

LEBANESE AMERICAN UNIVERSITY

Query Acceleration in Multimedia Database Systems

By

Rawa Karaki

A thesis

Submitted in partial fulfillment of the requirements

For the degree of Master of Science in Computer Science

School of Arts and Sciences

June 2014

v

ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude to my advisor Dr. Ramzi Haraty
for the continuous support of my study and research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of
research and writing of this thesis. I could not have imagined having a better advisor.

I would also like to thank my family: my parents, my sister and my husband for
supporting me spiritually throughout my life.

vi

Query Acceleration in Multimedia Database Systems

Rawa Karaki

ABSTRACT

With the increasing popularity of the World Wide Web comes the enormous increase in

stored digital contents, which could challenge users to search and use the multimedia data

efficiently. This work focuses on hastening techniques for efficient retrieval of

multimedia data. In this thesis, we exploit the use of bit-vectors to accelerate queries in

multimedia databases. We also use a compressed bit-vector to minimize the amount of

data cashed on disk; thus reducing the amount of memory and time needed to execute

queries. We also compare our scheme with other related strategies.

Keywords: Multimedia, Database, Retrieval, Compressed, Bit-Vector, Metadata, Objects,

Files, Query.

vii

Table of Contents

Chapter Page

Introduction ... 1

1.1 What is Multimedia Database? .. 1

1.2 Types of Multimedia Data .. 4

1.3 Multimedia Database Applications .. 5

1.4 Problem statement: ... 6

1.5 Thesis Organization: ... 8

II- Background & Related Work ... 9

2.1 Introduction ... 9

2.2. Retrieval by Browsing: .. 10

2.2.1 Comparing Browsing Model to Query Model .. 11

2.3. Retrieval by Metadata Attributes ... 13

2.3.1 Metadata Classification ... 18

2.3.2 Source of Metadata ... 18

2.4. Retrieval by Shape Similarity .. 19

2.4.1 Example .. 19

2.4.2 Edge thinning: .. 22

2.4.3 Multimedia Shape Retrieval Classification .. 23

2.4.4 Multimedia Shape Retrieval Tool... 25

2.5. Content Base Retrieval .. 28

2.5.1 Content Base Retrieval for Images .. 30

2.5.2 Content Base Retrieval for Video ... 31

2.5.3 Content Base Retrieval for Audio .. 33

III- Using Compressed Bit-Vector for Multimedia Data Retrieval 36

3.1 Introduction ... 36

3.2 Algorithm Details ... 39

viii

3.3 Experimental results: ... 43

3.4 Conclusion: ... 56

IV- Conclusion .. 58

4.1 Conclusion .. 58

4.2 Future Work ... 59

References ... 60

ix

List of Figures

FIGURE 1.THE INFORMEDIA ARCHITECTURE.[28] ... 3

FIGURE 2. QUERY AS A FILTER [27] ... 12

FIGURE 3. BROWSING AS EXAMINATION OF STRUCTURE [27] .. 13

FIGURE 4. “METADATA EXAMPLE OF AN IMAGE”.[30] ... 14

FIGURE 5.VAN GOGH’S WHEAT FIELD UNDER THREATENING SKIES (A) AND THE SKETCH OF A QUERY TO

RETRIEVE IT (B)[31] ... 20

FIGURE 6.OVERALL ARCHITECTURE OF OBJECT EXTRACTOR.[14] .. 26

FIGURE 7.FLOOD LL FOR EXTRACTION (FFE) ALGORITHM ... 27

FIGURE 8.CONTENT BASED VIDEO RETRIEVAL SYSTEMS.[5] ... 32

FIGURE 9.ALGORITHM WORK FLOW ... 39

FIGURE 10 .BIT VECTOR TABLE .. 43

FIGURE 11 .QUERY EXAMPLE WITH PROCESSING TIME ... 44

FIGURE 12 .CALL OF THE STORED PROCEDURE ... 44

FIGURE 13 . SECOND CALL OF STORED PROCEDURE.. 45

FIGURE 14. PHP PROCESS RETURNING THE FINAL RESULT ... 46

FIGURE 15.BIT VECTOR BUILDING TIME ... 48

FIGURE 16.SECOND BIT VECTOR BUILDING TIME ... 48

FIGURE 17. PHP ALGORITHM... 54

FIGURE 18. PERFORMANCE ANALYSIS FOR A SIMPLE QUERY IN MULTIMEDIA DATABASE 55

FIGURE 19 . PERFORMANCE ANALYSIS FOR INNER JOIN QUERY IN MULTIMEDIA DATABASE 56

x

List of Tables

TABLE 1. SAMPLE MEDIA TYPES, FORMATS, AND RELATED DATA VOLUMES AND TRANSFER RATES [29] 7

TABLE 2. RUNNING TIME FOR DIFFERENT QUERIES .. 49

TABLE 3. SECOND RUNNING TIME FOR DIFFERENT QUERIES .. 54

1

Chapter One

Introduction

1.1 What is Multimedia Database?

Multimedia databases have become one of the puffs in Computer Science

technology. It is a recent evolution of the Internet and data warehousing, with countless

books and articles showing interest in the field. Many authors wrote about the evolution

of multimedia databases and ways to implement it. Multimedia is a mix of multiple

mediums - images, sounds, music, audios and videos etc. We use and handle media files

on a daily basis, and they are included in many applications such as artwork, teaching,

schooling, training, medical science, advertisements, and technical research. There are

two types of multimedia files--static and dynamic media. Static media are time-

independent media like text, graphics, and images; while dynamic media are time-

dependent (media that moves over time) objects like images, audio, and video. As long as

the development of the Internet and computer technology continues, multimedia files will

appear more and more in many applications. Multimedia will influence our existence. For

that reason, it is important and significant that the data files of multimedia objects are

arranged, ordered and categorized so we can simply access them at any time. Therefore,

2

multimedia databases are the necessary tool to handle and support these enormous multi-

media object files.

A multimedia database is a type of database that is similar to all other database

types except that it contains multimedia files in its collection. To organize and manage

multimedia data files, a multimedia database management system is needed. It is a

program that runs and directs the collection of media files and allows entry for end users

to retrieve multi-media file or objects. In general, multimedia databases hold images,

audio, video, animations and many other file forms. But, all files or data are saved in

binary form in the multimedia database. Figure 1 shows that the multimedia software

supports two operations: The creation and exploration of multimedia Databases

3

Figure 1: The informedia architecture. [28]

4

1.2 Types of Multimedia Data

Data types can be characterized as a number of different data types. The different

basic types of multimedia data type are reported as follows:

 Text: Text can be saved in many different forms. Texts are stored in the database

as a multimedia objects. Text fonts can vary allowing a more complex structure.

Colors, shades, bold letters can be added to any text before saving it in

multimedia databases.

 Images: An image is a collection of pixels that illustrate a division in the end

user's graphical presentation. The image size differs from one to image to another

according to its size, resolution, twist, complication, compact and cut used to

cache images. Well-known images formats are bmp, gif and jpg.

 Audio: Generated from an aural recording device, an audio file is a well-known

data category being merged in most of users’ applications. Many techniques are

used to compress audio files because they consume large space. A 1-minute

recording can take up to 3 MBs of space, for example.

