
LEBANESE AMERICAN UNIVERSITY

A PARALLEL SEARCH TREE ALGORITHM FOR VERTEX

COVER ON GRAPHICAL PROCESSING UNITS

By

RASHAD KARIM KABBARA

A thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

School of Arts and Sciences

February 2013

ii

iii

iv

v

THESIS COPYRIGHT RELEASE FORM
LEBANESE AMERICAN UNIVERSITY NON-EXCLUSIVE DISTRIBUTION LICENSE

By signing and submitting this license, you (the author(s) or copyright owner) grants to Lebanese American

University (LAU) the non-exclusive right to reproduce, translate (as defined below), and/or distribute your

submission (including the abstract) worldwide in print and electronic format and in any medium, including but

not limited to audio or video. You agree that LAU may, without changing the content, translate the submission to

any medium or format for the purpose of preservation. You also agree that LAU may keep more than one copy

of this submission for purposes of security, backup and preservation. You represent that the submission is your

original work, and that you have the right to grant the rights contained in this license. You also represent that

your submission does not, to the best of your knowledge, infringe upon anyone's copyright. If the submission

contains material for which you do not hold copyright, you represent that you have obtained the unrestricted

permission of the copyright owner to grant LAU the rights required by this license, and that such third-party

owned material is clearly identified and acknowledged within the text or content of the submission. IF THE

SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED BY AN

AGENCY OR ORGANIZATION OTHER THAN LAU, YOU REPRESENT THAT YOU HAVE FULFILLED

ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH CONTRACT OR

AGREEMENT. LAU will clearly identify your name(s) as the author(s) or owner(s) of the submission, and will

not make any alteration, other than as allowed by this license, to your submission.

Name: R

Signature Date: Feb 1 - 2013

vi

PLAGIARISM POLICY COMPLIANCE STATEMENT

I certify that I have read and understood LAU’s Plagiarism Policy. I understand that failure to

comply with this Policy can lead to academic and disciplinary actions against me.

This work is substantially my own, and to the extent that any part of this work is not my own I

have indicated that by acknowledging its sources.

Name: Rashad Kabbara

Signature Date: Feb 1 - 2013

vii

ACKNOWLEDGMENTS

I would like to thank all faculty members of the department of Computer Science and

Mathematics at LAU for the continuous guidance and support. A special thanks to Dr. Faisal

Abu-Khzam, my thesis advisor, for all the trust and motivation.

viii

A Parallel Search Tree Algorithm for Vertex Cover on Graphical

Processing Units

Rashad Karim Kabbara

Abstract

Graphical Processing Units (GPUs) have become popular recently due their highly parallel

shared-memory architectures. The computational challenge posed by NP-Hard problems

makes them potential targets to GPU-based computations, especially when solved by exact

exponential-time algorithms. Using the classical NP-hard Vertex Cover problem as a case

study, we provide a framework for GPU-based solutions by exploiting the highly parallel

structure of the GPU to accelerate the expansion of search-states in commonly used recursive

backtracking algorithms.

Experimental results show that our method can achieve huge speedups on randomly generated

sparse graphs, as well as hard instances from the DIMACS benchmark.

Keywords: Parallel programming, Exact algorithms, Graph problems, Graphical processing

units, Vertex cover.

ix

TABLE OF CONTENTS

I - Introduction 1
II - Background and Preliminaries 3

 2.1 The Vertex Cover Problem 3
 2.2 Graphical Processing Units and Graph Algorithms 5

III - GPU Architecture 7
 3.1 CPU VS GPU 7
 3.2 GPU Processing Flow 10
 3.3 GPU Threads 10
 3.4 GPU Memory Model 13

IV - A GPU-CPU Based Algorithm for Vertex Cover 16

 4.1 The Data Structure 16

 4.2 Implementation Details 17
 4.3 Inside the Block 19

V - Experimental Results 23
 5.1 Hardware 23

 5.2 Random Graphs 23
 5.3 Reasons behind the Huge Speedup 25

 5.4 Experiments – DIMACS Graphs 26
VI - Conclusion 28
Bibliography 29

x

List of Figures

Figure 1 CPU vs GPU Architecture……………………………...……………….……………7

Figure 2 CPU vs GPU Cores .. 8

Figure 3 GPU Processing Flow.………………………………………………………………10

Figure 4 GPU Threads .. 11
Figure 5 GPU Multiprocessors ... 12

Figure 6 GPU Memory Model ... 13
Figure 7 GPU Architecture ... 15

xi

List of Tables

Table 1 Random Graph Experiments………………………………………………………....24

Table 2 Dimacs Graphs Experiments …………………………………………………...……27

xii

List of Charts

Chart 1GPU Timing………………………………………………………………………………..…..25

Chart 2 CPU Timing……...………………………………………………………………………..…..25

1

Chapter One

Introduction

A Graphical Processing Unit, henceforth GPU, is a highly parallel architecture initially

