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MATHEMATICAL MODELING AND NUMERICAL ANALYSIS FOR THE
HIGHER ORDER BOUSSINESQ SYSTEM

Bashar Khorbatly1 , Ralph Lteif1,* , Samer Israwi2 and Stéphane Gerbi3

Abstract. This study deals with higher-order asymptotic equations for the water-waves problem.
We considered the higher-order/extended Boussinesq equations over a flat bottom topography in the
well-known long wave regime. Providing an existence and uniqueness of solution on a relevant time
scale of order 1/

√
𝜀 and showing that the solution’s behavior is close to the solution of the water waves

equations with a better precision corresponding to initial data, the asymptotic model is well-posed
in the sense of Hadamard. Then we compared several water waves solitary solutions with respect to
the numerical solution of our model. At last, we solve explicitly this model and validate the results
numerically.
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1. Introduction

1.1. The water-wave equations

In this paper, we investigate the one-dimensional flow of the free surface of a homogeneous, immiscible fluid
moving above a flat topography 𝑧 = −ℎ0. The horizontal and vertical variables are denoted respectively by
𝑥 ∈ R and 𝑧 ∈ R and 𝑡 ≥ 0 stands for the time variable. The free surface is parametrized by the graph of the
function 𝜁(𝑡, 𝑥) denoting the variation with respect to its rest state 𝑧 = 0 (see Fig. 1). The fluid occupies the
strictly connected (𝜁(𝑡, 𝑥) + ℎ0 > 0) domain Ω𝑡 at time 𝑡 ≥ 0 denoted by:

Ω𝑡 = {(𝑥, 𝑧) ∈ R2; −ℎ0 ≤ 𝑧 ≤ 𝜁(𝑡, 𝑥)}.

The fluid is considered to be perfect, that is with no viscosity and only affected by the force of gravity. We also
assume the fluid to be incompressible and the flow to be irrotational so that the velocity field is divergence and
curl free. We denote by (𝜌, 𝑉 ) the constant density and velocity field of the fluid. The first boundary condition at
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Figure 1. One-dimensional flat bottom fluid domain.

the free surface expresses a balance of forces. Kinematic boundary conditions are considered assuming that both
the surface and bottom are impenetrable, that is no particle of fluid can cross. The set of equations describing
the flow is now complete and is commonly known as the full Euler equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑉 + 𝑉 · ∇𝑥,𝑧𝑉 = −𝑔−→𝑒 𝑧 −
∇𝑥,𝑧𝑃

𝜌
in (𝑥, 𝑧) ∈ Ω𝑡, 𝑡 ≥ 0,

∇𝑥,𝑧 · 𝑉 = 0 in (𝑥, 𝑧) ∈ Ω𝑡, 𝑡 ≥ 0,
∇𝑥,𝑧 × 𝑉 = 0 in (𝑥, 𝑧) ∈ Ω𝑡, 𝑡 ≥ 0,
𝑃 |𝑧=𝜁(𝑡,𝑥) = 0 for 𝑡 ≥ 0, 𝑥 ∈ R,
𝜕𝑡𝜁 −

√︀
1 + |𝜕𝑥𝜁|2𝑛𝜁 · 𝑉 |𝑧=𝜁(𝑡,𝑥) = 0 for 𝑡 ≥ 0, 𝑥 ∈ R,

−𝑉 · −→𝑒𝑧 = 0 at 𝑧 = −ℎ0, 𝑡 ≥ 0,

lim
|(𝑥,𝑧)|→∞

|𝜁(𝑥, 𝑧)|+ |𝑉 (𝑡, 𝑥, 𝑧)| = 0 in (𝑥, 𝑧) ∈ Ω𝑡, 𝑡 ≥ 0.

(1.1)

where 𝑛𝜁 =
1√︀

1 + |𝜕𝑥𝜁|2
(−𝜕𝑥𝜁, 1)𝑇 denotes the upward normal vector to the free surface.

The theoretical study of the above system of equations is extremely difficult due to its large number of
unknowns and its time-dependent moving domain Ω𝑡. In fact, we have a free boundary problem, in other words
the domain is itself one of the unknowns. Using the assumption of irrotational velocity field, one can express
the latter as the gradient of a potential function 𝜙. This potential satisfies the Laplace equation inside the fluid,
Δ𝑥,𝑧𝜙 = 0 in (𝑥, 𝑧) ∈ Ω𝑡. Consequently, the evolution of the velocity potential is written now using Bernoulli’s
equation. Although the system now is simpler, a free boundary problem still exists. To get over this obstacle,
Craig and Sulem [10, 11] had an interesting idea following Zakharov work [44], consisting of a reformulation
of the system of equations (1.1) using the introduction of a Dirichlet-Neumann operator, thus reducing the
dimension of the considered space and the unknowns number. Denoting by 𝜓 the trace of the velocity potential
at the free surface, 𝜓(𝑡, 𝑥) = 𝜙(𝑡, 𝑥, 𝜁(𝑡, 𝑥)) = 𝜙|𝑧=𝜁 , the Dirichlet-Neumann operator is introduced

𝒢[𝜁]𝜓 = −
(︀
𝜕𝑥𝜁

)︀
·
(︀
𝜕𝑥𝜙

)︀
|𝑧=𝜁

+
(︀
𝜕𝑧𝜙

)︀
|𝑧=𝜁

=
√︁

1 +
⃒⃒
𝜕𝑥𝜁

⃒⃒2(︀
𝜕𝑛𝜙

)︀
|𝑧=𝜁
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where 𝜙 is defined uniquely from (𝜁, 𝜓) as a solution of the following Laplace problem (see [28] for a complete
and accurate analysis): ⎧⎨⎩𝜕2

𝑥𝜙+ 𝜕2
𝑧𝜙 = 0 in −ℎ0 < 𝑧 < 𝜁(𝑡, 𝑥),

𝜕𝑧𝜙|𝑧=−ℎ0
= 0,

𝜙|𝑧=𝜁
= 𝜓(𝑡, 𝑥).

with 𝜕𝑛 = 𝑛.∇𝑥,𝑧 the normal derivative in the direction of the concerned vector 𝑛. Thus, the evolution of
only the two variables (𝜁, 𝜓) located at the free surface characterize the flow. This system is known by the
Zakharov/Craig-Sulem formulation of the water-waves equations giving :⎧⎪⎨⎪⎩

𝜕𝑡𝜁 −
1
𝜇
𝒢[𝜁]𝜓 = 0,

𝜕𝑡𝜓 + 𝜁 +
1
2
|𝜕𝑥𝜓|2 −

(𝒢𝜇[𝜁]𝜓 + 𝜕𝑥(𝜁) · 𝜕𝑥𝜓)2

2(1 + |𝜕𝑥𝜁|2)
= 0.

(1.2)

The above system of equations has a particularly rich structure, and depending on the physical properties of
the flow, it is possible to obtain solutions to (1.2) with different qualitative properties. Nonlinear effects, for
example, become more important as wave amplitude increases. Although Zakharov’s reformulation resulted in a
reduced system of equations, the description of these solutions from a qualitative and quantitative point of view
remains very complex. A remedy for this situation requires the construction of simplified asymptotic models
whose solutions are approximate solutions of the full system. These approximate models allow to describe in a
fairly precise way the behavior of the complete system in a specific physical regime. This requires a rescaling
of the system in order to reveal small dimensionless parameters which allow to perform asymptotic expansions
of non-local operators (Dirichlet-Neumann), thus ignoring the terms whose influence is minimal. The order
of magnitude of these parameters makes it possible to identify the considered physical regime. We start by
introducing respectively the commonly known nonlinear and shallowness parameters:

𝜀 =
𝑎

ℎ0
=

amplitude of the wave
reference depth

,
√
𝜇 =

ℎ0

𝜆
=

reference depth
wave-length of the wave

,

where 0 ≤ 𝜀 ≤ 1 and 0 ≤ 𝜇 ≤ 1. In this manner, the dimensionless formulation of (1.2) reads:⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝜁 −

1
𝜇
𝒢𝜇[𝜀𝜁]𝜓 = 0,

𝜕𝑡𝜓 + 𝜁 +
𝜀

2
|𝜕𝑥𝜓|2 − 𝜀𝜇

( 1
𝜇𝒢𝜇[𝜀𝜁]𝜓 + 𝜕𝑥(𝜀𝜁) · 𝜕𝑥𝜓)2

2(1 + 𝜀2𝜇|𝜕𝑥𝜁|2)
= 0,

(1.3)

where 𝜓(𝑡, 𝑥) = 𝜙|𝑧=𝜀𝜁
and 𝒢𝜇[𝜀𝜁]𝜓 =

√︁
1 + 𝜇𝜀2

⃒⃒
𝜕𝑥𝜁

⃒⃒2(︀
𝜕𝑛𝜙

)︀
|𝑧=𝜀𝜁

.
Let us now identify the asymptotic geophysical shallow-water (𝜇 ≪ 1) category (or sub-regime) associated

with our work. An additional assumption is made on the nonlinearity parameter, from which a diverse set
of asymptotic models can be derived. More precisely, it is possible to deduce from (1.3) a (much simpler)
asymptotic model that is more amenable to numerical simulations and have more transparent properties. For
instance, taking 𝜀 ∼ 𝜇 into account, the flow under consideration is said to be in a small amplitude regime.

1.2. Shallow-water, flat bottom, small amplitude variations (𝜇 ≪ 1, 𝜀 ∼ 𝜇)

In this paper, we restrict our work on the well-known long waves regime with a flat topography for which the
“original” or “standard” Boussinesq system can be derived. Defining the depth-averaged horizontal velocity by:

𝑣(𝑡, 𝑥) =
1

1 + 𝜀𝜁(𝑡, 𝑥)

∫︁ 𝜀𝜁(𝑡,𝑥)

−1

𝜕𝑥𝜙(𝑡, 𝑥, 𝑧) 𝑑𝑧, (1.4)
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under the extra assumption 𝜀 ∼ 𝜇, we can neglect the terms which are of order 𝒪(𝜇2) in the Green-Naghdi
equations (we refer to [15, 16] for formal derivation and to [25, 29], see also [13, 18, 19, 22] for well-posedness);
then the standard Boussinesq equations reads:⎧⎨⎩𝜕𝑡𝜁 + 𝜕𝑥

(︀
(1 + 𝜀𝜁)𝑣

)︀
= 0 ,

(1− 𝜀
1
3
𝜕2

𝑥)𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 = 𝒪(𝜀2).
(1.5)

Many strategies exist to study the water-wave problem especially by deriving equivalent models with better
mathematical structure such as well-posedness, conservation of energy, solitary waves, or physical properties
(see for instance [2,3,5–7,28,30,34,36–40]). It is worth noticing that the well posed results for such model exist
on a time scale of order 1/

√
𝜀 (methods based on dispersive estimate in [44]) and 1/𝜀 (energy estimate method

in [28] ). A better precision is obtained when the 𝒪(𝜇2) terms are kept in the equations: only 𝒪(𝜇3) terms are
dropped. Following the work in a series of papers on the extended Green-Naghdi equations [23, 24, 32, 33], one
may write the extended Boussinesq equations by incorporating higher order dispersive effects as follows:{︂

𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 0 ,
(1 + 𝜀𝒯 [𝜁] + 𝜀2T)𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 + 𝜀2𝒬𝑣 = 𝒪(𝜀3),

(1.6)

where ℎ = 1 + 𝜀𝜁 is the non-dimensionalised height of the fluid and we denote the three operators:

𝒯 [𝜁]𝑤 = − 1
3ℎ
𝜕𝑥

(︀
(1 + 3𝜀𝜁)𝜕𝑥𝑤

)︀
, T𝑤 = − 1

45
𝜕4

𝑥𝑤, 𝒬𝑣 = −1
3
𝜕𝑥

(︀
𝑣𝑣𝑥𝑥 − 𝑣2

𝑥

)︀
.

1.3. Presentation of the results

As mentioned before, we will first derive an extended Boussinesq equations in the same way as the derivation
of the extended Green-Naghdi equations: we will keep every terms up to the third order in 𝜀. This is done in
the next section, Section 2. Section 3 is devoted to the full justification of the extended Boussinesq system. We
will firstly, in Subsection 3.2, write the extended Boussinesq system in a quasilinear form. The linear analysis,
performed in Subsection 3.3 will permit by the energy estimate method to state, in the Subsection 3.4, the main
results of well-posedness, stability and convergence of the proposed extended Boussinesq system.

