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Abstract 
 

With the frequent occurrence of fiber cuts in optical core networks and the tremendous 

loss that a failure may cause, the design of survivable optical networks is becoming of extreme 

importance to optical network operators. One of the major concerns in this regard is related to 

improving the availability of the services that the optical operators offer to their clients. This 

work addresses this issue by presenting three novel availability-aware protection schemes that 

achieve high level of availability for optical connections. As a distinguishing feature from 

existing protection schemes, the proposed schemes introduce relative priorities among the 

different primary connections contending for the use of the backup resources. In an attempt to 

gauge the benefit of the proposed protection schemes relative to the ones studied in the open 

literature, mathematical models are provided for evaluating the average connection availability 

resulting from the deployment of such schemes. The numerical results obtained from the 

mathematical models prove that higher availability levels can be realized through the use of the 

availability-aware protection schemes defined in this work.  
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Chapter 1 

Background Information 
 

1.1 Introduction 

The revolutionary Wavelength-Division multiplexing (WDM) technology increases the 

transmission capacity of fiber links by several orders of magnitude. It divides the tremendous 

bandwidth of a fiber into many non-overlapping wavelengths (WDM channels), which can be 

operated at the peak electronic speed of several gigabits per second [RAM 02]. In wavelength-

routed WDM networks, an optical cross-connect (OXC) can switch the optical signal on a WDM 

channel from an input port to an output port; thus a connection (lightpath) may be established 

from a source node to a destination node along a path that may span multiple fiber links. As 

WDM keeps on evolving, fibers are witnessing a huge increase regarding their carriage capacity, 

which has already reached the order of terabits per second and will continue to grow for years to 

come.  

Therefore, the failure of a network component (e.g. a fiber link, an optical cross-connect, 

an amplifier, a transceiver, etc.) can weigh heavily on optical carrier operators due to the 

consequent huge loss in data and revenue. Indeed, a single outage can disrupt millions of users 

and result in millions of dollars of lost to users and operators of the network. The Gartner 

research group attributes for instance up to $500 million in business losses due to network 

failures by the year 2004 [GRO 04]. Providing resilience against failures is thus an important 

requirement for WDM optical networks.   

Building on this, network survivability, together with its impact on network design, 

becomes a critical concern for optical operators. Quoting from [MAN 06], network survivability 

refers to “the set of capabilities that allow a network to restore affected traffic in the event of a 

failure”. There are several mechanisms to ensure fiber network survivability. These mechanisms 

are referred to as fault recovery Techniques, and involve providing some redundant (backup) 

capacity within the network and rerouting traffic around the failure using this redundant capacity. 
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Mainly, fault recovery techniques can be classified into two general categories: pre-

designed protection [RAM 99] and dynamic restoration [MUK 99]. The distinction between 

protection and restoration is centered on both the different time scales in which they operate, and 

the resource allocation done during the recovery period [BAN 01]. Protection requires pre-

allocated backup resources and is designed to react to failures rapidly (less than a couple of 

hundred milliseconds). Restoration, on the other hand, relies on dynamic backup resource 

establishment in case of failure, and it may take up to an order of magnitude longer to restore the 

connection compared with protection.  

1.2 Optical Transport Network Failures: 

An end to end optical connection (lightpath) is routed through many optical components 

(fiber cables, nodes, etc.) in the network between its source and its destination. As such, the 

fraction of time during which the lightpath will be in the operating state (availability of lightpath) 

depends on the failure characteristics of the elements along its path. For example, Figure 1.1 

shows a sample wavelength routed network with a lightpath on wavelength λ1 connecting nodes 

A and D. The considered lightpath becomes unavailable if any of the nodes (A, B, C, or D) or of 

the links (A-B, B-C, or C-D) along its path fails.  

Optical network survivability techniques (protection, restoration) contribute to the 

improvement of lightpaths’ availabilities, since they allow unavailable connections to be 

recovered by backup resources. The amount of time during which the connection will be 

operational increases and thus the connection’s availability is improved. However, this 

improvement is realized at the expense of a certain additional cost (due to resource redundancy) 

that results from to the deployment of the survivability techniques in the optical network. This 

additional cost can be justified by the frequent occurrence of fiber cuts as will be illustrated in 

the following subsection.  
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Figure 1. 1 Sample wavelength-routed optical network

  

1.2.1 Failure Statistics 

To get an estimate of the different optical components failure characteristics, Table 1.1 

presents the mean failure rates and failure repair times of various optical network components 

according to Bellcore (now Telecordia) [ZAN 04], where Failure-In-Time (FIT) denotes the 

average number of failures in 109 hours, Tx denotes optical transmitters, Rx denotes optical 

receivers, and MTTR stands for Mean Time To Repair. 

 
Table 1- 1 Failure rates and repair times (Telecordia [ZAN 04]) 

Metric Telecordia Statistics  

Equipment MTTR 2 h  

Cable-cut MTTR 12 h 

Cable-cut rate 501142 FIT/1000 sheath-miles  

Tx failure rate 10867 FIT 

Rx failure rate 4311 FIT 
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Two main conclusions may be drawn based on these statistics: 

• The frequency of failure occurrence in optical networks is not negligible. In fact, 

according to Table 1.1, any given mile of cable will operate about 228 years before it is 

damaged (cable cut rate = 4.39 cuts/year/1000 sheath miles). At first that sounds 

reassuring. But on 100000 installed route miles (in backbone optical networks),  it 

implies more than one cut per day on average; 

• Cable cut is the dominant failure scenario compared to Tx and Rx failures, for lengths in 

the order of hundreds of kilometers, normally found in backbone networks. This helps 

explain why optical network survivability design is primarily focused on recovery from 

failures arising mainly from cable cuts.  

It is reasonable to ask why fiber optic cables get cut at all, given the prominent 

understanding of how important it is to physically protect such cables. Isn’t it enough to just bury 

the cables suitably deep or put them in conduits and stress that everyone should be careful when 

digging?  

Unfortunately what seems so simple is actually not. Despite best-efforts at physical 

protection, it seems that a fairly high rate of cable cuts is inevitable. Next, we discuss the main 

causes of failures.  

1.2.2 Causes of Cable-cut Failures 

 After several serious cable-related network outages in the 1990s, a comprehensive 

survey on the causes of fiber optic failures was commissioned by regulatory bodies in the United 

States [CRA 92].  