 Video: a video file is a series of pictures (called sequence of segmentation), which

records and documents a real-life phenomenon and is produced usually by a

videotape keeper. It is the most space consuming of all multimedia data types. It

also depends on the design, compression and area of a particular framework. A

single frame can be 1 MB when saved in a file.

5

 Graphic Objects: Graphic Objects are special data structures that define 2D

objects as ordinary drawings, sketches, and illustrations, or 3D items. These

include multiple styles used by pictures or video software.

1.3 Multimedia Database Applications

Multimedia database implementation differs from regular database

implementation in the design of the media objects and files where the files are kept and

stored. Different characteristics of multimedia data represent the diversity of the data

since they are complex--composed of audio-visual data. Research shows that objects in

multimedia data are complex and involve a chained structure that can hold a connection

between them. Static media are time-independent like text, graphics, and images. For

instance, image files do not have time-related action because there is no connected time

factor. Video files, on the other, are dynamic, and have both time and dimensional

dependency. This is because the video is composed of multiple ordered image frames

which combine to form the video file.

Several implementations of multimedia databases are:

1. Documenting and keeping records

2. Distributing knowledge

3. Educating and Training

4. Marketing, Advertising, Entertaining, Traveling

5. Monitoring and real-time Control

6

1.4 Problem statement:

With the evolution of Internet and computer users, multimedia structure has a

greater effect on our daily life. That is why finding a new technique to easily retrieve

enormous multimedia information and files, at any point of time, is in high demand. Any

multimedia object can be generally described as a group of extended, shapeless series of

bytes. These objects are called BLOBs: Binary Large Objects. BLOB files are usually

very large in size, for this reason, database management systems provide particular

maintenance to insert, delete, modify or retrieve BLOB object from database.

Modern databases are frequently capable of storing BLOBs and CLOBs, Binary

Large Objects and Character Large Objects respectively, as columns in their tables. Data

stored in a BLOB column can be accessed using connectors and manipulated using

client-side code. Reading a BLOB from the database is a slow task considering the size of

a multimedia object. A BLOB can contain as much as 4 gigabytes of data for each field.

Multimedia database systems are thus required to provide an efficient cache of the BLOB

files, but this is not sufficient for multimedia implementation maintenance. Therefore, a

query of a prolonged continual series of bytes is restricted to a matching pattern and

reorganization of a BLOB multimedia object may return zero results due to missing

constructional information. Even if it can be realized, to draw out information of the

object in realistic time, for example working with pattern identification techniques, would

be unrealistic. For that reason, a multimedia database system should keep an analytical

structure of the BLOB files. Multimedia objects can be saved in smaller parts to allow

easier retrieval of BLOB objects based on content. Multimedia data is sizeable and have

an impact on the retrieval, insertion and manipulation of multimedia data files. The large

7

amounts of data to be processed can be checked against those that need to be processed.

Table 1 illustrates the enormous sizes of data for media file of different types.

Table 1: Sample Media Types, formats, and related data volumes and transfer rates [29]

Media Type Sample Format Data Volume Transfer Rate

Text ASCII 1MB/ 500 pages 2KB/page

B/W Image G3/4-Fax 32MB/500 images 64KB/page

-Color Image GIF,TIFF;JPEG 1.6GB/500 images

0.2GB/500 images

3.2MB/image

0.4MB/image

CD-music CD-DA 52.8MB/5 minutes 176KB/sec.

Consumer Video PAL 6.6GB/5 minutes 22MB/sec.

High quality video HDTV 33GB/5 minutes 110MB/sec.

Speech m-law,linear;

ADPCM,PEG audio

2.4 MB/5 minutes

0.6MB, 0.2MB/5 min.

8KB/sec.

Similar to the matching problems stated above, we need to handle the enormous number

of media data files with real time limitations. This seriously affects the design of the

network, software, and hardware. These constrains must be taken into consideration when

building any database system that handle multimedia objects.

Not all user queries can return answers in multimedia databases and may often

return inexact answers. The response to a multimedia query can be a complicated

multimedia disposition for the user to explore [4]. Many works have focused on returning

efficient answers to user queries but we still do not have real methods that return exact

media matching.

8

Our algorithm use a compress bit vector for multimedia data retrieval to fast

select files from the database. The method facilitates rapid searching of multimedia data

objects in a multimedia database. A single bit vector is used to determine matches for the

main query, returning a reduced set of multimedia objects instead of the entire

multimedia data object, thereby greatly reducing the query search time, increasing the

efficiency of the process by allowing the bit-level operations and minimizing the cost and

amount of data transferred. The execution time is exactly proportional to the size of input.

The algorithm complexity is of order O (n).

1.5 Thesis Organization:

The remainder of the thesis is arranged as follow:

In Chapter 2, we demonstrate related works made in the area of Multimedia Databases.

In Chapter 3, we give an explanation and description of the algorithm: compressed bit

vector for multimedia data retrieval. The algorithm will be tested and evaluated on real

data compared with the existing methods.

In Chapter 4, we summarize the contributions and achievements of this thesis, summarize

concluding remarks, declare the future work plans, and submit the list of publications

derived from this thesis.

9

Chapter Two

Background & Related Work

2.1 Introduction

Querying and retrieving information in multimedia databases differs from

traditional databases [8]. A fairly straightforward search can be done in alphanumeric

databases. Multimedia databases contain pictures and different complex multimedia data

objects, thus the database is not easily indexed, classified and retrieved [16]. How is it

possible to retrieve a picture with a cup of water or a horoscope sign? Those shapes are

difficult to recognize. Some retrieval classes for Multimedia Databases include:

 Retrieval by Browsing (RBR): Browsing multimedia objects to retrieve the best

matching file. For example, using a simple interface to let users browse small

images known as “thumbnails” to pick the image that matches the query.

 Retrieval by Metadata Attributes (RMA): Designing a query that addresses the

Meta and logical characteristics. For this purpose, any media file is stored with

information describing the file. For example, we will not query an image with a

bird but we will address our search to find which media handle the keyword ‘bird’

as its Meta information.

10

 Retrieval by Shape Similarity (RSS): It is a type of retrieval based on media

content. Searching in a multimedia database based on shape similarity of the file.

For example, retrieve all the images that contain a circle.

 Retrieval by Content Attributes (RCA): Query is sent with a detail describing the

file to be retrieved. For example, retrieval of all images that contain a specific

celebrity.

2.2. Retrieval by Browsing:

A user who requests the search for a specific file uses terms and details to

illustrate the retrieval system. Then, the software matches the query with existing

matching objects and returns a list of files to the end user for examination. The end user

then considers the retrieved files and picks items that exactly match his needs. This type

of retrieval works best in finding the exact requested file, but multiple problems appear

with its implementation:

1. End users find it hard to formulate queries

2. Queries may return only unwanted files and result in too many suggested

unwanted matches

3. Query terms are not properly valued

4. Multiple forms of image and audio files that need conversion

Different authors have proposed that browsing, which uses the human recognition

capabilities, can control and solve the above difficulties. Though, even the retrieval by

browsing is suggested to be a direction solving many problems in multimedia retrieval

11

and handling multimedia systems, but it is logically seen as difficult and time inefficient

task for humans to solve.

