise 1 of R1,R2 is satisfied, while Premise 2 is not. At this stage, the evalua-

tion of Premise 3 is not needed anymore since the semantics Rule (5) applies:

Based on the response from Rule (5), the returned response for R1 and R2 is null.

86

(< TR2, TR1 > `
subset

True) ∧ (RC2 * RC1)

< R1, R2 > −→
R.FA

null

Rules R1 and R2 Analysis ends here.

Since the analysis of Rules R1 and R2 returned null, therefore no flaws added to the

Flaw Set FS. The results from Rule (6) FS = {}.

Policy P1 Analysis ends here.

Flaw Set FS = {}.

Step 1.2. (P2-Analysis)

P2 Analysis starts here.

Step 1.2.1. (P2-Premise1 Evaluation)

Rule 6 requires analysis of rules to determine the results. P1 has three rules R3, R4

and R5. The results of P2-premise1 depends on the evaluation of Rule 5.

Step 1.2.1.1 (R3,R4-Analysis)

Rules R3 and R4 Analysis starts here.

Step 1.2.1.1.1 (R3,R4-Premise1 Evaluation)

Both R3 and R4 have no targets defined which means TR3 = {{Any},{Any},{Any}}

and TR4 = {{Any},{Any},{Any}}. By applying subset semantics Rule(1):

({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any})

< (TR4, TR3) > `
subset

True

Targets TR3 and TR4 are the same therefore TR4 is subset or equal to TR3.

87

Step 1.2.1.1.2 (R3,R4-Premise2 Evaluation)

Rule R3 has one conditions defined,

RC3 = {string-equal,{RAD,string,BankService/deposit}}, which means the

resource must be equal to BankService/deposit and rule R4 has two conditions,

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC4 is a

subset of RC3 because both require the resource to be BankService/withdraw and

RC4 limits the subject while RC3 accepts any subject.

Step 1.2.1.1.3 (R3,R4-Premise3 Evaluation)

Both R3 and R4 have the same effect. All premises of Rule (5) are satisfied. By

Applying Rule (5):

(< TR4, TR3 > `
subset

True) ∧ (RC4 ⊆ RC3) ∧ (RE3 = RE4)

< R3, R4 > −→
R.FA

FlawR3,R4

Based on the response from Rule (5), the returned response for R3 and R4 is

FlawR3,R4.

Rules R3 and R4 Analysis ends here.

Flaw Set FS = {FlawR3,R4}.

Step 1.2.1.2 (R3,R5-Analysis)

Rules R3 and R5 Analysis starts here.

88

Step 1.2.1.2.1 (R3,R5-Premise1 Evaluation)

Both R3 and R5 have no targets defined which means

TR3 = {{Any},{Any},{Any}} and TR5 = {{Any},{Any},{Any}}.

By applying subset semantics Rule(1):

({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any})

< (TR5, TR3) > `
subset

True

Targets TR3 and TR5 are the same therefore TR5 is subset or equal to TR3.

Step 1.2.1.2.2 (R3,R5-Premise2 Evaluation)

Rule R3 has one conditions defined,

RC3 = string-equal,RAD,string,BankService/deposit, which means the

resource must be equal to BankService/deposit and rule R5 has 2 conditions,

RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC5 is a

subset of RC3 because both require the resource to be BankService/withdraw and

RC5 limits the subject while RC3 accepts any subject.

Step 1.2.1.2.3 (R3,R5-Premise3 Evaluation)

Rule R3 has the opposite effect of rule R5. R3,R5 Premises 1 and 2 are satisfied,

while Premise 3 is not. Applying semantics Rule (5):

Based on the response from Rule (5), the returned response for R3 and R5 is null.

89

(< TR5, TR3 > `
subset

True) ∧ (RC5 ⊆ RC3) ∧ (RE3 6= RE5)

< R3, R5 > −→
R.FA

null

Rules R3 and R5 Analysis ends here.

Step 1.2.1.3 (R4,R5-Analysis)

Rules R4 and R5 Analysis starts here.

Step 1.2.1.3.1 (R4,R5-Premise1 Evaluation)

Both R4 and R5 have no targets defined which means

TR4 = {{Any},{Any},{Any}} and TR5 = TR3 = {{Any},{Any},{Any}}.