 Figure 1.2 presents data from that report on the causes of fiber failures. As shown in 

Figure 1.2, dig-ups are the largest cause of fiber optic damage accounting for almost 60% of the 

reported failures. Two-thirds of those occurred even though the contractor had notified the 

facility owner before digging. Following dig-ups, vehicle induced damage due to the improper 

depth of installed cable is responsible for 7.5% of the reported failures. In this case, vehicle 

damage was often suffered by aerial cables from collision with poles. Human error comprises 

4 
 



7.0% of the reports. It is typified by a craftsperson cutting wrong cables during maintenance or 

during cable salvage activities ("copper mining") in a manhole.  

 As a wrap up, dig-ups, vehicle, and human error induced failures constitute the 

dominant failure contributing factors in optical networks. The relative magnitudes of these three 

main failure causes, along with most of the remaining failure causes, correlate well with data 

presented in Bellcore's Field Tracking Study [RAM 01].  Moreover, these failure percentages 

present a close matching to another set of statistics presented in [RAD 02]. The authors of this 

paper show that digging participates in 62.97% of failure cases, while vehicles cause 5.7% of the 

failures.   

 As for the remaining failure contributing factors presented in Figure 1.2, they 

contribute at a lower degree in optic cable cut. Power line refers to metallic contact of the strain-

bearing “messenger cable” in aerial installations with power lines. Sabotage failures were 

typically the result of deliberate actions by disgruntled employees.  Tree-falls were not a large 

contributor in this U.S. survey but in some areas where ice storms are more seasonal, tree falls 

and ice loads can be a major hazard to aerial cables.  

 In fact, Conduits are expensive to install, and in some countries cable burial can be a 

major capital expense. For example, in parts of Canada, trenching can be almost infeasible as 

bedrock lies right at the surface. Consequently, much fiber cable mileage remains on aerial pole-

lines and is subject to weather-related hazards, such as ice, tree falls, and lightening strikes. 

It is clear at this stage that network survivability design is a major concern for optical 

operators, who strive to keep up with the competition for broadband traffic transport. Hence, 

failure recovery techniques need to be deployed to improve the reliability of WDM optical 

networks. This issue is the key driver for the following section in which we delve into a detailed 

analysis of the existing survivability mechanisms. 
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Figure 1. 2 Immediate cause of breakdown for 160 fiber optic cable cuts [CRA 92] 
 

1.3 Survivability Mechanisms in WDM optical Networks: 

There are two types of fault recovery mechanisms: 

• If backup resources are pre-computed and reserved in advance, we call it a protection 

scheme; 

• Otherwise, if backup resources have to be discovered dynamically for each interrupted 

connection, we call it a restoration scheme. 

Protection and restoration schemes have traditionally been addressed using two concepts: 

• Path switching, and 

• Line switching. 

In path switching, the failure is addressed at the path endpoints (i.e., the path initiating and 

terminating nodes), whereas in line switching the failure is addressed at the transit node where 

the failure is detected.  
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Path switching can be further subdivided into path protection, and path restoration (as 

illustrated in Figure 1.3). 

Protection/Restoration Schemes 

Pre‐configured   Dynamic  

Dedicated   Shared   Link  Path 

Path  Link  Path Link 

  
Figure 1. 3 Different Protection/Restoration schemes

1.3.1 Path Protection 

In path protection, the source and destination nodes of each connection statically reserves 

backup paths on an end-to-end basis during call setup. 

 When the primary path of the connection fails (1-4-5-6 in Figure 1.4), the same 

connection is rerouted end to end from its source to its destination along the pre-reserved backup 

path (1-2-3-6). The backup and the primary paths must not share the same risk; and as such they 

are link disjoint, which is the case of the primary and backup paths presented in Figure 1.4. 

 

1 

2  3

6

54 

Primary  
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 Backup 

Figure 1. 4 Path protection



   

The nomenclature for path protection is as follows [MAN 06, PAP 06]: 

1+1 protection: when using this type of protection, the connection is duplicated at the source 

node (Node 1 in Figure 1.4) on both the primary and backup paths, and a selector is used at the 

receiving node (Node 6) to choose the best signal. If the primary path fails, the destination 

simply switches over to the backup path and continues to receive data. This form of protection is 

very fast and requires no signaling protocol between the two ends. However, the disadvantage of 

the 1+1 protection is the waste of bandwidth. 

1:1 dedicated protection: In 1:1 protection, there will always be two disjoint paths from source to 

destination. However, traffic is transmitted only along the primary path. In case of primary path 

failure, the source and destination both switch over to the dedicated backup path. Signaling is 

thus required between source and destination. For this reason, 1:1 protection is not as quick as 

1+1 protection in restoring traffic. More valid is its advantage. In normal operation, the unused 

protection path can be used for transmitting low-priority traffic (Extra traffic), and a better 

network utilization can be achieved. In case of failure of the primary path, the traffic is switched 

over to the protection path, and the extra traffic is dropped. 

M:N shared protection: M pre-allocated backup paths are shared under this scheme between N 

primary paths; however, data is not replicated onto a backup path, but is assigned and transmitted 

along the backup path only on the failure of the primary path. This scheme is thus more capacity 

efficient when compared with 1+1, and 1:1 protection schemes. 

1:N shared protection: 1 pre-allocated backup path is shared among N primary paths.  

1.3.2 Path Restoration 

Restoration implies the discovery of backup resources dynamically in the network to 

restore affected connections; that is, the resources used for recovery are not reserved at the time 

of connection establishment, but are chosen from available resources when the failure occurs.  

In the particular case of path restoration, traffic is switched to an alternate route after 

failure occurrence on an end to end basis. In other words, the source node of a connection 
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traversing a failed link participates in discovering a backup route to recover the broken 

connection. If no backup route is discovered, that connection is blocked. 

1.3.3 Link Protection 

 In link protection (as illustrated in Figure 1.5), all the connections that traverse the failed 

link are routed around that link. The source and destination nodes of the connections traversing 

the failed link are oblivious to the link failure. In link protection, during connection setup, 

backup resources are reserved around each link of the primary path. Upon failure occurrence, 

recovery is performed around the failed link. For example in Figure 1.5, when fiber 4-5 fails, the 

connection is restored by node 4 along 4-2-3-5. 