2.2.1 Comparing Browsing Model to Query Model

The browsing model is described as a dependent model that interacts with the end

user. In this model, the end user determines the direction of the search and handles the

output result from the system being browsed. While retrieval by browsing is an important

action of media searching in many systems, it requires time and effort from the end user

to handle it [27, 2].

To explain the browsing system; first users select a subset of objects from a

bigger database to start examining. Hundreds or more objects as selected before getting

the user’s exact request from an unstructured database using the attributes value (Figure

2). Figure 2 is a simplified image describing the filter made in complete database objects.

A subset of objects is returned to the user to be examined before moving to the next step

of choosing the desired media file.

12

Figure 2: Query as a Filter [27]

Searching a media file using the retrieval by browsing model requires the end user to be

placed in the organized database. The end user fetches this database based on the

received information (Figure 3). The user will fetch the whole database before focusing

on the files of interest. This model differs from the query based model even if the end

result looks similar. The browsing using query based model request the dynamic

reestablishment of the database based on the formulation of the query. In the browsing

model, the database remains unchanged; the user only searches the database by moving

around media files.

13

Figure 3: Browsing as Examination of Structure [27]

The requirements of browsing model are as follow:

1. The capability for end users to locate themselves in an area of the database that is

of interest.

2. The capability for end users to potentially identify suitable directions in which to

develop the search

3. The capability for end users to efficiently and rapidly proceed between the

database files.

2.3. Retrieval by Metadata Attributes

Generally, human beings have the power to retrieve and correlate information

efficiently. It is unfeasible to search millions of data by simply “staring” in order to

assemble diverse documents, which may involve texts, videos, audio and images files,

either alone or as multimedia items. Thus, we seek a simple technological multimedia

search based on known information of the file.

Metadata are data about data. Metadata can describe any data using different

categories: quantity, quality, materials, shape and different properties of the data as tools

14

to find, understand and access the data files. Metadata details can aid users to have an

explanation about the data being searched in multimedia databases. Figure 4 shows a

metadata example of the content of the picture file. The picture itself describes nothing

than an ordinary image with colors. Without having the metadata description associated

with the picture, it will be out of the question for machines to know the properties of this

picture. For example, if we would like to know when and where this picture was taken, or

its resolution etc., we turn to Metadata. All this information does is provide a key that

aids in specifying the properties of the image to be used in many applications [10].

Figure 4: “Metadata example of an image”[30]

In fact, content-based retrieval for multimedia objects is difficult work and returns the

same results as the metadata retrieval results. Content-based retrieval is still in its first

15

phase and could be unused in the near future until completely it becomes efficient.

Therefore, the retrieval of multimedia objects should depend on the related information,

noted as metadata of different characteristics.

The Metadata model requires descriptive information of the content, combined

with contextual information, saved in the multimedia database in reference to the

multimedia object, and used as an information tool for browsing search with a point of

association of a specific media. Descriptive information is valuable for searching a

multimedia object, and is of a major importance when contacting explored results where

the attribute, such as the photographer name, singer name or date, are applied to choose

and retrieve the file. The metadata representation of the file is flexible and adopts a

multilevel approach for describing the file to permit multiple particles to describe the

facts and figures of the file. The metadata model may be unusable to work on a single

level in describing a media file with multiple classes of representation. For an image, as

shown before in Figure 4, multiple descriptive data are associated with saved image snaps

that can provide accommodation in the model. For a video file in a broadcasting station,

there could be automatically produced information for each shot or segment that

describes the scene.

The metadata represents many aspects of the file including content-independent

information like the data and time or the location of the file, and content-dependent

information like a description of the shape and color of an object inside the image. Those

descriptions should give the user the ability to retrieve objects easily and thus, they are

the most critical data about the file. To construct the metadata of any file, there are two

processes to apply: an application operation and a data operation. These operations are in

16

different directions: bottom-up and top-down. In a top-down or application operation

arrangement, the abstractions and connections motivated by the class of queries for which

the associated details in the different media types is handled are relevant. In a bottom-up

or data operation arrangement, the metadata is extracted from the data. For this reason,

the relevant metadata is stored in the multimedia database in a different corresponding

table for many multimedia categories. Generally, media types have relevant and

irrelevant metadata, and each has its unique process to produce metadata. Media types

that are related to the domain and are content descriptive are perfect and appropriate

support to get the correct interaction. This is because the metadata information about the

file should connect all the definitions of the data, and accordingly catch as much media-

set details as possible.

C. Pratt reported a technique of retrieving data from a database BLOB (Binary

Large Object) data warehouse using SAS as the data analysis tool [32]. The Data

Warehouse architecture requires storing summary data in traditional database relational

databases and storing raw chip data in a multimedia database BLOB data type. With this

BLOB data type many opportunities have opened up for experiment with various

methods of retrieving data.Since the databases are fragmented among multiple machines

(due to the large data volumes), and to make it easy to register structure required to

access the inner parts of the BLOBs, a machine is set aside specifically to direct the client

applications and SQL users to the machine their data is on. This machine also provides

the information necessary to extract parts of the BLOBs. We refer to this machine as the

application director. At the database end, the objects would be too large to be practical.

With data volumes in the hundreds of gigabytes, adding descriptive information into the

17

records would explode the data storage requirements beyond reasonable limits. Objects

also allow us to store large numbers of data values.

After the storing of the object, we have to specify how to access this object. This

is where the registry comes in. The registry is a set of tables that define the type of object,

in this case the type is defined by the application, not necessarily a database data type)

and the contents of the object. Each object is comprised of elements that have a name,

type, and length. All of this information is stored in the registry. The query looks into the

objects and extracts that element, returning it as a column in the user view. An example

of a query is as follows:

SELECT

LOT,WAFER,CHIP,GETELEMENT(OBJECT1,D_VAL1)

 FROM DB.TABLE1

 WHERE LOT=’123456789’ AND

 WAFER=’ABCDEF’

This query gets the BLOB object1 in the database from TABLE1 table and finds the

D_VAL1 element in each object, returning it as a column in the table.

 Y. Velegrakis [33] described that several metadata management tools consider the

metadata as an integral part of the data, which means that metadata cannot be retrieved

without retrieving also the data with which it is associated. He showed that storing the

metadata in independent tables, associated to the data through the q-values, allows them

to be queried and retrieved independently. For instance, if a user would like to know the

sources that have been used to collect info of a file, he can simply query the metadata

table alone.

18

2.3.1 Metadata Classification

Different kinds of metadata are used to store multimedia information:

 Content Dependent: based on the content of the multimedia data. Examples of

metadata that rely on the content are the dimensions, colors, and pixels of a file.

 Content Descriptive: established on a description of the content of the media data

file. This description cannot be extracted automatically.

 Content Independent: metadata are independent from the content of the data.

Examples of this type are the edit-date of the file, the location taken and hardware

type used to record it. There are no details about the file content represented by

this type of metadata, yet they are always helpful to retrieve documents from their

real physical address.

2.3.2 Source of Metadata

Metadata [10] is selected from different origins that are obtained from system. Three

main classes or categories of metadata sources will be described:

 File content analysis: the first metadata information origin is the object itself. The

media object individually generates the metadata. A content analyzer extracts

keywords to fill the multimedia database from media objects; for example, to

recognize patterns or shapes inside images and describe them with corresponding

words.