As for usual Green-Naghdi and Boussinesq model, we are interested in the construction of a solution as a
solitary wave. We will prove in Section 4 that the profile of this solitary wave is a solution of a 3rd order non linear
ordinary differential equation, ODE. Thus, it seems impossible to find an explicit form of this profile. Therefore,
we will compute, using Matlab ODE solver ode45, an approximate profile. We will compare the obtained
solutions with the solutions of water-waves equations and find that this solution is a better approximation than
the solution of the original Green-Naghdi equation.

Lastly, instead of finding an analytical exact solitary wave, we will find an explicit solution with correctors
in Section 5.

1.4. Comments on the results

In this section we try to highlight the potential need of higher-order models and their benefits over the classical
asymptotic ones. Despite having a more complicated structure than classical models, higher order models may
still be considered simpler than the original full Euler system (1.1). In fact, as opposed to the full Euler system,
these higher order models have more transparent properties and enjoy a reduced structure in terms of number of
equations, number of unknowns and space dimension which make them more amenable to mathematical analyis
and numerical simulations. Moreover, higher order approximations may have similar well-posedness results as
classcial ones on relevant time scales due to technical but standard mathematical tools. Based on Section 3
and previous works [23,24] this can be concluded at least in the one-dimensional case. However, the advantage
is obvious in terms of controlling the convergence precision of the approximation error with respect to Euler
equations (see in particular Thm. 3.9 of Sect. 3).
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On the other hand, while the solitary wave profile cannot be derived explicitly for higher order approxima-
tions, the numerical solution fits the corresponding one of the original Euler system much better than classical
models (as shown by Fig. 2). The numerical solution computation requires simple discretization of a third-order
nonlinear ODE using Matlab ode45 solver. Furthermore, it is noteworthy that by removing the 𝜀2 extended-
Boussinesq ODE terms, the Green-Naghdi’s ODE can be recovered.

1.5. Notations

We denote by 𝐶(𝜆1, 𝜆2, . . .) a constant depending on the parameters 𝜆1, 𝜆2, . . . and whose dependence on
the 𝜆𝑗 is always assumed to be nondecreasing. The notation 𝑎 . 𝑏 means that 𝑎 ≤ 𝐶𝑏, for some non-negative
constant 𝐶 whose exact expression is of no importance (in particular, it is independent of the small parameters
involved).

We denote the 𝐿2 norm | · |𝐿2 simply by | · |2. The inner product of any functions 𝑓1 and 𝑓2 in the Hilbert space
𝐿2(R𝑑) is denoted by (𝑓1, 𝑓2) =

∫︀
R𝑑 𝑓1(𝑋)𝑓2(𝑋)𝑑𝑋. The space 𝐿∞ = 𝐿∞(R𝑑) consists of all essentially bounded,

Lebesgue-measurable functions 𝑓 with the norm |𝑓 |𝐿∞ = ess sup |𝑓(𝑋)| < ∞. We denote by 𝑊 1,∞(R) =
{︀
𝑓 ∈

𝐿∞, 𝑓𝑥 ∈ 𝐿∞
}︀

endowed with its canonical norm.
For any real constant 𝑠, 𝐻𝑠 = 𝐻𝑠(R𝑑) denotes the Sobolev space of all tempered distributions 𝑓 with the

norm |𝑓 |𝐻𝑠 = |Λ𝑠𝑓 |2 <∞, where Λ𝑠 is the pseudo-differential operator Λ𝑠 = (1− 𝜕2
𝑥)𝑠/2.

For any functions 𝑢 = 𝑢(𝑡,𝑋) and 𝑣(𝑡,𝑋) defined on [0, 𝑇 ) × R𝑑 with 𝑇 > 0, we denote the inner product,
the 𝐿𝑝-norm and especially the 𝐿2-norm, as well as the Sobolev norm, with respect to the spatial variable, by
(𝑢, 𝑣) = (𝑢(·, 𝑡), 𝑣(·, 𝑡)), |𝑢|𝐿𝑝 = |𝑢(·, 𝑡)|𝐿𝑝 , |𝑢|𝐿2 = |𝑢(·, 𝑡)|𝐿2 , and |𝑢|𝐻𝑠 = |𝑢(·, 𝑡)|𝐻𝑠 , respectively.

Let 𝐶𝑘(R𝑑) denote the space of 𝑘-times continuously differentiable functions.For any closed operator 𝑇 defined
on a Banach space 𝑌 of functions, the commutator [𝑇, 𝑓 ] is defined by [𝑇, 𝑓 ]𝑔 = 𝑇 (𝑓𝑔) − 𝑓𝑇 (𝑔) with 𝑓 , 𝑔 and
𝑓𝑔 belonging to the domain of 𝑇 .

2. The higher-order/extended Boussinesq equations

When the surface elevation is of small amplitude, that is, when an assumption is made on the nonlinearity
parameter, the extended Green-Naghdi equations [23, 24, 32, 33] can be greatly simplified. Based on this, the
extended Boussinesq with 𝜀 ∼ 𝜇 reads for one-dimensional small amplitude surfaces:{︂

𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 0 ,
(ℎ+ 𝜀𝒯 [ℎ] + 𝜀2T)𝜕𝑡𝑣 + ℎ𝜕𝑥𝜁 + 𝜀ℎ𝑣𝜕𝑥𝑣 + 𝜀2𝒬𝑣 = 𝒪(𝜀3),

(2.1)

where the right-hand side is of order 𝜀3, and we see the dependence on 𝜀2 in the left-hand side. Here ℎ = 1 + 𝜀𝜁
and we denote by

𝒯 [ℎ]𝑤 = −1
3
𝜕𝑥

(︀
ℎ3𝜕𝑥𝑤

)︀
, T𝑤 = − 1

45
𝜕4

𝑥𝑤, 𝒬𝑣 = −1
3
𝜕𝑥

(︀
𝑣𝑣𝑥𝑥 − 𝑣2

𝑥

)︀
.

Remark 2.1. Some of the components in the second equation’s left-most term are of the size 𝒪(𝜀3). They were
kept to preserve the operator’s ℑ = ℎ + 𝜀𝒯 [ℎ] − 𝜀2𝜕4

𝑥 good properties; otherwise, these properties would have
been disrupted (see Sect. 3.1).

2.1. The modified system

First of all, let us factorize all higher order derivatives (third and fifth) in the left-most term of the above
system (2.1). In fact, we only have to factorize third-order derivatives and this is possible by setting ±𝜀2𝒯 [ℎ](𝑣𝑣𝑥)
in the second equation. An inconvenient feature appears in this left-most term due to the positive sign in front
of the elliptic forth-order linear operator T which ravel the way towards well-posedness using energy estimate
method. This obviously affect the invertibility of the factorized operator as we will see in Section 3.1. For
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this reason we proceed as in [23, 24] by using a 𝐵𝐵𝑀 trick represented in the following approximate equation
𝜕𝑡𝑣 + 𝜀𝑣𝑣𝑥 = −𝜁𝑥 +𝑂(𝜀) to overcome this difficulty.

At this stage, it is noteworthy that from [23,24] one may conclude directly the well-posedness results for such
system but when the effect of surface tension is taken into consideration, the existence time scale is up to order
1/𝜀. This presence of the surface tension was essential for controlling higher order derivatives yielding from the
BBM trick (see remarks in [23]). In our case, the surface tension is neglected and thus we have to do proceed
differently. The idea is to replace the capillary terms by a vanishing term ±𝜀2𝜁𝑥𝑥𝑥 which will play a similar role.
The term with a negative sign is used for a convenient definition of the energy space (see Def. 3.3) in such a
way that the other term can be controlled. As a consequence, the existence time will get smaller with respect
to the case of surface tension presence, i.e. the time scale reached is up to order 1/

√
𝜀. In view of the above

notes (we refer to Rmks 3.5 and 3.4 for more details), the modified system reads:⎧⎨⎩𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 0 ,

(ℎ+ 𝜀𝒯 [ℎ]− 𝜀2T)
(︀
𝜕𝑡𝑣 + 𝜀𝑣𝑣𝑥

)︀
+ ℎ𝜕𝑥𝜁 − 𝜀2𝜁𝑥𝑥𝑥 +

2
45
𝜀2𝜁𝑥𝑥𝑥𝑥𝑥 + 𝜀2𝜁𝑥𝑥𝑥 + 𝜀2𝒬[𝑈 ]𝑣𝑥 = 𝒪(𝜀3),

(2.2)

where 𝑈 = (𝜁, 𝑣), ℎ(𝑡, 𝑥) = 1 + 𝜀𝜁(𝑡, 𝑥) and denote by

𝒯 [ℎ]𝑤 = −1
3
𝜕𝑥(ℎ3𝜕𝑥𝑤), T𝑤 = − 1

45
𝜕4

𝑥𝑤, 𝒬[𝑈 ]𝑓 =
2
3
𝜕𝑥

(︀
𝑣𝑥𝑓

)︀
. (2.3)

Remark 2.2. An equivalent formulation of system (2.2) has been numerically studied recently in [31]. This
formulation is obtained by dividing the second equation of system (2.2) by the water height function, ℎ and
removing time dependency from the left-most factorized operator while keeping the same precision of the
model. During the numerical computations this operator has to be inverted at each time step so one can solve
system (2.2). In the aforementioned paper, the time dependency of the left-most factorized operator has been
amended in order to reduce the computational time.

We state here that the solution of (1.3) is also a solution to the extended Boussinesq system (2.2) up to terms
of order 𝒪(𝜀3).

Proposition 2.3 (Consistency). Suppose that the full Euler system (1.3) has a family of solutions 𝑈𝑒𝑢𝑙𝑒𝑟 =
(𝜁, 𝜓)𝑇 such that there exists 𝑇 > 0, 𝑠 > 3/2 for which (𝜁, 𝜓′)𝑇 is bounded in 𝐿∞([0;𝑇 );𝐻𝑠+𝑁 )2 with N
sufficiently large, uniformly with respect to 𝜀 ∈ (0, 1). Define 𝑣 as in (1.4). Then (𝜁, 𝑣)𝑇 satisfy (2.2) up to a
remainder 𝑅, bounded by

‖𝑅‖(𝐿∞[0,𝑇 [;𝐻𝑠) ≤ 𝜀3𝐶, (2.4)

where 𝐶 = 𝐶(ℎ−1
min, ‖𝜁‖𝐿∞([0,𝑇 [;𝐻𝑠+𝑁 ), ‖𝜓′‖𝐿∞([0,𝑇 [;𝐻𝑠+𝑁 )) .

Proof. Equation one of (2.2) exactly coincides with that of (1.3). It remains to check that the second equation
is satisfied up to a remainder 𝑅 such that (2.4) holds. For this sake, we need an asymptotic expansion of 𝜓′ in
terms of 𝑣 which can be deduced from the work done in [24] as follows :

𝜓′ = 𝑣 − 1
3
𝜀𝜕𝑥

(︀
(1 + 3𝜀𝜁)𝑣𝑥

)︀
+ 𝜀2

1
3
𝜁𝜕2

𝑥𝑣 + 𝜀2T𝑣 + 𝜀3𝑅𝜀
3. (2.5)

Now we proceed iusing the same arguments as the ones used in Lemmas 5.4 and 5.11 in [28] to give some control
on 𝑅𝜀

3 as follows:

|𝑅𝜀
3|𝐻𝑠 ≤ 𝐶(ℎ−1

min, |𝜁|𝐻𝑠+6)|𝜓′|𝐻𝑠+6 and |𝜕𝑡𝑅
𝜀
3|𝐻𝑠 ≤ 𝐶(ℎ−1

min, |𝜁|𝐻𝑠+8 , |𝜓′|𝐻𝑠+8) . (2.6)

Then we take the derivative of the second equation of (1.3) and substitute 𝒢[𝜀𝜁]𝜓 and 𝜓′ by −𝜀𝜕𝑥(ℎ𝑣) and (2.5)
respectively. Therefore, taking advantage of the estimates (2.6) provides the control of all terms of order 𝜀3 as
in (2.4) with 𝑁 large enough (mainly greater than 8). �
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3. Full justification of the extended Boussinesq system (𝜇3 < 𝜇2 < 𝜇 ≪ 1, 𝜀 ∼ 𝜇)

The two main issues regarding the validity of an asymptotic model are the following:
∙ Are the Cauchy problems for both the full Euler system and the asymptotic model well-posed for a given

class of initial data, and over the relevant time scale ?
∙ Can the water waves solutions be compared to the solutions of the full Euler system when corresponding

initial data are close? If yes, can we estimate how close they are?
When an asymptotic model answer these two questions, it is said to be fully justified. In the sequel, after the
linear analysis of our model, we refer to Section 3.4 to state the answers of these questions. Existence and
uniqueness of our solution on a time scale 1/

√
𝜀 is given by Theorem 3.7, while a stability property is provided

by Theorem 3.8. Finally, the convergence Theorem 3.9 is stated and therefore the full justification of our model
is proved.

