Software Maintenance Tool

By
Rabe’ah H. Yassin

PROJECT

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science
at the Lebanese American University
May 1995

Signatures Redacted

Dr. Nashat Mansour (Advisor)
Assistant Professor of Computer Science
Lebanese American University

Signatures Redacted

N y — -
DY. Mohdnimad Kodeih
Assistant Professor of Computer Science
Lebanese American Universily

UG

Abstract

This report describes a software maintenance tool that reduces the maintenance effort and
cost, Its goals are: to provide consistent documentation of a software system during both
its development and maintenance phases; to help maintainers understand the architecture
and algorithm of a software system without having to go over the actual code or paper
documents; to identify any interrelationship between the various paris of a software
system so that maintainers can better determine the affected and involved parts in a
maintenance change; to provide a disciplined procedure to implement any maintenance

action.

An important feature of this tool is dealing with the version control problem which is
needed in any baseline, where multiple versions of the same software and its parts are
present, facilitating the identification of each configuration of a software system and its

constituent parts at any one time.

Acknowledgment

First of all, T would like to thank my advisor, Dr. Nashat Mansour, for his grateful
guidance and advice. Many thanks go too for my second reader Dr. Mohammad Kodeih
for his precious comments. Also I would like to thank Mr. Kamal Haidar and Mr. Jalal

Kawash for their assistance in using the Oracle tools.
Last, but not least, I would like to thank the Natural Science Division chaired by Dr.

Ahmad Kabbani; and Mr. Vatche Papazian and the ACC staff for the facilities they

offered me that helped in developing this tool in an acceptable working environment.

ii

Table of Contents

Chapter 1 Introduction.........oooovveveeeveeeinnnnn, s nasstbaantet b bttt naneenneeerrr 1-1
Chapter 2 Related Work..........ccccoonvviriimmiiine e cossseeno 2-1
1. Visual Interactive FORfran (VIFOR)......cccocooueevrmvecnerennesn. 2-1
2. Maintainers Assistant (MA)........ccoceevvvereerivenesrnenicienisnenns 2-2
3. A Tool for the Maintenance of C++ Programs.................... 2-3

4. The Incremental Software Maintenance Manager (ISMM)... 2-4

5. Concluding remarks.......c.coveeviveeineees s ccceieecce s rvsse s enns 2-4
Chapter3 The Tool’s Specifications...............ccocoeeerveveiivevcireeceieeen 3-1
1. The Software Maintenance Model.........ccoccocvrerncrenrrrnnenn. 3-1
1.1 Change Request........coceeveeieeeereemeeiireeesieseeseercsesssssseens 341
1.2 Change Evaluation.........cecomevereveserninccesnsiensnsnnn v 3-1
1.3 Maintenance Design Specification.............cccoveviervcvnnneanee. 3-2
1.4 Maintenance Degign Redocumentation..............coevvnneen... 3-2
1.5 Maintenance Implementation............cccoceerueeeeeinrverenrnnnes 3-2
1.6 System Release.....ccovuriiiereiiieeneceees e secsnens 3-2
1.7 Change Proposal.......ccccceveereevieenecresesesrrenesereescesenne 3-3
1.8 Change ApProval.........ccovviviniereeeereeresesese e see e 33
1.9 Maintenance Specification..........cccccevrevvvrcermieenvesinens 3-3

iii

Chapter 4

1.10 Module Desigh.......cc.coveeurreeeirresiisrisrinieerereeeenneeesreeenns

1.11 Module Source Code.........

..

1.12 Configuration Release.........coouevvecirecreseereeievverenenennone

2. The Software Configuration Management.............ecomune.....

3. The Tool’s Specifications........

..

4. ASSUIMPLONS. ..coviriiriiiirerierecrnesrerirsasssrsassenssscsnnsseroses oassenio

4.1 TerminolOgY.. v ivimrmrerrrerinieesiere e e ceeeesee et b eaes e

4.2 ASSUMPHIONS.....oiiiciiiisinmce et serssseseane e nessssesssrsans

Design.....coccocvineeiieeieeeeeci

..

1. Design of Menus and Input FOrms.........c.cceovvevvneeeiniecvinns

1.1. The Development Option.........cccvevueeeeeeernneeeimerie s

1.1.1 Code Table Definitions

Option......ccvvvievimreeiciecirenes

1.1.1.1 Nesting Levels.....cccooucvveeneienienieriererecer e,

1.1.1.2 Systems.......ccovervrenne

...

1.1.1.3 Source Code Definitions....oovveervveeesvesrerereresessnns

1.1.1.4 Source Code DesScription......ccveervrvcerevereeveneenns

1.1.1.5 Development Phases

..

1.1.1.6 InSttULIONS. .vsssretiiseeeeereeeeeeeeeeieeesreneeesssseeseesasnns

1.1.1.7 Employees................

1.1.1.8 Maintenance Team...

1.1.1.9 Maintenance Types..

...

..

..

1.1.1.10 Components Types......ccccccvveecmvirernnnesiesinarenns

1.1.1.11 Tables Grant Types

iv

..

3.4

3-4

3-5

3-5

3-8

3-8

4-1

4-1

| O B R 1 1 SO R U O RN 4-10

1.1.1.13 Company’s Name........c.ccecceeeererienrecrermrsnervnsenens 4-11
LLL T4 TEStS..coviiiievimrrierinenreeeneetisesesssss e ceseennvons 4-11
1.1.1.15 Field TYPCS..coimrerirerereresimreneienaecnriceese et 4-12
1.1.3.1 Levell Description.........cocvvveerernererinecnercsnnsenes 4-14
1.1.3.2 Level2 Description..........ceceeveeeeenieecnnrineeereseesnnans 4-16
1.1.3.3 Level3 Description.......eveveeevecereeeeecernecernenenns 4-18
1.1.4 Components Definitions........ccceeveevereevnesiesevenssnnnns 4-21
1.1.5 Components Description and Structure..................... 4-22
1.1.5.1 Component Description..........cccccvvmeenieeeerveeennnn 4.22
1.1.5.2 Component Structure Deﬁnition......_ 4-23
1.1.6 Actual Resources Recording........ccccevvvvevcveneceernencnn. 4-25
1.1.7 Development Configuration Release......................... 4-26
1.2 The Maintenance OtPion.......cccmveeireersrreeseeresnveseeseones 4-28
1.2.1 Bug/Enhancement Report.........cccovveeverinnresrenenrunnenn. 4-29
1.2.2 Change Proposal.......c..occovevienevermeivecns e 4-30
1.2.3 Change Approval......c..ccenrmvnerennsenerssesesreenesns 4-32
1.2.4 Maintenance Specification..........eceevvvrierreeeerrneernnn 4-34
1.2.5 Module Desigh......c..vecvirraneerrenemreneeieseeseseessensseson 4-37
1.2.5.1 New Design Documents for Levell...................... 4-39
1.2.5.2 New Design Documents for Level2...........c......... 4-40
1.2.5.3 New Design Documents for Level3.......c............. 4-42
1.2.5.4 New Design Documents for Components............. 4-44
1.2.6 Source Code Implementation...........cocevveevevenecnennen, 4-46

1.1 LeVelS FOITeceiiiieeieeeee ettt vttt e st eeea e e ereeseseeeeasasesens

1.2 Systems FOorm........occccimciimcnceneerneeseies s

1.3 Chart FOIM vt iiiceiirieeesrsesssssasenneesesseesssssaseessessesvessennans

1.4 Compf FOrm....ooeeiicciinieccreicinre sttt et s

1.5 Config

FOM.cciiiiiciriicnirireirr vt

2. Form’s Technical Description of the Maintenance

2.1 BUZ FOIM...coiiriicininiiiriniesinitssrninesrsaesraseesnesssnessssnnessns

2.2 Proposal FOTM......c.cccivniinnincnnmenineennrneseneees

2.3 Approval FOrM.....oeiiiiiirniiieiinrreee e cnssesnessseeenes

2.4 Specs FOrmM..icneiinininccneessiesssessssas

2.5 Design

FOIMLacniiieeeeee e ete e st sar e

2.6 M1actual FOIM...cooovvuniinveiinrnesinisisiesisiimesessoeeeesmeeeessaans

2.7 Mteonfig Formu ..o,

2.8 POStiob FOIM. ..o cnr e s

3. Experimental Results........cccocevenniiicneceecen

4. Hardware

Chapter 6 Conclusions.,

Appendix A User Manual

References

/Software Requirements.........corvceervvceernverennrenen

...

vl

5-2

5-3

5-3

5-4

5-5

5-6

5-6

5-8

5-8

6-1

1.2.7 Maintenance Configuration Release..........c.coueec.....

1.2.8 Change Rejection.......ucvcvieeivevnicenieeiorneceereessesnns

1.2.9 Actual Resources Recorded During Maitenance........

1.2.10 Actual Resources Recorded (Total Maintenance)....

1.2.11 Post Maintenance Release JobS......ovveeveeeevonsennnnn,

1.2,11.2 Add a Source Code/Component to a Version..
1.2.11.3 Remove a Source Code/Component from a
VOISION vttt trent et b e bbb s bt e see e ssrenens
1.3 The Reports Option........c.ceceeeneirernneereerceesis e
1.3.1 The Development Reports Option...........cccevrenec..
1.3.1.1 Code Tables Reports.......c.covviveeeeireeereceesrennen
1.3.1.2 Source Code Related Reports.......c.coceeervvereens
1.3.1.3 Components Related Reports.............coeeevrrennnee

1.3.1.4 Software Related Reports..........cccverieeeecerenennne,

1.3.2 The Maintenance Reports Option...........eoveerveenneee

1.3.2.1 Source Code Related Reports........c.ccovvuveueneenene
1.3.2.2 Components Related Reports........c.ocoeeeveveirinnn,
1.3.2.3 Maintenance Action Related Reports.................

2. Tables DesCription......c.oceiceeeeieei e

Chapter 5 Implementation............ccceeeveeeereeeeneieneireeeeceecceerove it

1. Forms” Technical Description of the Development

Vi

4-48

4-50

4-51

4-53

4-54

4-54

4-55

4-56

4-57

4-58

4-58

4-59

4-59

4-59

4-60

4-60

4-60

4-61

4-61

5-1

5-1

Chapter 1

Introduction

The Waterfall model is a widely used software development life cycle model. It consists
of the following phases: Problem Definition, Requirement Specifications, Analysis and

Design, Implementation - Coding, Testing (Integration and System), and Maintenance.

Software maintenance consists of those activities required to keep a software system
operational and responsive after it is accepted and placed into production. It can also be
defined as the set of activities which result in changes to the originally accepted
(baseline} product set [Longstreet 1990]. Software maintenance falls into three
categories: Corrective, Adaptive, and Perfective, which consist of modification created by
correcting, inserting, deleting, extending, and enhancing the baseline system.

Software maintenance represents 60-70% of the total cost of sofiware. Perfective

maintenance (changes, enhancements, and extensions, etc.) comprises approximately

1-1

Chapterl Introduction

60% of the software maintenance costs. Adaptive maintenance and corrective

maintenarnce are each approximately 20% of the total [Longstreet 1990].

Hence, maintenance is the most difficult of all aspects of software production because it

incorporates aspects of all the other phases as well as being the costliest phase.

Not only software maintenance is important and needs consideration from the software
development managers’ part, but also sofiware documentation and configuration
management. A key criterion to a better maintenance is good Documentation. Without it,
there is little assurance that the sofiware satisfies its stated requirements or that the
organization will be able to maintain it later on. Therefore, the software development
manager should pay a tremendous attention to the preparation, structure, content, and

presentation of the software documentation.

The successful realization of a software product requires the strictest control over the
defining, describing and supporting documentation and the software code constituting the
product. It is inevitable that this documentation will be subject to change over the life
cycle of the product due to correcting some bugs or errors, introducing improvements or
respohding to the evolving requirements of the marketplace. Configuration Management
provides the disciplines required to prevent the chaos of uncontrolled change [Thayer
1992]; e.g., people forgetting to do something they meant to do, making changes that
interfere with the progress of the others, or performing a change that has not been

approved yet, etc. Hence, Configuration Management can be defined as the art of

Chapter! Introduction

identifying, organizing, and controlling modifications to the software being built by a

programming team [Babich 1986] or already operational in the market.

It is important to prepare for maintenance both during initial development and subsequent
evolution of a software system. This implies full consistent documentation, change
control procedures, version and release management, regression testing, etc. It is difficult
to see how large-scale software projects can succeed without strong management to
implement these techniques [Bennett 1991]. The use of software engineering tools can

make a substantial contribution to producing better software systems.

This report presents a Software Maintenance Tool (SMT) that provides constant
documentation to a software system during its development and maintenance phases,
organizes the steps required to follow in implementing a maintenance action, and sclves
the version control problem. It is based on COMFORM [Capretz and Munro 1992] which
is a maintenance tool, that provides guidelines and procedures for carrying out a variety
of maintenance activities through a systematic approach. COMFORM accommodates a
change control framework called the Software Maintenance Model (SMM), around which
the Software Configuration Management (SCM) discipline is applied. The aim is to exert
control over an existing software system while maintaining it, and at the same time

redocumenting it.

1-3

Chapter! Introduction

In this tool (SMT) the proposed (SMM) phases are implemented fully along with the
(SCM) discipline, in addition to the following amendments. The documentation of the

development phase and the solution of the version control problem.

The importance of such a tool is to keep consistent documentation both in the
development and maintenance environments so that the ultimate software product will
reflect the specified system requirements. Also it helps in applying any maintenance
activity by allowing the maintainer to query the original or last changes to the software as
a whole or to any piece of its source code instead of going over the paper documentation
to find what was the last change done, or how was that piece of source code designed and
implemented. Such a tool is also important in identifying the configuration of a product at
any one time; i.e., to let the programmers/maintainers know at any one time which
version of the product they are currently working on or that needs maintenance, and
which revision/variations of each piece of source code - of that particular version - of the

product are included in the corresponding configuration.

This report is organized as follows. Chapter 2 summarizes previous and related work.
Chapter 3 presents the specifications and goals of the tool. Chapter 4 explains the high-
level design of the tool. Chapter 5 describes the major algorithms of the tool, states some
test cases, and gives the software and hardware requirements needed to run it. Chapter 6

presents suggestions for further work and a conclusion. Appendix A is the user manual.

1-4

Chapter 2

Related Work

Several tools have been developed in order to automate the activities of software
maintenance. Each of these tools is unique and special in the goals it serves and in its
orientation towards a specific language. In this chapter, we present a brief review of some

of these tools and their goals.

1. Visual Interactive FORtran (VIFOR)

VIFOR [Rajlich et al. 1990] is a tool oriented towards maintenance of medium-to-large
Fortan 77 programs. In most cases when programmers come to modify a program, they
have ﬁrst to understand it. To do so they have only one way: The actual source code
because it is the only “Exact” reflection of the program requirements unlike the paper

documentation - if available.

2-1

Chapter 2 Related Work

With large programs where complicated interrelationships among its different
components, it is not easy to read and understand the code. From here came the idea of
creating a tool that allows the programmer to deal with program architecture directly,
without having to extract it repeatedly and manually from the code. Another
improvement was to represent the architecture graphically making the program easier and

more understandable.

VIFOR is this tool that maintains the graphical representation of a program and provides
the programmer with a visual editor to build and modify the program. It also stores the
rclations in a database to help the programmer understand the code and to follow the

ripple effects of the modifications.

In VIFOR a program is represented in two ways: the source code and the graphical one.
VIFOR also contains transformation in both directions, i.e., from code to graph and from

graph to skeletons of code. Hence, it is suitable for re-engineering and maintenance of

existing code. Specially designed browsers implement the graphical interface. VIFOR
contains a database that is based on a simple but effective data model of Fortran
programs. The model contains only four entity classes and three relations, which make
the tool small, and easy to implement and use. A simple query language allows browsing

through the database.

Chapier 2 Related Work

A prototype of a similar tool for the C language has also been implemented and called

VIC.

2. Maintainer’s Assistant (MA)

The Maintainer’s Assistant (MA) is a research environment implemented for the
maintenance of software systems written in the C language. The environment includes
tools to support analyzing system architectures, making structured changes to programs,

and checking the adequacy of test cases [platoff et al. 1991]

These tools use cross reference and data and control flow information to support the
analysis and understanding of existing systems. These systems can be edited by applying
structured transformations to an integrated representation that presents views of the

source text, syntax, static semantics, and control and data flow of software systems.

The Maintainer’s Assistant consists of a variety of tools to support the software

maintenance process:

- Arch: a tool for discovering and critiquing system architectures.
- The Change Assistant: assists in the process of changing a system through its

various views.

- Tactic: a test analysis and coverage tool implemented for C.

Chapter 2 Related Work

In addition, an integrated program representation underlying the Maintainer’s Assistant is
multi-faceted. It provides views of the syntax of the programs, and the static symbol table
and cross reference information, and the control and data flow information. All of these

views are linked to support the requirements of the MLA. tools.

The program transformation toolkit concentrates ont he following tasks:
- Porting
- Global re-structuring
- Re-structuring control and data flow
- Introducing new abstractions

- Instrumenting code

These transformations allows maintainers to work in higher levels of abstraction, such as
editing program architectures at the module level, or by introducing new abstractions in

the coding, data structure, and algorithm domains.

This environment supports all of the C language, including the ‘C’ pre-processor. It
provides a pattern matching language with C-like syntax and a facility for generating

transformations by example.

Chapter 2 Related Work

3. A Tool for the Maintenance of C++ Programs

This tool is developed to help programmers understand Object-Oriented software systems
written in C++. This task is accomplished by providing information about the set of
classes and files comprising the system and the relationships among them [sametinger

1990].

The tool eases the process of navigating through the files and classes, and helps the user
to get any needed information in a fast and easy way. To do so, the files of a C++
program are divided into little pieces of information, managed together with their

relations among them.

In order to enhance the readability of the source code, the user can define global styles for
different syntactic constructs, e.g., comments, keywords, etc. If a short description exists
for an identifter then this description together with some other useful information can be

shown at any place this identifier is used.

The user interface concept - present in this tool - is based on modern application
frameworks amd the supported concepts thereof. It provides two selection lists, an editor
window, an icon bar containing several browsing tools, a menu bar, and two information

bars.

Chapter 2 Related Work

This maintenance tool offers the possibility to easily browse through the system by means
of the existing relations. Also, useful information is displayed to protect the user from

getting lost in the complex information web.

4. The Incremental Software Maintenance Manager (ISMM)

ISMM [Ryder 1989] is a prototype software maintenance tool which uses incremental
static analysis to assess the scope of proposed source code changes. These effects can be
predicted a priori, that is, without actually having to perform the software change, thus
enabling maintainers to choose between alternative anhancements or bug fixes on the

basis of their predicted system impact.

Incremental analysis efficiently updates data flow information describing the definition,
use and sharing of data in an evolving software system, keeping this information
consistent with current system state. The goal of ISMM is to demonstrate the feasibility
and practicality of using incremental static analysis to aid in the maintenance phase of the

software life cycle.

A software system is a dynamic entity; even well designed systems evolve over time, if
not of bug fixes, then as enhancements are added. Incremental analysis allows us to
effieciently maintain consistency between the current structure of the system and our

descriptions of it.

Chapter 2 Related Work

The research is primarily aimed at large systems which involve large, distinct groups of
people in specification, design, implementation, testing, and maintenance. No one person

has a full understanding of the entire system.

Data flow analysis algorithms gather facts about the definition and use of data within a
program. Interprocedural data flow analysis algorithms summarize the behavior of each
procedure, its effects on its parameters and on global variables, and thus effectively
document a software system. A full re-analysis after a system change is expensive; the
described incremental analysis algorithm provides the manitenance programmer with the

ability to examine the scope of change effects.

These incremental techniques efficiently document the current structure of the system,
providing details which allow re-structuring to increase encapsulation in data use and to

achieve a better organization than that which has grown over time.