 File context analysis: Metadata information about the media object can be

extracted if the media object is applied in a specific condition and data about that

19

condition is obtainable. A media object can be found in multiple conditions which

help us create many metadata about this single file.

 File usage: Metadata can be also extracted from the environment where the object

is used. This type of metadata is more adaptable and active than the other types of

metadata sources. The program, which extracts the metadata from the file usage,

records and registers the actual use of the file, and obtains the valuable

information to be saved.

2.4. Retrieval by Shape Similarity

The shape similarity concept has been universally explored and investigated for

many years in the field of multimedia databases. Given an object and a shape to model,

the specific program used should evaluate if the current object contains a similar shape as

the one described before. The program should take into consideration that the main object

could include noise, distortion and deformation compared to the shape in search. Thus,

computer scientists have to define the class of possible alteration that an object can

experience. For shape similarity retrieval [21], querying in multimedia databases will

determine which of the database object is the “same” as the given object.

2.4.1 Example

In a painting database, a user would like to retrieve the Van Gogh’s “Wheat Field

under Threatening Skies” (Figure 5 (a)). The user remembers that the bottom part of the

image consists of a yellow stripe and that there is a dark blue-sky background. Thus, the

user draws a sketch as shown in Figure 5 (b). If, however, the sketch query is given to the

system, the search will result with all the paintings in the database, sorted for their

20

similarity against the sketched image. If the database contains several images similar to

the query, the user may need to browse the list in order to find the correct painting.

Figure 5: Van Gogh’s Wheat Field Under Threatening Skies (a) and the sketch of a query to retrieve it (b)[31]

To analyze images, we should detect the edges and return results about the shapes

of the object based on the edge detection method. The edges give information about the

shapes contained in the image file. The definition of the edge can be defined as a set of

contiguous pixel positions where an abrupt change of intensity of values occurs. Different

techniques exist to detect the edges of an image, yet all of them could be categorized into

two groups: zero-crossing based and search-based. To detect edges, zero-crossing

techniques fetch non-intersections in a second sequence determined based on the image.

Before moving to detecting the edges, another stage of flattening or smoothing is usually

implemented. Search-based techniques find edges by determining an estimation of edge

intensity and then exploring the image for limited dire ctional extreme of angles, working

with a determined estimation of the limited edge position.

All the techniques used to detect edges that have been reported vary in the

category of applied filters that flatten and smooth the images, in the method that

21

computes the weight of the edge, and in the category of filtering that are used to

determine the estimated directions of x and y.

The main complication with edge extrication applying the gradient operators is

spotting the edges from only one direction (either vertical or horizontal). To function

correctly, the process of image retrieval requires the feature of extrication, which in turn

requires extracted edges to relate between returned borders. The detection of edges from

an image is not an easy task to be solved. For example, if we want to detect edge from the

following signal of single dimension:

5 7 6 4 152 148 149

We may simply realize that there must be an edge between the 4th and 5th pixels.

If the power of color intensity is much smaller between the 4th and the 5th pixels, and the

power of color intensity touching the adjacent pixels were bigger, it could be more

difficult to note that an edge exists in this simple area. This case is illustrated in the

following signal example:

5 7 6 41 113 148 149

22

Therefore, to determine an exact threshold on the power of the intensity variable between

two adjacent pixels, the software needs to extract the clear edges, which can be a difficult

task to accomplish at times. Actually, this is one reason of many that explain why

detecting edges is not a trivial task except if the image object is an uncomplicated

representation and the neighboring pixels can be clearly seen.

2.4.2 Edge thinning:

The edge thinning method is applied to delete undesirable fake spots from image

edges. This method is applied following the filtering of the image from any noise using

techniques like Gaussian filter, similar to the technique described above .We apply the

edge process method to find and extract edges after the edges have been flattened,

working with an associated value of threshold. This method deletes all the undesirable

spots and produces a single thick pixel edge. The major benefits from the technique are as

follows:

1. Intense and fine edges act as a guide for better recognition of objects.

2. Thinning techniques can result in better performance than any other

technique applied.

3. Thinning can simply return the parameter of the picture without using

complex equations.

There are many popular algorithms used to do this. One such algorithm is described

below:

1. Choose a type of connectivity, like 8, 6 or 4.

23

2. Connectivity 8 is preferred, where all the immediate pixels surrounding a

particular pixel are considered.

3. Remove points from north, south, east and west.

4. Do this in multiple passes, i.e. after the north pass, use the same semi processed

image in the other passes and so on.

5. Remove a point if:

a) The point has no neighbors in the north (if you are in the north pass, and

respective directions for other passes).

b) The point is not the end of a line.

c) The point is isolated.

d) Removing the points will not cause it to disconnect from its neighbors in any

way.

6. Otherwise, keep the point.

The number of passes across directions should be chosen according to the level of

accuracy desired.

2.4.3 Multimedia Shape Retrieval Classification

To retrieve objects from multimedia databases based on their semantic content, end users

have to be capable to retrieve media object based on their content by:

 Terms or expressions that involve descriptive texts of the media file or

object. For example, end user may want to retrieve a film name by

reporting a story line or plot. To answer this query, the system needs to

measure similarity of text content and match it with the suitable object.

24

 Characteristics of the multimedia file. For any multimedia database

system, graphical user interface form is generally used to send this sort of

queries. An example of this is when the user is able to upload a similar

image and requires the retrieval of all images that are close or near the

original one. The system should act with the overall image to retrieve the

requested file, for example checking the color and shade distribution of the

main image. The request can also be sent by the user, who specified a

specific color and wants to retrieve all the images that have this same

color. To answer these kinds of requested queries, we need a similarity

measure of characteristics to extract multimedia objects.

 Visional resources and interconnection structures of the files that appear to

the multimedia file. These queries can be sent with query language. For

example, a user can upload a picture and request to add some descriptive

information to retrieve image from the database based on similarity.

Retrieved images represent some interconnected structure with the original

uploaded image. Image examination and analysis is required to answer

this kind of query to extract complex objects from images.

 Real resources and interconnection of the theoretical objects that appears

in multimedia files. Real resources and interconnection of theoretical

objects can vary between their visional resources and interconnections in

media objects. As an example, the visional resources and interconnections,

lower-upper, large-small in a picture can be identical in reality to near-far.

25

 Time related functions of theoretical objects that exist in multimedia

object. As an example, the user can identify many theoretical objects and

their time related interconnection, then require retrieving objects that have

similar behavior with the original object. To answer this kind of query, an

analysis of media objects and specification of the object performance if

needed.

2.4.4 Multimedia Shape Retrieval Tool

To retrieve an object from a multimedia document, we use an Object Extractor

tool. This is a semi-automatic tool employed to retrieve objects from media files like

videos or images. The retrieved image characteristics are usually the appearance

information and the colors used of the objects. The entire image colors can be saved to

answer queries that question specific colors. The shape can also be saved to respond to

queries that request shape similarity.

26

Figure 6:Overall Architecture of Object Extractor.[14]

The Object Extractor tool operates on pictures and videos. The technique applied for the

two kinds of data is extremely similar because video slots can be managed as one image.