 Primary 

5

1 

2 3

6

4

Backup 

 

 

 

 

Figure 1. 5 Link protection
  

The following taxonomy for link protection exists in the literature [LIU 02]: 

• Dedicated link protection: At the time of call setup, for each link of the primary path, 

backup resources are reserved around that link, and are dedicated to that call. 

• Shared link protection: In shared link protection, for each link of the primary path, 

backup resources are always reserved around that link. However, these backup 

resources may be shared with other backup paths. As a result, backup resources are 

multiplexed among different failure scenarios (which are not expected to occur 

simultaneously), and therefore share-link protection is more capacity efficient than 

dedicated-link protection.  
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1.3.4 Link Restoration 

In link restoration, the node which is adjacent to the failed link discovers dynamically a route 

around the link in order to restore the affected connection. If no such route is found, the 

connection is blocked.  

Considering the scenario presented in Figure 1.5, if node 4 will be unable to reserve backup 

resources (due to lack of capacity) upon the failure of the 4-5 link, the connection routed initially 

along the primary path 1-4-5-6 will not be recovered.  
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Chapter 2 

Priority Aware Protection Scheme 
 

The following conclusions can be drawn from Chapter 1:  

• With regard to network resource utilization, restoration schemes are more resource 

efficient than protection schemes. However, protection schemes prove to have faster 

recovery time compared to restoration schemes.  

• While path protection leads to efficient utilization of backup resources, link protection 

provides shorter recovery time. Therefore, in this study we focus our attention on path 

protection schemes. In addition, since shared path protection is more efficient in terms of 

capacity usage than dedicated path protection, we deal in this document mainly with the 

impact that shared path protection has on the availability of optical connections. 

           To the best of our knowledge what still lacks in existing literature is a systematic 

methodology to efficiently select a cost-effective protection scheme for each connection, while 

satisfying its availability requirements. The problem of how connection availability is affected 

by network failures is currently capturing the attention of the optical research community. 

Contributing to the design of new availability-aware protection schemes we propose in this 

chapter a first extension to the existing shared path protection scheme (described in section 1.3). 

The proposed extension is based on the following observation. To date, the majority of the work 

on shared protection considered the primary connections as equally important when contending 

for the use of the backup resources. As a result, when several connections fail successively, the 

first failed connection is recovered by the backup resources, regardless of the availability 

requirements of the remaining failed connections. Hence, the unrecovered connections are 

penalized and remain in an unprotected state until either their primary paths are repaired or until 

backup resources are released.  

           From a quality of service perspective, the existing scheme is not optimal since it does not 

account for the different availability requirements of the primary connections during recovery. 
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To cope with such a limitation, this chapter proposes to introduce a relative priority among the 

failed primary connections sharing the same backup resources. The priority of a failed 

connection is determined by its availability requirement; the higher the requirement is the higher 

the priority of the connection would be. In this way, if a low priority connection fails before a 

high priority one breaks down, the low priority connection will be granted access to the backup 

resources. But, once a high priority connection fails, it will be given the privilege of using the 

backup resources irrespective of the recovered low priority connections. In other words, a failing 

high priority connection is allowed to preempt the previously recovered lower priority 

connections if there are any. In order to gauge the benefits of the proposed priority-aware shared 

protection scheme, its impact on the availability of an optical connection needs to be studied and 

to be contrasted to that of the existing shared protection schemes.  

           Therefore, this chapter presents a mathematical model for both the classical and priority-

aware shared protection schemes. Analytic expressions for the average availability resulting from 

the deployment of such schemes are derived. By solving these models, the service differentiation 

feature introduced by the proposed scheme is numerically evaluated.  
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2.1 Proposal 

The priority-aware protection scheme is an extension to the existing shared M:N 

protection schemes. This novel scheme introduces relative priorities to different primary 

connections that share common backup paths. 

 

Figure 2. 1 N primary Paths Sharing M Backup paths 
 

Consider N primary paths sharing M backup paths having same source and destination 

nodes. Each primary and backup path has a probability of failure. In the existing classical 

models, all connections are considered to have equal probability to be restored by backup paths. 

In our proposed model, we divide the N primary connections into K sets of priority 

classes C1..Ck , Let Ni primary connections belong to class Ci . Let the connections with class C1 

have the highest priority and those of class Ck with lowest priority. 

First, we consider the case when primary path holding connection t, which belongs to Ci, 

fails & backup path is available. This will result in having connection t occupy the backup path. 

Second, when primary path holding connection t fails and the backup is in use. Then a 

check will be made: if the backup is occupied by a lower class connection, then t will preempt 

that connection and occupy the backup path. However, if the backup path is occupied by similar 

or higher class connection then connection t will be blocked. 
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Third, when both the primary path holding connection t and the backup path are down, 

then connection t will be blocked. 

2.2 Mathematical Model 

In this section, we present a mathematical model for the availability of 1:N priority aware 

shared protection scheme. Then we will develop a mathematical model considering multiple 

backup paths to derive the analytical expression describing the M:N priority-aware shared 

protection scheme. 

2.2.1 Basic Assumptions 

We base our mathematical study on the following assumptions: 

 A connection has 2 states : available or unavailable 

 A path, whether primary or backup, is either up state (operational) or down state (failed). 

 Failures of network components are independent of each other 

 Sufficient resources are available to repair simultaneously any number of failed 

connections. This is referred to in literature as unlimited repair.  

 A path fails when at least one of its components fail or is defective. 

 

2.2.2 Analytical Model 

 Cable cut is proven, in the introduction, to be the main cause of primary paths failures. 

For simplicity we will set λ to be the failure cut rate where: 

λ= path length x cable cut rate/ unit length. 

2.2.2.1 Modeling Classical Shared Protection Scheme 1:N 

Consider a system where we have 1 backup path shared among N primary paths. 

Let λi  , i=1,…N+1     be the mean failure rate of the i-th path. 
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Let µi , i=1,…N+1     be the mean repair rate of the i-th path. 

Thus the Mean Time to Failure (MTTF) = 1/ λi   and  

         the Mean Time to Repair (MTTR) = 1/ µi 

MTTF and MTTR are exponentially distributed.  

We also consider that all paths including backup have identical λ and µ. 