By applying subset semantics Rule(1):

({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any}) ∧ ({Any} ⊆ {Any})

< (TR5, TR4) > `
subset

True

Targets TR4 and TR5 are the same therefore TR5 is subset or equal to TR4.

Step 1.2.1.3.2 (R4,R5-Premise2 Evaluation)

Rule R4 has two conditions defined,

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means the resource must

be equal to BankService/deposit and subject equal to Joe and rule R5 has 2

conditions, RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC5 is equal

90

to RC4, therefore RC5 is a subset or equal to RC4.

Step 1.2.1.3.3 (R4,R5-Premise3 Evaluation)

Rule R4 has the opposite effect of rule R5. R4,R5 Premises 1 and 2 are satisfied,

while Premise 3 is not. Applying semantics Rule (5):

(< TR5, TR4 > `
subset

True) ∧ (RC5 ⊆ RC4) ∧ (RE4 6= RE5)

< R4, R5 > −→
R.FA

null

Based on the response from Rule (5), the returned response for R4 and R5 is null.

Rules R4 and R5 Analysis ends here.

Policy P2 Analysis ends here.

Flaw Set FS = {FlawR3,R4}.

Step 2. (PS1-Premise2 Evaluation)

Rule 8 requires the analysis of every pair of policies to determine the results of premise

2. PS1 has two policies P1 and P2, therefore the evaluation can continue. The evaluation

of PS1-Premise2 limits our options to Rule 7.

Step 2.1. (P1,P2-Analysis)

P1,P2 Analysis starts here.

Step 2.1.1. (P1,P2-Premise1 Evaluation)

Rule 7 premise 1 requires both P1 and P2 to have the same combining algorithms. P1

has RCA = {deny-overrides} and P2 has RCA = {permit-overrides} therefore premise

91

1 of Rule (7) is not satisfied. Based on the response from Rule (7), the returned

response is null.

P1,P2 Analysis ends here.

Flaw Set FS = {FlawR3,R4}.

PS1 analysis ends here.

Flaw Set FS = {FlawR3,R4}.

The result from the semantics analysis for PS1 show that R3 and R4 cause access flaw.

4.4.2 Redundancy Detection

In this section, we show the redundancy analysis steps and provide the results for policy set

PS1 based on the formal analysis semantics presented in 4.2.

PolicySet PS1 redundancy analysis starts here hence our options are limited to Rule 12

Step 1. (PS1-Premise1 Evaluation)

Rule 12 requires the analysis of every policy individually to determine the results of

premise 1. PS1 has two policies P1 and P2. Since P1 takes a precedence order over P2

then the analysis starts with P1. The evaluation of PS1-Premise1 limits our options to

Rule 10.

Step 1.1. (P1-Analysis)

P1 Analysis starts here.

92

Step 1.1.1. (P1-Premise1 Evaluation)

Rule 10 requires analysis of rules to determine the results. P1 has two rules R1 and

R2. The results of P1-premise1 depends on the evaluation of Rule 9.

Step 1.1.1.1 (R1,R2-Analysis)

Rules R1 and R2 Analysis starts here.

Step 1.1.1.1.1 (R1,R2-Premise1 Evaluation)

Both R1 and R2 have no targets defined which means

TR1 = {{Any},{Any},{Any}} and TR2 = {{Any},{Any},{Any}}.

By applying Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅)

< (TR1, TR2) > `
intersect

True

Targets TR1 and TR2 are the same therefore TR1 intersect with TR2.

Step 1.1.1.1.2 (R1,R2-Premise2 Evaluation)

Rule R1 has 2 conditions,

RC1 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Bob}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Bob and rule R2

with RC2 has no conditions defined, RC2 = {}. RC1 intersect RC2 because RC2

has no restrictions on any resources or subjects.

Step 1.1.1.1.3 (R1,R2-Premise3 Evaluation)

Rule R1 has a permit effect and rule R2 has a deny effect, therefore premise 3 is

not satisfied. Applying semantics Rule (9):

93

(< TR1, TR2 > `
intersect

True) ∧ ((RC2 ∩ RC1) 6= ∅) ∧ (RE1 6= RE2)

< R1, R2 > −→
R.RA

null

Based on the response from Rule (9), the returned response for R1 and R2 is null.