Let us firstly state some preliminary results in the section below.

3.1. Properties of the two operators ℑ and ℑ−1

Assume the nonzero-depth condition that underline the fact that the height of the liquid is always confined,
i.e.:

∃ ℎmin > 0, inf
𝑥∈R

ℎ ≥ ℎmin where ℎ(𝑡, 𝑥) = 1 + 𝜀𝜁(𝑡, 𝑥). (3.1)

Under the above condition, let us introduce the operator ℑ, where much of the modifications in the previous
section hinges on it, such as:

ℑ = ℎ+ 𝜀𝒯 [ℎ]− 𝜀2T = ℎ− 1
3
𝜀𝜕𝑥(ℎ3𝜕𝑥·) +

1
45
𝜀2𝜕4

𝑥· (3.2)

The following lemma states the invertibility results of the operator ℑ on well chosen functional spaces.

Lemma 3.1. Suppose that the depth condition (3.1) is satisfied by the scalar function 𝜁(𝑡, ·) ∈ 𝐿∞(R). Then,
the operator

ℑ : 𝐻4(R) −→ 𝐿2(R)

is well defined, one-to-one and onto .

Proof. We refer to the recent works of two of the authors, Lemma 1 of [24] and Lemma 1 of [23], for the proof
of this lemma. �

Some functional properties on the operator ℑ−1 are given by the Lemma below.

Lemma 3.2. Let 𝑡0 > 1
2 and 𝜁 ∈ 𝐻𝑡0+1(R) be such that (3.1) is satisfied. Then, we have the following :

(i) For all 0 ≤ 𝑠 ≤ 𝑡0 + 1, it holds

|ℑ−1𝑓 |𝐻𝑠 +
√
𝜀|𝜕𝑥ℑ−1𝑓 |𝐻𝑠 + 𝜀|𝜕2

𝑥ℑ−1𝑓 |𝐻𝑠 ≤ 𝐶
(︀ 1
ℎmin

, |ℎ− 1|𝐻𝑡0+1

)︀
|𝑓 |𝐻𝑠 .

and √
𝜀|ℑ−1𝜕𝑥𝑓 |𝐻𝑠 + 𝜀|ℑ−1𝜕2

𝑥𝑓 |𝐻𝑠 ≤ 𝐶
(︀ 1
ℎmin

, |ℎ− 1|𝐻𝑡0+1

)︀
|𝑓 |𝐻𝑠 .

(iii) For all 𝑠 ≥ 𝑡0 + 1, it holds

‖ℑ−1‖𝐻𝑠(R)→𝐻𝑠(R) +
√
𝜀‖ℑ−1𝜕𝑥‖𝐻𝑠(R)→𝐻𝑠(R) + 𝜀‖ℑ−1𝜕2

𝑥‖𝐻𝑠(R)→𝐻𝑠(R) ≤ 𝐶𝑠,

and √
𝜀‖ℑ−1𝜕𝑥‖𝐻𝑠(R)→𝐻𝑠(R) + 𝜀‖ℑ−1𝜕2

𝑥‖𝐻𝑠(R)→𝐻𝑠(R) ≤ 𝐶𝑠,

where 𝐶𝑠 is a constant depending on 1/ℎmin, |ℎ− 1|𝐻𝑠 and independent of 𝜀 ∈ (0, 1).

Proof. We refer to the recent works of two of the authors, Lemma 2 of [24] and Lemma 2 of [23], for the proof
of this lemma. �
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3.2. Quasilinear form

In order to rewrite the extended Boussinesq system in a condensed form and for the sake of clarity, let us
introduce an elliptic forth-order operator 𝑇 [ℎ] as follows:

𝑇 [ℎ](·) = ℎ− 𝜀2𝜕2
𝑥(·) +

2
45
𝜀2𝜕4

𝑥(·). (3.3)

The first equation of the system (2.2) can be written as follows:

𝜕𝑡𝜁 + 𝜀𝑣𝜕𝑥𝜁 + ℎ𝜕𝑥𝑣 = 0.

Then we apply ℑ−1 to both sides of the second equation of the system (2.2), to get:

𝜕𝑡𝑣 + 𝜀𝑣𝑣𝑥 + ℑ−1
(︀
𝑇 [ℎ]𝜁𝑥

)︀
+ 𝜀2ℑ−1

(︀
𝜕2

𝑥𝜁𝑥
)︀

+ 𝜀2ℑ−1
(︀
𝒬[𝑈 ]𝑣𝑥

)︀
= 𝒪(𝜀3).

Hence the higher order Boussinesq system can be written under the form:

𝜕𝑡𝑈 +𝐴[𝑈 ]𝜕𝑥𝑈 = 0, (3.4)

where the operator 𝐴 is denied by:

𝐴[𝑈 ] =
(︂

𝜀𝑣 ℎ
ℑ−1

(︀
𝑇 [ℎ] ·

)︀
+ 𝜀2ℑ−1

(︀
𝜕2

𝑥 ·
)︀
𝜀𝑣 + 𝜀2ℑ−1

(︀
𝒬[𝑈 ] ·

)︀)︂
. (3.5)

3.3. Linear analysis

We consider the following linearized system around a reference state 𝑈 = (𝜁, 𝑣)𝑇 :{︂
𝜕𝑡𝑈 +𝐴[𝑈 ]𝜕𝑥𝑈 = 0,
𝑈|𝑡=0 = 𝑈0.

(3.6)

The energy estimate method needs to define a suitable energy space for the problem we are considering here.
This will permit the convergence of an iterative scheme to construct a solution to the extended Boussinesq
system (2.2) for the initial value problem (3.6).

Definition 3.3 (Energy space). For all 𝑠 ≥ 0 and 𝑇 > 0, we denote by 𝑋𝑠 the vector space 𝐻𝑠+2(R)×𝐻𝑠+2(R)
endowed with the norm:

for 𝑈 = (𝜁, 𝑣) ∈ 𝑋𝑠 , |𝑈 |2𝑋𝑠 := |𝜁|2𝐻𝑠 + 𝜀2|𝜁𝑥|2𝐻𝑠 + 𝜀2|𝜁𝑥𝑥|2𝐻𝑠 + |𝑣|2𝐻𝑠 + 𝜀|𝑣𝑥|2𝐻𝑠 + 𝜀2|𝑣𝑥𝑥|2𝐻𝑠 .

𝑋𝑠
𝑇 stands for 𝐶([0, 𝑇√

𝜀
];𝑋𝑠) endowed with its canonical norm.

Remark 3.4. It is worth noticing that in the presence of surface tension the second term of the energy norm,
|𝜁𝑥|2𝐻𝑠 , is controlled by 𝜀 in front of it and this is sufficiently enough to give an existence time scale of order
1/𝜀. In fact, the second term here in | · |𝑋𝑠 is due to the consideration of the vanishing term that is important
for Definition 3.3 itself and for controlling higher order terms (see Prop. 1).

Now we remark that a good suggestion of a pseudo-symmetrizer for 𝐴[𝑈 ] requires firstly the introduction of a
forth-order linear operator 𝐽 [ℎ] as follows:

𝐽 [ℎ](·) = 1− 𝜀2𝜕𝑥

(︀
ℎ−1𝜕𝑥 ·

)︀
+

2
45
𝜀2𝜕2

𝑥

(︀
ℎ−1𝜕2

𝑥 ·
)︀
,

where ℎ = 1 + 𝜀𝜁 . Thus a pseudo-symmetrizer for 𝐴[𝑈 ] is given by:

𝑆 =

⎛⎝𝐽 [ℎ] 0

0 ℑ

⎞⎠ =

⎛⎝ 1− 𝜀2𝜕𝑥

(︀
ℎ−1𝜕𝑥 ·

)︀
+ 2

45𝜀
2𝜕2

𝑥

(︀
ℎ−1𝜕2

𝑥 ·
)︀

0

0 ℎ+ 𝜀𝒯 [ℎ]− 𝜀2T

⎞⎠ . (3.7)
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Remark 3.5. Introducing operator 𝐽 [ℎ] is of great interest for defining a suitable pseudo-symmetrizer for
(3.5). As the higher order derivative in 𝑇 [ℎ] is not multiplied by ℎ (if this was the case then the vanishing
term considered might be ±𝜀2ℎ𝜁𝑥𝑥𝑥), therefore 𝐽 [ℎ] must replace 𝑇 [ℎ] in the first entity of (3.7). This is clearly
necessary for controlling 𝐴2 +𝐴3 (see Prop. 1).

Also, a natural energy for the initial value problem (3.6) is suggested to be as follows:

𝐸𝑠(𝑈)2 = (Λ𝑠𝑈, 𝑆Λ𝑠𝑈). (3.8)

Lemma 3.6 (Equivalency of 𝐸𝑠(𝑈) and the 𝑋𝑠-norm). Let 𝑠 ≥ 0 and suppose that 𝜁 ∈ 𝐿∞(R) satisfies
consition (3.1). Then norm |·|𝑋𝑠 and the natural energy 𝐸𝑠(𝑈) are uniformly equivalent with respect to 𝜀 ∈ (0, 1)
such that:

𝐸𝑠(𝑈) ≤ 𝐶
(︀
ℎmin, |ℎ|∞

)︀
|𝑈 |𝑋𝑠 and |𝑈 |𝑋𝑠 ≤ 𝐶

(︀
ℎmin, |ℎ|∞

)︀
𝐸𝑠(𝑈).

Proof. We refer to the recent work of two of the authors Lemma 3 of [24] for the proof of this important
property. �

The well-posedness and a derivation of a first energy estimate for the linear system is given in the following
proposition.

Proposition 1 (Well-posedness & energy estimate of the linear system). For 𝑡0 > 1
2 , 𝑠 ≥ 𝑡0 +1 and under the

depth condition (3.1), suppose that 𝑈 = (𝜁, 𝑣)𝑇 ∈ 𝑋𝑠
𝑇 and 𝜕𝑡𝑈 ∈ 𝑋𝑠−1

𝑇 at any time in [0, 𝑇√
𝜀
]. Then, there exists

a unique solution 𝑈 = (𝜁, 𝑣)𝑇 ∈ 𝑋𝑠
𝑇 to (3.6) for any initial data 𝑈0 in 𝑋𝑠 and for all 0 ≤ 𝑡 ≤ 𝑇√

𝜀
it holds that:

𝐸𝑠
(︀
𝑈(𝑡)

)︀
≤

(︀
𝑒
√

𝜀𝜆𝑇 𝑡
)︀1/2

𝐸𝑠(𝑈0), (3.9)

for some 𝜆𝑇 depending only on ℎ−1
min, sup0≤

√
𝜀𝑡≤𝑇 𝐸

𝑠(𝑈(𝑡)) and sup0≤
√

𝜀𝑡≤𝑇 |𝜕𝑡ℎ(𝑡)|𝐿∞ .

Proof. For the proof of the existence and uniqueness of the solution, we refer to the proof found in Appendix A
of [19] which can be directly adapted to the problem we are considering here.

Thereafter, we will focus our attention on the proof of the energy estimate (3.9). First of all, fix 𝜆 ∈ R. The
proof of the energy estimate is centered on bounding from above by zero the expression 𝑒

√
𝜀𝜆𝑡𝜕𝑡(𝑒−

√
𝜀𝜆𝑡𝐸𝑠(𝑈)2).

For this sake, we use the fact that ℑ and 𝐽 [ℎ] are symmetric to evaluate the expression under the form:

1
2
𝑒
√

𝜀𝜆𝑡𝜕𝑡(𝑒−
√

𝜀𝜆𝑡𝐸𝑠(𝑈)2) = −𝜆
2
√
𝜀𝐸𝑠(𝑈)2 −

(︀
𝑆𝐴[𝑈 ]Λ𝑠𝜕𝑥𝑈,Λ𝑠𝑈

)︀
−

(︀[︀
Λ𝑠, 𝐴[𝑈 ]

]︀
𝜕𝑥𝑈, 𝑆Λ𝑠𝑈

)︀
+

1
2
(︀
Λ𝑠𝜁, [𝜕𝑡, 𝐽 [ℎ]]Λ𝑠𝜁

)︀
+

1
2
(Λ𝑠𝑣, [𝜕𝑡,ℑ]Λ𝑠𝑣) .