produced to handle high performance requirements of graphical tasks such as medical

imaging, pixel shading and video encoding. Today GPUs are capable to carry out general-

purpose computing (i.e., computations that are typically performed by a CPU) where

processing of large blocks of data is done in parallel. Their massively parallel architectures

along with the newly created programming interfaces made GPU research more popular. The

CUDA programming language (NVIDIA C CUDA Programming Guide), a C-based

programming platform developed by Nvidia, enables software developers to access the

memory and low level instructions of Nvidia GPUs. Similarly STREAM, is the GPU

framework used to program ATI GPUs. On the other hand, there exists a generic overlay that

provides a common interface API for heterogeneous platforms called OpenCL.

Graphs are very popular data representations that play a role in many application domains

including bioinformatics and computational networks. Most problems on graphs are NP-hard,

which makes them popular targets to efficient approximation algorithms. Recently, there has

been more interest in solving NP-hard problems exactly, even if the running time grows as an

exponential function of the input size. Most exact algorithms for NP-complete graph problems

adopt the branch and reduce paradigm: a search tree is traversed via a recursive backtracking

algorithm.

Due to their super-polynomial running time, exact graph algorithms seem infeasible to be

executed sequentially. Therefore, designing parallel graph algorithms has been studied for

many years. Some popular search tree based algorithms include exponential algorithms for

2

graph coloring, dominating set, subgraph isomorphism and vertex cover. Implementing such

algorithms efficiently on GPUs is a challenging task due to their backtracking and irregular

data access nature.

In this thesis we mainly consider the vertex cover problem, which is undoubtedly the most

studied problem in the area of parameterized and exact computation. We start with an

overview of existing sequential and parallel vertex cover algorithms (chapter two), and we

also provide background information about the architecture of the GPU (chapter three), and

highlight the difference between CPU and GPU threads. Then we present our CPU-GPU

based vertex cover algorithm (chapter four). The last part (chapter five) will be devoted to

experimental studies and the results obtained by comparing the CPU-GPU algorithm running

times with the best-known sequential CPU based algorithm.

3

Chapter Two

Background and Preliminaries

Throughout this thesis we use common graph theoretic terminologies, such as vertices, edges,

degree, neighbor, etc. A subgraph H of a graph G = (V,E) is a graph on a subset of V and a

subset of E. H is an induced subgraph of G if every edge of G that connects two vertices of H

is also an edge of H. A set of vertices is said to be independent if it induces a subgraph with

no edges, or an edgeless subgraph. A vertex cover of G is a subset C of V whose complement

(in V) is an independent set. C is a minimal vertex cover if no subset of C is a vertex cover. In

this thesis we shall be given a graph G and a parameter K and we seek to find a minimal

vertex cover of size at most K.

A parameterized problem is said to be fixed-parameter tractable if it can be solved by an

algorithm whose running time is a polynomial function of the input size when the input

parameter is fixed, or treated as a constant. For example, finding a vertex cover of size K in a

graph G on n vertices can be solved in time O(2
k
n

2
) via a simple recursive backtracking

algorithm that branches on the edges of G as follows: pick an edge uv; add u to the solution

and recursively find a solution of size K-1; if such a solution cannot be found, backtrack: add

v to the solution, while deleting u and not considering it as a solution element.

2.1 The Vertex Cover Problem

The Vertex Cover problem (VC) is one of the most studied NP-Complete graph problems that

are widely used in networking, bioinformatics, electrical engineering and many other areas of

study. A vertex cover of a graph G is a set of vertices that cover all the edges in the sense that

every edge has at least one endpoint in the cover. The complement of a vertex cover induces

an edgeless graph, which makes it an independent set. The vertex cover decision problem

4

takes a graph G and a parameter k as input and asks whether G has a vertex cover of size k or

less. This problem is among the classical NP-complete problems mentioned in Richard Karp's

historic paper (Karp 85).