Rules R1 and R2 Analysis ends here.

Policy P1 Analysis ends here.

Redundant Set RS = {}.

Step 1.2. (P2-Analysis)

P2 Analysis starts here.

Step 1.2.1. (P2-Premise1 Evaluation)

Rule 10 requires analysis of rules to determine the results. P1 has three rules R3, R4

and R5. The results of P2-premise1 depends on the evaluation of Rule 9.

Step 1.2.1.1 (R3,R4-Analysis)

Rules R3 and R4 Analysis starts here.

Step 1.2.1.1.1 (R3,R4-Premise1 Evaluation)

Both R3 and R4 have no targets defined which means

TR3 = {{Any},{Any},{Any}} and TR4 = {{Any},{Any},{Any}}.

By applying Intersection semantics Rule(3):

Targets TR3 and TR4 are the same therefore TR3 intersect with TR4.

94

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ Any) 6= ∅)

< (TR3, TR4) > `
intersect

True

Step 1.2.1.1.2 (R3,R4-Premise2 Evaluation)

Rule R3 has one conditions defined,

RC3 = {string-equal,{RAD,string,BankService/deposit}}, which means

the resource must be equal to BankService/deposit and rule R4 has two conditions,

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC3 inter-

sects with RC4 because both require the resource to be BankService/withdraw and

RC4 limits the subject while RC3 accepts any subject.

Step 1.2.1.1.3 (R3,R4-Premise3 Evaluation)

Both rules R3 and R4 have the same effect. All premises of Rule (9) are satisfied.

Applying Rule (9):

(< TR3, TR4 > `
intersect

True) ∧ ((RC4 ∩ RC3) 6= ∅) ∧ (RE3 = RE4)

< R3, R4 > −→
R.RA

RedundantR3,R4

Based on the response from Rule (9), the returned response for R3 and R4 is

RedundantR3,R4.

Rules R3 and R4 Analysis ends here.

95

Redundant Set RS = {RedundantR3,R4}.

Step 1.2.1.2 (R3,R5-Analysis)

Rules R3 and R5 Analysis starts here.

Step 1.2.1.2.1 (R3,R5-Premise1 Evaluation)

Both R3 and R5 have no targets defined which means

TR3 = {{Any},{Any},{Any}} and TR5 = {{Any},{Any},{Any}}.

By applying the Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ Any) 6= ∅)

< (TR3, TR5) > `
intersect

True

Targets TR3 and TR5 are the same therefore TR3 intersect with TR5.

Step 1.2.1.2.2 (R3,R5-Premise2 Evaluation)

Rule R3 has one conditions defined,

RC3 = {string-equal,{RAD,string,BankService/deposit}}, which means the

resource must be equal to BankService/deposit and rule R5 has 2 conditions,

RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC3 intersect

with RC5 because both require the resource to be BankService/withdraw and RC5

limits the subject while RC3 accepts any subject.

Step 1.2.1.2.3 (R3,R5-Premise3 Evaluation)

Rule R3 has the opposite effect of rule R5. R3,R5 Premises 1 and 2 are satisfied,

96

while Premise 3 is not. Applying semantics Rule (9):

(< TR3, TR5 > `
intersect

True) ∧ ((RC3 ∩ RC5) 6= ∅) ∧ (RE3 6= RE5)

< R3, R5 > −→
R.RA

null

Based on the response from Rule (9), the returned response for R3 and R5 is null.

Rules R3 and R5 Analysis ends here.

Redundant Set RS = {RedundantR3,R4}.

Step 1.2.1.3 (R4,R5-Analysis)

Rules R4 and R5 Analysis starts here.

Step 1.2.1.3.1 (R4,R5-Premise1 Evaluation)

Both R4 and R5 have no targets defined which means

TR4 = {{Any},{Any},{Any}} and TR5 = {{Any},{Any},{Any}}.

By applying the Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅)

< (TR4, TR5) > `
intersect

True

Targets TR4 and TR5 are the same therefore TR5 intersects with TR4.