Now it remains to control the r.h.s components of the above equation. To do so, we firstly recall the commutator
estimate we shall use due to Kato-Ponce [21] and recently improved by Lannes [27]: in particular, for any 𝑠 > 3/2,
and 𝑞 ∈ 𝐻𝑠(R), 𝑝 ∈ 𝐻𝑠−1(R), one has: ⃒⃒

[Λ𝑠, 𝑞]𝑝|2 . |∇𝑞|𝐻𝑠−1 |𝑝|𝐻𝑠−1 . (3.10)

Also we shall use intensively the classical product estimate (see [1,21,27]): in particular, for any 𝑝, 𝑞 ∈ 𝐻𝑠(R2),
𝑠 > 3/2, one has:

|𝑝𝑞|𝐻𝑠 . |𝑞|𝐻𝑠 |𝑝|𝐻𝑠 . (3.11)

∙ Estimation of (𝑆𝐴[𝑈 ]Λ𝑠𝜕𝑥𝑈,Λ𝑠𝑈). We have:

𝑆𝐴[𝑈 ] =
(︂

𝜀𝐽 [ℎ](𝑣·) 𝐽 [ℎ](ℎ·)
𝑇 [ℎ] ·+𝜀2𝜕2

𝑥· 𝜀ℑ(𝑣·) + 𝜀2𝒬[𝑈 ]·

)︂
,
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then it holds that:(︀
𝑆𝐴[𝑈 ]Λ𝑠𝜕𝑥𝑈,Λ𝑠𝑈

)︀
= 𝜀

(︀
𝐽 [ℎ](𝑣Λ𝑠𝜁𝑥),Λ𝑠𝜁

)︀
+

(︀
𝐽 [ℎ](ℎΛ𝑠𝑣𝑥),Λ𝑠𝜁

)︀
+

(︀
𝑇 [ℎ]Λ𝑠𝜁𝑥,Λ𝑠𝑣

)︀
+ 𝜀2

(︀
Λ𝑠𝜁𝑥𝑥𝑥,Λ𝑠𝑣

)︀
+ 𝜀

(︀
ℑ(𝑣Λ𝑠𝑣𝑥),Λ𝑠𝑣

)︀
+ 𝜀2

(︀
𝒬[𝑈 ]Λ𝑠𝑣𝑥,Λ𝑠𝑣

)︀
= 𝐴1 +𝐴2 + . . .+𝐴6.

To control 𝐴1, by integration by parts, we have:

𝐴1 = 𝜀
(︀
𝑣Λ𝑠𝜁𝑥,Λ𝑠𝜁

)︀
+ 𝜀3

(︀
ℎ−1𝜕𝑥(𝑣Λ𝑠𝜁𝑥),Λ𝑠𝜁𝑥

)︀
+

2
45
𝜀3

(︀
ℎ−1𝜕2

𝑥(𝑣Λ𝑠𝜁𝑥),Λ𝑠𝜁𝑥𝑥

)︀
= 𝐴11 +𝐴12 +𝐴13 .

Clearly, it holds that:

|𝐴11| =
1
2
𝜀|

(︀
Λ𝑠𝜁, 𝑣𝑥Λ𝑠𝜁

)︀
| ≤ 𝜀𝐶

(︀
|𝑣|𝑊 1,∞

)︀
𝐸𝑠(𝑈)2.

By integrating by parts, it holds that:

|𝐴12| = 𝜀3
(︀
ℎ−1𝑣𝑥Λ𝑠𝜁𝑥,Λ𝑠𝜁𝑥

)︀
+ 𝜀3

(︀
ℎ−1𝑣Λ𝑠𝜁𝑥𝑥,Λ𝑠𝜁𝑥

)︀
≤ 𝜀𝐶

(︀
ℎ−1

min, |𝑣𝑥|∞
)︀
𝐸𝑠(𝑈)2.

Now using the fact that:
𝜕2

𝑥(𝑀𝑁) = 𝑁𝜕2
𝑥𝑀 + 2𝑀𝑥𝑁𝑥 +𝑀𝜕2

𝑥𝑁, (3.12)

for any differentiable functions 𝑀 , 𝑁 and by integration by parts, we have:

𝐴13 =
2
45
𝜀3

[︀(︀
ℎ−1𝑣𝑥𝑥Λ𝑠𝜁𝑥,Λ𝑠𝜁𝑥𝑥

)︀
+ 2

(︀
ℎ−1𝑣𝑥Λ𝑠𝜁𝑥𝑥,Λ𝑠𝜁𝑥𝑥

)︀
+

1
2
(︀
ℎ−2ℎ𝑥𝑣Λ

𝑠𝜁𝑥𝑥,Λ𝑠𝜁𝑥𝑥

)︀
− 1

2
(︀
ℎ−1𝑣𝑥Λ𝑠𝜁𝑥𝑥,Λ𝑠𝜁𝑥𝑥

)︀]︀
= 𝐴131 + . . .+𝐴314.

Although 𝐴131 can be controlled directly with
√
𝜀 in front of the constant, one may improve this by 𝜀 instead.

Indeed by integration by parts one has:

𝐴131 =
2
45
𝜀3

(︀
ℎ−2ℎ𝑥𝑣𝑥𝑥Λ𝑠𝜁𝑥,Λ𝑠𝜁𝑥

)︀
− 2

45
𝜀3

(︀
ℎ−1𝑣𝑥𝑥𝑥Λ𝑠𝜁𝑥,Λ𝑠𝜁𝑥

)︀
= 𝐴1311 +𝐴1312.

Remark that ℎ𝑥 = 𝜀𝜁
𝑥
, then 𝐴1311 posses sufficient 𝜀’s, unlike 𝐴1312 on which we have to work a little more.

Indeed, in view of (3.1) we have that ℎ−1 > 0, then it holds:

𝐴1312 = − 2
45
𝜀3

(︀
ℎ−1𝑣𝑥𝑥𝑥, (Λ

𝑠𝜁𝑥)2
)︀
≤ 2

45
𝜀3|𝑣𝑥𝑥𝑥|∞

(︀
ℎ−1, (Λ𝑠𝜁𝑥)2

)︀
.

Again by integration by parts, we get :
(︀
ℎ−1, (Λ𝑠𝜁𝑥)2

)︀
= (ℎ−2ℎ𝑥Λ𝑠𝜁,Λ𝑠𝜁𝑥) − (ℎ−1Λ𝑠𝜁,Λ𝑠𝜁𝑥𝑥). Therefore one

may control 𝐴1312 by 𝜀𝐶(ℎ−2
min, |𝜁|𝑊 1,∞ , 𝜇|𝑣𝑥𝑥𝑥|∞)𝐸𝑠(𝑈)2. Consequently, it holds:

𝐴1311 +𝐴132 + ..+𝐴134 ≤ 𝜀𝐶
(︀
ℎ−2

min, |𝜁|𝑊 1,∞ , |𝑣|𝑊 1,∞ ,
√
𝜀|𝑣𝑥𝑥|∞

)︀
𝐸𝑠(𝑈)2.

Collecting the information provided above we get:

|𝐴1| ≤ 𝜀𝐶
(︀
ℎ−2

min, |𝜁|𝑊 1,∞ , |𝑣|𝑊 1,∞ ,
√
𝜀|𝑣𝑥𝑥|∞

)︀
𝐸𝑠(𝑈)2.

To control 𝐴2 + 𝐴3, by remarking firstly that 𝐽 [ℎ] and 𝑇 [ℎ] are symmetric, and then by integration by parts
after having performing some algebraic calculations and using (3.12), we have:

𝐴2 +𝐴3 = −
(︀
Λ𝑠𝑣, ℎ𝑥Λ𝑠𝜁

)︀
+ 𝜀2

(︀
ℎ−1ℎ𝑥Λ𝑠𝜁𝑥,Λ𝑠𝑣𝑥

)︀
+

4
45
𝜀2

(︀
ℎ−1ℎ𝑥Λ𝑠𝑣𝑥𝑥,Λ𝑠𝜁𝑥𝑥

)︀
− 2

45
𝜀2

(︀
ℎ−1ℎ𝑥𝑥Λ𝑠𝜁𝑥𝑥,Λ𝑠𝑣𝑥

)︀
.
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Unfortunately, an inconvenient term appears in 𝐴2 +𝐴3: it is the term 𝜀2
(︀
ℎ−1ℎ𝑥𝑥Λ𝑠𝜁𝑥𝑥,Λ𝑠𝑣𝑥

)︀
. This term won’t

be controlled without gaining
√
𝜀 taken from ℎ𝑥𝑥 = 𝜀𝜁

𝑥𝑥
and the other

√
𝜀 sits in front of the constant. Due to

this fact, it follows that:

|𝐴2 +𝐴3| ≤
√
𝜀𝐶

(︀
ℎ−1

min, |𝜁|𝑊 1,∞ , |𝑣|𝑊 1,∞ , 𝜀|𝜁
𝑥𝑥
|𝐻𝑠

)︀
𝐸𝑠(𝑈)2.

To control 𝐴4, by integration by parts, it holds:

𝐴4 = −𝜀2(Λ𝑠𝜁𝑥𝑥,Λ𝑠𝑣𝑥) ≤
√
𝜀𝐸𝑠(𝑈)2.

To control 𝐴5, by integration by parts, we have:

𝐴5 = 𝜀
(︀
ℎ𝑣Λ𝑠𝑣𝑥,Λ𝑠𝑣

)︀
+
𝜀2

3
(︀
ℎ3𝜕𝑥(𝑣Λ𝑠𝑣𝑥),Λ𝑠𝑣𝑥

)︀
+
𝜀3

45
(︀
𝜕2

𝑥(𝑣Λ𝑠𝑣𝑥),Λ𝑠𝑣𝑥𝑥

)︀
= 𝐴51 +𝐴52 +𝐴53

where ⃒⃒
𝐴51

⃒⃒
=

⃒⃒
− 𝜀

2
(︀
ℎ𝑥𝑣Λ

𝑠𝑣,Λ𝑠𝑣
)︀
− 𝜀

2
(︀
ℎ𝑣𝑥Λ𝑠𝑣,Λ𝑠𝑣

)︀⃒⃒
≤ 𝜀𝐶

(︀
|𝜁

𝑥
|∞, |𝑣𝑥|∞

)︀
𝐸𝑠(𝑈)2

with ⃒⃒
𝐴52

⃒⃒
=

⃒⃒
− 𝜀2

2
(︀
ℎ3

𝑥𝑣Λ
𝑠𝑣𝑥,Λ𝑠𝑣𝑥

)︀
− 𝜀2

6
(︀
ℎ3𝑣Λ𝑠𝑣𝑥,Λ𝑠𝑣𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|𝜁|𝑊 1,∞

)︀
𝐸𝑠(𝑈)2

and⃒⃒
𝐴53

⃒⃒
=
𝜀2

45

⃒⃒(︀
𝑣𝑥𝑥Λ𝑠𝑣𝑥,Λ𝑠𝑣𝑥𝑥

)︀
+ 2

(︀
𝑣𝑥Λ𝑠𝑣𝑥𝑥,Λ𝑠𝑣𝑥𝑥

)︀
− 1

2
(︀
𝑣𝑥Λ𝑠𝑣𝑥𝑥,Λ𝑠𝑣𝑥𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|𝜁|𝑊 1,∞ ,

√
𝜀|𝑣𝑥𝑥|∞

)︀
𝐸𝑠(𝑈)2.

Therefore, it holds that:
|𝐴5| ≤ 𝜀𝐶

(︀
|𝜁|𝑊 1,∞ , |𝑣𝑥|∞,

√
𝜀|𝑣𝑥𝑥|∞

)︀
𝐸𝑠(𝑈)2.

Finally, by integration by parts, 𝐴6 is controlled by 𝜀𝐶
(︀
|𝑣𝑥|∞

)︀
𝐸𝑠(𝑈)2. Therefore, it holds:⃒⃒(︀

𝑆𝐴[𝑈 ]Λ𝑠𝜕𝑥𝑈,Λ𝑠𝑈
)︀⃒⃒
≤
√
𝜀𝐶

(︀
|𝜁|𝑊 1,∞ , 𝜀|𝜁

𝑥𝑥
|𝐻𝑠 , |𝑣|𝑊 1,∞ ,

√
𝜀|𝑣𝑥𝑥|∞

)︀
𝐸𝑠(𝑈)2.