Many real world problems can be formulated as instances of the VC problem, including the

construction of phylogenetic trees, identity phenotypes and microarray data analysis, to name

a few. These various applications have recently caught attention as more and more researchers

study the problem to find effective solutions.

Parallel algorithms for the VC problem have been considered recently along with the various

parameterized algorithms for the problem (Cheetham, Dehne and Rau-Chaplin), (Hanashiro,

Mongelli and Song), (Koufogiannakis and Young), (Zhou, Yang and Li), (Downey and

Fellows). Most of the existing parallel algorithms for vertex cover problem use distributed

systems, cluster computers, or DNA-based supercomputing as parallel architectures. In our

research, we use CUDA to develop a GPU based parallel VC algorithm that runs on NVidia

graphical processors.

We adopt a variant of the most used recursive backtracking VC algorithm. Briefly, this

common method consists of branching on vertices of maximum degree: select a vertex v of

maximum degree; place v in the cover and try to find a solution of size k-1; if such solution

cannot be found, backtrack and place all its neighbors are in the cover.

On the other hand, effective preprocessing techniques, known as kernelization techniques in

the realm of Parameterized Complexity Theory, are now very well studied as discussed in

(Abu-Khzam, Collins, Fellows, et al.). We apply some of these kernelization methods in our

CPU/GPU algorithm. Kernelization is a preprocessing technique used to reduce the size of

input into a (manageable) function of the parameter k by applying a set of reduction rules.

When Vertex Cover Kernelization is applied to a graph (G, k) it results in a reduced instance

5

(G’ , k’) where k’≤ k. The following three rules have been applied in our parallel algorithm.

Starting with a graph of arbitrary number of vertices, applying these three reduction rules

exhaustively results in a graph on less than k
2
 vertices.

Reduction Rules:

Rule1: any vertex with degree 0 is excluded from the vertex cover since adding this vertex to

the cover has no benefit.

Rule2: a vertex whose degree is greater than K should be in the cover. Otherwise all its

neighbors are in the cover which is not possible.

Rule3: a vertex with degree 1 should be excluded from the cover while its only neighbor

should be added to the cover.

2.2 Graphical Processing Units and Graph Algorithms

Irregular data access algorithms are known to perform poorly on the GPU. Instead, GPUs

require coalescing memory access to optimize performance; this is not the case for most graph

algorithms represented by either an adjacency list or an adjacency matrix. Nevertheless, graph

problems whose sequential algorithms run in polynomial time were implemented on the GPU.

Implementations of Breadth first search, single-pair shortest path and all pairs shortest path

were studied in (Harish and Narayanan), (Micikevicius), (Joshi and Narayanan). GPU

performance speedup was achieved when the size of the graph is huge, in millions of vertices.

Some of these algorithms were not only implemented in CUDA on Nvidia GPUs but also

using OpenCL which enables the application to execute on other GPU types.

Researchers have also tackled the problem of irregular data access of graph problems and

introduced a virtual programming model that can execute at maximal warp along with

6

exploration of modifying PRAM algorithms to ensure good GPU performance (Hong, Kim

and Oguntebi, Olukotun), (Dehne and Yogaratnam).

The work in (Jenkins, Owens and Samatova) is the most related to our work in which an

algorithm to solve a hard graph problem was accelerated using the GPU. A GPU based

backtracking algorithm for the maximum clique problem was implemented. A clique in a

graph is a set of vertices that form a complete subgraph. In their work they have proposed a

tree-level based parallelization on GPU, in which multiple subtrees are explored in parallel by

GPU processors; this resulted in an order of magnitude increase in performance.

In our work, using the vertex cover problem as a case study; the host (CPU) is used as a buffer

scheduler maintaining the search tree, while intensive computation and search tree nodes are

constructed by the GPU. The CPU will send tree nodes as tasks to the GPU, every

multiprocessor of the GPU will receive its own task and create child nodes in parallel by

extensively using the shared and global memory of the GPU. When the global memory is

nearly occupied, the data will be transferred back to the main memory and maintained by the

CPU for further computations.

7

Chapter Three

GPU Architecture

The Graphical Processing Unit (GPU) is a highly parallel single chip processor that can reside

on a VGA card, on the motherboard, or as an external machine connected to a PC through a

communication link. Graphical processing units were mainly used in game consoles and VGA

to speed up graphics processing. Several frameworks were developed in order to make it easy

to the programmer to control the GPU hardware. GPUs have been modernized from

performing pipeline operations to computing floating point procedures. All of the figures

bellow are taken from the official CUDA documentation by NVIDIA (NVIDIA C CUDA

Programming Guide).