Let ρ = λ/µ, therefore the bability of having path i available at t  ∞ (steady state):  pro

Ai = p =  = 
/

 = 
 

  = Availability of path i                               (2.1) 

Where the Unavailability = 1- Ai =Ai   = q  

 
Let p(n) be the probability of having n failed paths at time t. Using the transition diagram 

in Figure 3.2 we can conclude the following expression from the Markovian chain : 

 

Figure 2. 2 Transition diagram for number of failed paths 
 

   p(n) =     .                                            (2.2) 

         = !
!!
  

Where   is the number of all combinations of n out of N+1 paths. 
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When n ≥ 1,   we consider 2 cases 

1- Backup failed and thus the remaining n-1 failed connections will be blocked since no 

backup path available 

2- Backup is operational and 1 connection is restored, keeping n-1 connections blocked.  

 

We clearly note that in both cases n-1 connections will be blocked.  Therefore only 

when n=1 there will be no unavailable connection, otherwise at least 1 connection 

will be unavailable. 

We define the following events: 

Y(n) = event that connection t is unavailable, given that we have n failed primary 

paths 

W(n) = the event that the backup path and the path holding connection t are failed 

Z(n) =  the event that the backup path is operational while path holding connection t 

is failed. 

p(n) P(Y(n)) = probability of having connection t unavailable given that we have n 

failed primary paths. 

  P(Y(n)) = P(Y(n)/ W(n)) P(W(n))  +  P(Y(n)/ Z(n)) P(Z(n))                  (2.3) 

In event W(n), connection t is unavailable since there are no backups to restore it 

when its primary path is failed. Thus P(Y(n)/ W(n)) =1. 

 On the other hand, when the backup path is operational and primary path holding t 

failed, then only 1 connection out of n failed will be restored by the backup. Thus we can 

conclude that P(Y(n)/ Z(n)) =  . 

  The probability of having both primary path holding t and backup path are down, 

can be calculated by dividing the all possible combinations that covers cases when 

primary path holding t and back up are failed, over the combinations of having n failed 

paths out of the N+1 paths in the system. 

 P(W(n)) =  =                                                        (2.4) 
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To get the P( Z(n)), we divide all possible combinations of having t belong to  the 

failed connections while the backup is operational, over the possible combinations of 

having n failed paths out of the N+1 paths in the system. 

 P(Z(n)) =  =                                                       (2.5) 

Using the above equations we can 

  P(Y(n)) =              2 ≤ n ≤ N+1                                              (2.6) 

Noting that when n=1, P(Y(n))= 0 which is true since all connections will be available. 

We conclude from the above calculations that the unavailability of a connection t in 

1: N classical shared scheme is: 

U = ∑                                                                                     (2.7) 

 

By substituting the above equations we get: 

U =  ∑ .CN  .                                                              (2.8) 

Where Availability = 1- U 

2.2.2.2 Modeling Priority Aware Shared Protection Scheme 

 In our proposed model, we will divide the primary connections in to 2 sets of priority 

classes. Let the high priority class be the “Gold” class while the low priority class be the “Silver” 

class.  

N1 = # of Gold connections   N2 = # of silver connections. 

 Since Gold connections can preempt any silver connection occupying the backup then the 

same analytical expression derived for classical shared protection scheme can be applied with N1 
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instead of N. Thus the expression for the unavailability of the high priority class connections can 

be written as follows: 

Ugold =  ∑ .CN  .                                               (2.10) 

On the other hand, the Silver connections are unavailable if any of the following conditions 

apply: 

1- E1= Primary path holding connection t failed & Backup path is down 

2- E2= Primary path holding connection t failed & Backup path is operational but at least 1 

Gold connection is among the n failed connections. 

3- E3= Primary path holding connection t failed & Backup path is operational but another 

Silver connection occupies the backup path. 

 

Let n1= # of failed Gold connections and n2 = # of failed silver connections 

      Let b= 1 when backup path is down otherwise its 0. 

 

Since the probabilities of having n1 & n2 failed connections are independent, as well 

as independent to the state of the backup, we can write the following statement: 

 

 P(n1,n2,b) = P(n1)P(n2)P(b)                                                                                  (2.11)                               

The probabilitie  P ) & P(n2) can be defined by : s (n1

P(n1) =                                                                                     (2.12) 

P(n2) =                                                                                     (2.13) 

Whereas the probability of having P(b) can be defined by : 

P(b) =                                                                                                   (2.14) 

To achieve the 3 conditions mentioned above, the following inequalities should be satisfied. 
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E1 satisfied when b=1 

E2 satisfied when b=0 and n1≥ 1 

E3 satisfied when b=0, n1=0 and n2≥2 

The probability that connection t, belonging to Silver class, fails under state n1,n2, b is : 

P(t fails in state (n1,n2, b)) =   
2 1
2 1
2
2

 

Therefore the unavailability of silver connection can be calculated by evaluating 

equation 3.15 b  y summing over all the values of n1, n2, b 

            Usilver =  ∑ P t fails in state  n1, n2, b   n1, n2, b     1    2    3         (2.15) 

 Usilver=      . 1 pN   

                                                          . pN                              (2.16) 

2.2.2.3 Modeling Multiple backups- Priority Aware Shared Protection Scheme 

 In this section we develop an analytical model for N primary paths sharing M backup 

paths. We will keep the same assumptions as the previous section, by considering 2 priority 

classes, Gold and Silver. We consider the stochastic process X(t) having a state denoted by the 

triplet n1,n2,m, where n1 and n2 represent the number of failed Gold and Silver connections 

respectively, whereas m represents the number of operational backups. 

N1= # of Gold connections 

N2= # of Silver connections 

M= # of backups 

n1= # of failed gold connections 
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n2= # of failed silver connections 

m= # of operational backups 

Since failure of any path is independent of the other then we can have: 

p(n1,n2,m) = p1(n1) p2(n2) p(m)                                                                                            (2.17) 

Let the availability Ai =   be denoted by   “p”, 

 whereas the Unavailability = 1- Ai =Ai   be denoted by “q”. 

Then as proven in the section 3.2.2.2,  

P(n1) =                                                                                         (2.18) 

P(n2) =                                                                                         (2.19) 

Whereas the probability of having P(b) differs from the previous section since multiple backups 

are considered and he b ility of having m operational backups can be defined by :  t  pro ab

P(m) =                                                                                            (2.20) 

Calculating the Unavailability for Gold connections 

Connection t, belonging to Gold class, is unavailable when both of the following conditions are 

satisfied: 

1- A : primary path holding connection t is down 

2- B: connection t is not restored by any of the backup paths. 