5. Concluding Remarks

The four maintenance tools discussed above all deal with the problem of maintenance. As
is obvious, they all tend to ease the understanding of a program by some means, e.g.
some by presenting the source code in a graphical way, and some try to document any
proposed changes, etc. But the main difference, among them, is that no one tool is

addressed for more than one language; e.g., one tool is for Fortran like languages, one for

Chapter 2 Related Work

C, and even one for C++, etc. Hence, this specification is a hindrance for the tool’s public
usage and those software companies which work under different languages and

environments have to own many maintenance tools, in order to decrease the maintenance

problems.

2-8

Chapter 3

The Tool’s Specifications

The basic idea of this tool is to structure the maintenance process into sequenced steps or
phases (SMM phases). Each phase is represented by a form, the outcome of which is the
source of documentation of that maintenance action. Change requests for any
maintenance action had to go through this procedure, (SMM) steps. No step is performed
unless its parent step is fully accomplished. This requirement makes it impossible for a
change request to be processed without an authorized approval, and without some other

authorized staff member specifying the change requirements needed.

1. The Software Maintenance Model

The following steps are the proposed ones for the maintenance procedure:

- Change Request

3-1

Chapter 3 The Tool’s Specifications

- Change Evaluation

- Maintenance Design Specification

- Maintenance Design Redocumentation
- Maintenance Implementation

- System Release

1.1 Change Request

Any reported change should be formally announced through a change request form. It is
the first step in the maintenance procedure and the only trigger (i.e., no change should be

considered if no formal form for that change was submitted).

1.2 Change Evaluation

This request for a change is then evaluated by authorized staff member to see if this
change is urgent or if needed at all. This phase shows the effects of the modifications on
the existing software system in terms of cost and schedule, resulting in approval or

rejection.

Only upon approval, the following steps are implemented.

Chapter 3 The Tool’s Specifications

1.3 Maintenance Design Specification

Specifications of the proposed and approved changes are determined forming the
structure of the modifications. Also, how the software components have to be modified is
clarified (design issues). In this phase, analysis of the side-effects of the changes is also
done ensuring that the modules’ functionality is kept consistent. Integration and system

tests need to be planned too.

1.4 Maintenance Design Redocumentation

This phase requires redocumenting the software components that have been subject to
modification. During this phase the algorithms and the behavior of procedures for both

normal and exceptional cases are explained.

1.5 Maintenance Implementation

In this phase the designs of the modifications are implemented to the corresponding

affected source code modules.

Chapter 3 The Tool’s Specifications

1.6 System Release

The last phase is the system release where validation of the overall system is achieved by
performing the planned module regression, integration, and system tests on the system as

a whole,

The equivalent phases of the above maintenance procedure in the SMM are the following

forms:

1} Change Proposal

2) Change Approval

3) Maintenance Specification
4) Mo‘dule Design

5y Module Source Code

6) Configuration Release

The output of these phases are forms which form the baselines of the software
maintenance process, and offer objective visualization of the evolution of that process. In
other words, a baseline is a configuration, a set of versions of all modules in the product
[Capretz and Munro 1992]. When trying to correct a fault, the maintenance programmer
puts copies of any needed modules into his or her own private workspace, where any

changes to the modules in this private workspace do not result in any changes in the

Chapler 3 The Tool’s Specifications

original baseline version.

1.7 Change Proposal

A change proposal form is the first form in the model. It is the form that is filled-in data
from the change request form. If the proposed change is for corrective maintenance, then
a complete description of the circumstances leading to that error must be included. For

other types of maintenance, an abbreviated requirements specification must be submitted.

1.8 Change Approval

For the change evaluation phase a change approval form exists which is one of the
documents used as the basis for planning the system release. It is a vehicle for recording
information about a system defect, a requested enhancement or quality improvements. By
documenting new software requirements or requirements that are not being met both the
change proposal and change approval forms become the contract between the person

requesting the change and the maintainers who work on the change,

In this phase the approved changes are ranked and selected for the next release. But first
the work required by the proposed change is classified as perfective, adaptive, or
corrective. In addition, every software component involved in the proposed change must

be known at this stage. The inadequacies, or unfulfilled requirements described in the

Chapter 3 The Tool’s Specifications

change proposal form are identified in the existing software system. This identification
involves different aspects of software which depend on the type of the change required

(the three types mentioned above).
1.9 Maintenance Specification

The maintenance specification phase is related to the mainienance design specification
step in the proposed maintenance procedure. This form contains all the information
described in the equivalent phase i.e., a complete, consistent, and comprehensible
common specification of all the changes proposed and approved for a planned and a
scheduled release. The affected sofiware components are listed, the side-effects of the

changes are identified and entered, Integration and system tests are specified.

1.10 Module Design

The module design form is the one associated with the maintenance design
redocumentation phase. It aims at documenting the maintenance action on a software
component of an existing sofiware system. The forms will be filled-in when the
corresponding software component has to be modified (since for each change request

many software components may be affected, hence each has a different form).

Chapter 3 The Tool’s Specifications

In this form the module’s purpose is mentioned along with its algorithm outline and the
interface definitions (what tables it uses and what other source codes it calls). In addition,
the tests planned for each of the changed or implemented software components are
specified. This form captures the highest level documentation of each of the source code

modules/software components a software system.

1.11 Module Source Code

Module source code is the form associated with the maintenance implementation phase
where the actual change in the source code occurs to the affected modules. There is a one-
to-one relationship between each source code form related to each sofiware component.
While the module design form is aimed at keeping general and stable information for a
software component, its corresponding module source code form aims at keeping the
information pertaining to modifications on the components (e.g., tests’ outcomes,

comments, etc.)

1.12 Configuration Release

System release is the last phase of the proposed software maintenance model. Validation
of the overall system is achieved by performing the integration and system tests on the
software system. Once modifications on the system have been performed under the

configuration control function (exerted by the Software Configuration Management -

Chapter 3 The Tool’s Specifications

SCM discipline), the task at this stage is to certify that all baselines have been

established.

The configuration release form contains details about the new configuration. It is the
software system release planning document which aims at keeping information pertaining

to the history of the whole corresponding maintenance phase.

2. The Software Configuration Management

The SCM discipline applied to (SMT) consists of the following four functions:

- Software Configuration Identification
- Software Configuration Control
- Software Configuration Status Accounting

- Software Configuration Auditing

The purpose of the first function is to identify the parts of a software system in a manner

that makes explicit the relationship between these parts [Capretz and Munro 1992].

The role of the second function is to ensure that any change required in a software system

is defined and implemented by following the SMM phases properly.

Chapter 3 The Teol’s Specifications

The third function aims at recording and reporting the current status as well as the

evolution of existing software system.

The auditing function comprises the processes of verification and validation. It ensures
that related phases are consistent in some of the information, that no other information is
missing from any form and that all phases have been performed before a maintenance

activity can be announced as DONE.

Although COMFORM is dealing with the software maintenance and documentation
problems, yet it does not solve the version control problem associated with each

maintenance action.

3. The Tool’s Specifications

This tool is composed of two components: Development and Maintenance. First of all,
this tool will serve as the database storing place for the documentation of any software

system under development and for its evolving maintenance problems and enhancements

later on.

During the Development phase, the user can, as a first step, define the name of the

software system under development as well as its modules, submodules, and programs,

3-9

Chapter 3 The Tool’s Specifications

etc. Also the user can define all the files, tables, etc. used by the software system during

its development.

Definitely, relationships between the software system and its constituent parts are defined
in order to identify which modules and components belong to what system; in short, the

hierarchy of the system can be drawn easily - for maintenance purposes.

Each part of the software, including the software system itself, has a place where it is
described in full details including nature, purpose, algorithm, comments, parameters
passed (in and out), any useful comments, and estimated and actual time resources spent
in developing each module or source code, etc. This serves as the basic and original

documentation for each part of the software system.

At this stage, the maintainer/developer can query or view the description of any piece of
source code, or even the description and structure of each file or table used. This reduces

the manual work of going back to paper documentation in order to understand a piece of

code.
The available reports at this stage are:

- List of all source code modules related to a particular software system

- List of all other components related to a particular software system

3-10

Chapter 3 The Tool’s Specifications

- Query the Status of a module

- List the components used by a piece of source code

- List the names of the staff members who developed a certain piece of code
- List of the callees of a particular source code

- List of the Input/Output parameters used by a certain source code

- List the structure of a certain table or file

- List the authorized grants given to a staff member for a certain table/file

- List of the Tests performed, and their Status, on a certain piece of code

- List of the Estimated and Actual time taken to develop a certain piece of code
- List the name of softwares that are written in a particular Language

- List of all the staff members working in the software company

- List of all the Client Institutions to which software are distributed

- List of the Employees at the Client Institutions

- Date of delivering a particular software system to a certain Institution

The maintenance phase is initiated upon the arrival of a bug/enhancement report. Then
the SMM phases have to be followed in order for the change to be implemented. Each
phase is a form where the name of the software to be maintained - along with its version
number - is required. The bug/enhancement report is transformed to a more formal form

which is the Change Proposal Request, where the change Description and the Reason for

change are required.

3-11

Chapter 3 The Tool’s Specifications

This proposal is studied, by an authorized staff member, and it is either Approved or
Rejected. Maintenance Change Specifications are prepared for the Approved changes
only. The type of maintenance, how urgent it is, the consequences of implementing the
change, and the modules Affected, etc. are identified at this stage before the Change
Designs are prepared (for the Affected modules). Once ready, the designs are first entered
into their proper form in the tool, assuring the action of Re-Documenting only those

Affected modules.

The actual implementation of the changes are therefore performed on the actual code with
the supervision of some authorized staff members, whose names appear on the
corresponding form. At the end, a new system configuration is released producing both a
new Version Number for the software just being maintained and at the same time a new

Revision Number for the modules affected by the change.

Hence, the original designs are not touched, each is stored in a different record and we

will have in our database more than one Version of the same product each with different

Revision Numbers of some modules (the affected ones by the maintenance action).

The available reports at this stage are:

- List of all source code modules affected by the change

- List of all other components affected by the change

3-12

Chapter 3 The Tool’s Specifications

- Query the Version Number of a particular software system

- Query the Revision Number of an affected source code

- List the names of the staff members who maintained a certain piece of code

- List of the new Input/Output parameters used by a certain source code

- List of the Module Regression Tests performed, and their Status, on a certain
piece of code

- List of the Estimated and Actual time taken to maintain a certain piece of code

- List the new Algorithm of an affected source code

- List the new components that it uses

- List the new callees that it calls

- List the time needed to maintain a certain piece of source code and the total time
needed to accomplish the whole maintenance action

etc.

The same reports, of that of the Development Phase are found in the Maintenance phase.
Hence, this tool ensures at each step a proper documentation, as well as takes care of the
Version/Revision control problem by assigning a new number for each module affected

by any change.

The unaffected modules are kept under the same “old” revision number, but they are
related somewhere to the software system with the new Version Number. Because

previously all source code and components belong to the Original sofiware system of

3-13

Chapter 3 The Tool’s Specifications

Version Number “ZERO”. Later, and as this number increases, all its parts are also kept
related to the same software name but of different Version Number and hence all original
designs and algorithms can be seen by entering the proper Version/Revision numbers.
Any new changes can also be viewed - for any piece of source code - by entering the new

Revision Number and the New Version Number.

Ultimately, this tool will be able to store the documentation of each part of a software
system regardless if its revision number. At any one time, the user can view the original
documentation of any source code module even if the system has been released for ten
times; i.e., it now holds the version number 10 and maybe revision number 5 for the
module. The same applies for the files and tables related to the same software system.,
The user can also view any changes on a specific source code module or other component
by entering - in the right place - the name of the Design Change of that specific source
code module or component as well as its revision number and the correct software

version number.

4. Assumptions

Following is a list of the assumptions used in this project and some terms that need be

clarified from the user’s part before doing any further reading of this report.

3-14

Chapter 3 The Tool’s Specifications

4.1 Terminology

- Source Code Module: This term refers to the actual piece of source code related to a

software system; e.g., a procedure or function.

- Components: This term refers to the components other than the source code modules

related to a software system; e.g., a table, file, etc.

- Software system or project: This term refers to any software developed by the company

owning this tool.

4,2 Assumptions

- This tool is meant for third generation languages; i.e., procedural languages.

- Each software system is identified in this tool by a unique name. The same for the

source code modules and other components.

- The software systems are assumed to be of LEVEL ONE and all the functional source
code modules are of LEVEL TWO, whereas the actual source code modules are of LEVEL

THREE. The other components have no level and are documented from separate screens,

3-15

Chapter 3 The Tool’s Specifications

- All software systems newly developed start with a version number of ZERO. The same

for source code modules and other components, they start with revision number of ZERO.

- Only upon modifications - maintenance actions - that the source code modules and the
other components are given new revision numbers (incremental and generated by the
tool). Any modification done during the development phase does not lead to a new

revision number.,

- The same for the software systems themselves. Upon a maintenance release a new
version number (also incremental and generated by the tool) is given to the software

system.

- A company may have more than one name, but only one should be declared as

Effective.

- Prior to coding the Status of a source code can be: Under-Development, but after it is
finished it should be declared as: Complete or done, etc. with any modifications to the

already entered designs and algorithms, in order to have a consistent documentation.

- On amending a component - adding/deleting/changing functionality or description of

one of its fields - all its modified and unmodified fields have to be defined and described

again as if for the first time.

3-16

Chapter 3 The Tool’s Specifications

- A Change Proposal can have a Change Approval and - at the same time - a Change
Rejection. Definitely each should be with a different date. Hence, the most recent one is
the effective; i.e., if the Change Approval date is greater than the Change Rejection date

then the Proposal is considered as Approved. Otherwise, it is considered as Rejected.

- A Change Proposal can be Canceled any time before its Maintenance Specifications are
prepared by assigning a Change Rejection to it. But after the Maintenance Specifications

are entered to the tool, a Change rejection will not do the job of canceling the proposal.

- No Change Request or Proposal on a component; i.e., components can not be declared
as Involved in the changes - from the Change Approval form - but they can be declared as

“Software Affected” - Module Design form.

- “Software Involved”, hence, are the source code modules that the authorized maintainer,

who approved the change, thinks are involved.

- “Software Affected” are the source code modules and/or the other components that the
authorized maintainer, who prepared the maintenance specifications of the change,
believes are affected by the change; i.e., that are ultimately subject to change in their

design in a way or another.

3-17

Chapter 3 The Tool’s Specifications

- After the release of any software system, the user has to declare the software’s status as

“Complete” or so.

- If the maintenance action is Perfective or adaptive new source code modules need be
implemented, then the user has to do the following actions in order:

N.B.: the user has already filled-in a Bug, Proposal, and Approval forms.

1- Define the names of the source code modules and/or any components related,

2- Relate them to the corresponding software system (of CURRENT version and
revision ZERO),

3- Describe each according to its corresponding level,

4- Fill-in the corresponding Maintenance Specifications form declaring the just-
defined source code modules as Affected,

5- Fill-in the corresponding Module Design form with a ‘Y” in the Perfective
field,

6- Proceed in the maintenance steps as usual, but without specifying any new
algorithm, new specsifications, new estimates, new tests, etc.

7- Remove the newly implemented source code or component from the new

software version by performing Remove Source Code from aVersion option.

3-18

Chapter 3 The Tool’s Specifications

The above sequence of steps allows new source code modules - of revision number ZERO
- to be added to the CURRENT version of the software system, to which the perfective

maintenance actions are to be performed, in the same ease of defining and describing any

original source code modules during the development phase, not forgetting to perform all
the maintenance procedure steps - SMM phases. In addition to a small difference which is
the omission of the Design Changes, on that source code module, that are entered from
the Module Design form after pressing [Next Record] key and going to the corresponding

form (depending whether the source code module be of Level One, Level Two, or Level

Three).

- In any phase - form - all data is obligatory to be filled-in. This is part of the Auditing

Process (completeness checking) in the SCM discipline.

- Time resources estimates in Maintenance Specifications serve as the Total time resource
estimates for the whole maintenance action. The actual time resources are entered from

the Maintenance Configuration form.

- If the change corresponds to a change in the software as a whole, then these estimates -

and actual - will be considered as the Level One time resources, but for the new version.

3-19

Chapiter 3 The Toal’s Specifications

- For the time resource estimates for any source code module during its maintenance, they
are entered from the Module Design form, while the corresponding actual time resources

are defined from the Miacual form.

- The same for the source code modules during their Development. The estimates are

defined from the Level3 form while the actual are defined from the Actual form.

- No Change Request is allowed on an old version of any software system.

3-20

Chapter 4

Design

This chapter presents the design of the input forms and data base tables used in the tool.

The tool is divided into three items:

Development, serves as the place where the user defines the documentation of a piece of
software down to the lowest level of its parts.

Maintenance, is where a proper procedure for maintenance is implemented. Any
maintenance action has to go through the assigned menu options in the sequence

provided.

41

Chapler 4 Design

Reports, is where the statistical reports from the tool’s data are provided. It is divided in

its turn into two parts: Reports from the Development phase and Reports from the

Maintenance phase.

Following is a structure chart for the whole tool.

2
MAIN
MENU

3 4 5
Development Maintenance Reports

7 8
Development Maintenance

Design

Chapter 4
4 6
5 3 c 5 Devel t
Code Tables YSource Code DOmP?“t_e"t Actual Time c ev: opmt?n
Definitions | Description escription Resources o;l?ura -
Recording ¢/6ase
7
See List of
Menu Options 3

9 10

Levell
Level2 Level3

Description
Description Description

4-3

Chapter 4

Design

3
Change

Proposal

5
Maintenance
Specification

2
Bug/Enhance
ment Report

4
Change
Approval

2
Post
Maintenance
Release Jobs,

8
Actual Time

Resources

9
Total Time

Resources

7 10 11
Source Code Cr!ang_e Maintenan_ce
Rejection | Configuration

Implementatio
n

Release

4
Post Release
Jobs

5
Add Scource to

a SW Version

5]
Remove
Source from a
SW Version

Chapter 4 Design

2
Development
Reports

5

4
Source Code

Related
reports

SW System

3
Code Tables
Reports

Related
Reports

6
Components

Related
Reports

7
See List of
Menu Options

Chapter 4 Design

2
Maintenance
Reports

4
Components
Related
Reports

3

Source Code

Related
Reports

6

Maintenance
Action
Reports
7
See List of

Menu Options

1. Design of Menus and Input Forms

This section discusses in detail the design of the tool starting with its menus and the
forms associated with each menu option. It also states the order to be followed in using

them, and the flow of data entered from the forms into the tables.

Chapter 4 Design

The first menu is the Main Menu composed of two components.

Main Menu

1- Development

2- Maintenance

3- Reports

4- Exit

This menu divides the tool into two main phases: Documenting a software system under

development, or Re-documenting a software system being maintained.

1.1 The Development Option

We will start with the development option. Choosing it leads to the following menu:

4-7

Chapter 4 Design

1- Code Tables Definitions

2- Source Code Description
3-Components Description and Structure
4- Actual Resources Recording

5- Development Configuration Release

6- Previous Menu

1.1.1 Code Table Definitions option leads to the following menu;

1- Nesting Levels
2- Systems
3- Source Code Defintions
4- Components Definitions
5- Development Phases
6- Institutions
7- Employees
8- Maintenance Team
9- Méintenance Types
10- Components Types

11- Tables Grant Types

48

Chapter 4 Design

12- Status

13- Company’s Name
14- Tests

15- Field Types

16- Previous Menu

In the following section, we describe each option in more details explaining its functton

and the data flow in the tables triggered by some keys.