∙ Estimation of
(︀[︀

Λ𝑠, 𝐴[𝑈 ]
]︀
𝜕𝑥𝑈, 𝑆Λ𝑠𝑈

)︀
. Let us remark that:(︀[︀

Λ𝑠, 𝐴[𝑈 ]
]︀
𝜕𝑥𝑈, 𝑆Λ𝑠𝑈

)︀
= 𝜀

(︀
[Λ𝑠, 𝑣]𝜁𝑥, 𝐽 [ℎ]Λ𝑠𝜁

)︀
+

(︀
[Λ𝑠, ℎ]𝑣𝑥, 𝐽 [ℎ]Λ𝑠𝜁

)︀
+

(︀
[Λ𝑠,ℑ−1(𝑇 [ℎ]·)]𝜁𝑥,ℑΛ𝑠𝑣

)︀
+ 𝜀2

(︀
[Λ𝑠,ℑ−1(𝜕2

𝑥·)]𝜁𝑥,ℑΛ𝑠𝑣
)︀

+ 𝜀
(︀
[Λ𝑠, 𝑣]𝑣𝑥,ℑΛ𝑠𝑣

)︀
+ 𝜀2

(︀
[Λ𝑠,ℑ−1(𝒬[𝑈 ]·)]𝑣𝑥,ℑΛ𝑠𝑣

)︀
= 𝐵1 +𝐵2 + . . .+𝐵6.

To control 𝐵1, we use the expression of 𝐽 [ℎ] to write:

𝐵1 = 𝜀
(︀
[Λ𝑠, 𝑣]𝜁𝑥,Λ𝑠𝜁

)︀
+ 𝜀3

(︀
𝜕𝑥[Λ𝑠, 𝑣]𝜁𝑥,

1
ℎ

Λ𝑠𝜁𝑥
)︀

+
2
45
𝜀3

(︀
𝜕2

𝑥[Λ𝑠, 𝑣]𝜁𝑥, ℎ−1Λ𝑠𝜁𝑥𝑥

)︀
.

Then by using the fact that:

𝜕𝑥[Λ𝑠,𝑀 ]𝑁 = [Λ𝑠,𝑀𝑥]𝑁 + [Λ𝑠,𝑀 ]𝑁𝑥 and 𝜕2
𝑥[Λ𝑠,𝑀 ]𝑁 = [Λ𝑠,𝑀𝑥𝑥]𝑁 + 2[Λ𝑠,𝑀𝑥]𝑁𝑥 + [Λ𝑠,𝑀 ]𝑁𝑥𝑥, (3.13)

and using (3.10), it holds that:

𝐵1 = 𝜀
(︀
[Λ𝑠, 𝑣]𝜁𝑥,Λ𝑠𝜁

)︀
+ 𝜀3

(︀
[Λ𝑠, 𝑣𝑥]𝜁𝑥, ℎ−1Λ𝑠𝜁𝑥

)︀
+ 𝜀3

(︀
[Λ𝑠, 𝑣]𝜁𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥
)︀

+
2
45
𝜀3

{︁(︀
[Λ𝑠, 𝑣𝑥𝑥]𝜁𝑥, ℎ−1Λ𝑠𝜁𝑥𝑥

)︀
+ 2

(︀
[Λ𝑠, 𝑣𝑥]𝜁𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀
+

(︀
[Λ𝑠, 𝑣]𝜁𝑥𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀}︁
≤
√
𝜀𝐶

(︀
ℎ−1

min, |𝑣|𝐻𝑠 , 𝜀|𝑣𝑥𝑥|𝐻𝑠

)︀
𝐸𝑠(𝑈)2 .
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The
√
𝜀 in front of the constant is due to the inconvenient term represented by 𝜀3

(︀
[Λ𝑠, 𝑣𝑥]𝜁𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀
.

To control 𝐵2, by the expression of 𝐽 [ℎ] and (3.13), we have:

𝐵2 =
(︀
[Λ𝑠, ℎ− 1]𝑣𝑥,Λ𝑠𝜁

)︀
+ 𝜀3

(︀
[Λ𝑠, 𝜁

𝑥
]𝑣𝑥, ℎ

−1Λ𝑠𝜁𝑥
)︀

+ 𝜀2
(︀
[Λ𝑠, ℎ− 1]𝑣𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥
)︀

+
2
45
𝜀2

{︁(︀
[Λ𝑠, (ℎ− 1)𝑥𝑥]𝑣𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀
+ 2

(︀
[Λ𝑠, (ℎ− 1)𝑥]𝑣𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀
+

(︀
[Λ𝑠, ℎ− 1]𝑣𝑥𝑥𝑥, ℎ

−1Λ𝑠𝜁𝑥𝑥

)︀}︁
.

Then, clearly the following estimate holds:

|𝐵2| ≤ 𝜀𝐶
(︀
ℎ−1

min, |ℎ− 1|𝐻𝑠 , 𝜀|𝜁
𝑥𝑥
|𝐻𝑠

)︀
𝐸𝑠(𝑈)2.

To control 𝐵3, we have that ℑ is symmetric and that:

ℑ[Λ𝑠,ℑ−1]𝑇 [ℎ]𝜁𝑥 = ℑ[Λ𝑠,ℑ−1𝑇 [(ℎ]·)]𝜁𝑥 − [Λ𝑠, 𝑇 [ℎ]]𝜁𝑥.

Moreover, since [Λ𝑠,ℑ−1] = −ℑ−1[Λ𝑠,ℑ]ℑ−1, one gets:

ℑ[Λ𝑠,ℑ−1 𝑇 [ℎ]·]𝜁𝑥 = −[Λ𝑠,ℑ]ℑ−1𝑇 [ℎ]𝜁𝑥 + [Λ𝑠, 𝑇 [ℎ]]𝜁𝑥.

Therefore, one may write:

𝐵3 =
(︀
[Λ𝑠,ℑ]ℑ−1(𝑇 [ℎ]𝜁𝑥),Λ𝑠𝑣

)︀
+

(︀
[Λ𝑠, 𝑇 [ℎ]]𝜁𝑥,Λ𝑠𝑣

)︀
.

At this point, using the expressions of 𝑇 [ℎ] and 𝐽 [ℎ], it holds:

2
45
𝜀2𝜕4

𝑥𝜁𝑥 = 2ℑ𝜁𝑥 − 2ℎ𝜁𝑥 +
2
3
𝜀𝜕𝑥(ℎ3𝜁𝑥𝑥).

Therefore, it holds that:

ℑ−1(𝑇 [ℎ]𝜁𝑥) = 2𝜁𝑥 −ℑ−1(ℎ𝜁𝑥)− 𝜀2ℑ−1(𝜁𝑥𝑥𝑥) +
2
3
𝜀ℑ−1𝜕𝑥(ℎ3𝜁𝑥𝑥),

which implies that:

𝐵3 = 2
(︀
[Λ𝑠,ℑ]𝜁𝑥,Λ𝑠𝑣

)︀
−

(︀
[Λ𝑠,ℑ]ℑ−1(ℎ𝜁𝑥),Λ𝑠𝑣

)︀
+

2
3
𝜀
(︀
[Λ𝑠,ℑ]ℑ−1𝜕𝑥(ℎ3𝜁𝑥𝑥),Λ𝑠𝑣

)︀
− 𝜀2

(︀
[Λ𝑠,ℑ]ℑ−1(𝜁𝑥𝑥𝑥),Λ𝑠𝑣

)︀
+

(︀
[Λ𝑠, 𝑇 [ℎ]]𝜁𝑥,Λ𝑠𝑣

)︀
= 𝐵31 +𝐵32 +𝐵33 +𝐵34 +𝐵35.

Thanks to the fact that, for all 𝑘 ∈ N, ℎ𝑘 − 1 = 𝒪(𝜀𝜁) and using the explicit expression of ℑ combined with the
identities:

[Λ𝑠, 𝜕𝑥(𝑀𝜕𝑥·)]𝑁 = 𝜕𝑥[Λ𝑠,𝑀 ]𝑁𝑥 and [Λ𝑠, 𝜕𝑚
𝑥 ]𝑁 = 0 ∀𝑚 ∈ N*, (3.14)

then by integration by parts and (3.10), it holds that:

𝐵31 = 2
(︀
[Λ𝑠, ℎ− 1]𝜁𝑥,Λ𝑠𝑣

)︀
+

2
3
𝜀
(︀
[Λ𝑠, ℎ3 − 1]𝜁𝑥𝑥,Λ𝑠𝑣𝑥

)︀
≤
√
𝜀𝐶

(︀
|ℎ− 1|𝐻𝑠)𝐸𝑠(𝑈)2.

Also, by (3.10) it holds:

|𝐵32| ≤
⃒⃒(︀

[Λ𝑠, ℎ]ℑ−1(ℎ𝜁𝑥),Λ𝑠𝑣
)︀

+
1
3
𝜀
(︀
[Λ𝑠, ℎ3]𝜕𝑥ℑ−1(ℎ𝜁𝑥),Λ𝑠𝑣𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|ℎ − 1|𝐻𝑠 , 𝐶𝑠)𝐸𝑠(𝑈)2,
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with

|𝐵33| ≤
⃒⃒2
3
𝜀
(︀
[Λ𝑠, ℎ]ℑ−1𝜕𝑥(ℎ3𝜁𝑥𝑥),Λ𝑠𝑣

)︀
+

2
9
𝜀2

(︀
[Λ𝑠, ℎ3]𝜕𝑥ℑ−1𝜕𝑥(ℎ3𝜁𝑥𝑥),Λ𝑠𝑣𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|ℎ−1|𝐻𝑠 , 𝐶𝑠)𝐸𝑠(𝑈)2 ,

and

|𝐵34| ≤ 𝜀2
⃒⃒(︀

[Λ𝑠, ℎ]ℑ−1(𝜁𝑥𝑥𝑥),Λ𝑠𝑣
)︀

+
1
3
𝜀3

(︀
[Λ𝑠, ℎ3]𝜕𝑥ℑ−1(𝜁𝑥𝑥𝑥),Λ𝑠𝑣𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|ℎ − 1|𝐻𝑠 , 𝐶𝑠)𝐸𝑠(𝑈)2 .

For controlling 𝐵35, the explicit expression of 𝑇 [ℎ] and (3.14) gives that:

𝐵35 =
(︀
[Λ𝑠, ℎ− 1]𝜁𝑥,Λ𝑠𝑣

)︀
≤ 𝜀𝐶

(︀
|ℎ− 1|𝐻𝑠 , 𝐶𝑠)𝐸𝑠(𝑈)2.

Thus, as a conclusion, it holds that:

|𝐵3| ≤
√
𝜀𝐶

(︀
|ℎ− 1|𝐻𝑠 , |𝜁|∞, 𝜀|𝜁𝑥𝑥𝑥

|𝐻𝑠−1 , 𝐶𝑠

)︀
𝐸𝑠(𝑈)2.

To control 𝐵4, as for 𝐵3 and using (3.14) one may write:

𝐵4 = −𝜀2
(︀
[Λ𝑠,ℑ]ℑ−1𝜁𝑥𝑥𝑥,Λ𝑠𝑣

)︀
= −𝜀2

(︀
[Λ𝑠, ℎ]ℑ−1𝜁𝑥𝑥𝑥,Λ𝑠𝑣

)︀
− 1

3
𝜀3

(︀
[Λ𝑠, ℎ3]𝜕𝑥ℑ−1𝜁𝑥𝑥𝑥,Λ𝑠𝑣𝑥

)︀
≤ 𝜀𝐶

(︀
|ℎ− 1|𝐻𝑠 , 𝐶𝑠)𝐸𝑠(𝑈)2 .

To control 𝐵5, using the expression of ℑ, (3.10) and (3.13) with integration by parts and the fact that
𝜕𝑥[Λ𝑠,𝑀 ]𝑁 = [Λ𝑠,𝑀𝑥]𝑁 + [Λ𝑠,𝑀 ]𝑁𝑥, it holds:

|𝐵5| = 𝜀
⃒⃒(︀

[Λ𝑠, 𝑣]𝑣𝑥, ℎΛ𝑠𝑣
)︀

+
1
3
𝜀
(︀
[Λ𝑠, 𝑣𝑥]𝑣𝑥, ℎ

3Λ𝑠𝑣𝑥

)︀
+

1
3
𝜀
(︀
[Λ𝑠, 𝑣]𝑣𝑥𝑥, ℎ

3Λ𝑠𝑣𝑥

)︀
+

1
45
𝜀2

(︀
[Λ𝑠, 𝑣𝑥𝑥]𝑣𝑥,Λ𝑠𝑣𝑥𝑥

)︀
+

2
45
𝜀2

(︀
[Λ𝑠, 𝑣𝑥]𝑣𝑥𝑥,Λ𝑠𝑣𝑥𝑥

)︀
+

1
45
𝜀2

(︀
[Λ𝑠, 𝑣]𝑣𝑥𝑥𝑥,Λ𝑠𝑣𝑥𝑥

)︀⃒⃒
≤ 𝜀𝐶

(︀
|ℎ|∞, |𝑣|𝐻𝑠 ,

√
𝜀|𝑣𝑥𝑥|𝐻𝑠−1 , 𝜀|𝑣𝑥𝑥𝑥|𝐻𝑠−1

)︀
𝐸𝑠(𝑈)2.