3.1 CPU VS GPU

Figure 1 CPU vs GPU Architecture (NVIDIA C CUDA Programming Guide)

The main difference between the GPU and the CPU is the high number of transistors allocated

for GPU. On the other side, the CPU has more controllers for cache and flow control.

8

Figure 2 CPU vs GPU Cores

A GPU has several multiprocessors each containing the same number of physical processors.

In other words, the processing units of the GPU are grouped evenly into multiprocessors. In

the graph above, the GPU has 448 processors grouped into 14 multiprocessors. This grouping

gives the developers a two layer parallelism, one at the level of the multiprocessor and the

other at the level of the processors inside every multiprocessor. The GPU is best used to

parallelize floating point operations, while the CPU is best in doing sequential operations that

has lots of branches and random access to memory. The CPU is different from the GPU on the

following roles:

1. The goal of the design: The CPU is used to launch operating systems or virtual

machines, manage file systems, and control network communications. while the GPU

is mainly used for image processing and pixel shading.

2. The usage of Transistor: branch prediction hardware, instruction reorder, large on-

die cache, and reservation stations are hardware features that are spent by transistors.

The aim of such feature design is to increase the speed of execution of each thread.

9

Transistors are spent by the GPU in multithreading hardware, multiple memory

controllers, processor arrays, and shared memory. These features help in permitting

the chip to support thousands of threads at the same time, assisting thread

communication and maintaining high memory bandwidth.

3. The Role of the Cache: The cache is used to advance the performance through

decreasing the latency of memory access. In addition, the shared memory is used by

the GPU in order to increase the bandwidth.

4. The Management of the Latency: Memory latency is handled by the CPU through

the use of branch prediction hardware and large caches. Doing so result in taking up

huge amounts of die-space and increasing the power consumption. While the latency is

handled by the GPU through supporting huge numbers of thread simultaneously. The

advantage is that there will be no delay time because the GPU can switch to a free

thread once one thread is waiting for memory load.

5. Multithreading: Multithreading is supported by the CPU through executing one or

two threads per one core. Every multiprocessor of a CUDA capable GPUs support up

to 1,024 threads The CPU thread cost hundreds of cycles while GPUs switching is cost

free.

6. SIMD vs. MIMD: The CPU executes instructions in an MIMD (Multiple Instructions,

Multiple Data) fashion while GPU has an array of processor that executes the same

Instruction on Different/Multiple data (SIMD).

7. Memory Controller: There is no on-die memory controller on Intel CPUs. CUDA

based GPUs use up to eight on-die controllers which result in increasing the GPU

memory bandwidth.

10

3.2 GPU Processing Flow

Figure 3 GPU Processing Flow (Wikipedia GPU)

The GPU can be seen as an external device, independent of the CPU. The first step is to

profile the existing application and determine which code segments can be efficiently

executed by the GPU, these segments are called kernels. The GPU code is written in CUDA

and compiled using nvcc (Nvidia C Compiler). The GPU receives an instruction from the

CPU to execute a certain kernel, and instructs its processing units to execute the kernel in

parallel. A GPU cannot directly access the main memory; hence input data should be

transferred to GPU memory before executing the kernel. After the kernel execution

completes, the resulting output is transferred back to the main memory to be available for the

CPU. The data transfer back and forth to the GPU slows down the algorithm; hence compute

intensive tasks not bound to memory gains the most performance when accelerated by a GPU.

3.3 GPU Threads

11

Figure 4 GPU Threads (NVIDIA C CUDA Programming Guide)

A kernel is a C function that is executed by the GPU. The number of threads that should

execute this kernel is specified by the developer. The threads are grouped into blocks. Since

the GPU is a multiprocessor device, where each multiprocessor has the same number of

physical processors, the developer should also specify the number of blocks to be executed.

Every block is executed by a single multiprocessor. The blocks are distributed to the

multiprocessor (SM) depending on the availability of the SM and the ability of the SM to

execute multiple blocks at the same time. The threads of a block launch the kernel in a single

instruction multiple thread (SIMT) mode on a single multiprocessor. When threads of a block

finish execution, the SM is freed and a new block is taken by that SM. Physically each SM is

capable of executing 32 instructions by 32 threads concurrently (used to be 16 on old

12

devices). This set of instructions is called a warp (old GPUs execute half a warp). Every

thread in a single warp executes the same instruction at the same time. In case there is a

branch scenario, a thread must wait for all other threads in the warp to reach the same code

segment in order to continue its execution.