1.1.1.1 Nesting Levels

a. Function

This option allows the development team to define how large and nested the software
system under development is. It defines the software’s hierarchy by assigning, in
decreasing order, its levels (e.g., Project, System, Subsystem, etc.) Since this tool
identifies three levels which are primarily: Level 1, for the system or project; Level 2
which contains all theoretical and functional levels (i.e., subsystem, module, submodule,
etc.); and Level 3 which consists of the actual pieces of source code. Hence, it is up to the

defining user to assign one of the three numbers (1, 2, and 3) for each level defined in

4-9

Chapter 4 Design

order to tell later on what ‘Description’ screen a specific level needs. The form associated

with this step is:

(Name of the Development company)

Define the Nesting Levels

Name Assign a level (1-3)
System 1
Subsytem 2
Module 2
Submodule 2
Program 2
Subprogram 2
Procedure 3
Function 3

Of course, internally the system generates unique codes for the items being defined in this

form and in all the other forms (discussed below).

4-10

Chapter 4 Design

b. Tables Affected

Table Levels is the only table to be affected. Each entered hierarchy level will cause a
new record to be opened in the Levels table, as well as generating for it a unique code. By
this, all internal reference to a level in the other tables will be through the code and not
the name. The assigned number for each level is entered in the Levels table in the field

“levelnbre™.

1.1.1.2 Systems

a. Function

This option allows the users of the development team to define all the systems that they

are about to develop. The form associated with this option is the following:

{(Name of the development company)
Software Systems Entry

Name

BUC_PROJECT

4-11

Chapter 4 Design

LAU_PROJECT
DAR_AL HANDASAH
SOLIDERE

efc.

b. Tables Affected

Table Systems is the first table to be affected. Each entered or defined system will have a
new record created for it, as well as a unique code. All internal reference to any system,

among the other tables, will be through the system’s code.

Table Systemchart is also affected in the following manner: as a new record is created in
this table for each defined system assigning the field “syscode” in the latter table the
value of the “code” field just created in the Systems table. The “modcode™ field in the
Systemchart table is used to assign a unique code for each ifem within a system. It is
going to have the value of Zeros for the records created for the systems defined in this

form.

4-12

Chapter 4 Design

1.1.1.3 Source Code Definition

a. Function

This option allows the development team to relate a piece of source code to a software

system. This option does not lead to any other menu, but directly to the following form:

(Name of the development company)

Source Code Definition Form

Levell Name: Version:

Source Code Name: Revision:

Parent Source Code Name:

Source Code Level Type Name:

4-13

Chapter 4 Design

b. Tables Affected

The Systernchart table, which is one of the most important tables in this maintenance
tool, is the one affected by the data entry in this form. Once a new piece of source code
gets defined through this form, a new record for it is created in this table; the system will
generate a unique code for it and assigns it to the field “modcode™; it also reads the name
of the system that this code belongs to and gets its corresponding code from the
Systemchart table and assigns this code to the field “syscode”; the name of the parent
piece of the code is also read and from the Source table the code is determined and
assigned to the field “parentcode”; the last thing read is the source code level name which
is for example “subsystem” or “submodule”. The name is read and the tool will search in
the Levels table to get the corresponding level code and the value got is the one assigned

to the field “levelcode”.

1.1.1.4 Components Definitions

a. Function

This option allows the development team to define the tables, files, etc. used in

developing a software system. The form associated with this option is the following:

4-14

Chapter 4 Design

(Name of the development company)

The Components’ Definition

Name
StdDecision
In Filel
Student Info
Student Gpa

ete,

b. Tables Affected

Table Component is the only table affected. A new record is created for each defined

component assigning to it a unique code to be used later on for internal references.

4-15

Chapter 4 Design

1.1.1.5 Development Phases

a. Function

This option allows the development team to define the phases that their company is
applying to achieve a proper development of a software system. Of course, it has a unique

form associated with it:

(Name of the development company}

Development Phases Entry

-z,
.

Analysis
Design
Coding
Testing

efc.

4-16

Chapter 4 Design

b. Tables Affected

The table affected is the Develophases table. Each entry defined will have a new record
created for it in the table as well as generating for it a unique code. This code will serve
as the foreign key in other tables (of course internally speaking, because once the user

needs to refer to a specific phase, all he/she has to do is to type the actual name, or choose

from a pop up menu.)

1.1.1.6 Institutions

a. Function

This option allows the user to define the client institutions that the development company

will be selling their softwares to. The associated form with this option is the following;:

(Name of the development company)

Define the Client Institutions” Names

Institution Name Type of business
BUC ACADEMIC

4-17

Chapter 4 Design

AUB ACADEMIC
AUH MEDICAL
cte.

b. Tables Affected

The table Institutions is the one affected. It creates a new record for each institution
getting defined, giving it a unique code as well. This code will serve as the foreign key in
the other tables once referenced. The institution name defined will be assigned to the field

“institation_name”, the same happens for the “typeofbusiness” field in the same table.

1.1.1.7 Employees

a. Function

This option allows the development company to define ultimate users in the client
institutions, who are going to request the changes or report any errors, later on. The form

associated with this option is the following:

4-18

Chapter 4 Design

(Name of the development company)

Define the Client Emplovees’ Names

Institution Name

Buc

Emplovee Name Position

Randa Gharzeddeen Registration officer
Nada Badran Admission officer
elc.

b. Tables Affected

The Employees table is the one affected. For each new employee name defined the
system will generate for it a unique code and a new record as well is inserted in the
corresponding table. The system will also pick up the institution’s id, from the Institution
table, that corresponds to the institution’s name just entered as the working place for the

defined employee. This institution code is assigned to the field “institutionid” of

4-19

Chapter 4 Design

position column.

1.1.1.8 Maintenance Team

a. Function

This option allows the development company to define its staff members who are doing
the development of the softwares and who are going to perform the maintenance actions,

ultimately. The form associated with this option is the following:

{(Name of the development company)
Stail Members’ Names

Name Position Authorized
Kamal Haidar General Manager Y
Jalal Kawash Consultant Y

4-20

Chapter 4 Design

b. Tables Affected

Mitceteam table is the one affected by the process of defining employees’ names who

belong to the development company. Each name will have its own and unique code.

1.1.1.9 Maintenance Types

. Function

This option allows the development company to define the types of the maintenance, e.g.:

Corrective, Perfective, etc. The form associated with this option is the following:

(Name of the development company)
Software Maintenange Tvpes

Maintenance Types Names

corrective
adaptive

perfective

4-21

Chapter 4 Design

b.Tables Affected

Mitcetypes table is the one affected. Each type defined will have its unique record and

code that is going to be used later on as the foreign key in other tables.

1.1.1.10 Components Types

a. Function

This option allows the development team to define the possible types of the components

related to the software systems, in general. The associated form with this option is the

following:

(Name of the development company)
The Components’ Types Definition

Components tvpes

index
view

table

4-22

Chapter 4 Design

b. Tables Affected

The table Component Type is the one affected. For each defined type there is a unique
record as well as a unique code; hence, the code will serve as the foreign key in the other

tables that need reference a component type.

1.1.1.11 Tables Grant Types

a. Function

This option allows the development team to define the grant types of the tables used in
the developed softwares; i.e., each table or file created by some of the development team
might be granted to some other staff member in the development team by some condition,
the grant type. Hence, some have the right to update the contents of a table, while some

others have the right of only viewing its contents (query).

(Name of the development company)
Defining the Grants’ Types
Grants’ Types Names

Query

4-23

Chapter 4 Design

Update

Query/Update

etc.

b. Tables Affected

The Grantype table is the one affected by this form’s entry. It makes a new record for

each grant type defined as well as a unique code for it.

1.1.1.12 Status

. Function

This option allows the development team to define all possible status conditions, that the
source code under development might undertake, or the outcome of each test, etc. The

associated form looks like this:

(Name of the development company)

Status Conditions’ Entry

4-24

Chapter 4 Design

Status Description

effective
under-development
in_process

0.k.

frozen

complete

b. Tables Affected

The Status table is the one affected by this form. Each defined status condition gets its

own record and code. This code is going to be the foreign key in other tables.

1.1.1.13 Define the Development Company’s Name

a. Function

This option allows the software company owning this maintenance tool to define its name
to the tool, in order to have it as a heading in all of the tool’s forms. The screen associated

with this option is the following:

4-25

Chapter 4 Design

(Name of the development company)

Define the Name of the Owner Company

Define the company’s name Effective (Y/N)
New Dimensions N
Logos Y

Only one name should be effective at any one time and this is why the tool sets all

Effective fields to ‘N’ upon defining a new name with ‘Y’ as effective.

b. Tables Affected

Only table Company Name is the one affected. For each defined name a new record is
created with a unique code number. The name defined is assigned to the field “name” and
the flag (Y/N) is assigned to the field “effective”. The “code” field is assigned the value

generated by the system as the record number.

4-26

Chapter 4 Design

1.1.1.14 Tests

a. Function

This option allows the users to define the names of the tests used in testing all the
software systems they are developing - or already developed. The screen associated with

this option is the following:

(Name of the development company)
Tests Names’ Entry

Tests” Names
Reg Testl
Admission_Test!

Integration Test4

ctc.

4-27

Chapter 4 Design

b. Tables Affected

Only table Tests is the one affected. For each defined name a new record is created with a
unique code number. The name defined is assigned to the field “name”. The “code” field

is assigned the value generated by the system as the record number.

1.1.1.15 Field Types

a. Function

This option allows the users fo define the types of the fields that might occur in a table or
file. For example, a filed in a table can be of “character” type or “integer” or “alpha-

numeric”, etc. The screen associated with this option is the following:

(Name of the development company)

Data Types Entry

Data Names
Character

Number

4-28

Chapter 4 Design

Date

Alpha-Numeric

b. Tables Affected

Only table Tests is the one affected. For each defined name a new record is created with a

unique code number. The name defined is assigned to the field “name”. The “code” field

is assigned the value generated by the system as the record number.

1.1.1.16 Previous Menu

a. Function

This option leads the user one menu backwards; i.e., to the development option items.

b. Tables Affected

NONE !t

4-29

Chapter 4 Design

1.1.2 Source Code Description

a. Function

This option allows the development team to describe a piece of software that has already

been defined. This option leads to another menu, the following:

1- Level 1 Description
2- Level 2 Description
3- Level 3 Description

4- Exit

1.1.2.1 Level 1 Description

a. Function

Choosing this option leads to the following form that allows the user to describe a piece
of code which is of level 1, mainly a System or a Project. It is the description of the total

software system under development.

4-30

Chapler 4 Design

i th elopment compan

Levell Description Form

Level 1 Name: Date:

Version:

Status:

Language:

Nature:

Development Phase Resources Estimates

Hardware Requirements

Constraints

4-31

Chapter 4 Design

b. Tables Affected

Table Levelldesc is the one affected. First, the “levell id” item on the form is read and
table Systems is searched to find the system code, to relate the description to it. This code
is assigned to the field “syscode” in the table. Each description creates a new record in the
table with a unique code. The status condition code, selected from the Status table, is
assigned to the “status” ficld, the same for the field “date”, and “Languagetype” field
means the type of language that the software system will be written in, whose value is the

name entered by the user.

Tables Nature, Hardware Requirements, and Constraints are affected in the same way.
For each line of text entered in one of these blocks on the form, a new record is inserted
in the corresponding table with the generation of a unique record code number assigned
to the field “code”. The field “name” is assigned a line of text, “flag” is assigned the
value of ‘L’ meaning on development of Levell, “oldverno” and “newverno” are
assigned the same value of the Version number found on the screen, “tabcode” is

assigned the unique code that identified the software system.

4-32

Chapter 4 Design

Table Compare Resources is affected as well. There are going to be as many records for
each Levell description as there are defined development phases for this specific
software system; For each record created the “levelflag” field is assignéd the value of “17,
which is the current level number. “Flag” field is assigned the value of ‘L’ meaning
Levels Description. The “tabcode” field is assigned the value of the current Levelldesc
record number. The “phasecode” field is assigned the value of the corresponding
development phase (c.g., “1” for design, “2” for coding”, and “3” for testing, each
constitute a record on its own.) The “estimates” field is assigned the values entered from
the screen for each phase. “Oldverno”, “newverno” are given the value of the Version
number defined in this form. All Levell items do not have Revision numbers - only
version numbers - hence, “oldrevno” and “newrevno™ are not defined in this context.
“Mdcode” field is used only for the records entered from a maintenance action. “Actual”
field is left empty to be filled out at the end of the development through the configuration

release form.

4-33

Chapter 4 Design

1.1.2.2 Level 2 Description

a. Function

This option allows the user to describe a piece of “theoretical” source code; i.e., a
module’s description, a program’s description, etc. The following form is the one

associated with this option:

(Name of the development company)
Level2 Description Form

Level 1 Name: Date:

Level 2 Name:

Version: Revision:

Status:

Purpose

4-34

Chapter 4 Design

Description

b. Tables Affected

Table Level2desc is the one of three tables affected. A unique code is generated for each
record inserted in this table which will serve as the unique code for the umique
combination of a software system and a piece of source code. We need the Levell Name
in order to tell to which system or project this piece of software, being described, belongs.
Level2 Name is needed to identify the piece of source code being described. The codes -
of the two levels” names - are sought from the Systems and Source tables, respectively,
and inserted in the equivalent ficlds in the Level2desc table (“syscode” and “modcode™).
The same for the “status” ficld where its code is brought from the Status table; the “datte”

field is given the value the user has entered.

The second table affected is the Purpose table. The text entered in the corresponding
block is inserted as records in the Purpose table where each line of text forms one record
with a unique code and where the “tabcode™ field is assigned the unique code generated

for the Level2desc table. The field “name” gets a line of text, “code” gets the generated

4-35

Chapter 4 Design

record code number, “levelflag” gets the value of 2, “flag” gets the value of ‘I.” meaning
that the record belongs to a Level 2 Description. “Oldverno”, “newverno” are assigned

the value of the Version number entered in the form, “oldrevno™ and “newrevno™ are

assigned the value of the revision number.

The third table affected is the Description table where the “describtion” item on the
screen is also a text entered and inserted as records in the corresponding table. Each
record is given a unique code assigned to the table field “code”, the field “name” gets a
line of text, and the ficld “tabcode” is assigned the value of the unique code generated for
the Level2desc, in order to tell later on to which piece of source code this description
belongs. The table field “flag™” is assigned the value of ‘L’ meaning that the record
belongs to Level 2 Description. “Oldverno”, “newverno” are assigned the value of the
Version number entered in the form, “oldrevno” and “newrevno™ are assigned the value

of the revision number.

4-36

Chapter 4 Design

1.1.2.3 Level 3 Description

a. Function

This option leads to the following form. It allows the user to describe a piece of source

code which is of level 3; i.e., actual code. It has the following form:

(Name of the development company)

Level3d Description Form

Levell Name: Date:
Level3 Name:

Version: Revision:

Status:

Developed by: Starting Date:

Purpose

4-37

Chapter 4 Design

Algorithm Description

Comments

Interface Definitions

Uses(Components) Calls(Source Code)
Levell Name Source Code Name

Resource Estimates for Development
Development Phase Estimates

Input Parameters

Output Parameters

4-38

Chapter 4 Design

b. Tables Affected

The following tables are all affected: Level3desc, Developedby, Purpose, Algorithm,

Comments, Uses, Calls, Compare Resources, Input Parameters, Cutput_Parameters.

For each source code description of this level a new record is created and inserted in table
Level3desc with a unique code. Levell Name is needed to tell to which software system
this piece of source code being described belongs to. The name of the software system is
replaced by its code sought from the Systems table, as well the code for the Level3 Name
itself assigned from the Source table. The “status” field is assigned the code of the status
condition entered from the form, and the “datte” field is assigned the same value entered

by the user.

In table Developedby a new record is inserted for each staff member defined in this form.
The code of the staff member is assigned to the table field “developedby”, the field
“startdate™ is assigned the value the user has just entered, “tabcode” field is assigned the
value of the unique code generated for Level3desc table, “flag” field is assigned the value
of ‘L’ meaning that this recorded is inserted upon ‘Level3’ description and not
Maintenance. “Oldverno”, “newverno” are assigned the value of the Version number

. entered in the form, “oldrevno” and “newrevno” are assigned the value of the revision

4-39

Chapter 4 Design

number. N.B.: more than one person may be involved in the implementation of a certain

piece of source code.

Tables Purpose, Algorithm, Comments, Input Parameters, Output Parameters are
affected the same way as table Purpose is affected in the Level2 description form, but the
“tabcode” field is assigned the unique code generated for the Level3desc table, and the
table field “levelflag” is assigned the value of 3 - to identify the records as belonging to

Level 3.

In table Uses a new record is created for each component name entered in the
corresponding block. The “tabcode™ field is assigned the unique code generated for
Level3desc table. The name of the component is read first and then its code is determined
from the Component table assigned to the field “compcode™ of the Uses table; by this it
relates a component to a piece of source code by a ‘Uses’ relationship. Also “oldverno”
and “newverno” are assigned the value of the version number just being defined, and
“oldrevno” and “newrevno” are assigned the value of the revision number of the source

code in question.

In table Calls two fields are the first to be assigned a value which are the “sys2code™ and

“mod2code”. The first is the code of the software to which the ‘called’ source code

4-49

Chapler 4 Design

belongs assigned from the Systems table, and “mod2code” is the code of the ‘called’
source code assigned from the Source table. The callee’s code, i.e., the code of the source
code name , described in this form and generated for the Level3desc table, is assigned to
the field “tabcode”. Also “oldverno” and “newverno” are assigned the value of the
version number just being defined, and “oldrevno” and “newrevno” are assigned the

value of the revision number of the source code in question.

For each development phase defined in this form a new record is created in the table
Compare Resources. “Tabcode” field is assigned the value of the unique code generated
for the Level3desc table, “phasecode” is the code of each development phase entered by
the user, “estimates” is assigned the value entered by the user - to estimate the time
resources spent in each phase. The field “flag” is assigned the value of ‘I.” meaning that
this record is entered upon Level3 description and not maintenance, “levelflag” is
assigned the value of ‘3’ to identify that this record is for the Level3 description form -
since this table is shared by all the three levels and is accessed from different forms. Also
“oldverno” and “newverno” are assigned the value of the version number just being
defined, and “oldrevno” and “newrevno” are assigned the value of the revision number of
the source code in question. Only the estimates are entered where as the actual time
resources are left till the end of each piece’s development where from the Actual

Resources Recording form they are entered.

4-41

Chapter 4

Design

1.1.3.4 Previous Menu

a. Function

Returns control to the previous menu.

b. Tables Affected

NONE !!!

1.1.3 Component Description and Structure

This option leads to the following menu:

1- Component Description
2- Component Structure Definition

3- Previous Menu

4-42

Chapler 4 Design

1.1.3.1 Component Description

a. Function

This option allows the development team to relate the already defined components to a

software system as well as describing the purpose of each. The associated form with this

option is the following:

(Name of the development company)

Component Definition Form

Component Type:
Levell Name: Version:
Component Name: Revision:

Component created by:

Description

4-43

Chapter 4 Design

b. Tables Affected

The table Comp_Def is the one affected. A unique code is generated for each record
defined; this code is assigned to the table field “code”. The code of the Levell name is
assigned from the Systems to the table field “syscode”. For the component type item on
the screen, a pop-up window is available for the user to choose a type for the component.
The equivalent field in the table “comptype” is assigned the code of the chosen
component type - from the component type table. Also the name of the owner who
created the component is needed and the code is sought from the Mtceteam table and

assigned to the table field “createdby”.

The table Component_Description is affected by the number of records inserted in the
Description item on this form. For each line or record a unique code is generated assigned
to the table field “code”, “flag” is assigned the value of ‘C’ meaning normal entry not
upon maintenance, “tabcode” is assigned the value of the code generated for the
Comp_Def table. Also “oldverno” and “newverno” are assigned the value of the version
number just being defined, and “oldrevno” and “newrevno” are assigned the value of the

revision number of the source code in question.