The Fact Extractor tool for video frame database systems manages data of the video and

builds key frames of this video. Hence, videos can be handled in the Object Extractor tool

via their extracted key frames.

27

procedure FloodFillforExtraction(Pixel p)

// INPUT: a single pixel p

// the INITIATIVE_PIXEL is global to the method and

// it holds the user-clicked pixel

1. if (pixelProcessed(p))

2. return;

3. endif

4. setProcessed(p);

5. if (thresholdPassed(p, INITIATIVE_PIXEL))

6. paint(p);

7. FloodFillforExtraction(left(p));

8. FloodFillforExtraction(right(p));

9. FloodFillforExtraction(up(p));

10. FloodFillforExtraction(down(p));

11. endif

endprocedure.

Figure 7:Flood ll for extraction (FFE) algorithm

The pseudo-code algorithm given in Figure 7 works with images as an algorithm

of Flood Fill for Extraction (FFE). The algorithm works by redrawing a few image pixels

and the end user can carry on extracting multiple times according to his/her needs. To

start the algorithm, the user has to click on a pixel. This pixel is saved in the

“INITIATIVE PIXEL” to be managed later on in the process. The first line examines the

end condition, and the fourth to eleventh lines recursively work to continue the process.

28

We deal with every pixel one time due to the “if statement” that appears in the starting

point. For this reason, the algorithm works faster in processing extraction. Line five tests

the threshold by assessing the Euclidean distance between color vectors of the two pixels,

namely “p” and “INITIATIVE PIXEL.” If this test succeeds, the algorithm redraws the

pixel “p” and then recursively calls itself for the neighboring four branches. The

algorithm stops working when no branches left to be executed in the recursive tree.

2.5. Content Base Retrieval

Content-based retrievals are more desirable in multimedia database systems [15].

For example, searching for a suspect according to a witness's description in a large image

database of criminal faces is a very arduous task to complete. In this case, content-based

retrieval is the most preferable, since it has the nature of visual and similarity-based

methods. Sometimes, content-based retrieval can become fuzzy because the result is not

always exact. For example, there may be several hundred thousand facial images in this

criminal identification system. “Finding something similar to another object” explains the

similarity-based query types of content based processing [11]. For images, we can test the

color ratio, patterns, shapes and relations between objects in an image. For sounds, we

can test a melody or a note model inside a section of audio. Also, spoken words in a song

are likely to be recognized.

To retrieve multimedia files using the content-based technique, visual methods

are dropped and alternate search based method of the content of the multimedia file itself

is applied. Numerous studies have explored the techniques of retrieval based on the

content of the object. For images and video shot, content can cover the shades, colors,

material, shape, etc. For audio files, the content can include notes, melody, rhythm, etc.

29

For retrieval by content, the media files are saved as computerized representation of the

media objects. To retrieve information from a media file, the results are always fuzzy.

The user will not get the exact requested results he/she desired. To help in retrieving the

precise file, indexing and metrics should be used, but the user will always have the last

decision in recognizing a query results. The query below fetches all images that contain a

person:

SELECT m

FROM Images m, Persons p

WHERE m contains p

Two types of errors can be found when running this query:

1. False results returned by the query as a solution, and

2. Absent results that need to be a result, but they are not found in the

query answer.

To compute the success of any query in content-based retrieval, we use two metrics that

are described as follows:

1. First the precise answer, which computes the correspondence between the number

of objects returned and the total returned object number by the query as a

response.

2. Second the recall, which computes the correspondence between the accepted

returned objects and the entire number of accepted objects in the whole group.

30

The two measures above can vary between [0, 1] as an answer. The purpose is that they

return a value closer to 1 in order to be adopted. The elements that guide them both hang

on the application. Both measures only have conceptual values because the end used is

the only person who will declare the degree of correctness of any results returned by the

query. Normally, any image content is composed of many objects that form this image.

The application decides if those objects inside the image are valuable to the query posed.

These vary on many levels considering the location where this object is placed inside the

image and other descriptive properties.

2.5.1 Content Base Retrieval for Images

The need to discover and find a specific image from a collection of different kinds

of images is becoming a necessity to many academic fields and professions including

design engineers, journalists and investigators, medical professionals, trend setters,

clothes designers, planning professionals, construction workers, and crime prevention

specialists to name a few. Not much has been brought public for users to search images.

Attempts are now being worked on to classify the user’s way of behaving to permit for

better results in the future.

To search an image saved in multimedia database, the image is split into equal

sized rectangular cells that are labeled segments. The process of segmentation will be

described later on. A connex region ℜ is a cell set, such that if (x1,y1)∈ℜ and (x2,y2)∈ℜ,

then a cell sequence exists: C1, C2, … , Cn in ℜ and C1=(x1,y1), Cn=(x2,y2) and

Euclidian distance between Ci and Ci+1 is 1, for i ranging between 1 and n. A

homogeneity predicate that associates with an image is a function H that gets a connex

region ℜ from the image and returns true or false (for example, H is true is more than

31

100xδ% from the cells in the respective region have the same color - δ∈[0,1]). An image

segmentation according with the predicate H is defined as being a set of regions R1,

…, Rk, so that:

Ri ∩ Rj = 0 for any 1≤ i ≠ j ≤ and I=R1 ∪ … ∪ Rk

H(Ri) = true, for any 1≤ i ≤ k, and

for any 1 ≤ i ≠ j ≤ k, if Ri ∪ Rj is a connex region, H(Ri∪Rj)=false.

Generally, the method does not take into consideration all image pixels since the pixel

number can be very high. A typical approach is to modify the matrix of the image in a

compromised description. The methods that are mostly used are Discrete Fourier

Transform (DFT), Discrete Cosine Transform (DCT) and Wavelet. Two procedures are

available for content-based retrieval linking two images: function based on distance and

function based on the transformation cost. Databases currently represent images in two

ways: either as relationships or as dimensional data structures. Generalized R trees are

similar with R trees, except that they contain a set of Generalized Bounding Rectangles

(GBR), which are represented by 2x(n+2) fields that correspond to the lower/upper

bounds for each dimension.

2.5.2 Content Base Retrieval for Video

A video is a chain of scenes that are collected by snaps, which are frame series.

The frame can be described as a fixed image. A snap (or shot) is a continuous act related

to time and space. Finally, a scene is a series of snaps with similar semiology [6, 26]. To

work on a video, the video is required to be logically divided into uniformed parts of

segments. This function of segmentation is the earliest step in order to start the content-

based search on video, facilitating the search of specific objects in a video. The methods

32

of video segmentation find out where the snaps have been chained or linked together [9].

First, to analyze and browse the content of a video, it is divided into snaps (or shots). As

described above, a snap is a series of image that represent a continuous act from one

camera, which captures many snaps in milliseconds. Then, those snaps are linked

together to build the final and complete video. Snaps may be described as the smallest

part of a video. We need to analyze these snaps to better organize the content-based

retrieval through inter and intra snaps connections. Video segmentation segments the

initial image frame and then it marks the development of the objects in motion. After the

segmentation process of image objects for every frame, many implementations can be

done on these segmented objects once they have been extracted, like studying the object

in each segment and content-based retrieval of a video. A video is described to be a set of

snaps connected together using specific tool [5]. To extract objects from video segments,

the detection of time related border (as shown in figure 8) is required.