Step 1.2.1.3.2 (R4,R5-Premise2 Evaluation)

Rule R4 has two conditions defined,

97

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means the

resource must be equal to BankService/deposit and subject equal to Joe and rule

R5 has 2 conditions, RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC5 is equal

to RC4, therefore RC5 intersects with RC4.

Step 1.2.1.3.3 (R4,R5-Premise3 Evaluation)

Rule R4 has the opposite effect of rule R5. R4,R5 Premises 1 and 2 are satisfied,

while Premise 3 is not. Applying semantics Rule (9):

(< TR4, TR5 > `
intersect

True) ∧ ((RC4 ∩ RC5) 6= ∅) ∧ (RE4 6= RE5)

< R4, R5 > −→
R.RA

null

Based on the response from Rule (9), the returned response for R4 and R5 is null.

Rules R4 and R5 Analysis ends here.

Policy P2 Analysis ends here.

Redundant Set RS = {RedundantR3,R4}.

Step 2. (PS1-Premise2 Evaluation)

Rule 12 requires the analysis of every pair of policies to determine the results of premise

2. PS1 has two policies P1 and P2, therefore the evaluation can continue. The evaluation

of PS1-Premise2 limits our options to Rule 11.

98

Step 2.1. (P1,P2-Analysis)

P1,P2 Analysis starts here.

Step 2.1.1. (P1,P2-Premise1 Evaluation)

Rule 11 requires both P1 and P2 to have the same combining algorithms. P1 has RCA

= {deny-overrides} and P2 has RCA = {permit-overrides} therefore premise 1 of Rule

(11) is not satisfied. Based on the response from Rule (11), the returned response is

null.

P1,P2 Analysis ends here.

Redundant Set RS = {RedundantR3,R4}.

PS1 analysis ends here.

The results from the semantics analysis for PS1 show that R3 and R4 are redundant.

Redundant Set RS = {RedundantR3,R4}.

4.4.3 Conflict Detection

In this section, we show the conflict analysis steps and provide the results for policy set

PS1 based on the formal analysis semantics presented in 3.4.

PolicySet PS1 conflict analysis starts here hence our options are limited to Rule 16

Step 1. (PS1-Premise1 Evaluation)

Rule 16 requires the analysis of every policy individually to determine the results of

premise 1. PS1 has two policies P1 and P2. Since P1 takes a precedence order over P2

99

then the analysis starts with P1. The evaluation of PS1-Premise1 limits our options to

Rule 14.

Step 1.1. (P1-Analysis)

P1 Analysis starts here.

Step 1.1.1. (P1-Premise1 Evaluation)

Rule 14 requires analysis of rules to determine the results. P1 has two rules R1 and

R2. The results of P1-premise1 depends on the evaluation of Rule 13.

Step 1.1.1.1 (R1,R2-Analysis)

Rules R1 and R2 Analysis starts here.

Step 1.1.1.1.1 (R1,R2-Premise1 Evaluation)

Both R1 and R2 have no targets defined which means

TR1 = {{Any},{Any},{Any}} and TR2 = {{Any},{Any},{Any}}.

By applying Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ Any) 6= ∅)

< (TR1, TR2) > `
intersect

True

Targets TR1 and TR2 are the same therefore TR1 intersect with TR2.

Step 1.1.1.1.2 (R1,R2-Premise2 Evaluation)

Rule R1 has 2 conditions defined,

RC1 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Bob}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Bob and rule R2

100

with RC2 has no conditions defined, RC2 = {}. RC1 intersect RC2 because RC2

has no restrictions on any resources or subjects.

Step 1.1.1.1.3 (R1,R2-Premise3 Evaluation)

Rule R1 has a permit effect and rule R2 has a deny effect, therefore premise 3 is

satisfied. Applying semantics Rule (13):

(< TR1, TR2 > `
intersect

True) ∧ ((RC2 ∩ RC1) 6= ∅) ∧ (RE1 6= RE2)

< R1, R2 > −→
R.CA

ConflictR1,R2

Based on the response from Rule (13), the returned response for R1 and R2 is

ConflictR1,R2.

Rules R1 and R2 Analysis ends here.

Since the analysis of Rules R1 and R2 returned ConflictR1,R2, therefore it is added

to the Conflict Set.