4-44

Chapter 4 Design

1.1.3.2 Component Structure Definition

a. Function

This option allows the development team to define the structure of the already defined
components, as well as describing the purpose of each field in the structure. The

associated form with this option is the following:

(Name of the development company)
Component Structure Definition Form

Levell Name: Version:

Component Name: Revision:

Authorized user grant type

Field Name:
Field Length:

Field Type:

4-45

Chapter 4 Design

Field Description

b. Tables Affected

Two tables are affected: Component Structure and Authorized Grants. The first table
will have a new record inserted for each field defined in the form and where a unique
code is generated for it and assigned to the table field “fldid”. “Fldname” is assigned the
value of the form item Field Name, “fldtypecode” is assigned the code of the value
chosen in the form item Field Type, “fldlength” is assigned the value of the form item

Field Length.

“Flag” is assigned the value of ‘C’ meaning upon creation of the component and not
modification, “tabcode™ is assigned the unique value generated for the table Comp Def.
Also “oldverno” and “newverno” are assigned the value of the version number just being
defined, and “oldrevno” and “newrevno™ are assigned the value of the revision number of

the source code in question,

4-46

Chapter 4 Design

In table Authorized Grants the following fields are assigned the same value as the
Component_Structure table: “oldverno”, “oldrevno”, “newverno”, “newrevno”, “flag”,
and “tabcode”. “Staffcode” field is assigned the code of the Authorized user’s name just

defined through this screen and the “grantcode™ field is assigned the code of the grant

chosen.

1.1.4 Actual Resources Recording

a. Function

This option leads to a form that allows the developers to enter the actual time resources
spent in developing a certain piece of source code in all its phases (design, coding,
testing, etc.) Of course, prior to this stage, at the Level3 Description form where the

developers enter only the estimated time resources. The associated form is the following:

(Name of the development company)

Actual Resource Recording

Levell Name: Version:

Level3 Name: Revision:

4-47

Chapter 4 Design

Development Phase Estimates Actual
Tests Done Tests Qutcome Date
Source Code Developed by Start Date Finishing Date

b. Tables Affected

Tables Compare Resources, Tests Outcome, and Developedby are the ones affected.
This form fills up the missing information in the tables Compare resources and
Developedby, since at source code description time (Level3 Description) the other fields
were filled-in, the “phasename”, the “estimates”, and the “startdate™, while the actual
resources and finishing date are kept till the end of the development of each piece of
source code to actually be able to determine them. The tool will read the name of the
source code in question, from the form, get its code from the Source table, and the

corresponding information is sought from the Compare Resources table, displayed, and

4-48

Chapter 4 Design

the “actual” field is then filled-in from the form field Actual.

The second block of the form is used to allow the user define the names, outcome, and
date of performing tests that assure the correctness and validation of the source code in
question. Hence, for each test a new record is created in the table assigning its following
fields the following values: “code” the code of the source code got from the Level3desc
table, “flag” the value of ‘L’ meaning during development and not maintenance, “datte”
the date entered from the form, “testcode” the code of a test name selected from the Tests
table, “testoul” the code of the outcome of the test selected from the Status table. Also
“oldverno” and “newverno_” arc assigned the value of the version number just being

defined, and “oldrevno” and “newrevno” are assigned the value of the revision number of

the source code in question.

In table Developedby the Ending Date item on the screen will tell the date that the piece’s

development is finished. It is entered in the above mentioned table as the “enddate” field.

4-49

Chapter 4 Design

1.1.5 Development Configuration Release

a. Function

This option leads to a form that allows the development company to produce a
configuration release for a software system that has been developed and in its way to be

distributed to some client institution. It has this following form:

ame of the development com

Development Confi ion Release
Levell Name: Version:
Configuration Release Identification: Date:
Status: Released by:
Development Phase Estimated Time Actual Time

4-50

Chapter 4 Design

Integration & System Tests Tests Outcome Date
Configuration Distributed to Distribution Date

Unfinished Work

b. Tables Affected

Table Configrelease is affected. There is a new record created for each initiation of the
form, of course with a unique code. CRID item is assigned to the field “crid” in the table,
where as the generated record code goes to the “code” field. The “syscode” field has the
value of the code of the Levell Name. The “status™ field is assigned the code of the value
entered in the form, and “date” field is assigned the value defined in the form. “Verno” is
assigned the value of the Version number defined in the form, “releasedby” is assigned
the code of the staff member whose name appears in the form field Released by, “flag” is

assigned the value of ‘D’ meaning it is a Release on Development not on Maintenance.

4-51

Chapter 4 Design

The Compare Resources table is also affected. The actual resources for development for

all the defined phases (in Level1 Description), for the whole software system, are defined

in this form.

Table Tests Outcome is also affected. New records are inserted for each test defined in
this form stating the names of the tests performed on the whole software system to ensure

that it conforms to its requirements specifications.

Table Distributed is affected as well because the above form assigns a configuration
release to an institution and hence in this table the “syscode” and the “institutionid” fields
are assigned respectively the values: code of the software system and code of the
institution name for which the software is released. The “crid” field in this table is

assigned the value of the corresponding Configrelease generated record code.

Table Unfinished Work is also affected if and only if the user enters some text in the last
block stating what unfinished work is left undone or for the next release. A unique code is
generated for each line of text entered assigned to the field “code”, “flag” is assigned the
value of ‘L’ meaning unfinished work on Development, “oldverno” and “newverno” are
assigned the value of the Version number of the software system defined in the form, and

“tabcode” is the unique code generated for the Levelldesc table to identify the software

4-52

Chapter 4 Design

system being released in this form.

1.1.8 Previous Menu

a. Function

This option brings the user backwards to the main menu.

b. Tables Affected

NONE !!!!

1.2 The Maintenance Option

This option contains all the necessary forms needed to have a controllable framework to

implement any maintenance action; starting from the Bug/Enhancement report and

ending with the Maintenance Configuration Release form.

Choosing the maintenance option leads to the following menu:

4-53

Chapier 4 Design

1- Bug/Enhancement Report

2- Change Proposal

3- Change Approval

4- Maintenance Specification

5~ Module Design

6- Source Code Implementation

7- Maintenance Configuration Release

8- Change Rejection

9- Actual Resources Recording for Maintenance of Source Code
10- Actual Resources Recording for Total Maintenance
11- Post Maintenance Release Jobs

12- Previcus Menu

1.2.1 Bug/Enhancement Report

a. Function

This option allows the development team to store, into the tool’s database, any user
requests concerning any changes or enhancements. By this, the development company

would oblige its client institutions to fill in this form - on paper - in order to assess later

4-54

Chapter 4 Design

the request. The form associated with this step is the following:

(Name of the development company)

Bug/Enhancement Report

Levell Name:
Vetsion:

Report Identification:

Related Bug/Enhancement report (B/E): Date:

Reported by Institution Employee

Description

4-55

Chapter 4 Design

b. Tables Affected

Reports table is the one affected. For each new report received, in this form, a new record
is created in the table giving each record a unique code. The Levell Name is read to
know to which software system the report belongs in order to get from the Systems table
the “syscode” value that need be inserted in the Reports table. The “B” or “E” character
read is used to assign it to the field “flag” in order for us to know if the report is a bug or
an enhancement report. The “reportid” field in the table gets the value entered by the user,
which is an identification (name) for the bug/enhancement report. The field “date” is
assigned the value from the form field Date, “verno” field is assigned the value of the
Version number on the form - this is needed to know in which version the error occurred.
The field “reportedby” is assigned the unique code of the user in the client institution who
requested the change. It is selected from the Employee table where a match is found with
the name of the employee and the name of the institution as entered by the user of the

form.

Table Repdesc is also affected. For each line of description in the form a record is
inserted into this table assigning to it a unique code and assigning the other fields the
following values: “repcode” the code generated for the Reports table to identify to which

report this line of description belongs, “flag” is assigned the value of ‘R’ meaning that

4-56

Chapter 4 Design

this description is defined from the Reports form.

1.2.2 Change Proposal

a. Function

This option leads to a form that is filled in by one of the maintenance team. It is a more

“technical” version of the bug/enhancement report. The associated form is the following:

(Name of the Development company)
Change Proposal Form

Change Proposal Identification: Date:
CP status:

Related Bug/enhancement report 1D: Version:

CP Proposed by:

CP description

4-57

Chapier 4 ' Design

Reason for change

b. Tables Affected

- Table Change_Proposal is the first table to be affected by the initiation of this form. The
user has to give a name or identification to the change proposal to identify it later on, and
it is assigned to the field “Cpid”. The tool, on the other hand, generates a unique code for
the record just created for the new proposal and it is assigned to the table field “code™.
The other table ficlds are assigned the following values: “datie” the date entered by the
user in the form, “status” the code selected from the Status table where the name is
equivalent to what the user has entered, “proposedby” the code of the staff member
selected from the Mtceteam table where the name is equivalent to the name defined in the
form as to whom proposed the change, “verno” is assigned the value of the Version
number and “reportitd” is assigned the code selected from the Reports table where the
report name is equivalent to the one just defined by the user as Related report.
“Approved” is left empty till a Change Approval is done then it is flagged ‘Y’ or a
Change Rejection is done and then it is flagged ‘N’, “crid” is also left blank until a

configuration is released that includes this change proposal and hence the configuration

4-58

Chapter 4 Design

release code is assigned to it.

Table Repdesc is affected by the text entered in the Change Proposal Description block.
For each line a new record is inserted - with a unique code - in the Repdesc table same as
in the Reports form except that the flag is set to “C’ in this form to distinguish the lines of

text of a bug report from those of a change proposal.

Table Change Reason is also affected by the fext entered in the Reason for Change
block. For each line a new record is inserted - with a unique code - in the Change Reason
table with its fields having the following values: “cpcode” the code of the change
proposal generated previously in this form for the Change Proposal table, “name” is

assigned the text entered in this block.

1.2.3 Change Approval

a. Function

This option leads to a form initiated only in the case a change proposal has been studied

and approved. The form associated with this option is the following:

4-59

Chapter 4 Design

(Name of the development company)

Change Approval Form

Change Approval Identification: Date:

Related Change Proposal Identification: Version:
CA Authorized by:

CA Bascline Established by:

CA Status:

Type of Change:

Identification of Change

Priority of Implementation:

Consequences if not Implemented

4-60

Chapter 4 Design

Define the Involved Software

Name Revision Number

b. Tables Affected

Table Change Approval is the first table to be affected. The user chooses an
identification name for the approval form and the tool generates a unique code for each
record. This code is assigned to the primary key “code” of the Change Approval table,
while the “caid” field is assigned the value of the identification entered and chosen by the
user. The “authorized” field is assigned the code of the name of the authorized person of
the maintenance team that has approved the change. The “status” field is also assigned
the status condition code entered by the user of the form about the status of the change
approval. “Cpid” field is assigned the code of the change proposal identification chosen
by the user as the Related CP. “Datte” is assigned the Date value entered by the user in
the form, “baselineby” field is assigned the code of the staff member who established the
baseline, “typeofchange” field is assigned the code of the maintenance type chosen by the

user, “verno” is assigned the Version number selected in the form.

4-61

Chapter 4 Design

Since many change approvals may lead to only one maintenance specification, hence the
field “msid” will be left null at this stage waiting for the corresponding Maintenance

Specification step to be taken in order fo be able to assign a value to this field.

Table Idofchange is affected by the text entered in the Identification of Change block. For
cach line of text a new record is inserted in the table with a unique code given to the
record and with its fields assigned the following values: “code™ the unique code
generated for this table, “flag™ is assigned the value of ’C’ meaning this identification
belongs to a Change Approval, “tabcode” is assigned the code generated for the Change

Approval table, and “name” is assigned a line of text from the block.

Table Priority is affected by the text entered in the Priority of Implementation block. For
each line of text a new record is inserted in the table with a unique code given to the
record and with its fields assigned the following values: “code” the unique code
generated for this table, “flag” is assigned the value of *C’ meaning this identification
belongs to a Change Approval, “tabcode™ is assigned the code generated for the Change

Approval table, and “name” is assigned a line of text from the block.

Table Consequences is affected by the text entered in the Consequences if not

Implemented block. For each line of text a new record is inserted in the table with a

4-62

Chapter 4 Design

unique code given to the record and with its fields assigned the following values: “code”
the unique code generated for this table, “flag” is assigned the value of *C’ meaning this
identification belongs to a Change Approval, “tabcode” is assigned the code generated for

the Change Approval table, and “name” is assigned a line of text from the block.

Table Swinvolved is also affected and in this way: For each change approval record
created in the Change Approval table, a new record is created as well in this table
assigning as its record code the change approval record code. For each source code
involved the tool will search in the source table to get the source code piece “modcode”,
the field “verno” is assigned the Version number value defined in the form, and the field
“revno” is assigned the Revision number of the source code piece, also defined by the

user in the form.

1.2.4 Maintenance Specification

a. Function

This option leads to a form that allows the authorized maintainer to enter the maintenance
specifications needed by a maintenance action and that might include more than one

approved change proposal. The associated form is the following:

4-63

Chapter 4 Design

me of the development com

Maintenance Specifications Form

Maintenance Specification Identification: Date:

MS Formulated by:
MS Baseline Established by:

MS Status: Version

Related Change Approval Identification: -—---------mmromm cmecemeaee e

Identification of change

Consequences of the Change

Define the Affected Software

Flag Source Code Name Revision

4-64

Chapter 4 Design

Tests Required

Estimated Resources for the Change

Phase Name Estimates

b. Tables Affected

The following tables are affected: Micespecs, Change Approval, Idofchange,
Consequence, Swaffected, Tests_Outcome, and Compare Resources. In table Micespecs
a new record is created for each specification entered; i.e., for each initiation of the above

form. The name of the form entered by the user is assigned to the field “msid” in the
table, while the tool will have generated a unique code for the record assigned to the table
field “code”. Formulated by item in the form is used to state the name of the person from
the development company that has formulated the specifications. Its code is selected from
the table Mtceteam and assigned to the table field “formulatedby”. The Date item on the
form is assigned to the table field “datte”; Status item on the form is the status condition

of the specification where its code is selected from the Status table and assigned to the

4-65

Chapter 4 Design

table field “status”. ‘Baseline Established by’ item on the form is the name of the staff
member who initiated the baseline, in preparation to implement the specifications, where
its code is selected from the Mtceteam table. The table field “verno” is assigned the value

of the Version number found in the form.

Change Approval is affected only in the following manner: For each change approval
identification defined in the above form as related to this maintenance specification its
table field “msid” - which was left empty on inserting the record on Change Approval
step - is assigned the code generated for the table Mtcespecs above. By this the m-to-1
relation is done between a change approval step (Change Approval Form) and a
maintenance specification that implements the approved change (Maintenance

Specification Form),

Idofchange table is used to store the text entered by the user in the corresponding item on
the above form. A unique code is generated for each line of text inserted in the table and
assigned to the table field “code”. The field “flag” is assigned the value of ‘M’ meaning
these are the change identifications of the Maintenance Specifications and not for the
Change Approval. When more than one form is inserting to the table a fiag is needed to
differentiate between the texts of each form. “Tabcode” field is assigned the value of the

generated code for the Mtcespecs table. Of course, the field “name” is assigned the value

4-66

Chapter 4 Design

of the text entered.

The table Consequence is affected in the same way as the Idofchange table. This tables’
fields are assigned the same values as the above table in the exception for the “name”
field where it contains the text entered in the Consequence of the changes item on the

form.,

Table Swaffected is also affected in the following manner. The table field “msid” is
assigned the code generated for the new record of Mtcespecs and that is to relate a
maintenance specifications to the pieces of software that are affected by this change. The
second field is the “modcode™ that is assigned the code of the source code name defined
as affected by the user. The “flag” field is assigned a value of either ‘S’ or ‘C’,
respectively according to the user’s choice (“S’ if the affected is source code and ‘C’ if

the affected is a component).

Table Tests_ Outcome is affected in the following manner: for each {est name entered as
required the tool will create a record in the former table with the table fields assigned the
following values: “mdcode” is assigned the code generated for the table Mtcespecs,
“testcode” is assigned the code of the test name selected from the Tests table, “testout” is

assigned the code of the test outcome selected from the Status table, “datte™ is assigned

4-67

Chapter 4 Design

the Date value found on the form, “flag” is assigned the value of ‘S’ meaning that the
record belongs to a Maintenance Specification form, “levelflag” is assigned the value of
zero because this form talks about the whole maintenance specification and not about a
specific level source code. Also “oldverno” and “newverno” are assigned the value of the
version number just being defined, and “oldrevno” and “newrevno™ are assigned the
value of the revision number of the source code in question. The field “code” is left blank
because it is accessed only from the Development option of this tool, while the

Maintenance option deals with the “mdcode”.

Finally, table Compare Resources is affected in the following manner. For each
maintenance phase entered by the user as a step towards implementing the change, a
record is inserted in the table with its fields assigned the following values: “phasecode”
the code of the phase name defined by the user selected from the Develophases table,
“estimates” the values entered by the user on the form, “levelflag” is assigned the value
of zero, “mdcode” is assigned the value of the code generated for the Micespecs table,
“oldverno™ and “newverno” are assigned the version number found on the form, “flag” is
assigned the value of ‘R’ to identify it as belonging to a maintenance specification. The
“flag”, “levelflag”, and “mdcode” identifies the records as belonging to this specific

maintenance specification identification.

4-68

Chapter 4 Design

1.2.5 Module Design

a. Function

H

This option leads to a screen (or form) that allows the maintainer to enter the “new’
designs of a picce of source code (or even a component). The following form is the one

associated with this option:

(Name of the development company)

Module Design Form

Levell Name: Version:
Is Second Level Source or Component (S/C): Revision:

Second Level Name (if available):

Module Design Identification: Date:
Module Design Designed by:

Module Design Baseline Established by:

Module Design Status:

Related Maintenance Specification Identification:

4-69

Chapter 4 . Design

Is the Related Design for a Perfective Maintenance:

Press PageDown to move to the corresponding Level Description where you can define

the new designs for the affected software piece you have just identified in this form.

b. Tables Affected

Table Module_design is the only one affected. For each initiation of this form, a new
record is created in the former table with its fields assigned the following values: “code”
the unique code generated by the form that uniquely identifies the record in the table,
“mdid” the name defined by the user in the form field Module Design Identification,
“datte” the value of the Date defined in the form, “status” the code of the status condition
defined by the user in this form - selected from the Status table, “msid” the code selected
from the Micespecs where the table field “msid” is equivalent to the name identified by
the user as the Related Maintenance Specification Identification, “flag” the value entered
by the user - °S’ if source code, ‘C’ if component, and null if the Module Design’s
purpose is to re-design the whole software system, “oldverno” the Version number found

in the form.

4-70

Chapter 4 Design

Also “oldverno” and “newverno” the value of the version number just being defined, and
“oldrevno” and “newrevno” the value of the revision number of the source code in
question, “designedby” the code of the staff member who designed the change selected
from the Mtceteam table, “Baselineby” the code of the staff member who prepared the
baseline selected from the Mtceteam table, “levelid” the unique code that identifies a
certain piece of source code, “levelflag” either of the values [0,1,2,3]; Zero if the module
to be designed is a component, the other values represent the Levels of the source code

which means the tool will be able to get the level of the source code in question.

1.2.5.1 New Design Documents for Levell

a. Function

This form is called if the source code module to be re-designed is simply the whole

software system. The associated form is:

(Name of the development company)
New Design Documents for Levell

Levell Name: Version:

4-71

Chapter 4 Design

Module Design Identification:

Hardware Requirements

Constraints

Estimated Time Resources

Maintenance Phase Name Estimates

Tesis to be Performed

4-72

Chapter 4 Design

b. Tables Affected

This form affects five tables: Nature, Hardware Requirements, Constraints,

Compare_Resources, and Tests Outcome.