Figure 8.Content based video retrieval systems.[5]

The next step is to represent compressed segments as FS (Frame-Segment) or RS trees.

The FS trees propose to mainly create a table to be associated with every object found in

33

a segment. The FS Tree joins each node to the area in which the frames from the sub-tree

that is dominated by that node are found. The indexing method associates each range

with two tables, one with objects and one with activities. Each of the elements of these

tables is an ordered list of pointers to the nodes from the FS tree, which contains the

respective objects/activities. The RS trees are similar to FS trees with one major

exception. The concepts of object vector and activity vector remain the same, but the

(start, end) frames, which are actually rectangles of e-s length and width zero, are stored

instead in an R tree. That will be extended to show which are the objects/activities for

each rectangle. The RS tree’s advantage is that on each disk access they bring into

memory more than one rectangle, those being in fact proximate rectangles. The main

purpose of video segmentation is to recognize the file partition in a recoded video. Every

file has to be sufficiently small to maintain only one subject, at the same time it should be

sufficiently long to permit the system to decide if it is applicable or not. Yet, the video

can have other specifications that could help in finding the file partition. For example, the

detection of speech/non speech can identify a change in the subject.

The system will compare the color and orientation histograms in adjacent frames, analyze

motion flow and track audio. The main problems in segmentation systems are transitions

like wipe, fade, and cross-dissolve; camera motions such as pan, zoom, etc.; and moving

objects occupying a large percentage of the image.

2.5.3 Content Base Retrieval for Audio

Research and analysis of the retrieval by content-based domain has mainly

focused on retrieving image video data. But, with the rise of services like Voice over IP

and fast packet switching networks, audio-content based is now a highly attractive study

34

area. Many recorded audio files deal with multimedia implementation. They are deployed

effectively if the system has the capability to categorize and retrieve recorded voice

objects based on sound effects. Fast growing audio database needs require the search of a

technique that could efficiently search for audio files based on content. [13, 17, 23, 24].

Similar to image and video content, any audio content could be drawn out by

special characteristics like amplitude, frequency, etc. The most used methods for audio-

content are to divide the signal based on time to have smaller parts that contains similar

properties. The division is done with a single step utilizing similarity predictor.As soon as

the audio is divided into segments, it can be seen as smaller slots series w1, w2, …, wn.

Every slot has “k” relevant features that can be extracted. Thus, we get “n” points in a

(k+3)-dimensional space (audio source file, the window and its duration add to the k

features of the signal). Obviously, this approach is unrealistic since only ten minutes can

produce 100.000 windows. Therefore, adapted compression techniques (DFT, DCT) have

to be applied in this case, too. If the user requests a query as: select each audio that

contains a close sound, a DFT will work with this query to search the nearest results.

In a major new research, a system named “Muscle Fish” is introduced. This

project differed from other content-based retrieval of audio by its ability to efficiently

retrieve objects. Many properties are considered in this “Muscle Fish” system like

bandwidth, pitch, tone, accent, and vibration. They used these features to present an audio

file. Rules used to classify the audio in groups inside the media database are a normalized

Euclidean distance and the nearest neighbor (NN).

35

In addition to the “Muscle Fish” system, a search done by Liu et al. [6], the same

properties are employed, with the addition of sub-band energy ratios. To separate

different groups, sounds are evaluated using the intra- and inter-class feature to specify

the extremely harmonized property, then a grouping of the objects is done by the use of a

neural network.

36

Chapter Three

Using Compressed Bit-Vector for Multimedia

Data Retrieval

3.1 Introduction

This chapter is dedicated to the description of a new algorithm using a

compressed bit vector for multimedia data retrieval, which will help in accelerating the

queryw response time in multimedia databases using any retrieval type.The multimedia

system evolution that successfully experience retrieving and giving important

information extracted from a huge multimedia database system mostly rely on the proper

and existing implementation of the media accessing methods corresponding this

application. The existence of an enormous volume of media data files questions the

aspects of the management of multimedia objects and the problem of implementation.

Typically, queries in multimedia database are multidimensional and have complex

selections. Users that request specific queries in multimedia databases usually find it hard

to find answers to all requirements. Due to these characteristics, Bit-vector indexing

techniques have shown promising results for processing multimedia databases. A

significant advantage of the bit-vector technique is that complex logical selection can be

performed very quickly via bit-wise AND, OR and NOT operators. In this paper, we

further explore the issues of query acceleration using bit-vectors, and we concentrate on

37

optimizing one of the query operations “Selection,” which is further discussed with

simple queries, and the more complex queries using the four different types of joins: hash

join, inner join, merge join and nested loop join. Although bit-vectors can be space

inefficient for high cardinality attributes, but the space for the compressed bit-vectors

works best compared to other techniques.

A bit-vector is a vector or array of data that stocks bits briefly. A bit vector is time

composed from the bit values of the collection {0, 1}. Bit-vector is a term applied here to

denote a large classification & indexing plan that stocks index as bit sequence. A bit-

vector is a bit string in which each bit is mapped to a record ID. A bit in a bit-vector is set

to 1 if the corresponding ID has a property “P” and is reset to 0 otherwise. The property

“P” is true for a record if it has the value “x” and attribute “X.” The query selection can

also involve many attributes. Many bit-vectors have proved to work efficiently in

database implementation. Bit-vectors permit vectors of bits to be stocked and handled in

the memory set for extended time phases. Bit-vectors can potentially explore bit-level

similarity, utilize the data cache to the max, and minimize access to memory. Bit-vectors

usually work best in different data forms on reasonable data sets, and on those that are

efficient asymptotically. To further improve their effectiveness, we will study their

compression scheme, which will potentially minimize the area used without expanding

the managing time of the query.

Generally, a bit-vector is stocked as a group of bits and the majority of operations

on regular bit-vectors are logical bitwise operations. Considering our concerns in using

the bit index on huge databases, the main aid is to reduce the sizes of the index. Plus, we

also wish to be able to efficiently execute logical operations on the compressed bit-

38

vectors. A problem with using uncompressed bit-vectors is their large size and possibly

of high expression assessment costs when the indexed attribute has a high cardinality. A

single technique to deal with using bit-vectors on high-cardinality attributes problem is to

store them in a compressed bit-vector form. Using compressed bit-vectors has multiple

advantages that potentially adjust performance: minimized disk space needed to stock the

indices, faster reading of the indices from the disk into the memory, and more cached

indices in the memory with this compressed form [19]. Some Boolean operation

evaluation algorithms, which operate on compressed bitmaps without having to

decompress them, might be faster than same operations on the regular bit-vectors. The

scheme for compressing data, in addition to transforming data, guides the reducing of

enormous volume required. The technique here is to alter the issued multimedia data bit-

vector to another modified area to eliminate the redundancies in the real data.

A bit vector “B” of “u” bits can be represented as B[0::u). It can be stored in

uH1(B) bits so that the operations can be answered in constant time. We will only save

the 1-bits in if the response to the query is true. With this representation of “B,” we can

access any block of size “b” in constant time, which is sufficient for implementing rank

and selecting as we just saw. In addition, access queries can be answered in constant

time, too.