Policy P1 Analysis ends here.

Conflict Set CS = {ConflictR1,R2}.

Step 1.2. (P2-Analysis)

P2 Analysis starts here.

Step 1.2.1. (P2-Premise1 Evaluation)

Rule 14 requires analysis of rules to determine the results of premise 1. P1 has three

101

rules R3, R4 and R5. The results of P2-premise1 depends on the evaluation of Rule

13.

Step 1.2.1.1 (R3,R4-Analysis)

Rules R3 and R4 Analysis starts here.

Step 1.2.1.1.1 (R3,R4-Premise1 Evaluation)

Both R3 and R4 have no targets defined which means

TR3 = {{Any},{Any},{Any}} and TR4 = {{Any},{Any},{Any}}.

By applying the Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ Any) 6= ∅)

< (TR3, TR4) > `
intersect

True

Targets TR3 and TR4 are the same, therefore TR3 intersect with TR4.

Step 1.2.1.1.2 (R3,R4-Premise2 Evaluation)

Rule R3 has one conditions defined,

RC3 = {string-equal,{RAD,string,BankService/deposit}}, which means

the resource must be equal to BankService/deposit and rule R4 has two conditions,

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that the resource must

be equal to BankService/withdraw and subject must be equal to Joe. RC3 inter-

sects with RC4 because both require the resource to be BankService/withdraw and

RC4 limits the subject while RC3 accepts any subject.

Step 1.2.1.1.3 (R3,R4-Premise3 Evaluation)

102

Both R3 and R4 have the same effect. Premises 1 and 2 are satisfied but premise 3

is not. Applying Rule (13):

(< TR3, TR4 > `
intersect

True) ∧ ((RC3 ∩ RC4) 6= ∅) ∧ (RE3 = RE4)

< R3, R4 > −→
R.CA

null

Based on the response from Rule (9), the returned response for R3 and R4 is null.

Rules R3 and R4 Analysis ends here.

Conflict Set CS = {ConflictR1,R2}.

Step 1.2.1.2 (R3,R5-Analysis)

Rules R3 and R5 Analysis starts here.

Step 1.2.1.2.1 (R3,R5-Premise1 Evaluation)

Both R3 and R5 have no targets defined which means

TR3 = {{Any},{Any},{Any}} and TR5 = {{Any},{Any},{Any}}.

By applying the Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅)

< (TR3, TR5) > `
intersect

True

Targets TR3 and TR5 are the same therefore TR3 intersect with TR5.

Step 1.2.1.2.2 (R3,R5-Premise2 Evaluation)

Rule R3 has one conditions defined,

103

RC3 = {string-equal,{RAD,string,BankService/deposit}}, which means the

resource must be equal to BankService/deposit and rule R5 has 2 conditions,

RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that

the resource must be equal to BankService/withdraw and subject must be equal

to Joe. RC3 intersect with RC5 because both require the resource to be BankSer-

vice/withdraw and RC5 limits the subject while RC3 accepts any subject.

Step 1.2.1.2.3 (R3,R5-Premise3 Evaluation)

Rule R3 has the opposite effect of rule R5. R3,R5 Premises 1, 2 and 3 are satisfied.

Applying semantics Rule (13):

(< TR3, TR5 > `
intersect

True) ∧ ((RC3 ∩ RC5) 6= ∅) ∧ (RE3 6= RE5)

< R3, R5 > −→
R.CA

ConflictR3,R5

Based on the response from Rule (13), the returned response for R3 and R5 is

ConflictR3,R5.

Rules R3 and R5 Analysis ends here.

Conflict Set CS = {ConflictR1,R2, ConflictR3,R5}.

Step 1.2.1.3 (R4,R5-Analysis)

Rules R4 and R5 Analysis starts here.

Step 1.2.1.3.1 (R4,R5-Premise1 Evaluation)

Both R4 and R5 have no targets defined which means

104

TR4 = {{Any},{Any},{Any}} and TR5 = {{Any},{Any},{Any}}.

By applying the Intersection semantics Rule(3):

(({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅) ∧ (({Any} ∩ {Any}) 6= ∅)

< (TR4, TR5) > `
intersect

True

Targets TR4 and TR5 are the same therefore TR4 intersects with TR5.