Table Compare_Resources is affected as well. There are going to be as many records for
each Levell description as there are defined development phases; For each record created
the “levelflag” field is assigned the value of “1”, which is the current level number.
“Flag” field is assigned the value of ‘D’ meaning Description on maintenance. The
“mdcode” field is assigned unique code that identifies the module design record which
includes the name of the software system. The “phasecode” field is assigned the value of
the corresponding development phase (e.g., “1” for design, “2” for coding”, and “3” for
testing, each constitute a record on its own.) The “estimates” field is assigned the values
entered from the screen for each phase. “Oldverno”, “newverno” are given the value of
the Version number defined in this form. All Levell items do not have Revision numbers
- only version numbers - hence, “oldrevno” and “newrevno” are not defined in this
context. “Actual” field is left empty to be filled out at the end of the development through

the configuration release form.

4-73

Chapter 4 Design

Tables Nature, Hardware_Requirements, and Constraints are affected in the same way.
For each line of text entered in one of these blocks on the form, a new record is inserted
in the corresponding table with the generation of a unique record code number assigned
to the field “code”. The field “name” is assigned a line of text, “flag” is assigned the
value of ‘D’ meaning on maintenance of Levell, “oldverno” and “newverno” are
assigned the same value of the Verston number found on the screen, “mdcode” is
assigned the unique code that identifies the module design record which includes the-

name of the software system.

Table Tests Outcome is also affected. New records are inserted for each test defined in
this form stating the names of the tests performed on the whole software system to ensure

that it conforms to its New requirement specifications.

1.2.5.2 New Design Documents for Level2

a. Function

This form is called if the source code module to be re-designed is a functional module;

i.e., of Level 2. The associated form is:

4-74

Chapter 4 Design

(Name of the development company)
New Design Documents for FFunctional Modules

Levell Name; Version:
Level2 Name: Revision:

Module Design Identification:

Description

b. Tables Affected

This form affects two tables: Purpose and Level2 Desc.

For each line of text entered in the Purpose block a new record is inserted in the Purpose

table with a unique code and where the “mdcode” field is assigned the unique code that

4-75

Chapter 4 Design

identifies the module design record which includes the name of the source code module.
The field “name” gets a line of text, “code™ gets the generated record code number,
“levelflag” gets the value of 2, “flag” gets the value of ‘D’ meaning that the record
belongs to a maintenance Module Design. “Oldverno”, “newverno” are assigned the

value of the Version number entered in the form, “oldrevno” and “newrcvno” are

assigned the value of the revision number.

The third table affected is the Description table where the “description” item on the
screen is also a text entered and inserted as records in the corresponding table. Each
record is given a unique code assigned to the table field “code”, the field “name” gets a
line of text, and the field “mdcode™ is assigned the value of the unique code that identifies
the module design record which includes the name of the source code module. The table
field “flag” is assigned the value of ‘D’ meaning that the record belongs to a maintenance
Module Design. “Oldverno”, “newverno” are assigned the value of the Version number

entered in the form, “oldrevno™ and “newrevno” are assigned the value of the revision

number.

4-76

Chapter 4 Design

1.2.5.3 New Designs Documents for Level 3

a. Function

This form is called if the source code module to be re-designed is of Level 3. The

associated form is:

(Name of the development company)

New Designs for Source Code Modules

Levell Name: Version:
Level3 Name: Revision:

Module Design Identification:

Purpose

Algorithm Description

4-77

Chapter 4 Design

Maintained by: Starting Date:

Interface Definitions

Uses{Components) Calls(Source Code)
Levell Name Source Code Name

Resource Estimates for Maintenance

Maintenance Phase Name Time Estimates

Input Parameters

Output Parameters

Comments

4-78

Chapter 4 Design

b. Tables Affected

The following tables are all affected: Purpose, Algorithm, Developedby, Uses, Calls,

Compare Resources, Input_Parameters, Output Parameters, Comments.

Tables Purpose, Algorithm, Comments, Input Parameters, Output Parameters are
affected in the same way. For each line of text entered in the corresponding blocks, a new
record is inserted in the fables with a unique code and where the “mdcode” field is
assigned the unique code that identifies the module design record which includes the
name of the source code module. The field “name™ gets a line of text, “code™ gets the
generated record code number, “levelflag” gets the value of 3, “flag” gets the value of ‘D’
meaning that the record belongs to a maintenance Module Design. “Oldverno”,
“newverno” are assigned the value of the Version number entered in the form, “oldrevno”

and “newrevno” are assigned the value of the revision number.

In table Developedby a new record is inserted for each staff member defined in this form.
The code of the staff member is assigned to the table field “developedby” selected from
the table Mtceteam, the field “startdate™ is assigned the value the user has just entered,
“mdcode” field is assigned the value of the unique code generated for Module_Design

table, “flag” field is assigned the value of ‘D’ meaning that this recorded is inserted upon

4-79

Chapter 4 Design

Module Design for Level3 description. “Oldverno”, “newverno” are assigned the value of
the Version number entered in the form, “cldrevno” and “newrevno” are assigned the
value of the revision number. N.B.: more than one person may be involved in the

implementation of a change of a certain piece of source code.

In table Uses a new record is created for each component name entered in the
corresponding block. The “mdcode” field is assigned the unique code generated for the
Module Design table. The name of the component ts read first and then its code is
selected from the Component table assigned to the field “compcode” of the Uses table; by
this it relates a component to a piece of source code by a ‘Uses’ relationship. Also
“oldverno” and “newverno” are assigned the value of the version number just being
defined, and “oldrevno” and “newrevno” are assigned the value of the revision number of

the source code in question.

In table Calls two ficlds are the first to be assigned a value which are the “sys2code” and
“mod2code”. The first is the code of the sofiware to which the ‘called” source code
belongs assigned from the Systems table, and “mod2code” is the code of the ‘called’
source code assigned from the Source table. The table field “mdcode” is assigned the

unique code generated for the Module Design table. Also “oldverno” and “newverno”

4-80

Chapter 4 7 Design

are assigned the value of the version number just being defined, and “oldrevno” and

“newrevno” are assigned the value of the revision number of the source code in question.

For each development phase defined in this form - as a needed step in implementing the
maintenance action - a new record is created in the table Compare Resources. “Mdcode”
field is assigned the value of the unique code generated for the Module Design table,
“phasecode” is the code of each development phase entered by the user, “estimates” is
assigned the value entered by the user - to estimate the time resources spent in each
phase. The field “flag” is assigned the value of ‘D’ meaning that this record is entered
upon Module Design (maintenance), “levelflag” is assigned the value of ‘3’ to identify
that this record is for source code of Level3 - since this table is shared by all the three
levels and is accessed from different forms. Also “oldverno™ and “newverno” are
assigned the value of the version number just being defined, and “oldrevno” and
“newrevno” are assigned the value of the revision number of the source code in question.
Only the estimates are entered where as the actual time resources are left till the end of
the piece’s maintenance where from the Maintenance Actual Resources Recording Form

they are entered.

4-81

Chapter 4 Design

1.2.5.4 New Design Documents for Components

a. Function

This form is called if the item to be re-designed is a component . The associated form is:

(Name of the development company)

New Design Documents for Components

Levell Name: Version:
Component Name: Revision;
Module Design Identification:

Component Description:

Authorized user grant type

Field Name:

Field Length:

4-82

Chapter 4 Design

Field Type:

Field Description

b. Tables Affected

Three tables are affected: Component Description, Component Structure, and
Authorized Grants. The table Component Description is affected by the number of text
lines inserted in the Description item on this form. For each line of text a record is created
in the table with a unique record code generated and assigned to the table field “code”,
“flag” is assigned the value of ‘D’ meaning text entry upon Module Design , “mdcode” is
assigned the unique code generated for Module Design table. Also “oldverno” and
“newverno” are assigned the value of the version number just being defined, and
“oldrevno” and “newrevno” are assigned the value of the revision number of the source

code in question.

The second table - Component Structure - will have a new record inserted for each field

defined in the form and where a unique code is generated for the field and assigned to the

4-83

Chapter 4 Design

table field “fldid”. “Fldname” is assigned the valuc of the form item Field Name,
“fldtypecode” is assigned the code of the value chosen in the form item Field Type,
“fldlength” is assigned the value of the form item Field Length. “Flag” is assigned the
value of ‘D’ meaning upon Module Design (modification } of the component, “mdcode”
is assigned the unique value generated for the table Module Design. Also “oldverno” and
“newverno” arc assigned the value of the version number just being defined, and

“oldrevno” and “newrevno™ are assigned the value of the revision number of the source

code in question.

In table Authorized Grants the following fields are assigned the same value as the
Component_Structure table: “oldverno”, “oldrevno™”, “newverno”, “newrevno”, “flag”,
and “mdcode”. “Staffcode™ field is assigned the code of the Authorized user’s name just

defined through this screen and the “grantcode” field is assigned the code of the grant

chosen.

4-84

Chapter 4 Design

1.2.6 Source Code Implementation

a. Function

This option also leads to a form that allows the maintainer from entering the details of the

implemented changes. The associated form is the following one:

(Name of the development company)
Source Code Implementation Form

Source Code Identification: Date:
Source Code Status:

Source Code Implemented by:

Source Code Understood by:

Source Code Baseline by:

Module Design Identification: Ver#: Rev#:
Tests Performed Tests OQutcome Date

4-85

Chapter 4 Design

Comments

b. Tables Affected

The following tables are affected: Source Code, Tests Outicome, and Comments. For
each initiation of this form a new record is created in the Source Code table with a
unique code number and with its fields assigned the following values: “scid” the source
code identification defined by the user, “datte” the value of the Date item in the form,
“status” the code of the status condition selected from the Status table, “implementedby”
and “understoodby” the codes of the staff members who respectively, implemented and
understood the implemented changes. These codes are selected from the Miceteam table.
Also “oldverno” and “newverno” are assigned the value of the version number just being

defined, and “oldrevno” and “newrevno” the value of the revision number of the source

code in question.

Since there exists a 1-to-1 relationship between Source Code and Module Design tables,
the user is prompted to enter or choose - from a pop up menu - a module design

identification that is related to the current source code implementation. The chosen

4-86

Chapter 4 Design

identification’s code - selected from the Module Design table - is assigned to the foreign

key “mdid” in the Source_Code table.

In table Tests_Outcome, the tests declared as required in the related Module Design form
are displayed in this form where the user is requested to enter the outcome and date of
cach test. Hence, for the corresponding records in the Tests Qutcome fable the
corresponding fields are updated: “testout” is assigned the value of the status condition

selected from the Status table, and “datte” is assigned the Date form field defined by the

user,

For each line of text entered in the Comments form field, a new record is created in the
Comments table generating a unique code for each and assigned to the table field “code™.
The table field “name” is assigned a line of text, “flag” is assigned the value of ‘S’
meaning the record is related to the Source_code table whose code is assigned to the table
field “mdcode”, “oldverno” and “newverno” are assigned the Version number found in
the form, and “oldrevno” and “newrevno” are assigned the value of the source code’s

Revision number also found in the form,

4-87

Chapter 4 Design

1.2.7 Maintenance Configuration Release

a. Function

This option leads to a form that allows the maintainer from producing a maintenance
configuration release after implementing the proposed and approved changes. It is up to
the user to decide if a new release number is required. The associated form with this

option is the following screen:

ame of the development compan

Maintenance Configuration Release Form

Levell Name: Version Number:
Configuration Release Identification: Date:

New Version Number:

Confirm the Process (Y/N):

Configuration Release Status:
Configuration Released by:

Baseline Established by:

4-88

Chapter 4 Design

Related Change Proposals:

Configuration Distributed to
Institution Name Distributed Date

Actual Time Resources Recording

Maintenance Phase Estimates Actual

>
=
o

Tests Performed Tests Qutcome

Unfinished Work

4-89

Chapter 4 Design

b. Tables Affected

The following tables are affected: Configrelease, Versions, Change Proposal,
Compare Resources, Tests_Outcome, and Unfinished Work.

In table Configrelease the same process occurs as in the Development Configuration
Release form except for assigning the table field “flag” the value of ‘M’ meaning a

release upon Maintenance.

The form field Confirmed should contain either characters ‘Y’ or “N” depending on the
user’s choice. If the answer is °Y’ then the software system is given a new number and
hence the Versions table is updated as follows: first, in the record where the field
“syscode” is equal to the software code being released and “oldver” equal to the old
version number found in the form, the table field “newver” is assigned the new version
number generated by the form - increasing the old version number by one - and the table
field “crid” is assigned the value of the unique code generated for the record of the table
Configrelease. Second, a new record is inserted with the table field “syscode™ assigned
the same value of the software code and the field “oldver” assigned the new version

number just given to the software system.

4-90

Chapter 4 Design

Change Proposal table is only updated by assigning to the table field “crid”, where the
field “code” is equal to the code of the change proposal identifications declared in the

form as included in the release, the value of the record created in the Configrelease table.

Table Distributed is also affected by creating a new record for each institution the new
release is distributed to. Its fields as assigned the following values: “configcode” the
value of the code generated for the record for the table Configrelease, “instid” the code
value of the institution name selected from the table Institutions, “flag” the value ‘M’
meaning distributed upon a maintenance release, “verno” the new version number of the

software system, and “datte” the Date of distribution.

Compare_Resources and Tests Outcome tables are only affected if and only if the set of
the maintenance changes include the re-development of the whole software system; i.e.,
in the Module Design Form the name of the sofiware system was mentioned and a new
definition of it was declared through the next form called ‘New Design Documents for
Levell’. Otherwise, the corresponding two blocks are skipped. If they are not skipped,
then the already entered fields in the latter form are displayed and only the Actual time
resources are entered - for the Estimated time resources block - and the Tests outcome

and date for the second block.

491

Chapter 4 - Design

Table Unfinished Work is affected if any text is entered in the corresponding form block.
For each line of text a new record is inserted in the table with the its fields are assigned
the following values: “code” the unique code generated for each record, “name” the line
of text, “flag” the value ‘D’ meaning a maintenance unfinished work, “oldverno” and
“newverno” the old version number of the software system - and not the new one, and

“tabcode” the code of the configuration release record.

1.2.8 Change Rejection

a. Function

This form allows the user to enter a rejection action of a proposed change request. The

associated form is the following:

(Name of the development company)

h Rejection For

Change Rejection Identification: Date:

Change Rejection Authorized by:

4-92

Chapter 4 Design

Change Rejection Status:

Related Change Proposal:

Reason for Rejection

b. Tables Affected

Tables Change Rejection, Change Proposal, and Rejection_Reason are affected. For
each initiation of this form a new record is created in table Change Rejection with a
unique code number. The user should assign a name for the change rejection that is
assigned in turn to the table field “crjid”. “Authorizedby” field is assigned the value of
the code of the authorized staff member, of the maintenance team that has evaluated the
proposal and decided on the rejection action, whose name is entered in the form field
‘Change Rejection Authorized by’. “Status” field is assigned the code of the ‘Change
Rejection Status’ ficld on the screen, the “date” as well is assigned the form field ‘Date’.

The record in the table Change Proposal, where the name of the change proposal
identification is equal to the one assigned by the user as a related one, is updated by

assigning an ‘N’ to the “approved” flag; i.c., this change proposal is not approved.

4-93

Chapter 4 Design

For each line of text entered in the Reason for Rejection block on the screen, a record is
inserted in the Rejection Reason table with a unique code generated for the record and
assigned to the table field “code”. The field “crjid” is assigned the code of the change
rejection record just generated for the Change Rejection table, and “name” is assigned a

line of text.

1.2.9 Actual Resources Recorded During Maintenance of Source Code

a. Function

This option leads to a form that allows the maintainers to enter the actual time resources
spent in maintaining a certain piece of source code in all its phases (design, coding,
testing, etc.) Of course, prior to this stage, at the Module Design phase the maintainers
should have entered only the estimated time resources for the maintenance. The

associated form is the following:

(Name of the development company)
Actual Resource Recorded During Maintenance

Levell Name:

4-94

Chapter 4 Design

Level3 Name:

Version: Revision:

Module Design Identification:

Maintenance Phase Name Estimates Actual
Maintained by Start Date Finishing Date

b. Tables Affected

Tables Compare Resources and Developedby are the ones affected. This form fills up the
missing information in the tables Compare Resources and Developedby, since at Module
Design Re-Description time the other fields were filled-in, the “phasename”, the
“estimates”, and the “startdate”, while the actual resources and finishing date are kept till
the end of the maintenance of each piece of source code to actually be able to determine
them. The tool will read the name of the source code in question, from the form, get its

code from the Source table, and the corresponding information is sought from the

4-95

Chapter 4 Design

Compare_Resources table, displayed, and the “actual” field is then filled-in from the form

field Actual.

In table Developedby the Ending Date item on the screen tells the finishing date of

implementing a maintenance action on a piece of source code.

1.2.10 Actual Time Resources Recorded for Total Maintenance

a. Function

This option leads to a form that allows the maintainer from entering the actual time
resources spent in implementing a specific Maintenance Specification, as well as
specifying the outcome of the complete set of tests performed on the implemented
changes - previously defined the Maintenance Specification Form - and the date of

performing each test. The associated form with this option is the folloWing:

(Name of the development company)

Total Time Reso Tests’ m

Maintenance Specification Identification:

4-96

Chapter 4 Design

Maintenance Phase Name: Estimates Actual
Tests Performed Tests’ Outcome Date

b. Tables Affected

The following two tables are affected: Compare Resources and Tests Outcome. In the
first table, the maintenance phase names and estimates are already entered from the
Maintenance Specification Form, and hence the maintainer here has to only record the
actual time taken during each phase.

The same is true for the Tests Outcome table where the names of the tests are already
defined from the Maintenance Specification Form and here the maintainer has to record

only the outcome of each test as well as the date of performing each,

1.2.11 Post Maintenance Release Jobs

This option leads to the following menu:

4-97

Chapter 4 Design

1- Post Maintenance Release Jobs
2- Add a Source Code/Component to a Software Version
3- Remove a Source Code/Component from a Software Version

4. Previcus Menu

1.2.11.1 Post Maintenance Release Jobs

a. Function

This option leads the user to a form that must be initiated only after a maintenance
configuration release. The function of this form is to update all the tables, related to a

certain release, to be related to the new version number release. The associated form is

the following:

(Name of the development company)

Post Release Jobs

Configuration Release Identification:
Levell Name:

Version:

4-98

Chapter 4 Design

Source Code & Components have been assigned to the new version:

Delete any Source Code from the New Version, Give Name:

Delete any Component from the New Version, Give Name:

Do You Confirm the Process of Updating all the Tables:

b. Tables Affected

All the tool’s data base tables are affected. The same process goes for all, and it is the
following: For every source code (component) affected by a maintenance change - just
being implemented for the latest release - its table fields “newverno” and “newrevno™ are
incremented by one. Hence, the “newverno” will be equal to the new version number of
the software and the field “newrevno” will be increased by one declaring that the source

code (component) has been changed in the course of a maintenance action.

4-99

Chapter 4 Design

For those source code modules and components not affected, their “newverno” is only
increased by one, retaining their old “newrevno”. This means that they have not been

affected by the latest change but that they now belong to the version number release.

Just in case the maintainer feels that one of the source code or components need not be
included in the new version release, then the user has to give the names and the tool will
delete the corresponding records from the Source_Version and Component Version. This
step is performed before the final update of the complete set of the tool’s tables. If the
given names are affected by the latest changes then they are not deleted and a message is

printed to notify the user.

1.2.11.2 Add a Source Code Module/Component to a Software Version

a. Function

This option leads to a form where in some cases the maintainer or developer feels the
need to relate a source code module or a component to a specific version - originally not

related to. The associated form with this option is the following form:

4-100

Chapter 4 Design

(Name of the development company)

Add a Source Code Module/ onent

Software Name: Version:
Source Code Module or Component (S/C):

Source Code/Component: Revision:

b. Tables Affected

Either tables are affected: Source Version and Component Version. If the item to be
added is a source code then the former table is affected, otherwise - if a component - then

the latter table is affected.

For either table affected the same process occurs. For each item to be added, its code is
selected from the Source (Component) table and is assigned to the table field “modcode”
(“compcode”). The table field “syscode™ is assigned the software code selected from the

Systems table.