To control 𝐵6, using the same arguments as the ones used to control 𝐵3, using expression of ℑ, (3.10) and
(3.14), it follows that:

𝐵6 = −𝜀2
(︀
[Λ𝑠, ℎ]ℑ−1𝒬[𝑈 ]𝑣𝑥,Λ𝑠𝑣

)︀
− 𝜀3

3
(︀
[Λ𝑠, ℎ3]𝜕𝑥ℑ−1𝒬[𝑈 ]𝑣𝑥,Λ𝑠𝑣𝑥

)︀
+ 𝜀2

(︀
[Λ𝑠,𝒬[𝑈 ]]𝑣𝑥,Λ𝑠𝑣

)︀
.

Now, using the expression of 𝒬 with the help of Lemma 3.2, estimate (3.10), in addition to (3.14) and the fact
that [Λ𝑠, 𝜕𝑥(𝑀 ·)]𝑁 = 𝜕𝑥[Λ𝑠,𝑀 ]𝑁 , it holds:

|𝐵6| ≤ 𝜀𝐶
(︀
|ℎ− 1|𝐻𝑠 ,

√
𝜀|𝑣𝑥|𝐻𝑠 , 𝐶𝑠

)︀
𝐸𝑠(𝑈)2.

Eventually, as a conclusion, one gets:⃒⃒(︀[︀
Λ𝑠, 𝐴[𝑈 ]

]︀
𝜕𝑥𝑈, 𝑆Λ𝑠𝑈

)︀⃒⃒
≤
√
𝜀𝐶

(︀
ℎ−1

min, |ℎ− 1|𝐻𝑠 , |𝜁|𝐻𝑠 , 𝜀|𝜁
𝑥𝑥
|𝐻𝑠 , |𝑣|𝐻𝑠 ,

√
𝜀|𝑣𝑥|𝐻𝑠 , 𝜀|𝑣𝑥𝑥|𝐻𝑠 , 𝐶𝑠

)︀
𝐸𝑠(𝑈)2.

It is worth noticing that
√
𝜀 in front of the constant is due to 𝐵1 and 𝐵31.

∙ Estimation of
(︀
Λ𝑠𝜁, [𝜕𝑡, 𝐽 [ℎ]]Λ𝑠𝜁

)︀
. Using the expression of 𝐽 [ℎ] and by integration by parts, it holds that:

(︀
Λ𝑠𝜁, [𝜕𝑡, 𝐽 [ℎ]]Λ𝑠𝜁

)︀⃒⃒
= 𝜀2

(︀
ℎ−2𝜕𝑡ℎΛ𝑠𝜁𝑥,Λ𝑠𝜁𝑥

)︀
+

2
45
𝜀2

(︀
ℎ−2𝜕𝑡ℎΛ𝑠𝜁𝑥𝑥,Λ𝑠𝜁𝑥𝑥

)︀
≤ 𝜀𝐶(ℎ−2

min, |𝜕𝑡𝜁|∞)𝐸𝑠(𝑈)2.

∙ Estimation of
(︀
Λ𝑠𝑣, [𝜕𝑡,ℑ]Λ𝑠𝑣

)︀
. It holds that:

[𝜕𝑡, ℎ]Λ𝑠𝑣 = 𝜕𝑡ℎΛ𝑠𝑣 and [𝜕𝑡, 𝜕𝑥(ℎ3𝜕𝑥·)]Λ𝑠𝑣 = 𝜕𝑥(𝜕𝑡ℎ
3Λ𝑠𝑣𝑥),
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then by integration by parts:⃒⃒(︀
Λ𝑠𝑣, [𝜕𝑡,ℑ]Λ𝑠𝑣

)︀⃒⃒
=

⃒⃒(︀
𝜕𝑡ℎΛ𝑠𝑣,Λ𝑠𝑣

)︀
+
𝜀

3
(︀
𝜕𝑡ℎ

3Λ𝑠𝑣𝑥,Λ𝑠𝑣𝑥

)︀⃒⃒
≤ 𝜀𝐶(|𝜕𝑡𝜁|∞, 𝐸𝑠(𝑈))𝐸𝑠(𝑈)2.

Finally, combining the above estimates in addition to that fact that 𝐻𝑠(R) is continuously embedded in
𝑊 1,∞(R), it holds that:

1
2
𝑒
√

𝜀𝜆𝑡𝜕𝑡(𝑒−
√

𝜀𝜆𝑡𝐸𝑠(𝑈)2) ≤
√
𝜀
(︀
𝐶(ℎ−1

min, 𝐸
𝑠(𝑈))− 𝜆

)︀
𝐸𝑠(𝑈)2.

Taking 𝜆 = 𝜆𝑇 large enough (how large depending on sup
𝑡∈[0, 𝑇√

𝜀
]

𝐶(ℎ−1
min, 𝐸

𝑠(𝑈)) such that the right hand side of

the inequality above is negative for all 𝑡 ∈ [0, 𝑇√
𝜀
], then it holds that:

∀ 𝑡 ∈
[︁
0,

𝑇√
𝜀

]︁
,

1
2
𝑒
√

𝜀𝜆𝑡𝜕𝑡

(︀
𝑒−
√

𝜀𝜆𝑡𝐸𝑠(𝑈)2
)︀
≤ 0.

Thanks to Grönwall’s inequality so that it holds

∀ 𝑡 ∈
[︁
0,

𝑇√
𝜀

]︁
, 𝐸𝑠

(︀
𝑈(𝑡)

)︀
≤

(︀
𝑒
√

𝜀𝜆𝑇 𝑡
)︀1/2

𝐸𝑠(𝑈0) ,

and hence the desired energy estimate is finally obtained. �

3.4. Main results

3.4.1. Well-posedness of the extended Boussinesq system

Theorem 3.7 represents the well-posedness of the extended Boussinesq system (2.2) which holds in 𝑋𝑠 =
𝐻𝑠+2(R)×𝐻𝑠+2(R) as soon as 𝑠 > 3/2 on a time interval of size 1/

√
𝜀.

Theorem 3.7 (Local existence). Suppose that 𝑈0 = (𝜁0, 𝑣0) ∈ 𝑋𝑠 satisfying (3.1) for any 𝑡0 > 1
2 , 𝑠 ≥ 𝑡0 + 1.

Then there exists a maximal time 𝑇max = 𝑇 (|𝑈0|𝑋𝑠) > 0 and a unique solution 𝑈 = (𝜁, 𝑣)𝑇 ∈ 𝑋𝑠
𝑇max

to the
extended Boussinesq system (2.2) with initial condition (𝜁0, 𝑣0) such that the non-vanishing depth condition
(3.1) is satisfied for any 𝑡 ∈ [0, 𝑇max√

𝜀
). In particular if 𝑇max <∞ one has

|𝑈(𝑡, ·)|𝑋𝑠 −→∞ as 𝑡 −→ 𝑇max√
𝜀
, or inf

R
ℎ(𝑡, ·) = inf

R
1 + 𝜀𝜁(𝑡, ·) −→ 0 as 𝑡 −→ 𝑇max√

𝜀
.

Proof. The proof follows same line as Theorem 1 of [24] using the energy estimate proved in Proposition 1. This
is due to the fact that in [24] a most general case is considered (i.e. the extended Green-Naghdi equations).
Remark that the proof itself is an adaptation of the proof of the well-posedness of hyperbolic systems (see [1]
for general details). �

3.4.2. A stability property

Theorem 3.7 is complemented by the following result that shows the stability of the solution with respect
to perturbations, which is very useful for the justification of asymptotic approximations of the exact solution.
(The solution 𝑈 = (𝜁, 𝑣)𝑇 and time 𝑇max that appear in the statement below are those furnished by Thm. 3.7).

Theorem 3.8 (Stability). Suppose that the assumption of Theorem 3.7 is satisfied and moreover assume that
there exists ̃︀𝑈 = (̃︀𝜁, ̃︀𝑣)𝑇 ∈ 𝐶

(︁
[0, 𝑇max√

𝜀
], 𝑋𝑠+1(R)

)︁
such that⎧⎨⎩𝜕𝑡

̃︀𝜁 + 𝜕𝑥(̃︀ℎ̃︀𝑣) = 𝑓1,

ℑ̃
(︀
𝜕𝑡𝑣 + 𝜀𝑣𝑣𝑥

)︀
+ ℎ̃𝜕𝑥𝜁 − 𝜀2𝜁𝑥𝑥𝑥 +

2
45
𝜀2𝜁𝑥𝑥𝑥𝑥𝑥 + 𝜀2𝜁𝑥𝑥𝑥 + 𝜀2𝒬[�̃� ]𝑣𝑥 = 𝑓2
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with ̃︀ℎ(𝑡, 𝑥) = 1 + 𝜀̃︀𝜁(𝑡, 𝑥) and ̃︀𝐹 = (𝑓1, 𝑓2)𝑇 ∈ 𝐿∞
(︁
[0, 𝑇max√

𝜀
], 𝑋𝑠(R)

)︁
. Then for all 𝑡 ∈ [0, 𝑇max√

𝜀
], the error

U = 𝑈 − ̃︀𝑈 = (𝜁, 𝑣)𝑇 − (̃︀𝜁, ̃︀𝑣)𝑇 with respect to 𝑈 given by Theorem 3.7 satisfies for all 0 ≤ 𝑡 ≤ 𝑇max/
√
𝜀 the

following inequality ⃒⃒
U

⃒⃒
𝐿∞([0,𝑡],𝑋𝑠(R))

≤
√
𝜀 ̃︀𝐶(︁⃒⃒

U|𝑡=0

⃒⃒
𝑋𝑠(R)

+ 𝑡
⃒⃒ ̃︀𝐹 ⃒⃒

𝐿∞([0,𝑡],𝑋𝑠(R))

)︁
,

where the constant ̃︀𝐶 is depending on |𝑈 |𝐿∞([0,𝑇max/
√

𝜀],𝑋𝑠(R)) and |̃︀𝑈 |𝐿∞([0,𝑇max/
√

𝜀],𝑋𝑠+1(R)).

Proof. The proof consists on the evaluation of 1
2

𝑑
𝑑𝑡

⃒⃒
U

⃒⃒2
𝑋𝑠(R)

. Knowing that fact, by subtracting the equations

satisfied by 𝑈 = (𝜁, 𝑣)𝑇 and ̃︀𝑈 = (̃︀𝜁, ̃︀𝑣)𝑇 , we obtain:{︂
𝜕𝑡U +𝐴[𝑈 ]𝜕𝑥U = −

(︀
𝐴[𝑈 ]−𝐴[̃︀𝑈 ]

)︀
𝜕𝑥

̃︀𝑈 − ̃︀𝐹 ,
U|𝑡=0 = 𝑈0 − ̃︀𝑈0.

Consequently, a similar energy estimate evaluation as in Proposition 1 yields the desired result. �

3.4.3. Convergence

As a conclusion, the following convergence result states that the solutions of the full Euler system, remain
close to the ones of the system we are considering, namely system (2.2), with a better precision as 𝜀3 is smaller.

Theorem 3.9 (Convergence). Let 𝜀 ∈ (0, 1), 𝑠 > 3/2, and 𝑈0 = (𝜁0, 𝜓0)𝑇 ∈ 𝐻𝑠+𝑁 (R)2 satisfying condition
(3.1) where N is large enough, uniformly with respect to 𝜀 ∈ (0, 1). Moreover, assume 𝑈𝑒𝑢𝑙𝑒𝑟 = (𝜁, 𝜓)𝑇 to be a
unique solution to the full Euler system (1.3) that satisfies the assumption of Proposition 2.3. Then there exists
𝐶, 𝑇 > 0, independent of 𝜀, such that

∙ Our new model (2.2) admits a unique solution 𝑈𝑥𝐵 = (𝜁𝑥𝐵 , 𝑣𝑥𝐵)𝑇 , defined on [0, 𝑇√
𝜀
] with corresponding

initial data (𝜁0, 𝑣0)𝑇 ;
∙ The error estimate below holds, at any time 0 ≤ 𝑡 ≤ 𝑇/

√
𝜀,

|(𝜁, 𝑣)− (𝜁𝑥𝐵 , 𝑣𝑥𝐵)|𝐿∞([0,𝑡];𝑋𝑠) ≤ 𝐶𝜀3𝑡 . 𝜀5/2.