Step 1.2.1.3.2 (R4,R5-Premise2 Evaluation)

Rule R4 has two conditions defined,

RC4 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means

the resource must be equal to BankService/deposit and subject equal to Joe

and rule R5 has 2 conditions,

RC5 = {and,{string-equal,{RAD,string,BankService/withdraw}},

{string-equal,{SAD,subject-id,string,Joe}}}, which means that

the resource must be equal to BankService/withdraw and subject must be equal to

Joe. RC5 is equal to RC4, therefore RC4 intersects with RC5.

Step 1.2.1.3.3 (R4,R5-Premise3 Evaluation)

Rule R4 has the opposite effect of rule R5. R4,R5 Premises 1, 2 and 3 are satisfied.

Applying semantics Rule (13):

Based on the response from Rule (13), the returned response for R4 and R5 is

ConflictR4,R5.

105

(< TR4, TR5 > `
intersect

True) ∧ ((RC4 ∩ RC5) 6= ∅) ∧ (RE4 6= RE5)

< R4, R5 > −→
R.CA

ConflictR4,R5

Rules R4 and R5 Analysis ends here.

Policy P2 Analysis ends here.

Conflict Set CS = {ConflictR1,R2, ConflictR3,R5, ConflictR4, R5}.

Step 2. (PS1-Premise2 Evaluation)

Rule 16 requires the analysis of every pair of policies to determine the results of premise

2. PS1 has two policies P1 and P2, therefore the evaluation can continue. The evaluation

of PS1-Premise2 limits our options to Rule 15.

Step 2.1. (P1,P2-Analysis)

P1,P2 Analysis starts here.

Step 2.1.1. (P1,P2-Premise1 Evaluation)

Rule 15 premise 1 requires both P1 and P2 to have the same combining algorithms. P1

has RCA = {deny-overrides} and P2 has RCA = {permit-overrides} therefore premise

1 of Rule (15) is not satisfied. Based on the response from Rule (15), the returned

response is null.

P1,P2 Analysis ends here.

Conflict Set CS = {ConflictR1,R2, ConflictR3,R5, ConflictR4, R5}.

PS1 analysis ends here.

106

Conflict Set CS = {ConflictR1,R2, ConflictR3,R5, ConflictR4, R5}.

The results from the semantics analysis for PS1 show that R1 conflicts with R2, R3 conflicts

with R5 and R4 conflicts with R5.

4.5 Conclusion

In this chapter, we addressed the problems related XACML policy correctness (i.e. flaw

and conflict free). In the context, we proposed a model which supports the analysis of both

XACML and SBA-XACML policies. It is an automatic analysis approach for detecting

access flaws, conflicts and redundancies between rules and polices. In addition, we pro-

vided the semantics and its corresponding algorithms for policy analysis. We realized and

demonstrate the viability of our proposition by implementing the model and developing a

case study to express the effectiveness of our proposition.

107

Chapter Five

Conclusion

This thesis addressed the problems related to the efficiency of real-time decision process

and correctness of XACML policies. In this context, we elaborated a novel set-based

scheme called SBA-XACML, which provides efficient evaluation and analysis of XACML

policies. The SBA-XACML representation of policies maintains the same XACML struc-

ture and accounts for all its elements and their sub elements including rule conditions,

obligations, policy request and policy response. Moreover, the policy evaluation module,

which embeds formal semantics and its implemented algorithms, takes advantage of the

mathematical operations to provide efficient decision process. Unlike current literature, it

holds the same architecture of the industrial standard XACML Sun PDP ([18]) and respects

the major properties and assumptions of real-life environments in terms of remote policy

loading upon need and disjoint reception of requests from distributed parties. The cor-

responding experimental results explore that SBA-XACML evaluation of large and small

sizes policies has better performance than Sun PDP ([18]) and its corresponding ame-

liorations [12, 17, 19, 24]. Finally, the policy analysis module, which also embeds formal

108

semantics and its implemented algorithms, allows to detect access flaws, conflict and re-

dundancy at policy and rule levels. In the sequel, we present a brief summary of the thesis

contributions:

• Set-Based intermediate representation of XACML constructs into readable mathe-

matical syntax that maintain the same XACML policy structure and account for all

its elements and their sub elements. The corresponding language and compiler offer

automatic and optional conversion from XACML to SBA-XACML constructs.