Decompression is made from the backwards process to re-transform and decode

the data to its native origin form. This operation generally encounters some data loss,

which is a major problem of multimedia applications. Our algorithm will try to ensure

negligible loss of data when retrieving information.

39

3.2 Algorithm Details

Our algorithm, compressed bit-vector for multimedia data retrieval, uses bit

vectors to return exact answers to any query in multimedia databases, with any retrieval

process used. For example, a specific shape may be compared to a number of pictures in

a multimedia database to find a picture or many pictures with the same characteristics.

The search may result in either one or more matches found, or no matches at all in a set

of objects in the multimedia database.

Figure 9: Algorithm work flow

40

The above Figure 9 is an exemplary operation on how a query can be handled in

searching for a specific attribute in a multimedia database. First, a receive query

operation receives a query item. When a user requests a query in multimedia database

with some attribute, a bit vector index is created for each attribute. Each bit vector index

indicates whether each of the attributes in the selected database does or does not exist in

any of the retrieval strategies used. When a query is received, the bit vector indices

associated with each of the selected attribute values are then logically ANDed together to

form a single result bit vector index. The result bit vector index identifies a reduced set of

accepted IDs of the data table containing the multimedia objects. This reduced set of IDs

in the multimedia data objects returned by the bit operations may then be quickly

searched using a linear scan to determine a match or matches for the query point. To

retrieve resulting matches, we simply select the IDs of the query table that contain a “1”

bit in the bit-vector.

Following is the stored procedure used in building the bit vector of the specified

attributes for any query in multimedia database. For simplicity and straightforwardness,

we used the “retrieval by meta and logical attributes” strategy in a real university

database.

43

Figure 10: Bit vector table

3.3 Experimental results:

To explain our algorithm, we will interpret and evaluate the finding results. The

following discussion will focus on the application, appropriateness and usefulness of the

bit vector algorithm for multimedia database retrieval using metadata attributes that

represent the simplest way to retrieve media files.

The first research query was to select all information about students that belong to

a specific campus in a specific major. We ran our algorithm on a database table

containing multimedia files. We used a traditional database application that uses fixed

sized data, but the multimedia size of data can vary dynamically. All unformatted data

(mainly text and images) has been handled in this database system through BLOBs. They

44

usually support only a few generic operations, such as reading or writing parts of BLOB.

The first table used is the student application table with student images in each record.

The table includes more than 51,000 records of student information. The tested query

involves retrieving the student images that match certain required parameters. The

outcome result will determine the time it took to handle this simple query.

Figure 11 :Query Example with processing time

Figure 12 :Call of the stored procedure

47

In this simple query, the program indicates that it requires an execution time of

107.334 seconds. This means that there is a need for a method to run queries and return

results in a more efficient time. The stored procedure, described above, is used to build

the bit vector for the same simple query. A stored procedure is built for every attribute

value in the query. After selecting the first attribute, a bit vector table is created and saved

in the database. A second bit vector is created for the second attribute. Figures 12 and 13

show the time to create both bit vector tables. Creating both bit vector took:

0.799+1.446 = 2.245 seconds.

Next, we will “AND” all bit vectors created to maintain the final bit vector. Figure 14

illustrates how both bit vector tables are “ANDed” using a PHP function. Using a time

calculator, the retrieval of student images took 3.84 seconds to display on the website.

We have also tested our algorithm on different kinds of queries. Other than the

simple query noted above, we used two attributes for tables with an index. We ran our

algorithm on simple queries using two attributes for tables without index, then for

complex query using hash join, inner join, and nested loop join. Results obtained will be

saved and discussed. To test our algorithm on another more complex query, we will use

the “inner join” type. For example, we will try running our algorithm with the following

query:

SELECT id

FROM applications

INNER JOIN majors on applications.mjrid=majors.mjrid

48

WHERE attribute1=’a’ and attribute2=’b’

The time it took to build the results of this query in the regular case is: 112.182 seconds.

For our algorithm, the time registered to build both bit vectors is as follow:

Figure 15: Bit vector building time

Figure 16: Second Bit vector building time

Furthermore, the processing time to display the result is: 3.6691 seconds.

The required total time for the overall process is: 10.73 seconds

The previous results show the efficiency and rapidity of searching of multimedia

data using the bit vector algorithm with the metadata retrieval system. The following

table shows the time of different kinds of queries with and without applying our

algorithm:

49

Table 2: Running time for different Queries

Query Type Running Time Without

Bit-Vector Algorithm

Running time With Bit-

Vector Algorithm Using

Stored Procedure

Query with Attributes For

Table With Index

107.33 seconds 6.87 seconds

Query with Attributes For

Table Without Index

121.54 seconds 11.28 seconds

Query with Inner Join 112.18 seconds 10.73 seconds

Query with Hash Join 106.53 seconds 5.53 seconds

Query with Nested Loop

Join

107.87 seconds 6.71 seconds

Query with Merge Join 107.12 seconds 6.54 seconds

To further develop our algorithm, we wrote it without a stored procedure function.

A Code that generates the bit vectors stored on the web server functioned as the bit

vector. The query selected each attribute alone to retrieve the IDs that match the query

results. Then the bit vector was saved in the memory using a key and a value. The key

corresponds to the media file ID in the database, and the value corresponds to {0, 1} of

the bit vector. To compress our bit vector, we only saved the 1 bits in the memory. After

saving the bit vectors for each attribute, we added the “AND” or “OR” in the bit vectors

according to the query requirements to get the final IDs that respond to the query result.

54

Figure 17: PHP Algorithm

We ran and tested the algorithm that uses PHP to build bit vectors on the same query

types tested before. Results are presented in Table 3.

Table 3: Second Running time for different Queries

Query Type Running Time

Without Bit-Vector

Algorithm

Running time

With Bit-Vector

Algorithm

Using Stored

Procedure

Running time With

Bit-Vector

Algorithm Using

PHP Code

Query with

Attributes For

107.33 seconds 6.87 seconds 7.64 seconds

57

Our bit vector for retrieving media files algorithm was proposed and tested on real

data. In fact, Bit vector indexing techniques have shown promising results for processing

multimedia databases. We have explored the issues of query acceleration using bit

vectors, and we have concentrated on optimizing “Selection” in query operations, which,

applies with simple and more complex queries using the four different types of joins:

hash join, inner join, merge join and nested loop join. To optimize the results returned,

our method uses a compressed bit vector to save the accepted rows of information. This

method guarantees fast and efficient query results. This technique also minimizes the cost

and amount of data transferred. Our test results show that the simplest approach towards

solving queries in multimedia database is the linear scan. This approach outperformed

more complicated approaches.

58

Chapter Four

Conclusion

4.1 Conclusion

In any system, a query is produced, assembled and complied. Then, an

implementation tree is generated to obtain results. Optimization is more complex

considering the heavy, confused or fuzzy expression or retrieval by content-based.

Furthermore, optimization has to be globally approached. To generate output, the system

considers that query expression weights and value of attributes have been employed to

compute the importance of several outputs and to present them to users. The output

results need to be registered quickly and have better quality.

Almost all multimedia data files have to be categorized as an n-dimensional.