4-11

Chapter 4 Design

Also the table field “verno” is assigned the New version number - to which the source
code (component) is being related - and which is entered by the user in the form. The
same for the table field “revno™ which is thé revision number of the source code
(component) - as well entered by the user in the form. Hence, creating a new record for

the item just being added in the corresponding table.

1.2.11.3 Remove a Source Code Module/Component from a Software Version

a. Function

This option leads to a form where in some cases the maintainer or developer feels the
need to remove a source code module or a component from a specific version - originally

related to. The associated form with this option is the following form:

(Name of the development company)
Remove a Source Code Module/Component

Software Name: Version:
Source Code Module or Component (S/C):

Source Code/Component: Revision:

4-102

Chapier 4 Design

b. Tables Affected

Either tables are affected: Source Version and Component Version. If the item to be
removed is a source code then the former table is affected, otherwise - if a component -

then the latter table is affected.

For either table affected the same process occurs, For each item to be removed, its code is
selected from the Source (Component) table. The software code is also selected from the
Systems table. The tool hence deletes from the Source_Version (Component Version)
table the record where the table field “syscode” is equivalent to the software’s code and
“modcode” (“compcode”) is equivalent to the source code’s code (component’s), and
“verno” equals to the form field Version and “revno” equals to the form field Revision.
By this the source code (component) will no longer be related to the software name of

this specific Version number.

1.2.12 Previous Menu

a. Function

This option leads us back to the main menu.

4-103

Chapter 4 Design

b. Tables Affected

NONE !

1.3 The Reports Option

Choosing this option leads to the following menu:

1- Development Reports
2- Maintenance Reports

3- Previous Menu

1.3.1 The Development Reports Option

This option states the reports that can be drawn from the Development Phase. Such

reports are found in the following menu:

1- Code Tables Reports
2- Source Code Related Reports

3- Components Related Reports

4-104

Chapter 4 Design

4- Software System Related Reports

5- Previous Menu
1.3.1.1 Code Tables Reports
'This option leads to another menu where the following set of reports are generated:

1- Software Names
2- Source Code Module Names
3- Component Names
4- Nesting Levels
5- Staff Member Names
6- Development Phases Names
7- Status Conditions
8- Test Names
9- Component Types
10- Field Types
11- Maintenance Types
12- Grant Types

13- Employees Names in Client Institufions

4-105

Chapter 4

Design

14- Client Institutions Names
15- Hierarchy of a Sofiware
16~ Institutions Distributed to per Software

17- Previous Menu

1.3.1.2 Source Code Related Reports

This option produces reports related to source code modules. It leads to the following

menu;

1- Source Code Names per Software

2- Maximum Revision Number of a Source Code

3- Revision Numbers of all Source Code Modules

4- List of Test Names Performed on a Source Code -

5- Time Resources Spent on Developing a Source Code

6- List of I/O Parameters Used by a Source Code

7- List of Source Code Names Called by a Source Code

8- List of Components Used by a Source Code

9- Names of Staff Members who Developed a Source Code

10- Previous Menu

4-106

Chapter 4 Design

1.3.1.3 Components Related Reports

This option also leads to another menu where reports related to components are produced.

1- Names of Components per Software

2- Maximum Revision Number of a Component

3- Revision Numbers of all Components

4- List of Authorized Grants for a User on a Component
5- List of the Structure of a Component

6- Previous Menu

1.3.1.4 Software System Related Reports

This option also leads to another menu where reports related to a software system are

produced.

1- Maximum Version Number of a Software System
2- Version Numbers of all Software Systems
3- List of Tests Names Performed on a Software System

4- Time Resources Taken to Develop a Software System

4-107

Chapter 4 Design

5- List of Software Systems Written in a Specific Language

6- Previous Menu

1.3.1.5 Previous Menu

This option leads us back to the Reports main menu.

1.3.2 The Maintenance Reports Option

This option states the reports that can be drawn from the Maintenance Phase. Such

reports are found in the following menu:

1- Source Code Related Reports
2- Components Related Reports
3- Maintenance Action Related Reports

4- Previous Menu

1.3.2.1 Source Code Related Reports

This option leads to the following menu:

4-108

Chapter 4 Design

1- Names of Source Codes Affected by a Maintenance Action

2- Names of Staff Maintaining a Source Code

3- New I/O Parameters for a Source Code

4- New Algorithm for a Source Code

5- New Components Used by a Source Code

6- New Source Codes Called by a Source Code

7- List of Module Regression Tests Performed on a Source Code
8- Time Resources Spent on Maintaining a Source Code

9- Name of Source Code with Highest Number of Modifications

10- Previous Menu

1.3.2.2 Components Related Reports

This option leads to another menu where components related reports can be drawn.,

1- Names of Affected Components by a Maintenance Action

2- Name of the Component with Highest Number of Modifications

3- Previous Menu

4-109

Chapter 4 Design

1.3.2.3 Maintenance Action Related Reports

This option leads to another menu where reports about any maintenance change can be

drawn.

1- Names & Number of Bug Reports per Software

2- Total Number & Names of Change Proposals

3- Change Proposals not Released Yet

4- Approved Change Proposals without Specifications

5- Rejected Change Proposals

6- List of all Change Rejections

7- Time Resources Taken to Perform a Maintenance Action
8- Names of Tests Performed during a Maintenance Action
9- Number of Change Proposals per Maintenance Category

10- Previous Menu

1.3.2.4 Previous Menu

This leads us back to the Reports main menu.

4-110

Chaplter 4 Design

2. Tables Description

Following is the Entity Relationship (ER) diagram that specifies the Low-Level design
of the SMT tool. Next comes the listing of the tables used in the tool along with their

attributes data types.

4-111

Chapter 4

Design

‘I
Systems

5
Levelcode

4 3
Levels Source

7

Levelldesc

9
Nature

13

Develophases

j—

Status Nature

4-112

Chapter 4 Design
1
Source
3
Level2desc
) 4
Description Purpose
g 5
Level2_Desc Purpose

4-113

Chapter 4 Design

1

Source

Level3desc

4
Status

7
Algorithm 8
Comments

estoutcome-,

5

Mtceteam
Purpose

h 4
h 4
10

6

Purpose

Component

4-114

Chapter 4 Design

1

Component
2 5
Created
C
omp_Def by
5 4
3 Granted
Systems to Mtceteam
7
Authorized
Granis

9
Grant
Type
10 11
Mtceteam Grantype

4-115

Chapter 4 Design

1

Comp_Def
2
Description
3
Comptype 6
’ Component

Component Tvpe

Structure yp

5
Component
Type

Field
Type

Fid
Description

9

10

Field_Desc Field_Type

4-116

Chapter 4 Design

11
Employees

4-117

Chapter 4

Design

Reports

4
Change
Proposal

Change
Description

6

Rep_Desc

1
Status

Mtceteam

4-118

Chapter 4 Design

1
Change
Proposal

2
Approved

3
Change 5

Approval uthorize
> by

Swinvolved

Componenit
Status

12

MiceTeam

dent. o

onsequence Change

y
}r 17

18
Consequence

Idofchange Priority

4-119

Chapter 4 Design

1
Change
Approval

3
MtceSpecs
|
I L
waffecte
¥
Formulated
by
10
17 Consequence
Component g: :: g:,-
6
11 Miceteam
18 ldofchange
Source

15
8
Tests
Status 7
Develophase

4-120

Chapter 4 Design

1
MiceSpecs

Designs

3
Module
Design

10 Status

Component 6
Description
Mtceteam
11 12 13

Level3Desc Level2Desc LevellDesc

4-121

Chapter 4 Design

1
Module
Design

Source
Code

3
estoutcome
nderstood
by

12 10 6
Tests Comments
MiceTeam

4-122

Chapter 4

Design
1
Change
Proposal
2
Released
¥ 3
Configrelease
8
Baseline
Released by
4 by
Status

5

Mtceteam

4-123

Chapter 4

Design

1
Change
Proposal

Rejection

3
Change
Rejection

7
Mtceteam

4-124

Chapter 4

Design

1

Configrelease

Distributed

3

Institutions

Works for

5

Employees

4-125

T

Chapter 4 Design

Table Input_Parameters

(

code number(5) not null,
syscode number(5) not null,
tabcode number(5),

flag char(1),

mdcode number(5),

oldrevno number(5),

oldverno number(5),

NEWVErno number(5),

newrevno number(5),

param char(72));

Table Qutput Parameters

(

code number(5) not null,
syscode number(5) not null,
tabcode number(5),

flag char(1),

mdcode number(5),

4-126

e ———

Chapter 4

Design
oldrevno number(5),

oldverno number(5),

newverno number(5),

newrevno number(5),

param char(72));

Table Rejection Reason

(

code number(5) not null,
crjid number(5) not null,
name char(72));

Table Consequence

(

code number(5) not null,
flag char(1),

tabcode number(5),

name char(72));

4-127

e ————————————

Chapter 4

Design
Table Priority
(
code number(5) not null,
cacode number(5) not null,
name char(72));
Table Idofchange
(
code number(5) not null,
flag char(1),
tabcode number(5),
name char(72));

Table Change Reason

(

code number(5) not null,
cpcode number(5),

name char(72));

4-128

Chapter 4 Design
Table Repdesc

(

code number(5) not null,

repcode number(5),

flag char(1),

name char(72));

Table Field Desc

(

code number(5) not null,
name char(72),

flag char(1),

mdcode number(5),

oldrevno number(5),

oldverno number(5),

NEWVerno number(5),

newrevno number(5),

tabcode number(5),

fldid number(5) not null);

4-129

Chapter 4

I —————————,——

Degign

Table Field Type

(

code number(5)

name char(20});
Table Algorithm
(

code number(5)
text char(72),
flag char(1),
mdcode number(5),
oldrevno number(5),
oldverno number(5),
NEWVErno number(5),
NEWrevno number(5),
tabcode number(5));

Table Authorized Grants

(

flag

char(1),

not null,

not null,

4-130

Chapter 4 Design
mdcode number(5),
oldrevno number(5),
oldverno number(5),
newverno number(5),
newrevno number(5),
tabcode number(5) not nuil,
staffcode number(5) not null,
grantcode number(5) not null};
Table Calls
(
sysZ2code number(5) not null,
mod2code number(5) not null,
flag char(1),
mdcode number(5),
oldrevno number(5),
oldverno number(5),
newverno number(5),
newrevno number(5),
tabcode number(5));

4-131

Chapter 4 Design

Table Change Approval

(

code number(5) not null,
caid char(15),

datte date,

status number(5),

authorizedby number(5),
baselineby number(5),

typeofchange number(5),

Verno number(5),
cpid number(5) not null,
msid number(5));

Table Change Proposal

(

code number(5) not null,
cpid char(15),

datte date,

status number(5),

4-132

Chapter 4

Design

proposedby number(5),

approved char(1),
verno number(5),
crid number(5),
reportid number(5)

Table Change Rejection

(

code number(5)
crjid char(15),
datte date,

status number(5),
verno number(5),

authorizedby number(5),

cpid number(5)

Table Company Name

(
code number(5)
name char(40),

not null);

not null,

not null);

not null,

4-133

Chapter 4 Design

effective char(1));

Table Compare Resources

(

tabcode number(5) not null,
phasecode number(5),
actual _ number(5),
estimates number(5),
levelflag number(1),
mdcode number(5),
oldrevno number(5),
oldverno number(5),
NEWVerno number(5),
NEWIevno number(5),
flag char(1));

Table Component

(
code number(5) not null,
name char(15));

4-134

Chapter 4 Design

Table Comp Def

(

code number(5),

compcode number(5) not null,
createdby number(5),

syscode number(5) not null,
comptype number(5));

Table Component_Type

(
code number(5) not null,
name char(25));

Table Component_Description

(

code number(5) not null,
flag char(1),

mdcode number(5),

oldrevno number(5),

oldverno number(5),

newverno number(5),

4-135

Chapter 4 Design
REWIEVIO number(5),
tabcode number(5),
description char(72));

Table Component Structure

(

fldid
fldname
fldtypecode
fldlength
flag
mdcode
oldrevno
oldverno
newverno
newrevno

tabcode

number(5)
char(15),
number(5),
number(5),
char(1),
number(5),
number(5),
number(5),
number(5),
number(5),

number(5));

not null,

4-136

Chapter 4 Design
Table Configrelease

(

code number(5) not null,

crid char(15),

datte date,

status number(5),

syscode number(5) not null,
baselineby number(5),

verno number(5),

releasedby number(5),

flag char(1),

confirmed char(1));
Table Developedby
(

developedy number(5) not null,
startdate date,

tabcode number(5),

mdcode number(5),

flag char(1),

4-137

Chapter 4

Design
oldrevno number(5),
oldverno number(5),
newverno number(5),
NEWIevno number(5),
enddate date);
Table Develophases
(
code number(5) not null,
name char(20));
Table Distributed
(
configcode number(5) not null,
instid number(5),
flag char(1),
verno number(5),
datte date);

4-138

Chapter 4

Design
Table Employees
(
employeeid number(5) not null,
employeename char(30),
position char(20),
institutionid number(5) not null);
Table Grantype
(
code number(5) not null,
name char(25));
Table Institutions
(
institutionid number(5) not null,

institution name char(30),

typeofbusiness char(20));

4-139

D ——————

Chapter 4 Design
Table Levelldesc
(
code number(5) not null,
status number(5),
datte date,
language char(20),
syscode number(5) not null);
Table Level2desc
(
code number(5) not null ,
status number(5),
datte date,
syscode number(5) not null ,
modcode number(5) not null);
Table Level3desc
(
code number(5) not null,
status number(5),

4-140

Chapter 4 Design
datte date,

syscode number(5) not null,

modcode number(5) not null),

Table Level2_Desc

(

code number(5) not null,
name char(72),

flag char(l),

mdcode number(5),

oldrevno number(5),

oldverno number(5),

newverno number(5),

Newrevno number(5),

tabcode number(5));

Table Comments

(
code number(5) not null,
name char(72),

4-141

e ————————

Chapter 4 Design
flag char(1),
mdcode number(5),
oldrevno number(5),
oldverno number(5),
newverno number(5),
newrevno number(5),
tabcode number(5));
Table Levels
(
code number(5) not null,
narne char(20),
levelnbre number(5});

Table Module Design

(

code number(5) not null,
mdid char(15),

datte date,

status number(5),

4-142

D ——————

Chapter 4 Design
msid number(5),

flag char(1),

oldrevno number(5),

oldverno number(5),

newverno number(5),

newrevno number(5),

designedby number(5),

baselineby number(5),

levelid number(5),

levelflag number(1));
Table Mtcespecs
(

code mumber(5) not null,
msid char(15),

datte date,

status number(5),

verno number(5),

formulatedby ~ number(5),

baselineby number(5));

4-143

D ——————

Chapter 4

Design

Table Mtceteam

(

code

name

authorized

position

Table Mitcetypes

(

code

hame

Table Nature

(

code
name
flag
mdcode
oldverno

Newverno

number(5)
char(30),
char(1),

char(30));

number(5)

char(20));

number(5)
char(72),
char(1),
number(5),
number(5),

number(5),

not nuil,

not null,

not nul],

4-144

D —————

Chapter 4 Design
tabcode number(5));

Table Purpose

(

code number(5) not null,
name char(72),

tabcode number(5),

flag char(1),

mdcode number(5),

oldrevno number(5),

oldverno number(5),

newverno number(5),

NEWIrevno number(5),

levelflag number(1));
Table Reports

(

code number(5) not mull,
reportid char(15),

datte date,

4-145

D ————————

Chapter 4 Design

reportedby number(5),

flag char(1),
verno number(5),
syscode number(5) not null);

Table Source

(

code number(5) not nuli,

source_name char(30));

Table Source Code

(

code number(5) not null,
scid char(15),

datte date,

status number(5),

implementedby number(5),
understoodby number(3),
baselineby number(5),

oldrevno number(5),

4-146

T

Chapter 4 Design
oldverno number(5),
newverno number(5),
NEWIevno number(5),
mdid number(5) not null);
Table Status
(
code number(5) not null,
name char(20));
Table Swaffected
(
msid number(5) not null,
modcode number(5) not null,
flag char(1),
verno number(5),
revno number(5));

4-147

Chapter 4 Design

Table Swinvolved

(

caid number(5) not nuli,
modcode number(5) not null,
Verno number(5),

revino number(5));

Table Systemchart

(

syscode number(5) not null,
modcode number(5),

parentcode number(5),

levelcode number(5));

Table Systems

(

code number(5) not null,

name char(20));

4-148

Chapter 4 Design
Table Tests
(
code number(5) not null,
name char(30));
Table Tests Qutcome
(
code number(5),
testcode number(5) not null,
testout number(5),
datte date,
mdcode number(5),
oldrevno number(5),
oldverno number(5),
Newverno number(5),
newrevno number(5),
levelfiag number(1),
flag char(1));

4-149

Chapter 4 Design
Table Uses
(
syscode number(5) not null,
tabcode number(5),
flag char(1),
mdcode number(5),
oldrevno number(5),
oldverno number(5),
newverno number(5),
newrevno number(5),
compcode number(5) not null);
Table Versions
(
syscode number(5) not null,
oldver number(5),
newver number(5),
crid number(5));

4-150

Chapter 4 Design

Table Source Version

(

syscode number(5) not null,
modcode number(5),

Verno number(5),

revno number(5));

Table Component Version

(

syscode number(5) not null,
compcode number(5),

verno number(5),

revno number(5));

Table Constraints

(

code number(5) not null,
name char(72),

flag char(1),

oldverno number(5),

4-151

Chapter 4 Design
newverno number(5),
mdcode number(5),
tabcode number(5));

Table Hardware Requirements

(

code number(5) not null,
name char(72),

flag char(1),

mdcode number(5),

oldverno number(5),

newverno number(5),

tabcode number(5));

Table Unfinished Work

(

code number(5) not null,
name char(72),

flag char(1},

mdcode number(5),

4-152

Chapter 4 Design
oldverno number(5),
newverno number(5),
tabcode number(5));

Create table Temp Rep

(

repname char(40),

user_name char(20),

duml char(40),
dum?2 char(30),
dum3 char(20),
dum4 char(20),
numl number(3),
num?2 number(3),
num?3 number(3),
num4 number(3));

4-153

Chapter 5

Implementation

This chapter includes an explanation for the algorithm of the most important
forms in the tool, states some test cases, and lists the hardware and software
requirements needed to run it. The forms of the Development phase are described
first, and then those of the Maintenance’s. Not all of the listed forms below are
going to be described because only those which do more than what is explained in
the User Manual need Technical Description, while for the others - simple forms -

a reference to the User Manual is enough.

R T

Chapters Implementation

1. Forms’ Technical Description of the Development Component

The following forms are the ones associated with the Development component of
the tool. The ultimate user is not concerned with them because he/she will be
dealing with the Menu Options where internally each menu option is associated

with one of these forms.