Figure 5 GPU Multiprocessors (NVIDIA C CUDA Programming Guide)

To illustrate further on how blocks are distributed to multiprocessors SMs consider the figure

above. The figure shows how blocks are distributed to multiprocessors in case we have a GPU

13

with two SMs and in case we have a GPU with four SMs. Clearly the more SMs the GPU

have the more parallelism we obtain.

3.4 GPU Memory Model

There are five memory regions on the GPU. We discuss the usage, advantages and

disadvantages of each.

Figure 6 GPU Memory Model (NVIDIA C CUDA Programming Guide)

14

Global Memory: Also called Device memory. It is the largest memory (1-4GB) region that all

physical threads have access to.

Shared Memory: There is a shared memory in every GPU multiprocessor. This memory can

only be access by the threads in the same multiprocessor. Access to shared memory is faster

than global memory but the size of the shared memory is much smaller than the global

memory (in KB).

Registers: a very small memory used to store variables for single threads. Every physical

processor has its own register memory.

Constant and Texture memory: These memory regions are the same as global memory in

which all threads in all multiprocessors can access. But they are read-only memory that differs

in caching algorithms.

15

Figure 7 GPU Architecture (NVIDIA C CUDA Programming Guide)

The following can be summarized from the above GPU Memory model figure:

 The Device (aka the GPU) has several Multiprocessors

 Each multiprocessor has a number of physical processors.

 Every physical processor has its own Register memory

 An SM contains a single shared memory that can be accessed by all its processors

 Multiprocessors can access a single large memory space which is called the Device

Memory.

16

Chapter Four

A GPU-CPU Based Algorithm for Vertex Cover

We now describe our approach in details. As the title suggests, we use the CPU as a task

manager as well as master process that can also assist in the computation when necessary.

Initially, the input graph is stored in the main memory as an adjacency list.

4.1 The Data Structure

The input graph G is represented using the adjacency list format. Since G is a simple

unweighted graph, we can use array instead of linked lists to represent the list of neighbors of

any vertex. Instead of the two-dimensional structure of the adjacency list, we use a one-

dimensional array adjacency list (AL) in CUDA memory. The reason why a single dimension

array is used is because it allows easy and faster data transfer between the CPU and GPU.

Considering the graph bellow, the single dimension AL is depicted bellow:

AL 1 3 0 2 5 1 4 5 6 0 4 2 3 1 2 2

PL 0 0 1 1 1 2 2 2 2 3 3 4 4 5 5 6

17

The parent list (PL) array shown in the table is used by the threads to get the source of the

vertices they are working on (this will be made clearer later on). Both the AL and the PL

arrays are constants (their values are never changed through the program execution). They are

kept in the GPU’s global memory and only freed when the program exits.

In addition to the global AL and PL lists, every instance of the problem can be uniquely

determined by a degrees’ array, which simply contains the degrees of all the vertices and

whether a vertex is already deleted and added to the vertex cover. The degree of such vertex

will be set to -1, while a deleted vertex that is not added to the cover will have degree 0.

4.2 Implementation Details

The algorithm is executed by the GPU after specifying the number of blocks and the number

of threads each block should have (the developer specifies the number of blocks and threads).

Each block is executed by a single GPU multiprocessor. Each thread within the block is

executed by a single processor of the multiprocessor.

Every GPU multiprocessor, when idle, receives a degree array, selects the highest degree

vertex (MaxNode) and generates two degree arrays for further processing.

1. The first one contains the result when removing MaxNode from the graph;

2. The second is the resulting degree array when the neighbors of MaxNode are removed.

Block execution could be summarized in the following

18

Parallel Tree:

Search:

The algorithm starts with a single degree array. An idle GPU multiprocessor receives the

degree array and generates two degree arrays that are then processed by two multiprocessors.

The two multiprocessors will generate two arrays each hence in the third execution we have

four degree arrays to be executed in parallel by four GPU multiprocessors. When the number

of blocks becomes larger than the number of physical multiprocessors, block execution will

be serialized. When a GPU finds a solution it sends a signal to the CPU in order to inform all

GPU multiprocessors to stop execution. If the GPU global memory is full and no solution has

19

been found yet, data from the GPU’s global memory will be transferred to the RAM and

maintained by the CPU for future processing.