 Ugold = P {A,B } 

          =  

/   , 1, 2,     /   1, 2,
 

p 1, 2,  

                                                                                                                                             (2.21) 
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The probability of having condition A satisfied given state X, is equal to the number of failed 

gold connections, divided by the total number of gold connections. 

  /   1, 2, } =  

The probability of having condition B satisfied while given condition A and state X, is always 

z r e o ing case: equal to e o xcept in the foll w

/   , 1, 2,    0  When: 

 m < n1  , in this case only m out of the n1  failed gold will be restored and thus the 

probability of having connection t not restored is : 1 -    

 Ugold=  

1
1 1

 

p 1  

                                                                                                                                           (2.22) 

 

 

Calculating the Unavailability for Silver connections 

Similarly, we consider connection t , belonging to the Silver class of service. 

1- A : primary path holding connection t is down 

2- B: connection t is not restored by any of the backup paths. 

 Usilver = P {A,B } 

          =  

/   , 1, 2,      /   1, 2,
 

p 1, 2,  

The probability of having condition A satisfied, given state X, is equal to the number of failed 

silver connections divided by the total number of Silver connections. 
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  /   1, 2, } =                                                                  (2.23)                                   

The probability of having condition B satisfied, given condition A and state X, is always equal to 

zero except in t che following ases: 

 /   , 1, 2,    0  When: 

1- m < n1  , in this case the number of failed Gold connections exceed the available 

backups, and that will result in having Gold connections occupying all the 

operational backups leaving no place for restoring connection t since it belongs to 

lower class. Thus the probability of having connection t blocked is equal to 1. 

2- n1 ≤ m  and n1+ n2 > m , in this case n1  gold connections will occupy n1 

operational backups while the remaining operational backups will restore (m–n1) 

out of the n2 failed silver connections. Thus the probability of having connection t 

among the blocked connections is : 1-    

 

 

 Therefore, the Unavailability of Silver connection can be expressed by: 

Usilver =  

1
2     2 

 

p 1, 2,

1 2  
 

p 1, 2,     

                                                                                                                            (2.24) 
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2.3 Analysis 

 In our data analysis we will evaluate the benefits of the proposed scheme. We will 

compare priority-aware protection scheme with the classical protection scheme in order to pin 

point the improvements introduced. We will also study the effect of several factors, such as 

distance, multi backup paths, cut rate, mean time to repair and variation in number of gold 

connections, in order to understand the pros and cons of the proposed scheme.  

2.3.1 Effect of distance variations & multi backup paths 

We start our analysis by comparing the priority-aware scheme with the classical share 

protection scheme. In this section, we will base our comparisons on the results achieved from 

varying the cable distance as well as adding multiple backup paths. 

 In the first example, we base our calculation on equations 2.8 and 2.16 .We vary the 

distance between 600 and 1400 Km, and compare priority aware protection scheme with 

Classical protection scheme for a system having 10 primary connections and 1 backup path. We 

consider 4 gold connections and 6 silver, while we set the MTTR to be 12hrs and the cut rate to 

be 4.39 cuts/yr / 1000miles. 
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Figure 2. 3 Availability for classical and priority aware 10:1 protection schemes 
 

We observe from figure 2.3 that our proposed scheme resulted in a higher availability for 

the Gold class connections compared to classical shared scheme. From quality of service point of 

view, 99.99% is required for Gold clients, whereas 99.9% required for silver clients. SLA 

requirements for both service classes are satisfied over a fiber length of 1400 Km while using the 

priority-aware protection scheme. On the other hand, the availability dropped below 99.99% 

while using the classical shared protection, which does not satisfy the requirement of the High 

class connection. Achieving the desired availability levels for both classes over a distance of 

1400 km encourages operators to use the proposed scheme in the backbone networks. 

For a better understanding of the effect of increasing cable length, we will increase the 

distance beyond 3000Km. We will consider the same assumptions as the previous example while 

varying the distance between 3200 and 4000 Km as an extreme case, to have a more precise idea 

about the availability of optical connections connecting continents under sea. 
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Figure 2. 4 Availability for classical and priority aware protection schemes on long distances 
 

   

Figure 2.4 shows the decrease in the availability of both gold and silver class 

connections, due to the increase in distance. The increase in distance led to a drop in availability 

beyond the required levels. Although the drop wasn’t critical, since the Gold clients still achieve 

availability almost equal to 99.95% over a distance of 4000Km, while the silver connections 

retained an availability level above 99.84%. 

 

 As a solution for the drop in availability, in the following scenario we will add another 

backup path to the system. This addition, as shown in Figure 2.5, resulted in a remarkable 

increase in the availability of both Gold and Silver connections. The availability levels reached 

99.998% for Gold clients and 99.99% for silver clients over a distance of 4000Km, thus 

satisfying the requirements of both service classes. 
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Figure 2. 5 Availability for classical and priority aware protection schemes with 2 backup paths 
 

 

2.3.2 Effect of cut rate 

 As mentioned in Chapter 1, fiber cut is the main reason for connection failures. 

Several causes of fiber cuts have been reported such as dig ups, vehicle induced damage and 

human error in cases where a craftsman cuts the wrong cable during maintenance process or 

during cable salvage activities. Having all those factors involved in the average cut rate, makes it 

a critical parameter to study. In this section, we will vary the cut rate between 4 

cuts/year/1000miles and 12 cuts/year/1000miles.We consider 4 gold connections and 6 silver, 

while we set the MTTR to be 12hrs and the cable length to be 2000Km. 
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Figure 2. 6 Cut Rate effect on availability for classical and priority aware protection schemes 
 

 

 Based on Figure 2.6, we notice that a minor increase in cut rate can result in a drastic 

decrease in the availability of the connections under study. Increasing the cut rate from 4 to10 

has decreased the availability of Gold clients from the order of 99.99% to 99.9%, whereas the 

silver connections were severely penalized and their availability decreased from the order of 

99.96% to values around 99.72%.  