1- Levels
2- Systems
3- Source
4- Component
5- Status
6- Mtceteam
7- Mtcetype
8- Grantype
9- Institut
10- Employee
11- Developh
12- Tests
13- Fieldtype
14- Companam

15~ Comptype

o,

Chapters Implementation

16- Chart
17- Compdf
18- Struct
19- Levell
20- Level2
21- Level3
22- Actual

23- Config

1.1 “Levels” form

It is vital that the form “Levels” be executed first in order to tell the hierarchy of
the new software system under-development; this will help in telling how Large

the software is,

Hence, upon running the above mentioned form, any previously defined levels
will appear allowing the user to add, maybe, or just query the levels. If none is
available then the user is requested to fill in the levels of the system plus the
number of each level. The software system might consist of:

- system, subsystem, module, submodule, program, procedure, etc.

or

- system, program, procedure, function, etc.

e

Chapters Implementation

Depending how large the software is, the user should be able to determine the
nesting levels. One very important remark to be made at this step is that the level
numbers should be in the range of (1..3) including. The tool just would not work

if those level numbers are not defined and here is why:

Level number one is given only to the software system’s names; i.e., there should
be one level number 1 in any project or software development. Next, comes all the
functional modules which are of level two. Only the source code modules
(procedures, functions, etc.) that are exact implementation of the functional
modules are of level three. For levels two and three we may have more than one
item; e.g., subsystem, module, submodule, etc. are of level two, and procedure,
function are of level three. If the software is not large, it is enough to have level
one and level three, i.e., skipping level two is no problem on one condition that
the associated forms with level two are not run. And if the software is so small
that it consists of one module, then the user has to define a name for the sofiware
and another for the module assigning 1 as the software level number and 3 for the

module,

The job of this form, hence, is to accept the nesting levels of a software system
plus their associated level numbers. This form does some checking on the level
numbers insuring that there exists exactly one level number 1, and at least one

level number 3 and that the range of the level numbers does not go beyond (1..3).

5-4

R e

Chapters Implementation

1.2 “Systems” form

The tool will accept the definition of the names of the software systems under
development. Upon the entry of each name a new record is created in the table
Systems as well as in the table Source, that is because in the “Chart” form there is
field called Parent that both source code names and software names share,
Whenever a piece of source code is the parent of another then the value of the
field is selected from table Source. But when the parent of a source code is the
software itself then the value of the field is selected from the Systems table. This
can not possibly happen, to select values from two tables for one field and hence
the decision was to insert the name of each software in the table Source and to

give it a new code.

This form will also create a new record for the software in the Versions table

giving it a version number of ZERO.

1.3 “Chart” form

This form relates a source code module to a software system where it belongs as
well as to a parent source code thus drawing the hierarchy of the software. This

form gives the newly defined source code module a revision number ZERO, a

R

Chapters Implementation

record is created in the Source Version table for this purpose. Of course, a record
is created in the Systemchart table for the mentioned relation (between software

and source code module).

1.4 “Compdf™ form

This form relates a component to a software system where it belongs, giving it a
revision number of ZERO, and a record is created in the Component Version
table for this purpose. Of course, a record is created in the Comp Def table for the

mentioned relation (between software and component).

L5 “Config” form

This form releases a configuration of a software upon finishing its development
and before being distributed to a client institution. The key to this form is the
Configuration Release Identification which should be unique to each form. The
form checks the Identification for duplicates, and in case none is found then all
other data is entered, including the Systems’ tests and Integration tests and the
total time resources taken to complete the whole project. Any unfinished work can

be saved in the specified block on page two of the form.

e
Chapter5 Implementation

This form creates a record for each release, specifying the software name, status,

date of release and type of release - Development or Maintenance.

2. Form’s Technical Description of the Maintenance Component

The Maintenance component includes the following forms which are in nature
more complicated - than the Development component’s. Some forms include
important algorithms that need be explained in this chapter, while the simple ones

can be referred to in the User Manual.

1- Bug

2- Proposal

3- Approval

4- Specs

5- Design

6- Implement

7- Mtactual

8- Totactual

9- Reject
10- Mtconfig
11- Postjob

12- Addsrc

.S

Chapters Implemeniation

13- Rmsre
2.1 “Bug” form

This is the first form to be filled-in when a change request comes from a client
institution. The change request should look like this “Bug” form. First an
identification is given to this report, then the name of the software that the report
is about and its version number. Then the user has to specify if the report is a Bug
report or an Enhancement report; there is a field where cither a “B” or an “E” is

required to identify the type of the report.

The name of the client institution and the name of the employee who requested
the change are also needed for future records. At this stage, a procedure is invoked
called “Get_Confignumber” to check if the softWa:re name (and that version
number} is released or not. If not then a message is prompted to the user saying
that the software is not released yet; this might suggest an error in the version

number of the software.

If everything is okay, then a detailed description - can be brief - is required to

describe the type of change.

S

Chapter5 Implementation

2.2 “Proposal” form

This form is the result of bug report. There is a one-to-one relationship between a
bug report and a proposal form. It is a more formal representation of the
information found in a Bug report. In this form an Authorized staff member has to
“propose” the changes requested in the corresponding bug report as well as stating
the reason for this change - this reason has to be the Authorized staff member’s

opinion.

The corresponding record in the table Change Proposal will have two other fields
left blank, namely the Approved and the Crid. The first is flagged with a ‘Y’ if the
change has been approved - from the Approval form - and with an ‘N’ if the
change has been rejected - from the Reject form. The second field, the
Configuration Release Identification, is filled-in when a configuration is released

after the whole maintenance action is complete.
2.3 “Approval” form

This form is initiated by an Authorized staff member after a change request is
studied and turned out to be essential to implement it. The user will have to assign
a unique Change Approval Identification for each approved change, as well as the

Identification of the Change Proposal for which this approval is done.

..

Chapter5 Implementation

If the change proposal is assigned another change approval then the form is able
to detect it and reject the given information, because as mentioned earlier there is

a one-to-one relationship between each change proposal and change approval.

If the change proposal is not assigned to another change approval then the
Approved field in the Change_Proposal table of that specific change proposal -

which name is in the change approval form - is flagged with a ‘Y.

The form also includes a text paragraph requesting the Identification of Change,
of course prepared by the Authorized staff member, as well as the priority of
implementation - whether it is urgent to implement the change or it can wait for
some time. Another text is there to enter the consequences of these changes, on
the other source codes, if not implemented. Finaliy, the staff member has to

determine the names of the software source codes involved in the change.
2.4 “Specs” form

This form is initiated for one change approval or for many; i.e., if some change
approvals were found to be not that urgent then the maintainers can wait until they
have a “bunch” of change requests already approved - could be related some how
- and that it is time to determine their specifications. Then some Authorized staff

member would formulate the specifications of the whole changes and this is

5-10

R RRRRREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE—————TTSSSSS

Chapters Implemeniation

where they enter these specifications along with the change approvals involved.

In this form a checking is done for each change approval involved to see if it has
been rejected lately; i.e., after it has been approved. If everything is okay, then the

consequences of the changes on the other source codes are determined.

Also the software affected by the changes are determined and entered, the same
for the Tests needed to verify the correctness of the changes as well as the time

estimates for each phase involved in the maintenance.

2.5 “Design” form

A Module Design form is initiated for cach of the Software Affected declared in
the previous form “Specs”. The main aim of this form is to first identify the Level
of the module, relate it to a Maintenance Specification, and then move to another
screen - by only pressing [Next Field] or [Next Record] key. This new screen is an
exact copy of the original one for each level type, but the only difference is that

this one is meant for maintenance and changing designs not for the originals.

For instance, if the Software Affected, for which this - “Design” - form is
initiated, is of Level One then the new screen would be a copy of the Level One

form. The only difference - technically speaking - is that in the Level One form a

5-11

R RS

Chapters Implemeniation

flag is set to ‘L’ and here the same flag is set to ‘M’, meaning Development and

Maintenance, respectively.

Hence, from this form four screens can be popped up, three of which are one for
each level and the fourth is for the other components that need modifications -

also should be declared as Affected in the previous form.

A note is worth mentioning here, the word “exact” might not be so for all of the
four new screens, because some information are not needed at Maintenance stage.
It is obvious that these new changes - entered from the above mentioned four new
forms - use the same tables in storing their information as the original Level entry
forms, except for the flag, of course, which distinguishes between multiple
information for the same source code module/component each for either

Development or Maintenance purposes.

The validations are many in this form. It starts with the name of the source
code/component affected. The system checks if the entered name is really
declared as Affected or not. If it is not declared as such, then no further work is
done in the form, otherwise, the process is permitted to continue and next the

Module Design Identification is validated against being given to another module

design.

5-12

RS

Chapter5 Implementation

The normal Status, Baseline established by, Date, Designed by, etc. are filled-in
and the last item on the form is the related Maintenance Specification
Identification. The system here checks first whether the entered Maintenance
Specification Identification is the one in which the above mentioned soﬁrce
code/component was declared as Affected; i.e., checking if the correct chain of
forms and stages are being followed. Next, it checks if this chain of change
proposal, approval, up to this maintenance specification is already released. If so
then the user has no right to modify a source code/component, even if declared

some where as affected, without a new change proposal, approval, etc. chain.

If the validation and verification process at this field turns out to be okay, then
[Next Field] or [Next Record] keys would lead to one of the four new screens

discussed above.
2.6 “Mtactual” form

This form is used to enter the Actual time resources spent in any maintenance
action on a piece of source code, as well as the Finishing Date of the process for
each maintainer working on the module. It is initiated after the Implementation

phase is successfully done.

5-13

D —————————

Chapters Implementation

The form requests from the user the software name - Levell Name - and its
version number, in addition to the source code module’s name and its revision
number. The Module Design Identification is needed to tell what is the Design
Document of the source code in question the user needs to enter the Actual data.
Note that in the Mentioned Module Design Identification form the Estimates were
entered as well as the name of each staff member working on it and the Date each

started implementing the changes.

The form does validate the Module Design Identification if it really is the Design
Document for the source code in question. If not then the process is not allowed to
continue. Otherwise, the “Compare Resources” table where the Estimates were
entered is updated by filling-in the “Actual” field, and the “Developedby” table is

updated by filling-in the “Enddate” field both just entered in the form.

2.7 “Miconfig” form

Tlﬁs form is the Configuration release of a sofiware product after performing
some maintenance actions and modifications on it. The first input for this form is
the Configuration Release Identification which must not be one of the
Development Configuration Release Identification. Stating this means that the

system does the checking on the validity of the Identification entered.

5-14

R B ..

Chapters Implementation

Next, the system prompts the user for the Change Proposal Identifications that
lead to this release, without the Identifications of the other forms because it will
get them internally. Also the system checks if these Proposals have already been

assigned to another configuration release.

If not then the popped up - generated new version number of the software system
- if approved by the user - is then used to update the table “Versions”. It assigns
this generated version number to the field “newver”, sets the field “crid” equal to
the Configuration Release Identification in question, and creates a new record
assigning the field “oldver” to the new version number leading the two other

fields (“newver” and “crid”) blank for the next release of this software system.

2.8 “Postjob” form

This form is initiated after the maintenance configuration release of a certain
software product is performed. It first updates the two tables “Source Version”
and “Component Version” by creating new records for each source code module

or component related to the old version, now related to the new version.

By doing this T will be relating all the source code modules and components - of

the old version of the sofiware product - to the new released version.

5-15

R S

Chapter5 Implementation

The above is true except for few cases where the user does not want to include in
the new version certain source code modules or components. The next block in
this form is for the deletion of Source Code Modules from the new release, and

the third block is for the deletion of Components from the new release.

The corresponding data in the other tables will be updated as well; i.e., the
modified source code modules’ or components® descriptions will belong now to
the new version of the software product. The unmodified ones’ also have to be
related to the new version to ensure consistency in all of the configurations of a
certain software system because after all a software system is composed of all of
the originally defined source code modules and components - whether modified or

not. Hence, all have to be related to any subsequent version numbers of the same

software.

The last block initiates the process of updating all of the database tables
incrementing the “newverno” and “newrevno” ficlds each by One. Thus the new
change documents of any modified source code module or component will be
related to the new version number of the software system through the field
“newverno”, and will be announced as belonging to the new Revision through the

field “newrevno™.

5-16

R S

Chapters Implementation

For the unmodified source code modules and/or components, they are declared as
belonging to the new version number of the software system - through the field

“newverno” - without incrementing their Revision numbers.

This form also contains additional procedures to check if this form has been
successfully initiated before. This can be done by checking the two tables
“Source_Version” and “Component_Version” for records belonging to the New
Version Number of the software system. If there are such records, then this means
that the “Job™ has been performed successfully earlier, hence the user is notified

that the records are already updated and is requested to leave the form.

If no such records exist, then the process goes on normally. The Creation process
proceeds and any deletion requested from the user - blocks two and three - are
performed, and if in the last block the user’s answer is ‘Y’ then the tables are
updated, else if “N’ then no tables are updated and the already created records in

the “Source Version” and “Component_Version” tables are deleted.

3. Experimental Results

This tool was testes on a real software system similar to what the software
company LOGOS is developing to the Lebanese American University (L.A.U.),

but using less modules and data. The tool behaved as specified: original

5-17

R R ...

Chapter5 Implementation

documentations were entered - brief and detailed - maintenance actions were only
allowed to be implemented through the proper channel and by authorized users,
configuration release for each version of a software system solved the version
control problem and no one software (or module within a software) was modified
without increasing its version (revision) number - at configuration release time.
The tool was also tested on a small program consisting of only three procedures

and it behaved equally the same.

4. Hardware/Software Requirements

To run the tool, the user needs as a hardware requirecments a 486 Personal
Computer (PC), with minimum 8 mega bytes of RAM, and as a software
requirements the installation of the ORACLE environment on the PC which

includes the sqlforms, sqlmenus, sqlreportwriter, etc.

5-18

Chapter 6

Conclusions

This work is a direct implementation of a Software Maintenance Model (SMM) that
creates a proper procedure for any maintenance action to be implemented. The Software
Configuration Management (SCM) discipline is also applied to the tool ensuring that no
information is omitted from any phase, that phases or stages are properly related to one

another, and that any status accounting or report can be generated at any time.

The version control problem is dealt with in this tool, generating internally a new version
number for each software system - or even source code part - after being modified.
Hence, at any one time the programmer or maintainer can tell which revision of a source

code module of what version of a software system he/she is working on/modifying.

6-1

e —————————
Conclusions

Chapter 6

Since this tool is directed towards procedural languages, it can be enhanced even more by
allowing it to accept the maintenance of softwares written in an unprocedural languages.
For example a system or project developed under ORACLE would need to concentrate on

the “Forms”, “Reports”, and “Menus” since this environment is manifested mainly by

these three items.

Appendix A

User Manual

This user manual is a brief description of all the forms in the tool. Each form’s
description contains a brief summary of the form’s function and purpose as well as a list
of the function keys, tc; be used in the form, and their meaning. The forms are listed in the
order that the user has to use the tool at least at the very start in the development and

maintenance phases. The function keys are almost the same in all the forms except in a

few cases.

Index

Form Page
Levels 2
Systems 3
Source 3
Component 4
Status 4
Miceteam 5
Mitcetype 5
Grantype 6

A-1

Institut
Employee
Developh
Tests
Fldtype
Companam
Comptype
Chart
Compdf
Struct
Levell
Level2
Level3
Actual
Config
Bug
Proposal
Approval
Specs
Design
Implement

Mtactual

10

10

11

12

12

13

14

14

15

16

16

17

18

19

Totactual 20

Miconfig 20

Postjob 21

Reject 22

Addsre 22

Rmsre 23
“Levels” Form

This form is used to enter the nesting levels of the system or project in question, i.c., the
naming of the system’s hierarchy. The company can define the complete hierarchy for
general purposes, and for each software in particular itcan assign any of the defined levels
(not necessarily all of them.)
Example of the nesting levels:

- System or Project,

- Subsystem,

- Module,

- Submeodule,

- Program,

- Procedure and

-Function, etc.

The user has the option of defining some or all of these. But he/she has to be careful as
when it comes to the LevelNumbers. This form includes only one block, but with two
fields. The Level Name and the Level Number. As mentioned in the “System” form, the
first level (system or project) is of level One. All subsequent levels that are functional
levels - not actual source code - belong to Level Two. Only those that are the real codes
belong to Level Three. Hence, this tool uses the convention of having Three Levels, only
the names defined as “systems” or “projects” belong to Level One, those who represent
the actual pieces of source code belong to Level Three, and the rest - Functional Levels -

belong to Level Two.

In order to navigate among
- Fields, use [Next Field], [Previous Field]
- Records, use [Next Field], [Up Arrow]
In order to save the changes:
- Press [Commit]
In order to exit thr form:
- Press [Exit Form]

As applied in all the tool’s forms, the user can not delete after Commit.

“Systems” Form

This form is used to define the names of the sofiware systems or projects being developed
by the software company owning this tool. Any name defined in this form will belong to
Level One (described later.)

This form is composed of only one block. Entering this form will cause any previously
defined names to be displayed, allowing the user to query any name. So, in this form only

query, definition, and update of names is allowed; deleting is totally prohibited.

In order to go from one field to another:

- Press [Next Field], [Previous Field]
In order to save the changes:

- Press [Commit]
In order to exit the form:

-Press [Exit Form].

“Source” Form

This form is used to define all the source codes’ names - belonging to both Level Two
and Level Three. Some of the names might already exist but belonging to another
aoftware, so no need to define them twice. The user will later relate the source code name

to the new sofiware.

A-5

On entering this one-block form the user will see the names of the softwares already
defined in the “System” form. This is just for internal purposes. In this form the user only
defines the names without relating them, yet, to a software.
In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commiit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

Deletion after Commit is not allowed.

“Component” Form

This form is used to define the names of the components - Files, Tables, etc. - used in the
software being developed. Some of the names might already exist but belonging to
another aoftware, so no need to define the name twice. The user will later relate the

component name to the new software.

Entering the form the previously defined component names will be displayed, and the

user has the right to add more names, modify any, but not to delete any name.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

“Status” Form

This form is used to enter the Status Conditions that might be needed in different

situations; e.g. Under-Development, Complete, etc.

This form contains only one block. On entering it any previously defined status
conditions will be displayed and the user has the right of only to add some more, modify

any, but not delete,

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form)].

“Miceteam” Form

This form is used to enter the Names of the personnel working for the software company
- owning this tool. They may be working as development or maintenance team, no

difference.

This form contains only one block with three fields. The Staff Member Name, Authorized
(Y/N) in order to control later the maintenance actions, and Position kept just for the
record. On entering this form any previously defined records will be displayed allowing

the user of only to add some more, modify any, but not delete.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field] on the last field
In order to commit:
- Press [Commit]
In order to exit the form:

- Press [Exit Form].

A-8

“Micetype” Form

This form is used to enter the Types of the maintenance activities which are mainly

Corrective, Adaptive, and Perfective.

This form contains only one block with one field the Name. On entering it any previously
defined names will be displayed allowing the user of only to add some more, modify any,

but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

~ Press [Commit]
In order to exit the form:

- Press [Exit Form)].

“Grantype” Form

This form is used to enter the Types of the Grants given on a component for any staff

member working on the same software.

This form contains only one block with one field the Name or Type. On entering it any
previously defined types will be displayed allowing the user of only to add some more,

modify any, but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

“Institut” Form

This form is used to enter the Names of the Client Institutions that the company is
developing software to.
This form contains only one block with one field the Name. On entering it any previously

defined names will be displayed allowing the user of only to add some more, modify any,

but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]

In order to commit;

A-10

- Press [Commit
In order to exit the form:

- Press [Exit Form)].

“Employee” Form

This form is used to enter the Names of the Employees working at the Client Institutions
that the company is developing software to.

This form contains two blocks. The first includes the name of the client institution where
the employees to be defined work to. The second includes the Name of the Employee and
its Position, On entering this form and assigning a client institution any previously
defined names - as working for it - will be displayed allowing the user of only to add

some more, modify any, but not delete.

In order to navigate among

- Fields, use [Next Field] and [Previous Field]

- Records, use [Next Field] at the last Field

- Block, use [Next Record] and [Previous Record]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

A-11

“Developh” Form

This form is used to enter the Names of the Development Phases used in developing any

project at the software company.

This form contains only one block with one field the Name. On entering it any previously
defined names will be displayed allowing the user of only to add some more, modify any,

but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

“Tests” Form

This form is used to enter the Tests” Names used in all the phases of the life cycle of a

project.

A-12

This form contains only one block with one field the Name. On entering it any previously
defined names will be displayed allowing the user of only to add some more, modify any,

but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit)
In order to exit the form:

- Press [Exit Form].