4.3 Inside the Block

Every block contains a number of threads that run in parallel (maximum is 1024). The job of

these threads is to select the vertex with maximum number of neighbors from the degree array

and to generate two other degree arrays accordingly.

The degree array of the above graph is:

A single multiprocessor of the GPU receives the degree array and generates two new degree

arrays for further processing as follows:

Step 1 determining the vertex with maximum number of neighbors.

Performance is improved by using the Prefix-Max algorithm which returns the element with

the largest number of neighbors in O(logn) instead of the sequential version which requires

O(n).

Step 2 in this step two new degree arrays are created by every multiprocessor.

The vertex with maximum number of neighbors (MaxNode) is vertex 2 (having 4 neighbor

vertices). An idle multiprocessor receives the degree array as a task and creates 2 new degree

arrays. The first (DegreeArray1) contains the result of removing MaxNode from the graph and

the second (DegreeArray2) is the resulting degree array when the neighbors of MaxNode are

removed.

2 3 4 2 2 2 1

2 3 4 2 2 2 1

Thread 0 Thread 1 Thread 2 Thread 3

20

DegreeArray1 starts as the initial degree array sent to an idle multiprocessor:

2 3 4 2 2 2 1

To remove a vertex and place it in the solution, its value in the degree array is set to -1. The

degree of each of its neighbors is decremented by one. After removing vertex 2 the

DegreeArray1 becomes:

2 3 -1 2 2 2 1

After vertex 2 is removed, we use AL and PL arrays to get the vertices that MaxNode is

connected to, and decrement their values in the degree array:

TID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AL 1 3 0 2 5 1 4 5 6 0 4 2 3 1 2 2

PL 0 0 1 1 1 2 2 2 2 3 3 4 4 5 5 6

Each thread checks the value of PL[threadid]. If the value is equal to MaxNode, then each

thread will look at its corresponding AL[threadid]. AL[threadid] is the vertex that is

connected to MaxNode. Therefore:

Thread5 knows that vertex 1 is connected to MaxNode

Thread6 knows that vertex 4 is connected to MaxNode

Thread7 knows that vertex 5 is connected to MaxNode

Thread8 knows that vertex 6 is connected to MaxNode

The above threads can now decrement vertices (1,4,5,6) in DegreeArray1. Hence

DegreeArray1 becomes:

A similar procedure takes place to generate DegreeArray2. The resulting search space is

shown:

2 2 -1 2 1 1 0

21

4.4 Pseudo Code

The described algorithm can be summarized in the following CPU and GPU pseudo code.

CPU Pseudo Code:

22

GPU Pseudo Code:

23

Chapter Five

Experimental Results

We have divided the experiments in two parts. The first experiment is conducted to test the

GPU code on randomly generated graphs. This allows us to compare the effectiveness of the

algorithm on graphs of different sizes and densities. The second experiment is conducted

using DIMACS-vertex cover benchmarks (cs.hbg.psu.edu/benchmarks/vertex_cover.html).

5.1 Hardware

Throughout the experiments, the following hardware was used:

 Processor: Intel® Core™i7 CPU @ 3.40 GHZ

 System type: 64-bit Operating System (windows 7)

 Installed Memory (RAM): 8GB

 Nvidia GeForce GTX 560. 7 Multiprocessors with 48 physical processors in each

5.2 Random Graphs

Random graphs were created using a graph generator. The generator takes 3 variables:

1. N as the number of vertices in the graph

2. MaxN as the maximum number of neighbors any vertex can have

3. MinN as the minimum number of neighbors a vertex can have

The graph is created such that every vertex has a number of neighbors which is less than

MaxN and greater than MinN. The resulted graph consists of N vertices and an average of

24

MaxN and MinN of neighbors for each vertex. If MaxN and MinN are set to the same

number, then every vertex in the graph will have the exact same number of neighbors.

We have compared our CPU/GPU based algorithm to the CPU based algorithm specified in

(Abu-Khzam, Collins, Fellows, et al.). The purpose of these tests is to compare the

effectiveness of the algorithm on graphs of different sizes and densities. The table lists the

graph specifications, the VC size discovered and the timings of each algorithm.