The introduction of the priority-aware protection scheme provided a better reliability for 

Gold clients as compared to the classical approach. Based on Figure 2.6, we can clearly note that 

for Gold class connections, 99.9% availability was achieved with cut rate equal to 12 

cuts/year/1000miles, while the same availability was reached only at 8 cuts/year/1000miles using 

the classical shared protection scheme.  
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Availability of gold and silver class connections dropped beyond 99.99% and 99.9% 

respectively, when exceeding an average cut rate of 5 cuts/year/1000miles. Thus maintaining a 

low cut rate is essential for reliable network. 

 

 

2.3.3 Effect of Mean Time to Repair 

Another significant parameter to consider is the mean time to repair (MTTR). Several 

improvements are being implemented in the field of fiber cabling, and new techniques are being 

used to repair fiber cuts with minimum downtime. Most of the recent serious fiber cuts where 

located in remote, difficult to reach places, such as ocean grounds where the time to repair can 

exceed 24hrs. In short, repair time vary widely between different fiber networks depending on 

their geographic locations, which makes MTTR a parameter worth considering while studying 

the availability. To study the effect of MTTR on the availability of connections, we vary this 

parameter between 6 and 16 hours, while keeping other parameters, as in previous examples, to 

have 4 gold and 6 silver connections and 1 backup path. We also stick to a cut rate of 4.39 

cuts/yr/1000 miles and a fiber cable with length equals to 2000Km. 
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Figure 2. 7 MTTR effect on availability for classical and priority aware protection schemes 
 

Based on figure 2.7, we can deduce that as MTTR increases to values around 16 hrs, the 

availability of the classical protection scheme drops beyond 99.95% while priority aware scheme 

preserved availability not less than 99.98% for Gold connections. Thus introducing class 

differentiation adds to the Quality of service provided, even when the mean time to repair 

increases due to technical or geographical reasons. 

 

2.3.4 Effect of Increasing # of Gold Connections 

 Variation in the number of Gold and silver connections is another variable to be 

considered specifically by operators who desire to have high levels of availability specially with 

increasing number of clients. Adding the number of silver connections in a network, while 

following priority-aware scheme, would have very minor effect on the availability of both silver 

and gold connections. This minor effect is due to the preemption process during Gold connection 
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failures. On the other hand, increasing the number of Gold connections would result in 

decreasing the availability of Gold connections, since failing gold connections will be competing 

to occupy the operating backup paths. 

To study the effect of increasing the number of Gold connections, we vary the number of 

Gold connections between 4 and 12. We fix the distance to 2000 Km, as well as we set the 

number of silver connections to 6, MTTR to 12 hrs and the cut rate to 4.39 cuts/yr / 1000miles. 
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Figure 2. 8 Decrease in availability due to the introduction of Gold connections 
 

 

As shown in Figure 2.8, tripling the number of Gold connections dropped the availability 

from 99.986% to 99.965%. This loss in availability is not critical, but should always be 

considered by operators to set an upper limit to the number of gold subscribers in order to ensure 

reliability based on the service level agreement.  
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2.4 Conclusion 

 The proposal of priority-aware shared protection scheme added major improvements to 

the existing shared protection schemes through introduction of relative priorities among the 

different primary connections sharing the same backup paths. 

 While increasing the length of a fiber cable, high priority connections provided an 

improved level of availability compared to classical shared protection scheme.  Also it was noted 

that the priority-aware protection scheme offered better reliability when the mean time to repair 

increased. Thus, the priority aware scheme succeeded to preserve high levels of availability for 

the high class connections with different parameter variation in the network. 

 During result analysis, several drawbacks can be highlighted for the newly proposed 

scheme. It was shown evidently that the low class connections were penalized. On the other 

hand, the availability of high class connections dropped dramatically during the increase of the 

cut rate. Finally, it was noted that when the number of high class connections increase, during 

simultaneous failures, these connections will be competing over the backup paths and thus 

dropping the availability of high class connections. Overcoming those drawbacks using the 

proposed or the classical scheme can only be achieved by increasing the number of backup paths, 

which implies increasing the cost of installation, maintenance and operation. In the following 

chapter, we will propose a novel improvement to the priority-aware shared protection scheme 

that will provide a cost effective solution to the above mentioned drawbacks. 
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Chapter 3 

Hard Preemption Protection Scheme 

 

The analysis of the newly introduced priority-aware shared protection scheme showed 

that the connection availability was severely penalized at high cut rates. It was also noted that an 

increase in the mean time to repair might result in a decrease in the availability of Gold class 

connections beyond the acceptable limits agreed on between operators and clients as stated in the 

Service Level agreement (SLA). In many real life circumstances, the time to repair a fiber cut 

can be days and sometimes weeks due to difficulties encountered during the maintenance 

processes. Based on the results achieved in the prior section, adding extra backup paths will 

retain the availability of connections above the recommended levels. 

Backup paths are the longest disjoint paths between a source and a destination. Increasing 

the number of backup paths is expensive and resource inefficient. Adding redundant resources to 

improve network survivability is not always the preferred technique that operators would like to 

pursue to achieve a highly reliable and available network.  

3.1 Proposal 

Hard Preemption Protection scheme is a novel improvement based on the proposed 

Priority-aware protection scheme. This extension’s main purpose is to improve the availability of 

higher class connections in a cost effective manner. In hard preemption, a higher class 

connection, when blocked due to a failure in its primary path and the lack of any backup path, 

can preempt a connection from a lower class and occupy its primary path. The lower class 

connection will stay blocked until a backup path is available or until the primary path of the 

higher class connection is repaired. Thus the higher class connections will be using both, backup 

paths and lower class primary paths, as backup resources. 

Consider N primary paths sharing M backup paths having same source and destination 

Nodes. Each primary and backup path has a probability of failure. In the priority shared 
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protection scheme, connections are considered to have different probabilities, according to their 

class of service, when restored by backup paths. 

In our proposed model, we divide the N primary connections into K sets of priority 

classes C1..Ck , Let Ni primary connections belong to class Ci . Let the connection with class C1 

have the highest priority and those of class Ck with lowest priority. 

First, when the primary path holding connection t, belonging to Ci, fails and backup path 

is available, then connection t will occupy the backup path. 

Second, when the primary path holding connection t fails and the backup is occupied, 

then a check will be made: if any of the backup paths is occupied by a lower class, then t will 

preempt that connection and occupy the backup (regular preemption). However, if all the backup 

paths are occupied by similar or higher class connections then connection t will preempt a lower 

class connection and occupy its primary path (Hard Preemption). 