These data files require particular indexing and retrieving techniques. The urge to

question the performance in the retrieval action require work with multi-dimensional

indices, media object clustering and content-based retrieval. As these kinds of querying

are usually slow in multimedia databases, a new customization technique to retrieve

multimedia files was needed.

In spite of the remarkable advancements of conceptual research in retrieving

multimedia data, there has been small influence on the speed of any query in multimedia

database retrieval. One promising approach is to use a compress bit vector for multimedia

59

data retrieval to fast select and or combine appropriate features. The method described

above facilitates rapid searching of multimedia data objects in a multimedia database.

When a query is received, each attribute is sent in the multimedia database is divided into

a number of bit vectors. A single bit vector is then formed, returning the joint different

results of each attribute bit vector. This bit vector is then used to determine matches for

the main query, returning a reduced set of multimedia objects instead of the entire

multimedia data object, thereby greatly reducing the query search time and increasing the

efficiency of the process by allowing the mix of integer and bit-level operations. The

compressed bit vector method is used to perform operations quickly, to reduce the query

response time and to minimize the cost and amount of data transferred.

4.2 Future Work

We are currently working on using this compressed bit vector to construct

abstractions to be used for more powerful concurrent query analyses in multimedia

databases, such as saving repeated queries in existing libraries. This may lead to more

efficient and faster query response time.

60

References

[1] A. Analyti and S. Christodoulakis, “Multimedia Object Modelling And Content-

Based Querying”, Multimedia Systems Institute of Crete (MUSIC), Crete

Technical Univ., Dept. of Comp. Sci., Greece, Technical Report Chania 73100,

2000

[2] A. Burad, “Multimedia Databases”, Indian Institute of Technology, Dept. Comp.

Sci., India, 2006

[3] G. Chechik et al., “Large-Scale Content-Based Audio Retrieval from Text

Queries”, MIR’08, Vancouver, British Columbia, Canada, October 30–31, 2008

[4] K. Cox, “Information retrieval by browsing”, Hong Kong Univ., Dept. of Comp.

Sci., Technical Report, 1992

[5] R. Fagin, “Fuzzy Queries in Multimedia Database Systems”, IBM Almaden Res.

Center, California 95120-6099, 2000

[6] J.T. Foote, “Content-Based Retrieval of Music and Audio”, Ph.D. dissertation,

National Univ. of Singapore, Institute of System Science, Singapore 119597,

1999

[7] D.A. Forsyth, “Benchmarks for storage and retrieval in multimedia databases”, ,

Ph.D. dissertation, Berkeley Univ., Dept. of Comp. Sci., CA94720, 2002

[8] D. Grangier and A. Vinciarelli, “Effect of segmentation method on video retrieval

performance”, the Swiss National Science Foundation Res.Lab., Switzerland, CH-

1920, 2005

[9] G. Guo and S. Z. Li, “Content-Based Audio Classification and Retrieval by

Support Vector Machines”, IEEE Trans. on neural networks, vol. 14, no. 1,

January 2003

[10] O. kalipzis, “Query Processing in multimedia database”, Journal of applied

science, vol. 2, pp. 109-113, 2002

[11] H. B. Kekre et al., “Image Retrieval with Shape Features Extracted using

Gradient Operators and Slope Magnitude Technique with BTC”, International

Journal of Computer Applications (0975 – 8887), vol. 6, no.8, September 2010

61

[12] H. Kosch and M. Döller, “Multimedia Database Systems: Where are we now?”,

Klagenfurt Univ., Dept. of Comp. Sci., 65/67, A -9020 Klagenfurt, Austria, 2006

[13] H. Kosch et al., “SMOOTH - A Distributed Multimedia Database System”, in

Proc. of the 27th VLDB Conf., Roma, Italy, 2001

[14] G. Li and A. Khokhar, “Content-based Indexing and Retrieval of Audio Data

using Wavelets”, Univ. of Delaware, Dept. of Elect. and Comp. Eng., Newark,

DE 19716, 2000

[15] W. Li et al., “Facilitating Multimedia Database Exploration through Visual

Interfaces and Perpetual Query Reformulations”, in VLDB Conf., Athens,

Greece, 1997

[16] Z. Li, Content-Based Audio Classification and Retrieval Using the Nearest

Feature Line Method (China, Microsoft Research, 2000)

[17] L. Lord and C. Pratt, “Retrievals from DB2 BLOB (Binary Large Objects) Data

Warehouse Using SAS”, Ph.D. dissertation, Vermont Univ., Microelectronics

Division, Essex Junction, 2000

[18] X. Ma et al., “Content based Video Retrieval, Classification and Summarization:

The State-of-the-Art and the Future”, 2010

[19] C. Negoita, and M. Vladoiu, “Querying and Information Retrieval in Multimedia

Databases”, IEEE Trans. on neural networks, vol. 8, no. 2, 2006, pp. 73-78,

2000.

[20] B. V. Patel and B. B. Meshram, “Content based video retrieval systems”,

International Journal of UbiComp (IJU), vol.3, no.2, April 2012

[21] M. Patella. “Similarity Search in Multimedia Databases”, Ph.D. dissertation,

Univ. Degli Bologna, Dept. of Comput. Sci., 1999

[22] T.C. Rakow et al., “Multimedia Database Systems - The Notions and the Issues”,

Technical Univ. of Darmstadt, Dept. of Comput. Sci., Technical Report D-64293

Darmstadt, Germany, 1999

[23] C. Ribeiro and G. David, “A Metadata Model for Multimedia Databases”, Univ.

of Porto, Dept. of Elect. Eng., Technical Report INESC Porto, 2004

[24] V. Roth, “Content-Based Retrieval from Digital Video”, Inst. fur Graphische

Datenverarbeitung, Technical Report D-64283 Darmstadt, Germany, 1999

62

[25] H. Samet, “Techniques for Similarity Searching in Multimedia Databases”,

Center for Automation Research, Institute for Advanced Studies, Dept. of

Comput. Sc., University of Maryland, College Park, MD 20742, 2008.

[26] E. Saykoly et al., “A Semi-Automatic Object Extraction Tool for Querying in

Multimedia Databases”, Bilkent Univ., Dept. of Comput. Eng.,Sci. Report 85,

Ankara, Turkey, 2003

[27] D. Schonfeld and D.Lelescu, “VORTEX: Video Retrieval and Tracking from

Compressed Multimedia Databases - Visual Search Engine”, in the International

Conference on System Sciences, Hawaii, 1999

[28] D. Srivastava and Y. Velegrakis, “MMS: Using Queries As Data Values for

Metadata Management”, In ICDE, 2007.

[29] A. de Vries, “Content and multimedia database management systems” Ph.D

dissertation, Centre for Telematics and Information Technology, Univ. of

Twente, Netherlands, 1999

[30] J. Wu, “Content-Based Indexing of Multimedia Databases”, IEEE transaction on

Knowledge And Data Engineering, vol. 9, no. 6, November/December 1997

[31] K. Wu et al., “Notes on Design and Implementation of Compressed Bit Vectors”,

Proc. of the 27th VLDB Conf., Roma, Italy, 2001

[32] Y. Zhai et al., “Video Understanding and Content-Based Retrieval”, 2005