Table 1 Random Graph Experiments

Number of Vertices Total number of edges VC size CPU based timing GPU timing

100 714 42 0.0001 1.2 sec

100 1282 65 0.001 1.3 sec

100 4143 75 0.01 2.2 sec

500 790 182 534 sec 16 sec

500 1644 191 698 sec 20 sec

500 4683 220 844 sec 48 sec

500 8448 228 922 sec 105.8 sec

500 16966 261 985 sec 198.3 sec

500 53341 322 1218 sec 355.4 sec

1000 16915 658 >2 days 400 sec

1000 68966 747 >2 days 50 min

1000 122524 879 14.4 hrs 2 hrs

The experiments were executed on several graphs having different number of vertices and of

different density. On small graphs (50-200 vertices) experiments show that the GPU algorithm

was in most cases slower than that of the CPU. On some small graphs the CPU required less

than a second to find a solution while the GPU found a solution within seconds.

When the number of vertices increases, better performance results are obtained. When testing

on graphs with size greater than 400 vertices, the GPU out-performed the CPU by reaching

1000x speedups. This kind of speedup is comparable to speedups obtained on simpler non-

recursive algorithms in several papers (Gregg and Hazelwood).

25

5.3 Reasons behind the Huge Speedup

The following two charts represent the CPU vs GPU timing illustrated form the table above

when the number of vertices in the graph is fixed (500) while the number of edges increases.

Chart 1 GPU Timing

Chart 2 CPU Timing

The charts show that the slope of the GPU timing line increases more than that of the CPU as

the number of edges increase. This means that as the graph becomes denser, the speed up

26

gained by the GPU is being less effective. When the graph is denser, its corresponding search

tree space becomes larger. In this case the GPU memory will be filled up faster; hence more

transfer to main memory (RAM) is required. The increase in memory transfer from GPU back

and forth to the main memory will slow down the GPU algorithm hence leading to less speed

up gains.

Moreover, when the number of edges is 790, the GPU code outperforms the CPU by ~33x.

But when the number of edges is larger (53341), the GPU code outperforms the CPU by ~3x.

The following points summarize the random graph experiments:

1. The CPU code is faster than the GPU code for very small graphs. This is because the

additional time spent to initialize the GPU, set data structures and transfer data back

and forth to the GPU results in slower execution time compared to the CPU.

2. As the number of edges increase, the GPU code becomes less efficient. This is because

the denser the graph, the bigger the search space, hence more memory transfer to the

main memory (RAM) is required.

Therefore we conclude that best performance gains by the GPU are achieved when the input

graph is a large sparse graph.

5.4 Experiments – DIMACS Graphs

DIMACS benchmarks, taken from the Second DIMACS Implementation Challenge (1992-

1993), are real world example graphs used to measure and compare the effectiveness of

various algorithms. The following table shows the speedup obtained when comparing our

GPU code to the (purely) CPU code using some of the hardest VC instances from the

DIMACS benchmark:

27

Table 2 Dimacs Graphs Experiments

Dimacs Graph Number Of Vertices VC found CPU code GPU code

frb30-15-1 450 423 >7days 7.25 min

frb30-15-2 450 423 >7days 12.6 min

frb35-17-1 595 564 >7days 8.4 min

frb35-17-2 595 564 >7days 23.16 min

frb40-19-1 760 725 >7days 20.1 min

frb40-19-2 760 725 >7days 13.01 min

frb45-21-1 945 907 >7days 14.9 min

frb45-21-2 945 907 >7days 39.8 min

28

Chapter Six

Conclusion

Using the classical NP-hard Vertex Cover problem as a case study, we provided a framework

for GPU-based solutions for parallel recursive backtracking graph algorithms by exploiting

the highly parallel structure of the GPU to accelerate the expansion of search-states. The CPU,

which is best used for performing sequential operations that includes branching and random

memory accesses, plays the role of a buffer scheduler maintaining the search tree. The GPU is

best used for coalescence of floating point operations. It was used to speed up the fast

constructions of search states. Moreover, the shared memory of the GPU was extensively used

to speed up memory intensive operations. Using the DIMACS benchmark to conduct

experiments, our method exhibited notable speedups on graphs whose corresponding search

space can fit into the GPU's global memory. This makes our approach suitable for large sparse

graphs that are often found in many real scientific applications of Vertex Cover. A natural

extension of this work would mainly focus on using multiple GPUs or a cluster of GPUs to

accelerate similar recursive backtracking algorithms. Finally, it would be interesting to

develop a parallel search tree algorithm that employs a dynamic load balancing strategy on

multiple GPUs.