Third, when the primary path holding connection t fails and all backup paths are down, 

then connection t will preempt a lower class connection and occupy its primary path (Hard 

Preemption). 

Forth, when connection t belongs to the lowest class of service, if the primary path 

holding connection t fails and a backup path is available then connection t will be restored, 

otherwise if no backup is available then connection will be blocked. 

Fifth, when primary path holding connection t fails and backups are either occupied by 

similar or higher class connections, or all backups are down and all the primary paths of lower 

class connections are either down or occupied by similar or higher class connections, then 

connection t will be blocked. 

Finally, when the primary path holding connection t is up, and a higher class connection 

fails with no backup paths to restore it, then connection t may be hard preempted and will be 

blocked with a certain probability, discussed in the analytical model. 

Hard preemption scheme provides higher class connections with additional backup paths 

on the expense of lower class connections. In an attempt to control this penalty, we propose 
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another variable to our model, the preemption quota. The number of acceptable preemptions in 

the network should never exceed the quota set by the operators and network designers to ensure 

fewer penalties on low class connections when using the hard preemption scheme. Deciding on 

an optimal quota depends on several network parameters such as mean time to repair, cut rate, 

and the number of high and low class connections available. 

3.2 Mathematical Model 

We present the mathematical model for the availability of M:N Hard preemption 

protection scheme. The analytical model will consider preemption quota .We will develop the 

analytical model for 2 classes of service. 

3.2.1Basic Assumptions 

We base our mathematical study on the following assumptions: 

 A connection has 2 states : available or unavailable 

 A path, whether primary or backup, is either up state (operational) or down state (failed). 

 Failures of network components are independent of each other 

 Sufficient resources are available to repair simultaneously any number of failed 

connections. This is referred to in literature as unlimited repair.  

 A path fails when at least one of its components fail or is defective. 

3.2.2 Analytical Model 

In this section we derive the analytical expression for the availability of connections 

using the hard preemption technique. We will start first by deriving the expression for 1:N hard 

preemption scheme. Afterwards we will develop the complete analytical expression for M:N 

Hard preemption scheme for two classes of service, gold and silver. The M:N expression will 

consider a quota M1 on number of Preemptions allowed for Gold class connections. 
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3.2.2.1 Modeling 1:N Hard Preemption Scheme 

Consider a system where 1 backup path is shared among N primary paths. 

Let Ci be class of connection i , where C1 has the highest connection class 

Let N

∑  = N = total number of primary connections 

i be the number of primary paths holding connections belonging to class i, where  

Let λi  , i=1,…N+1     be the mean failure rate of the i-th path. 

Let µi , i=1,…N+1     be the mean repair rate of the i-th path. 

Thus Mean Time to Failure (MTTF) = 1/ λi   & Mean Time to Repair (MTTR) = 1/ µi 

MTTF and MTTR are exponentially distributed.  

We also consider that all paths including backup have identical λ and µ. 

The availability of path i is denoted by pi and unavailability be qi where: 

pi=      and qi = 1- pi        (3.1) 

Let us denote by {pp(t) =0} the event that the primary path holding connection t is down. 

P{t is unavailable} = 1 – P { t is available} 

P{t is unavailable} = 1- ( P{t is available, pp(t) =0}+ P{t is available, pp(t) =1}) 

For connection to be available while its primary path is down, then it has to be occupying 

a backup path. On the other hand, a connection whose primary path is up can only be available if 

it is not hard preempted by a higher class connection. 

P{t is available, pp(t) =0} =                 

P{t is available, pp(t) =1} =               
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P {t is available} = 1 -  (P{ a Ci connection is restored by backup, pp(t) =0} 

                                                 + P{ a Ci connection is not preempted, pp(t) =1})     

             

                                                                                                                            (3.2) 

a) P{ a Ci connection is restored by backup, pp(t) =0} 

            Condition A1 = backup is up 

Condition B1 = at least one Ci connection is down 

Condition C1= all the primary paths of Cj connections are up, where j < i 

 P{ a Ci connection is restored by backup, pp(t) =0} = P(A1) P(B1) P(C1) 

P(A1) = P 

P(B1) = - P Ni) ( 1 i 

P(C1) = ∏  

 

 P{ a Ci connection is restored by backup, pp(t) =0} = 

  = P . ( 1- Pi 
Ni) . ∏                                                   (3.3) 

b) P{ a Ci connection is not preempted, pp(t) =1} 

            Condition A2 = at least one Ci connection is up 

Condition B2 = all the primary paths of Cj  connections are up , where j < i  

OR 

Condition A2 = at least one Ci connection is up 

Condition C2= Only 1 Cj  connection is down and is restored by backup path, where j < i 
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 P{ a C 2) ( P(B2) +P(C2) ) i connection is not preempted} = P(A

P(A2) =      =  1     1 1

P(B2) = ∏  

P(C2  ∑  1 j  con ctio is d wn and is restored by backup path   ) = Only  C ne n  o

     = ∑          ∏                                                               (3.4) 

 P{ a Ci connection is not preempted, pp(t) =1} = 

=  1        ∏ 1
1   ∑          ∏            (3.5) 

Therefore based on equation 4.2 ,   Unavailability Ui  = P{ t is unavailable} = 

=  .   . ∏   

               +          ∏   ∑          ∏              

                                                                                                                                     (3.6) 

 

3.2.2.2 Modeling M:N Hard Preemption Scheme 

Consider a system having M backup paths and N primary paths. For simplicity we 

consider 2 classes of service gold and silver which denote classes C1 and C2 respectively. 

We also consider that all paths including backup have identical λ and µ. 

The availability of path is denoted by p and unavailability is q where: 

p=      and q = 1- p                  (3.7) 

Let N1 be the number of Gold connections 

Let N2 be the number of Silver connections 
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 N1 + N2 = N 

Let M be the number of Backup paths 

Let M1 be the quota on preemptions allowed. 