• Formal semantics and its implemented algorithms that take advantage of the math-

ematical operations to provide efficient policy evaluation. The presented experi-

mental results explore that SBA-XACML evaluation of large and small sizes poli-

cies has better performance than Sun PDP [18] and its corresponding ameliora-

tions [12, 17, 19, 24].

• Formal semantics and its implemented algorithms for SBA-XACML policy analysis

that enable to detect access flaws, conflicts and redundancies at both policy and rule

levels.

Future Work

Our future work is to install our framework into a real world environment and monitor its

performance on mixed size policies small and large and to broaden our policy analysis to

detect more access control flaws, conflicts and redundancies.

109

List of Publications

The following is the list of publications derived from the thesis work:

Conference Paper

Hussein Jebbaoui and Azzam Mourad, "Towards a Set-Based Approach for Detecting

Flaws in XACML Policies," In the Proceedings of the Annual International Conference on

Next Generation Computing and Communication Technologies, 2014, Dubai, UAE, April

23-24, ICNGCCT.

Draft Paper

"Towards a Set-Based Approach for Efficient Evaluation and Analysis of XACML Poli-

cies".

110

Bibliography

[1] B. Atkinson et al. (2002, Apr. 5). Web services security (WS-Security). IBM [Online].

Available: http://www.cgisecurity.com/ws/ws-secure.pdf

[2] N. Bhalla and S. Kazerooni. (2007, Feb.). Web services vulnerabilities. Se-

curity Compass Inc. [Online]. Available: http://www.blackhat.com/

presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/

bh-eu-07-bhalla-WP.pdf.

[3] Bing, Prof. R. H. Set Theory, (2014 Feb.) AccessScience [Online]. Available:

http://www.accessscience.com/content/set-theory/616700 (ac-

cessed on 2013/12/13).

[4] Bing, Prof. R. H. Set Theory, (2014 Feb.) AccessScience [Online]. Available:

http://www.accessscience.com/content/set-theory/616700 (ac-

cessed on 2013/12/13).

[5] P. Bonatti, S. D. C. D. Vimercati, and P. Samarati,"An algebra for composing ac-

cess control policies," ACM Transactions on Information and System Security (TISS),

5(1):1-35, 2002.

111

[6] R. Bhatti, J. Joshi, E. Bertino, and A. Ghafoor, "Access Control in Dynamic XML-

Based Web-Services with X-RBAC," In Proceedings of the International Conference

on Web Services (ICWS ’03), pages 243-249, 2003.

[7] E. M. Clarke and E.A. Emerson, "Design and Synthesis of Synchronization Skeletons

Using Branching Time Temporal Logic," In Proceedings of the Workshop on Logics of

Programs, vol. 131 of LNCS, Springer-Verlag, 1981, pp. 52-71.

[8] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz, "Verification and Change

Impact analysis of Access-control Policies," In Proc. ICSE, pages 196-205, 2005.

[9] Wu, Jake, and Panos Periorellis, "Authorization-Authentication Using XACML and

SAML," School of Computing Science, Newcastle University, May 2005.

[10] V. Kolovski, J. Hendler, and B. Parsia, "Analyzing Web Access Control Policies,"

Proc. 16th Int’l Conf. World Wide Web (WWW ’07),pp. 677-686, 2007.

[11] N. Li, J. Hwang and T. Xie, "Multiple-Implementation Testing for XACML Imple-

mentations," Proceedings of the 2008 Workshop on Testing, Analysis, and Verification

of Web Services and Applications, July 2008, pp. 27-33.

[12] A. X. Liu, F. Chen, J. Hwang, and T. Xie, "XEngine: A Fast and Scalable XACML

Policy Evaluation Engine," in In Proc. SIGMETRICS Int’l Conf. Measurement and

Modeling of Computer Systems, pp. 265-276, June 2008.

[13] Jonathan Lampe (2013, May). Web Service Vulnerabilities. INFOSEC [On-

line]. Available: https://www.owasp.org/index.php/Category:

112

OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013 (accessed on

2014/02/19).