29

Bibliography

Abu-Khzam, Faisal, Rebecca Collins, Michael Fellows, Michael Langston, Henry Suters, and

Christopher Symons. "Kernelization Algorithms for the Vertex Cover Problem:

Theory and Experiments." Proceedings of the Sixth Workshop on Algorithm

Engineering and Experiments and the First Workshop on Analytic Algorithmics and

Combinatorics, 10 Jan. 2004, New Orleans, LA, USA. Ed. Lars Arge, Giuseppe F.

Italiano, and Robert Sedgewick. LA: SIAM, 10 Jan. 2004. 62-69. Print.

Cheetham, James, Andrew Rau-Chaplin, Ulrike Stege, and Peter Taillon. "Solving Large FPT

Problems on Coarse-Grained Parallel Machines." Journal of Computer and System

Sciences - Special issue on Parameterized Computation and Complexity 67.4 (2003):

691-706. Print.

Dehne, Frank, and KumananYogaratnam. "Exploring the Limits of GPUs With Parallel Graph

Algorithms." CoRR 1002.4482 (2010): 212-220. Web.

Dinneen, Michael, Masoud Khosravani and Andrew Probert. "Using Opencl for Implementing

Simple Parallel Graph Algorithms." PDPTA 731.324 (2011): 268-273. Web.

Downey, Rodney and Mickeal Fellows. "The Parametrized Complexity of Some Fundamental

Problems in Coding Theory." SIAM 29.2 (1999): 545-570. Web.

Gregg, Chris and Kim Hazelwood. "Where Is the Data? Why You Cannot Debate CPU vs.

GPU Performance Without the Answer." ISPASS 10.11 (2011): 134-144. Web.

Hanashiro, Erik, Henrique Mongelli and Siang Song. "Efficient Implementation of the

BSP/CGM Parallel Vertex Cover FPT Algorithm." Experimental and Efficient

Algorithms, Third International Workshop, WEA, 25-28 May 2004, Angra dos Reis,

Brazil. Ed. Celso C. Ribeiro and Simone L. Martins. Angra dos Reis: Springer, 25

May 2004. 253-268. Print.

Harish , Pawan and P. J Narayanan. "Accelerating Large Graph Algorithms on the GPU Using

CUDA." HiPC 4873.1 (2007): 197-208. Web.

Hong, Sungpack, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. "Accelerating

CUDA Graph Algorithms at Maximum Warp." PPoPP 10.1145 (2011): 267-276.

Web.

Jenkins, John, John Owens and Nagiza Samatova. "Lessons Learned from Exploring the

Backtracking Paradigm on the GPU." Euro-Par 2011 Parallel Processing - 17th

International Conference, Euro-Par, 29 Aug. – 2 Sept. 2011, Bordeaux, France. Ed.

Emmanuel Jeannot, Raymond Namyst and Jean Roman. Bordeaux: Springer, 29 Aug.

2011. 425-437. Print.

Joshi, Swapnil and P. J Narayanan. "Performance Improvement in Large Graph Algorithms

on GPU Using CUDA: An Overview." IJCA 10.10 (2010): 10-14. Web.

30

Karp, Richard. "Reducibility Among Combinatorial Problems." Proceedings of a Symposium

on the Complexity of Computer Computations, 20-22 March 1972, at the IBM Thomas

J. Watson Research Center, Yorktown Heights, New York. Ed. Raymond E. Miller and

James W. Thatche. New York: Plenum Press, 20 March 1972. 85-103. Print.

Koufogiannakis, Christos and Neal Young. "Distributed and Parallel Algorithms for Weighted

Vertex Cover and Other Covering Problems." PODC 10.1145 (2009): 171-179. Web.

Micikevicius, Paulius. "General Parallel Computation on Commodity Graphics Hardware:

Case Study With the All-Pairs Shortest Paths Problem." Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and

Applications,PDPTA , 21-24 June 2004, Las Vegas, Nevada, USA. Ed. Hamid R.

Arabnia. Las Vegas: CSREA Press, 21 June 2004. 1359-1365. Print.

"NVIDIA CUDA C Programming Guide." docs.nvidia.com. Nvidia Corporation, 2012. Web.

15 Oct. 2012. <http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html>.

Zhou, Xu, ZhiBang Yang and Kenli Li. "A New Approach for the Dominating-Set Problem

by DNA-Based Supercomputing." JSW 5.6 (2010): 662-670. Print.