Proof. The first point is provided by the local existence result Theorem 3.7. Thanks to Proposition 2.3, then
the solution of the water wave equations (𝜁, 𝑣)𝑇 solve our model (2.2) up to a residual 𝑅 of order 𝜀3. The error
estimation then follows from the stability Theorem 3.8. �

4. Solitary Waves

4.1. Explicit Solitary Wave Solution of the extended Boussinesq system

Solitary waves were initially discovered in shallow water by J.S. Russell during his experiments to design a
more dynamic canal boat [12]. Many partial differential equations have been derived in the literature to model the
solitary wave observed by Russell. Such models are commonly known as the Korteweg-de Vries (KdV) scalar
equation for a unidirectional flow or the coupled Boussinesq and Green-Naghdi evolution equations. These
famous nonlinear and dispersive models describe the shallow water waves and admit explicit families of solitary
wave solutions [4, 8, 26, 35, 41]. The explicit solitary solutions of different nonlinear PDE’s can be calculated
using many methods. One of these methods is replacing the partial differential equation by an ordinary one
(ODE) and thus one can look for explicit solutions in terms of particular functions. This replacement can be
done by setting a reference traveling wave and hence one look for traveling-wave solutions. In this section, we
seek the explicit solution of traveling waves for the extended Boussinesq system. Let us recall that the extended
Boussinesq system that we are considering can be written as:{︂

𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 0 ,
(1 + 𝜀𝒯 [𝜁] + 𝜀2T)𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 + 𝜀2𝒬𝑣 = 𝒪(𝜀3),

(4.1)
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where ℎ(𝑡, 𝑥) = 1 + 𝜀𝜁(𝑡, 𝑥) and denote by

𝒯 [𝜁]𝑤 = − 1
3ℎ
𝜕𝑥

(︀
(1 + 3𝜀𝜁)𝜕𝑥𝑤

)︀
,T𝑤 = − 1

45
𝜕4

𝑥𝑤,𝒬𝑣 = −1
3
𝜕𝑥

(︀
𝑣𝑣𝑥𝑥 − 𝑣2

𝑥

)︀
. (4.2)

It is worth noting that using the asymptotic expansion
1
ℎ

= 1− 𝜀𝜁 +𝒪(𝜀2), one gets:

𝜀𝒯 [𝜁]𝑤 = − 𝜀

3ℎ
𝜕𝑥

(︀
(1 + 3𝜀𝜁)𝜕𝑥𝑤

)︀
= −𝜀

3
𝜕𝑥

(︀
(1 + 3𝜀𝜁)𝜕𝑥𝑤

)︀
+
𝜀2

3
𝜁𝜕2

𝑥𝑤 +𝒪(𝜀3).

In order to find solitary wave solutions of the extended Boussinesq system (4.1), we seek solutions in the form
of the traveling wave 𝜁(𝑡, 𝑥) = 𝜁𝑐(𝑥− 𝑐𝑡) and 𝑣(𝑡, 𝑥) = 𝑣𝑐(𝑥− 𝑐𝑡) with lim

|𝑥|→∞
|(𝜁𝑐, 𝑣𝑐)|(𝑥) = 0 where the constant

𝑐 ∈ R is the velocity of the solitary wave. Plugging the above Ansatz into eq. (4.1) yields:⎧⎨⎩−𝑐𝜁
′

𝑐 + (ℎ𝑐𝑣𝑐)′ = 0 ,

−𝑐𝑣
′

𝑐 +
𝜀𝑐

3

(︁
(1 + 3𝜀𝜁𝑐)𝑣

′′

𝑐

)︁′
− 𝜀2𝑐

3
𝜁𝑐𝑣

′′′

𝑐 +
𝜀2𝑐

45
𝑣(5)

𝑐 + 𝜁
′

𝑐 +
𝜀

2
(𝑣2

𝑐 )′ =
𝜀2

3
(︀
𝑣𝑐𝑣

′′

𝑐 − (𝑣
′

𝑐)
2
)︀′
.

(4.3)

We may now integrate and, using the vanishing condition at infinity to set the integration constant, we deduce
from the first equation:

−𝑐𝜁𝑐 + ℎ𝑐𝑣𝑐 = 0 . (4.4)
Using (4.4), one can deduce that 𝑣

′′′

𝑐 = 𝑐𝜁
′′′

𝑐 +𝒪(𝜀).

One can also check the following identity 𝜁𝑐𝜁
′′′

𝑐 = (𝜁𝑐𝜁
′′

𝑐 )′ − 1
2
(︀
(𝜁
′

𝑐)
2
)︀′ is true. Using the latter identities into

the second equation of (4.3), we may now integrate and, using the vanishing condition at infinity to set the
integration constant one can deduce:

−𝑐𝑣𝑐 +
𝜀

2
𝑣2

𝑐 + 𝜁𝑐 = −𝜀𝑐
3
𝑣
′′

𝑐 − 𝜀2𝑐𝜁𝑐𝑣
′′

𝑐 +
𝜀2𝑐2

3
𝜁𝑐𝜁

′′

𝑐 −
𝜀2𝑐2

6
(𝜁
′

𝑐)
2 − 𝜀2𝑐

45
𝑣(4)

𝑐 +
𝜀2

3
𝑣𝑐𝑣

′′

𝑐 −
𝜀2

3
(𝑣
′

𝑐)
2. (4.5)

One can deduce from (4.4) the following identity:

𝑣𝑐 = 𝑐𝜁𝑐 − 𝜀𝑐𝜁2
𝑐 +𝒪(𝜀2) . (4.6)

Using (4.4) into the l.h.s of (4.5) and (4.6) into the r.h.s of (4.5), withdrawing all terms of order 𝒪(𝜀3) one can
deduce the following equation:

𝜁𝑐 −
𝑐2𝜁𝑐

2(1 + 𝜀𝜁𝑐)2
(2 + 𝜀𝜁𝑐) = −𝜀𝑐

2

3
𝜁
′′

𝑐 +
𝜀2𝑐2

6
(𝜁
′

𝑐)
2 +

𝜀2𝑐2

3
𝜁𝑐𝜁

′′

𝑐 −
𝜀2𝑐2

45
𝜁(4)
𝑐 . (4.7)

Multiplying (4.7) by 𝜁
′

𝑐 and integrating once again yields,

𝜁2
𝑐

2

(︁
1− 𝑐2

1 + 𝜀𝜁𝑐

)︁
=
𝜀𝑐2

6
(𝜀𝜁𝑐 − 1)(𝜁

′

𝑐)
2 − 𝜀2𝑐2

45
𝜁
′′′

𝑐 𝜁
′

𝑐 +
𝜀2𝑐2

90
(𝜁
′′

𝑐 )2. (4.8)

The equation (4.8) is a third order non linear ordinary differential equation. When dropping the 𝜀2 terms on
the r.h.s of (4.8), one gets the analogous ODE for the GN equation which exhibits the analytical solitary wave
solution defined in (4.9). A careful examination reveals that the equation (4.8) does not admit an explicit solution
in any appropriate method. In [32], the author studied solitary wave solutions of the Hamiltonian formulation
of the extended Green-Naghdi equations by performing a singular perturbation analysis. In the latter paper,
Matsuno mentioned that his inspection also reveals that the obtained third-order nonlinear differential equation
would not have analytical solutions. The aim was to find an exact solitary wave solution of equation (4.8).
However, analytical approaches might not be applied to many nonlinear problems. The explicit solution of
the extended Boussniesq (4.1) system remain an open problem. An alternative approach is to consider the
numerical solution of the equation (4.8). Therefore, we validate the asymptotic extended Boussinesq model (4.1)
by comparing its travelling wave solution (computed numerically) with corresponding solution to the full Euler
equations, computed using fast and accurate algorithms [14,43].
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Figure 2. Comparison of the solitary waves solutions.

4.2. Numerical Solitary Wave Solution of the extended Boussinesq system

In the previous section, the emphasis was on finding an analytic solution for the extended Boussinesq system
of equations of the form of a solitary wave. However, many differential equations, especially nonlinear ones
of high order, does not admit exact explicit solutions. Instead, numerical solutions must be considered as an
alternative way of dealing with these equations. To this end we compute the solution of (4.8) numerically
by employing the Matlab solver ode45. We compare the obtained solutions with the solutions of water-waves
equations. The latter is computed using the Matlab script of Clamond and Dutykh [9] where they introduce a
fast and precise approach for computing solitary waves solution. We compute the solitary waves for our model
with three values of velocity, namely 𝑐 = 1.025, 𝑐 = 1.01 and 𝑐 = 1.002. In fact, the Matlab script in [9] offer
fast and accurate results but limited to realtively small velocities. We compare the obtained solutions with the
ones corresponding to the full Euler system (numerically computed), the original Green-Naghdi system (𝜁GN),
the Boussinesq system (𝜁𝐵) and the KdV equation (𝜁KdV). The explicit solution of the original Green-Naghi
model has been initially obtained by Serre in [41] and later on by Su and Gardner [42]:

𝜀𝜁GN(𝑥) = (𝑐2 − 1) sech2
(︁√︂

3(𝑐2 − 1)
4𝑐2𝜀

𝑥
)︁

= 𝜀𝑐2𝜁KdV(𝑥) = 𝜀𝑐2𝜁𝐵(𝑥) . (4.9)

The waves are rescaled so that the Korteweg-de Vries and Boussinesq solutions do not depend on 𝑐. Consistently,
we set 𝜀 = 1. By the convergence theorem, the above solutions provide good approximations of the traveling
waves of the exact water-waves equations, when 𝑐− 1 ≈ 𝜀≪ 1, that is in the weakly nonlinear regime.

In fact, in Figure 2, one can see clearly as 𝑐 − 1 → 0 and after re-scaling, the solitary waves tend towards
the KdV solution (𝜁KdV). Moreover, when zooming in, one can see that the the full Euler system (water-waves)
solution is in better agreement with the solution of the extended Boussinesq model rather than the Green-Naghdi
one.

In Figure 3, we plot in a log-log scale the normalized 𝑙2-norm of the difference between the solitary wave
solutions of the approximate models and the water-waves solution. The error is computed for different values of
𝑐. The extended Bossinesq model exhibit a better convergence rate (quadratic) when compared to the original
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Figure 3. Errors as a function of 𝑐− 1 (log-log plot).

Green-Naghdi model (linear). This highlight the fact that extended Boussinesq model have a better approximate
solution.

5. Explicit solution with correctors of order 𝒪(𝜀3) for the extended
Boussinesq equations

Another approach of dealing with nonlinear PDE’s when looking for analytical exact solution is finding instead
an explicit solution with correctors. Explicit solutions with correctors for asymptotic water waves models have
been obtained in [17,20]. Actually, 𝐻𝑠-consistent solutions are obtained to the models in the variable topography
case using the analytic solution of the model in the flat topography configuration. In what follows, we find an
explicit solution with correctors of order 𝒪(𝜀3) for the extended Boussinesq model (4.1) and validate the result
numerically.

We start by defining an 𝐻𝑠-consistent solution or in other words explicit solution with correctors of order
𝒪(𝜀3).

Definition 1. A family (𝜁, 𝑣) is 𝐻𝑠-consistent on [0, 𝑇/
√
𝜀] for the extended Boussinesq equations (4.1), if{︃

𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 𝜀3𝑟1 ,

(1 + 𝜀𝒯 [ℎ] + 𝜀2T)𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 + 𝜀2𝒬𝑣 = 𝜀3𝑟2,
(5.1)

with (𝑟1, 𝑟2) bounded in
(︁
𝐿∞

(︀
[0, 𝑇√

𝜀
], 𝐻𝑠(R)

)︀)︁2

.
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The standard Boussinesq system can be easily obtained form the extended Boussinesq system (4.1) by dropping
all terms of order 𝒪(𝜀2). Thus the standard Boussinesq system can be written as:{︃

𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣) = 0 ,

𝜕𝑡𝑣 −
𝜀

3
𝜕2

𝑥𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 = 𝒪(𝜀2).
(5.2)

5.1. Explicit solution of the standard Boussinesq system (5.2)

The standard Boussinesq system enjoys a well known explicit solution of solitary traveling wave (𝜁1, 𝑣1) of
the form: ⎧⎪⎨⎪⎩

𝜁1(𝑡, 𝑥) = 𝛼 sech2
(︁
𝑘 (𝑥− 𝑐𝑡)

)︁
,

𝑣1(𝑡, 𝑥) =
𝑐𝜁1(𝑡, 𝑥)

1 + 𝜀𝜁1(𝑡, 𝑥)
,

(5.3)

where 𝑘 =
√︂

3𝛼
4

and 𝑐 =
√︂

1
1− 𝛼𝜀

and 𝛼 is an arbitrary chosen constant. This explicit solitary wave was

already introduced in equation (4.9) in the previous Section 4.2. As shown in Figure 2, this solution is in good
agreement with the water waves solutions in the weakly nonlinear regime.