“Fldiype” Form

This form is used to enter the Types that any field in a table or file might belong to. E.g.,

Character, Number, Alpha-Numeric, etc.
This form contains only one block with one field the Name. On entering it any previously
defined names will be displayed allowing the user of only to add some more, modify any,

but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]

A-13

In order to commit:
- Press [Commit]
In order to exit the form:

- Press [Exit Form).

“Companam” Form

This form is used to enter the Name of the Development Company owning this tool.

This form contains only one block with two fields the Name and Effective. The Name is
used, of course, for the company’s name and the Effective is a flag (Y/N) to tell the user
if the name is no longer effective. Hence, only one effective name should function at any
one time.

On entering this any previously defined names will be displayed allowing the user of only

to add some more, modify any, but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit]
In order to exit the form:

- Press [Exit Form].

A-14

“Comptype” Form

This form is used to enter the Types of 2 Component. E.g., Table, File, Index, etc.
This form contains only one block with one field the Name or Type. On entering it any
previously defined names will be displayed allowing the user of only to add some more,

modify any, but not delete.

In order to navigate among

- Records, use [Next Field] and [Previous Field]
In order to commit:

- Press [Commit)
In order to exit the form:

- Press [Exit Form].

“Chart” Form

This form is used to relate a source code name to a software name. Definitely, both
should be previously defined in the above discussed forms.

This form is composed of three blocks. The first one contains the Level One Name and
the other levels’ Name as well the software Version Number and the level two or three

Revision Number, The second block contains the Parent Name and the Level Name. This

A-15

block will form the hierarchy of the sofiware - its name, its subsequent children’s names
and their levels. The third block is used only when the user is relating a source to a

software as a Perfective Maintenance activity.

In order to navigate among
- Fields, use [Next Field] and [Previous Field)]
- Blocks, use [Next Record] and [Previous Record)]
In order to view a list of names for both Software and Other Level
- Press [List Values)
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Compdf” Form

This form is used to relate a component name to a software name. Definitely, both should

be previously defined in the above discussed forms.

This form contains four blocks. The first one includes the Component Type, the Software

and the Component Names as well as the Software Version Number and the Component

Revision Number. The second block includes the name of the person who created the

A-16

component. The third block includes a detailed description of the component - what it
does, what for used, etc. And the fourth block is used only when the Component is being

related to the Software after a Perfective Maintenance activity.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Component, and the Creator
- Press |List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Struct” Form

This form is used to grant a component to a user with a special grant type. Also this form -
defines the Structure of each component; e.g., if the component is a table then this form
allows the user to identify the fields of the table, their names, length, and a detailed

description of each field.

A-17

Thus this form contains three blocks. The first includes the software name - that this
component is related to - then the component name, as well as the version and revision
numbers for the software and component, respectively. The second block includes the
authorized users’ names along with the grant type. And the last block includes the
Structure of the tables and a definition and description of all the fields related to the
component; Upon finishing the definition of one field, use [Previous Record] to move to

the ‘Field Name’ field and press [Down Arrow] to define another field.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
~ Records, use [Down Arrow]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Component, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form)].

“Levell” Form

This form is used to describe or document modules of Level One, i.e., complete project.

This form contains five blocks. The first includes the Software Name and its Version
Number, The second includes a detailed description of the Nature of the software under-
development. The third block includes Estimates for the whole development process,
which needs to specify each development Phase Name and its Estimated time resources
to be spent on it. The fourth block includes the Hardware Requirements for the software
to be safely installed in the user’s environment. Where as the fifth block includes any

Constraints on the software - this might be the number of users, etc.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form}.

“Level2” Form

This form is used to describe or document modules of Level Two, i.e., Subsystems,
programs, etc.

This form contains three blocks. The first includes the Software Name and its Version
Number and the Level two Name and its Revision Number, The second block includes a
detailed description of the Purpose of the “module™ in-question. The third block includes

the Description of this Functional “module”,i.c., describing its Function.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, “Modules”
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

A-20

“Level3” Form

This form is used to describe or document modules of Level Three, i.e., procedures and
functions.

This form contains ten blocks. The first includes the Software Name and its Version
Number and the Level three Name and its Revision Number. The second block includes a
detailed description of the Purpose of the “module” in-question. The third block includes
the Algorithm of this Source Code, of cource it is up to the user to tell how detailed the
description of the algorithm should be. The fourth block includes the Names of the Staff
Member personnel working on developing this “module” or source code. This block
includes also the StartDate - of working - of each personnel on this source code.

The fifth block is for defining the components used by this source code, i.e., what tables
or files, etc. The sixth block is used to define the Source Code Names that this source
code calls (its Callees). The seventh block includes the Estimates for each development
phase needed by this source code. The eighth block is used to define the Input Parameters
used by this source code and the ninth block is used to list the Output Parameters
produced from this source code. The Tenth block is used to enter any comment on any

thing related to the source code in-question.

In order to navigate among

- Fields, use [Next Field] and [Previous Field]

- Records, use [Next Field]

A-21

- Records for the ‘Developed by’ field, use [Down Arrow]
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, and “Modules”
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press {Exit Form].

“Actual” Form

This form is used to enter the Actual time resources taken by a specific source code - of
Level three - during its assigned phases in development. Note that the Estimates were
entered from the “Level3” form (block seven). This form is used also to define the tests
performed on that specific source code.

This form contains four blocks. The First - as usual - includes the Software Name and its
Version Number, and the Source code Name and its Revision Number. The second block
includes the previously entered phases and their estimated time resources, and hence the
user here has only to enter the Actual time resources. The third block includes the Tests
performed on the Source Code and their Status. While the fourth block includes the Name

of each person who has worked on this Source Code along with the StartDate, and here

A-22

w

the user has only to enter the EndDate - date of finishing his/her work on that piece of

Source Code.

In order to navigate among
- Fields, use [Next Field] and [Previous Field)]
- Records, use [Next Field] on last Field
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Tests, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].
“Config” Form

This form is used to Release a Configuration for a specific Software System.

It contains six blocks. The first block includes the Software Name that is to be Released.
The second block includes the Configuration Release Number, along with its Status and
the Name of the person authorized to Release it. The third block includes the entry of the

Actual time resources spent in developing this software - during each phase. The Phases’

A-23

names and the Estimates were already entered in “Levell” form. The fourth block
includes the Integration and System Tests’ performed on the Sofiware along with its
Status. The fifth block includes the Name of the Client Institution that this software is

Distributed to. Finally, the sixth block includes any Unfinished Work in this Release.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field] on last Field
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Tests, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form)].

“Bug” Form

From its name it is apparent that this form is used to enter a Bug/Enhancement report.

This report should be coming from a Client Institution.

A-24

This form includes three blocks. Obviously, the first block includes the Software Name
that the report is about along with its Version Number. This block also includes the
Report Identification - a Name given to each Report to identify it later on. The second
block includes the Type of the Report - Bug or Enhancement (B/E) - and the Date
reported. Tt also includes the Name of the Client Institution and the Name of its Employee
who found the bug. The third block includes a detailed Description of the fault reported,

in what condition, etc.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use {Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Change Proposals, etc.
- Press [List Values]
In order to commit
- Press [Commit)]
In order to exit the form

- Press [Exit Form].

“Proposal” Form

This form is used to enter a Change Proposal related to a previously defined Bug Report.

A-25

This form is composed of four biocks. The first block includes the Identification of the
Change Proposal along with the Date of proposing the change. The second block includes
information related to the Bug/Enhancement Report causing this Change Proposal. It also
includes the Name of the Maintenance Person who Proposed this change. The third block
includes a Description of the change and the fourth block includes a detailed Reason for

Proposing this Change.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Change Approvals, etc.
- Press [List Values]
In order to commit
- Press [Commit)]
In order to exit the form

- Press [Exit Form].

“Approval” Form

This form is used to enter a Change Approval On a Change Proposal previously defined.

A-26

This form contains six blocks. The first block includes the Identificationof the Change
Approval, and a Date of the Approval. The second block includes the Name of the
Change Proposal related to this Approval, the Status of the Change Approval, the Name
of the person responsible for establishing the baseline and of the person authorized to
Approve the Change, and finally the Type of Change (corrective,etc.) The third block
includes an Identification of the Change - a detailed one. The fourth block is used to state
the Priority of Implementation and the fifth block includes the Consequences of the
Changes if Not Implemented. Finally, the sixth block defines the Software Names that are

Involved in the Change - they do not have to be affected, but involved.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, etc,
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

A-27

“Specs” Form

This form is used to enter the Specifications of the Approved Changes.

This form contains seven blocks. The first includes an Identification of the Maintenance
Specification and a Date. The second block includes the Name of the person who
Formulated the Specifications, and the Name of the person who prepared the Baseline,
the Status of the form, and the Change Approvals Identifications causing this
Maintenance Specification. The third block Identifies the Changes required in this
Maintenance step. The fourth block tells the Consequences of the Changes - what
additional functionality, what errors it might cause, etc. The fifth bloék defined the
Names of the Software Affected with this Change - to be changed later - and the sixth
block defines the Names of

the Tests needed to be performed in order to ensure correctness, and the last block

includes the Estimates of time resources for each needed phase in the Change.

Need to mention that in the Change Approval block, whenever the user declares a Change
Approval Identification as Related - by assigning a “Y” in the next field - a [Key Commit]
is needed. At the beginning, all the Change Approval Identifications - not yet related to a
maintenance specification - are displayed to the user allowing him/her to choose the ones
related to this maintenance specification. They should be defined only once upon starting

this form; i.e., upon defining the maintenance specification, because when querying the

related information of this maintenance specification the tool displays in this block only

A-28

the previously related ones and the block is skipped automatically.
In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and {Previous Record]
In order to view a list of names for the Software, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Design” Form

This form is used to define the actual Module Designs for the Changes requested. Each
Source Code Name or Component Name defined previously, in the “Specs™ form, as
Affected will have to have its own Design screen so that the new changes are entered and

hence Documentation is being consistent with the performed Changes.

This form contains three blocks. The first one includes the Name of the Software and its

Version Number, and the Source Code/Component Name in-question and its Revision

A-29

Number. The Second block includes an Identification for this Design, a name that
identifies it, and a Date, a Status, the Name of the person who established the baseline,
and the Name of the person who is authorized to Design these changes. Also the
Identification of the Maintenance Specification is entered in order to relate thé Designs to

a Specification. The third block is used only when a Perfective Maintenance is used.

This form leads to either one of four other forms if and only if the flag for Perfective
maitenance is set to ‘N’ or blank; i.e., corrective maintenance where new design
documents are needed, otherwise - if Perfective flag - “Y” - then this means that already
the user has defined the new features whether they be a new module, new source code,

etc.

If the new Designs documents are for a “Module” of Level One then another screen/form
will pop up namely “Sublev]” that has the same features as the “Levell” form. It serves
for the Maintenance purposes, i.e., to enter the new changes on a particular Levell
Module. If the Designs are for a “Module” of Level Two then “Sublev2” form is popped
up to allow the user to enter the New Purpose/Description of that “Module”. If the
Designs are for Level Three “Module” then “Sublev3” form is popped up to allow the
user to enter Same Information as found in the “Level3” form, of course new ones.
Finally, if the Designs are for a Component then “Subcomp” form is popped up to allow
the user to re-describe the Component and Defines for it new Fields. If the purpose is to

define new - additional - fields to the component, then all its fields - old and new - have

A-30

to be re-entered again,
In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record)
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Implement” Form

This form is a reflection of the actual Implementation of the Designs on the Source Code.

It has three blocks. The first one includes an Identification of this specific Source Code
Implementation, a Date of Implementation, a Status, Names of the persons who
respectively Implemented the Designs, Understood the Code after Implementation,
prepared the Baseline. This block also includes the Identification of the related Module

Design. the second block includes the Tests performed on the Source Code after

A-31

implementing the new designs, and each Tests” Status and Date. The third block is a

Comments on the work done.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Mractual” Form

This form is used to enter the Actual time resources taken by a specific source code - of

Level three - during its assigned phases in Maintenance. Note that the Estimates were

entered from the “Sublevel3” form.

This form contains three blocks. The First - as usual - includes the Software Name and its

Version Number, and the Source code Name and its Revision Number and the Module

A-32

Design Identification that is related to the new changes of this Source Code. The second
block includes the previously entered phases and their estimated time resources, and
hence the user here has only to enter the Actual time resources. The third block includes
the Name of each person who has worked on implementing the changes to this Source
Code along with the StartDate, and here the user has only to enter the EndDate - date of

{inishing his/her maintenance on that piece of Source Code.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field] on last Field
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Level Three Modules, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form)].

“Totactual” Form

This form is used to enter the Actual time resources taken by a set of maintenance actions

grouped together under ome maintenance specification.

A-33

This form contains three blocks. The First includes the Maintenance Specification
Identification. The second block displays the previously entered phases and their
estimated time resources, and hence the user here has only to enter the Actual time
resources spent in each phase. The third block includes the Name of each Test that has
been performed on the whole set of maintenance actions where the user has only to enter

the Outcome of each test and the Date of performing it.

In order to navigate among
- Records, use [Next Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Level Three Modules, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Miconfig” Form

This form is used to Release a Configuration for a specific Software System after

maintaining it. It is natural to assign to this Software a new Version Number.

A-34

It contains six blocks. The first block includes the Software Name that is to be Released
along with its old Version Number. The second block includes the Conﬁgﬁration Release
Number, along with its Status and the Name of the person authorized to Release it, and
the New Version Number assigned to the software. Here the user is free to accept/reject
this new Version Number because somtimes the changes are minor that no need for a new
Version Number. This block also includes the Names of the Change Proposals related
with this Release or that lead to this release. The third block includes the Name of the
Client Institution that this software is Distributed/Re-Distributed to. The fourth block
includes the entry of the Actual time resources spent in maintaining this software - during
each phase. The Phases’ names and the Estimates were already entered in “Specs” form.
The fifth block includes the Integration and System Tests® performed on the Software

along with the Tests’ Status.. Finally, the sixth block includes any Unfinished Work in

this Release.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Records, use [Next Field] on last Field
- Blocks, use [Next Record] and [Previous Record]
- Pages, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Tests, etc.
- Press [List Values]

In order to commit

A-35

- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Postjob” Form

This form is used to update all the DataBase Tables after a Maintenance Configuration
Release in case the user accepts the New Version Number of the Software. It relates all
affected Source Codes/Components - and their documentations - to the New Version as
well as assigning the Unmodified Source Codes/Components - and their documentations

- to the New Version.

This form contains four blocks. The first includes the Name of the Maintenance
Configuration Release. Once entered, the system displays the corresponding T.evell name
and the Old Version Number and Displays the New Version Number. The second block
includes the Names of any Source Code not needed - for a reason or another - in the new
release. The third block includes the Names of any Components not needed in the New
Version. And the last block includes one field (Y/N) telling the system to go ahead and

update all the tables.

In order to navigate among

- Fields, use [Next Field] and [Previous Field]

A-36

- Records, use [Next Field] on last Field
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Software, Tests, etc.
- Press [List Values]
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Reject” form

This form is used to either Reject a Change Proposal or Cancel it - even after all the

phases have been performed.

This form contains three blocks. The first block includes the Identification of the
ChangeRejection, and a Date. The second block includes the Name of the Change
Proposal related to this Rejection, the Status of the Change Rejection, the Name of the
person responsible for establishing the baseline and of the person authorized to Reject the
Change Proposal. The third block is the Reason for Rejecting the Change proposal in

question - a detailed one.

A-37

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
- Blocks, use [Next Record] and [Previous Record]
In order to view a list of names for the Change Proposal, etc.
- Press [List Values])
In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

“Addsrc” form

This form is used ONLY when the maintainer feels that a certain Source Code Module or

Component needs to belong to a certain Version of a software system.

The form is so simple that it is composed of only one block. The name of the sofiware
system is required as well as its version number that the item in question is going to
belong to. A flag is available to tell if the item is a source code or component. Of course,

the source code/component name and revision number is needed.

In order to navigate among

- Fields, use [Next Field] and [Previous Field]

A-38

In order to view a list of names for the Software Name,
- Press [List Values]

In order to commit
- Press [Commit]

In order to exit the form

- Press [Exit Form].

“Rmsrc” form

This form is used when the maintainer feels that a certain Source Code Module or

Component needs to belong to a certain Version of a software system.

The form is so simple that it is composed of only one block. The name of the software
system is required as well as its version number that the item in question already belongs
to and from which it is going to be deleted. A flag is available to fell if the item is a
source code or component. Of course, the source code/component name and revision

number is needed.

In order to navigate among
- Fields, use [Next Field] and [Previous Field]
In order to view a list of names for the Software Name,

- Press [List Values]

A-39

In order to commit
- Press [Commit]
In order to exit the form

- Press [Exit Form].

A-40

References

Babich, W. A. (1986) Software Configuration Management: Coordination for leam
productivity. Addison - Wesley, pp. 8, 72

Bennett, K. H. (1991) The Software Maintenance of Large Software Systems:
Management, Methods and Tools. In Reliability Engineering and System Safety, England:
Elsevier Science Publishers Ltd, pp. 135-154,

Capretz, A. M. and Munro, M. (1992) COMFORM - A Software Maintenance Method
Based on the Software Configuration Management Discipline. In IEEE conf. on Software
Engineering, Durham, England: University of Durham, pp. 183-192.

Longstreet, D. H, (1990) Software Maintenance and Computers, /n IEEE Computer
Society Press Tutorial, pp. 2, 4, 9, 10-11.

Platoff, M., Wagner, M., and Camaratta, J. (1991) An Integrated Representation and
Toolkit for the Maintenance of C Programs. In IEEFE conf. on Software Maintenance,
Princeton: Siemens Corporate Research, pp. 129-137.

Rajlich, V., Damaskinos, N., Linos, P., and Khorshid, W. (1990) VIFOR: A Tool for
Software Maintenance. /n Software - Practice and Experience, vol. 20(1), 67-77.

Ryder, B. G. (1989) ISMM - The Incremental Software Maintenance Manager. In IEEE
conf. on Software Maintenance, New Brunswick, New Jersey: Rutgers University, pp.
142-162.

Sametinger, J. (1990) A Tool for the Maintenance of C++ Programs. In [EEE conf. on
Software Maintenance, Linz, Austria: University of Linz, pp. 54-59.

Thayer, R. H. (1992) Tutorial: Software Engineering Project Management. /n [EEE
Computer Society Press, pp. 108-117.

Bibliography

General Electric Company, Corporate Information Systems (1986) Software
Engineering Handbook, New York, pp. Chp. 1, Chp. 2, Chp. 8, Chp. 9, Chp. 10.

Schach, S. R. (1993) Sofiware Engineering, second edition, Richard D. Irwin
Inc., pp. 47, 449,

Thayer, R. and Dorfman, M. (1990) System and Software Requirements
Engineering. In IEEE Computer Society Press Tutorial, Los Alamitos, pp. 4-16.

Thayer, R. (1992) Tutorial Software Engineering Project Management:
Controlling a Software Engineering Project: Elements of Software Configuration
Management. In E. H. Bersoff, /EEE frans. on Software Engineering, July 1986,
pp. 744-751.

Longstreet, D. H. (1990) Software Configuration Management Tools: Change
Management vs Change Control. In B. Moquin, Proceedings of the 1985 [EEE
Phoenix Conference on Computers and Communications, pp. 97-100.

Longstreet, D. H. (1990) Software Configuration Management. R. L. Van
Tilburg, Proceedings of the 1985 [FEEE Phoenix Conference on Computers and
Communications, pp. 117-121,

Longstreet, D. H. (1990) Experiences of Developing and Implementing a
Configuration Management System for a Large Development Switching Systems.
Proceedings of the 1985 IEEE Phoenix (Conference on Computers and
Communications, pp. 126-130.

Longstreet, D. H. (1990) Automated Configuration Management. A. Lobba,
Proceedings of the 1985 IEEE Phoenix Conference on Computers ond
Communications, pp. 238-241.

	test4
	test5
	test6