[14] B. Lockhart and al. OASIS Security Services TC (SAML). SAML [Online].

Available: http://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=security (accessed on 2013/03/11).

[15] M. Masi, R. Pugliese, and F. Tiezzi, "Formalisation and Implementation of the

XACML Access Control Mechanism," Proceedings of the 4th international conference

on Engineering Secure Software and Systems, Eindhoven, The Netherlands, 2012,pp.

60-74 .

[16] P. Mazzoleni, E. Bertino, and B. Crispo, "XACML Policy Integration Algorithms," In

Proceedings of the 11th ACM Symposium on Access Control Models and Technologies

(SACMAT), vol. 11, no. 1, 2008.

[17] S. Marouf, M. Shehab, A. Squicciarini, and S. Sundareswaran, "Adaptive Reorder-

ing and Clustering Based Framework for Efficient XACML Policy Evaluation", IEEE

Transactions on Services Computing, pp. 300-313, 2011.

[18] T. Moses. (2005, Feb. 21). OASIS extensible access control markup language

(XACML) TC. OASIS [Online]. Available: http://www.oasis-open.org/

committees/xacml/ (accessed on 2013/01/11).

[19] C. Ngo, M. Makkes, Y. Demchenko and C. de Laat, "Multi-data-types Interval De-

cision Diagrams for XACML Evaluation Engine," 11th International Conference on

Privacy, Security and Trust 2013 (PST 2013), July 10-12, 2013.

113

[20] P. Nolan, "Understand WS-Policy processing," Technical report, IBM Corporation,

2004.

[21] F. Paci, E. Bertino, and J. Crampton. (2008). An access-control framework for WS-

BPEL. Int. J. of Web Services Research [Online]. 5(4), pp. 20-43. Available: http:

//disi.unitn.it/~paci/IJWS.pdf

[22] F. G. Pagan, "Formal Specification of Programming Languages," Prentice-Hall, Inc.,

1981.

[23] G. D. Plotkin, "A Structural Approach to Operational Semantics," Logic and Alge-

braic Programming, 60-61:17-139, 2004.

[24] S. Pina Ros, M. Lischka, and F. Gómez Mármol, "Graph-based XACML Evaluation,"

In Proceedings of the 17th ACM symposium on Access Control Models and Technolo-

gies, ser. SACMAT ’12, New York, NY, USA: ACM, 2012, pp. 83-92.

[25] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, "An algebra for fine-grained integration

of XACML policies", In Proceedings of the 14th ACM Symposium on Access Control

Models and Technologies (SACMAT), 2009, pp 63-69.

[26] K. Slonneger and B. L. Kurtz, Formal Syntax and Semantics of Programming Lan-

guage: A Laboratory Based Approach, Addison-Wesley Publishing Company, Inc.,

1995.

114

[27] M. Sánchez, G. López, A. F. Gómez-Skarmeta, and Ó. Cánovas, "Using Microsoft Of-

fice Infopath to Generate XACML Policies," In Proceedings of the International Con-

ference on Security and Cryptography (SECRYPT 2006), Setubal, Portugal, 2006,pp.

379-386.

[28] P. Samarati and S. De Capitani di Vimercati, "Access Control: Policies, Models, and

Mechanisms," In R. Focardi and R. Gorrieri, editors,Foundations of Security Analysis

and Design, LNCS 2171, Springer-Verlag, 2001.

[29] Sun Microsystems. Sun’s XACML implementation. Sun [Online]. Available: http:

//sunxacml.sourceforge.net/ (accessed on 2013/03/03).

[30] Scott Seely (2002, Oct.). Understanding WS-Security. Microsoft [Online]. Avail-

able: http://msdn.microsoft.com/en-us/library/ms977327.aspx

(accessed on 2014/01/13).

[31] M. C. Tschantz and S. Krishnamurthi, "Towards Reasonability Properties for Access-

control Policy Languages", In Proc. SACMAT, 2006.

[32] D. Wijesekera and S. Jajodia, "A Propositional Policy Algebra for Access Control,"

ACM Transactions on Information and System Security (TISS), 6(2):286-325, 2003.

115