Theorem 1. Let (𝜁1, 𝑣1) be a solution of the standard Boussinesq system (5.2) and (𝜁2, 𝑣2) solution of the linear
equations below: {︂

𝜕𝑡𝜁2 + 𝜕𝑥𝑣2 = 0 ,
𝜕𝑡𝑣2 + 𝜕𝑥𝜁2 = 𝑓(𝜁1, 𝑣1),

(5.4)

with
𝑓(𝜁1, 𝑣1) = 𝜕𝑥𝜁1𝜕𝑥𝜕𝑡𝑣1 +

2
3
𝜁1𝜕

2
𝑥𝜕𝑡𝑣1 +

1
45
𝜕4

𝑥𝜕𝑡𝑣1 +
1
3
𝜕𝑥

(︀
𝑣1(𝑣1)𝑥𝑥 − (𝑣1)2𝑥

)︀
, (5.5)

then (𝜁, 𝑣) = (𝜁1, 𝑣1) + 𝜀2(𝜁2, 𝑣2) is 𝐻𝑠-consistent with the extended Boussinesq system (4.1).

Proof. First, we would like to mention that we denote by 𝒪(𝜀) any family of functions (𝑓𝜀)0<𝜀<1 such that

(
1
𝜀
𝑓𝜀)0<𝜀<1 remains bounded in 𝐿∞

(︀
[0, 𝑇√

𝜀
], 𝐻𝑟(R)

)︀
, for possibly different values of 𝑟. We may now proceed in

proving the stated result.
If 𝜁 and 𝑣 such that (𝜁, 𝑣) = (𝜁1, 𝑣1) + 𝜀2(𝜁2, 𝑣2) solve the first equation of (4.1) up to 𝒪(𝜀3) terms, then

𝜕𝑡𝜁1 + 𝜕𝑥((1 + 𝜀𝜁1)𝑣1) + 𝜀2𝜕𝑡𝜁2 + 𝜀2𝜕𝑥𝑣2 = 𝒪(𝜀3).

The first equation of (4.1) is satisfied up to 𝒪(𝜀3) terms if and only if:

𝜀2𝜕𝑡𝜁2 + 𝜀2𝜕𝑥𝑣2 = 𝒪(𝜀3).

Therefore one can take:
𝜕𝑡𝜁2 + 𝜕𝑥𝑣2 = 0.

Now, let us recall that the second equation of (4.1) can be written as:

𝜕𝑡𝑣 −
𝜀

3
𝜕2

𝑥𝜕𝑡𝑣 − 𝜀2𝜕𝑥𝜁𝜕𝑥𝜕𝑡𝑣 −
2𝜀2

3
𝜁𝜕2

𝑥𝜕𝑡𝑣 −
𝜀2

45
𝜕4

𝑥𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 −
𝜀2

3
𝜕𝑥

(︀
𝑣𝑣𝑥𝑥 − 𝑣2

𝑥

)︀
= 𝒪(𝜀3).

We seek (𝜁2, 𝑣2) such that if (𝜁, 𝑣) = (𝜁1, 𝑣1)+𝜀2(𝜁2, 𝑣2) and (𝜁1, 𝑣1) solve the standard Boussinesq equations (5.2),
then the second equation of (4.1) is satisfied up to 𝒪(𝜀3) terms if and only if:

𝜀2𝜕𝑡𝑣2 + 𝜀2𝜕𝑥𝜁2 = 𝜀2𝑓(𝜁1, 𝑣1),

with 𝑓(𝜁1, 𝑣1) = 𝜕𝑥𝜁1𝜕𝑥𝜕𝑡𝑣1 +
2
3
𝜁1𝜕

2
𝑥𝜕𝑡𝑣1 +

1
45
𝜕4

𝑥𝜕𝑡𝑣1 +
1
3
𝜕𝑥

(︀
𝑣1(𝑣1)𝑥𝑥 − (𝑣1)2𝑥

)︀
. Therefore, this yields

𝜕𝑡𝑣2 + 𝜕𝑥𝜁2 = 𝑓(𝜁1, 𝑣1).

Hence, the result is directly obtained given the conditions on 𝜁2 and 𝑣2 in the theorem statement. �
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5.2. Analytic solution for the linear system (5.4)

In this section, we find the analytic solution for the two transport equations of system (5.4). Lets consider
first the initial value problem of (5.4):⎧⎨⎩

𝜕𝑡𝜁2 + 𝜕𝑥𝑣2 = 0 , if 𝑥 ∈ R, 𝑡 > 0,
𝜕𝑡𝑣2 + 𝜕𝑥𝜁2 = 𝑓(𝑡, 𝑥), if 𝑥 ∈ R, 𝑡 > 0,
𝜁2(0, 𝑥) = 𝜁0

2 (𝑥), 𝑣2(0, 𝑥) = 𝑣0
2(𝑥) if 𝑥 ∈ R,

(5.6)

where 𝜁0
2 and 𝑣0

2 are both given in 𝐶∞(R). One can equivalently check the following:⎧⎨⎩
𝜕𝑡(𝜁2 + 𝑣2) + 𝜕𝑥(𝜁2 + 𝑣2) = 𝑓(𝑡, 𝑥) , if 𝑥 ∈ R, 𝑡 > 0,
𝜕𝑡(𝜁2 − 𝑣2)− 𝜕𝑥(𝜁2 − 𝑣2) = −𝑓(𝑡, 𝑥), if 𝑥 ∈ R, 𝑡 > 0,
𝜁2(0, 𝑥) = 𝜁0

2 (𝑥), 𝑣2(0, 𝑥) = 𝑣0
2(𝑥) if 𝑥 ∈ R,

(5.7)

The analytical solution of both transport equations of system (5.7) are:

𝜁2 + 𝑣2 = (𝜁0
2 + 𝑣0

2)(𝑥− 𝑡) +
∫︁ 𝑡

0

𝑓(𝑠, 𝑥− 𝑡+ 𝑠)𝑑𝑠,

and

𝜁2 − 𝑣2 = (𝜁0
2 − 𝑣0

2)(𝑥+ 𝑡)−
∫︁ 𝑡

0

𝑓(𝑠, 𝑥+ 𝑡− 𝑠)𝑑𝑠.

Thus, one can easily deduce that the analytic solutions of system (5.6) are given by

𝜁2 =
1
2

[︁
(𝜁0

2 + 𝑣0
2)(𝑥− 𝑡) + (𝜁0

2 − 𝑣0
2)(𝑥+ 𝑡) +

∫︁ 𝑡

0

𝑓(𝑠, 𝑥− 𝑡+ 𝑠)𝑑𝑠−
∫︁ 𝑡

0

𝑓(𝑠, 𝑥+ 𝑡− 𝑠)𝑑𝑠
]︁
, (5.8)

and

𝑣2 =
1
2

[︁
(𝜁0

2 + 𝑣0
2)(𝑥− 𝑡)− (𝜁0

2 − 𝑣0
2)(𝑥+ 𝑡) +

∫︁ 𝑡

0

𝑓(𝑠, 𝑥− 𝑡+ 𝑠)𝑑𝑠+
∫︁ 𝑡

0

𝑓(𝑠, 𝑥+ 𝑡− 𝑠)𝑑𝑠
]︁
. (5.9)

5.3. Explicit solution with correctors for the system of equations (4.1)

In what follows, we prove that the extended Boussinesq system (4.1) enjoys an explicit solution with correctors
of order 𝒪(𝜀3).

Theorem 5.1. Let (𝜁1, 𝑣1) given by the expressions in (5.3) and 𝑓(𝑡, 𝑥) as defined in (5.5). Lets also consider
the initial condition (𝜁0, 𝑣0) = (𝜁1(0, 𝑥), 𝑣1(0, 𝑥)) + 𝜀2(𝜁0

2 , 𝑣
0
2) where 𝜁0

2 and 𝑣0
2 are both given in 𝐶∞(R). Then,

the family (𝜁, 𝑣) with

𝜁 = 𝜁1 +
𝜀2

2

[︁
(𝜁0

2 + 𝑣0
2)(𝑥− 𝑡) + (𝜁0

2 − 𝑣0
2)(𝑥+ 𝑡) +

∫︁ 𝑡

0

𝑓(𝑠, 𝑥− 𝑡+ 𝑠)𝑑𝑠−
∫︁ 𝑡

0

𝑓(𝑠, 𝑥+ 𝑡− 𝑠)𝑑𝑠
]︁
, (5.10)

and

𝑣 = 𝑣1 +
𝜀2

2

[︁
(𝜁0

2 + 𝑣0
2)(𝑥− 𝑡)− (𝜁0

2 − 𝑣0
2)(𝑥+ 𝑡) +

∫︁ 𝑡

0

𝑓(𝑠, 𝑥− 𝑡+ 𝑠)𝑑𝑠+
∫︁ 𝑡

0

𝑓(𝑠, 𝑥+ 𝑡− 𝑠)𝑑𝑠
]︁
, (5.11)

is an explicit solution with correctors of order 𝒪(𝜀3) on [0, 𝑇√
𝜀
] for the extended Boussinesq system (4.1).

Proof. Theorem 1, gives the 𝐻𝑠 consistency result of (𝜁, 𝑣) = (𝜁1, 𝑣1) + 𝜀2(𝜁2, 𝑣2) with the extended Boussinesq
system (4.1), where (𝜁2, 𝑣2) as given in (5.8) and (5.9) is a solution of the linear system (5.4). Hence the result
can be obtained easily. �
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Table 1. The residues 𝑅1(𝜀) and 𝑅2(𝜀) for 𝑝 = 2 (left) and 𝑝 = ∞ (right).

𝜀 𝑅2
1(𝜀) 𝑅2

2(𝜀) 𝜀 𝑅∞1 (𝜀) 𝑅∞2 (𝜀)

1E-1 2.70E-02 3.80E-03 1E-1 4.30E-03 4.81E-04
1E-2 2.58E-05 2.96E-06 1E-2 4.17E-06 4.10E-07
1E-3 2.57E-08 2.89E-09 1E-3 4.16E-09 4.12E-10
1E-4 2.57E-11 2.88E-12 1E-4 4.16E-12 4.13E-13
1E-5 2.58E-14 2.90E-15 1E-5 4.33E-15 5.22E-16

Figure 4. The residues 𝑅∞1 and 𝑅∞2 as a function of 𝜀.

6. Numerical validation

In this section, we numerically validate the result of Theorem 5.1. In fact, we consider the equations given
by system (4.1) and we compute explicitly the solutions given by (5.10) and (5.11). Then, we compute the
residues for both equations after substituting (5.10) and (5.11) correspondingly. First we have to set the initial

conditions 𝜁0
2 = 𝑣0

2 = exp
(︁
−

(︁3𝜋𝑥
10

)︁2)︁
. We also choose the constant 𝛼 = 1. The residues 𝑅1(𝜀) and 𝑅2(𝜀) of

the first and second equation of the system (4.1) respectively, are defined as follow:

{︂
𝑅𝑝

1(𝜀) = ‖𝜕𝑡𝜁 + 𝜕𝑥(ℎ𝑣)‖𝑝 ,

𝑅𝑝
2(𝜀) = ‖(1 + 𝜀𝒯 [ℎ] + 𝜀2T)𝜕𝑡𝑣 + 𝜕𝑥𝜁 + 𝜀𝑣𝜕𝑥𝑣 + 𝜀2𝒬𝑣‖𝑝.

(6.1)

where 𝑝 ∈ {2,∞}. The residues 𝑅𝑝
1(𝜀) and 𝑅𝑝

2(𝜀) for 𝑝 = 1 and 𝑝 = ∞ are computed for several values of
𝜀, namely 𝜀 = 10−1, 10−2, 10−3, 10−4 and 10−5, at time 𝑡 = 1. The results are summarized in Table 1 and
Figures 4 and 5 where we plot in a log-log scale the residues 𝑅𝑝

1 and 𝑅𝑝
2 for 𝑝 = 1 and 𝑝 = ∞ in terms of 𝜀.

One clearly sees that the curves of the residues for both 𝑝 = 1 and 𝑝 = ∞ are both parallel to 𝜀3. This shows
that the residues convergence rate is 𝒪(𝜀3), which is in total agreement with our theoretical result.
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Figure 5. The residues 𝑅∞1 and 𝑅∞2 as a function of 𝜀.
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