Define the state descriptors as follows: 

n1= # of failed gold connections 

n2= # of failed silver connections 

m= # of operational backups 

Since failure of any path is independent of the other then we can have: 

p(n1,n2,m) = p1(n1) p2(n2) p(m)          

  Then as proven in the section 3.2.2.3,  

P(n1) =                                                                                              (3.8) 

P(n2) =                                                                                               (3.9) 

 

Whereas the probability of m operating backups can be defined by: 

P(m) =                                                                                            (3.10) 

Let P(X) be the probability of having state X ={n1,n2,m} 

Calculating Unavailability for Gold connections 

A connection t belonging to Gold class is unavailable in a system with state X , if both 

conditions are satisfied : 

1) A = Primary path ,holding connection t , is down 

2) B = t is not restored by neither the backup path nor a primary path of silver 

connections. 
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 Unavailability of Gold Ugold =  ∑ P A, B, X  , ,  

  Ugold= P {B/A, X). P{A/X} .P {X}      (3.11) 

Since n1,n2 &m are independent , then:                                                                                      

P(X) = P(n1) P(n2) P(m)                                                                                      (3.12) 

The probability of having primary path holding connection t down, given state X is : 

P (A/X) =          (3.13) 

The probability of having condition B applied, given condition A and state X, is 

always equal to zero except in the following conditions: 

P (B/A,X) ≠ 0 when : 

a)  ( m +N2 –n2 ) ≤ M1  and (m+N2-n2)  ≤ n1 & n1 ≠ 0 

   In this case, the number of available backups (silver + backups) is less than the 

quota and less than the number of failed Gold. Therefore, only the number of available 

backups (silver + backups) will be restored out of n1 failed Gold connections. 

 

 Unavailable = 

             P(B/A,X) = 1-     N  –                                                                             (3.14) 

b)  (m +N2 –n2 ) > M1  and (m + N2 –n2) ≤ n1  & n1 ≠ 0 

 In this case, the number of available backups (silver + backups) is greater than the 

quota and less than or equal to the number failed Gold connections.  

b.1)  (n1+n2 ) > m   and m >M1  

 The number of failed gold and silver exceeds the number of available backups. 

And the number of operating backups exceeds the quota given the condition in “b”. 

Thus the restored connections will be M1 out of n1 failed & m-M1 out of all failed 

connection minus quota.  
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P(B/A,X) = (1‐  
 M  

) (1‐  
   M  

)                   (3.15) 

  

b.2)  m < M1    

On the other hand, given condition “b”, when the number of operating backups is 

less than the quota, then the only restored connections will be M1 out of n1 failed.  

P(B/A,X) = (1‐  
 M  

)                    (3.16) 

 

c)  (m +N2 –n2 ) > M1  and  n1 < (m +N2 –n2 )  & n1 ≥ M1 

In this case, the number of available backups (silver + backups) is greater than the 

quota and less than or equal to the number of failed Gold connections.   

c.1)  n1> m  

The number of failed Gold exceeds the number of operating backups, while given 

in “c” that the number of backups (silver + backups) exceeds the quota but still less 

than the number of failed Gold. Thus this will lead to hard preemption and the 

probability of blocking a connection can be expressed by the following equation: 

P(B/A,X) = ( 
  M   

)                   (3.17) 

 

c.2 )  n1< m < n1+ n2 

In this case, what differs from the prior case is that the number of failed gold 

doesn’t exceed the number operating backups, thus no hard preemption and only M1 

connections will be restored out of the n1 failed.  

P(B/A,X) = (1‐  
 M  

)                      (3.18) 
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Calculating Unavailability for Silver connections 

A connection t belonging to Silver class is unavailable in a system with state X, if the 

following conditions are satisfied: 

1) A = Primary path ,holding connection t , is down 

2) B = t is not restored by the backup path  

3) C = Primary path ,holding connection t , is up 

4) D = t is hard preempted on its primary path. 

 Unavailability of Silver Usilver  

              Usilver= ∑x   P( A,B, X) + ∑x   P( C,D, X) 
                Usilver = ∑x   P( B/A,X) P ( A/X) P(X) + ∑x   P( D/C,X) P ( C/X) P(X) 

                                                    (3.19) 

Since n1, n2 &m are independent, then:                                                                                      

P(X) = P(n1) P(n2) P(m)       as stated in equation 4.12                                                                           

The probability of having primary path holding connection t down, given state X is: 

P (A/X) =          (3.20) 

While the probability of having primary path holding connection t up, given state X is 

simply 1- P (A/X), therefore: 

P (C/X) = 1            (3.21) 

The conditional probability of having condition B given condition A and state X , as 

well as the conditional probability of having condition D given A and X , are always 

equal to zero except in the following conditions: 

            P (B/A,X) ≠ 0   when : 

a) n1 ≥ m and n1 <M1  : 

In this case all the backups are occupied by Gold connections, therefore a failure in 

primary path holding a silver connection will result in definite unavailability of this 

connection. 
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P(B/A,X) = 1             (3.22) 

b) n1< m and n1 <M1 and n2 ≥ (m-n1) : 

In this case not all backups are occupied by failed Gold connections, thus a failed 

silver connection will be restored by one of the (m - n1) remaining backups.  

P(B/A,X) = (1-     )            (3.23) 

c) n1< m and n1 ≥ M1  and n1 + n2 >m : 

 

     In this case, the quota is exceeded, so the remaining failed Silver and Gold will 

have equal probability to occupy the remaining backup paths. And all the remaining 

failed primary connections exceeding m, will not be restored with the following 

probability. 

 P(B/A,X) = (    
M

)           (3.24) 

 

d) n1 ≥  m and n1 ≥ M1  : 

In this case , the number of failed gold connections exceeds the number of operating 

backups and quota 

d.1)  m >M1  and n1+ n2 >m 

          Given condition “d” , when the number of operating backups exceeds the 

quota, while the total number of  failed connections exceeds the number of operating 

backups, then the restored silver connections can be the difference between total 

number of operating backups and the quota, divided by the total number of failed 

connections minus the quota.      

P(B/A,X) = (1-    M  
M

)           (3.25) 

d.1)  m ≤ M1   

In this case ,the number of operating backups is less than the quota and the number of 

failed gold exceeds the number of operating backups, thus there is no chance for any 

silver connection to be restored. 

 P(B/A,X) =1             (3.26) 
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P (D/C,X) ≠ 0  when : 

a) n1 ≥ m and n1 <M1  : 

In this case all the backups are occupied by Gold connections, therefore the remaining 

failed Gold connections will hard preempt the available silver connections. 

If (n1-m ≥ N2- n2)  

     The remaining failed Gold connections will hard preempt all the available silver 

connections. 

P(B/A,X) = 1         (3.27) 

 

If (n1-m < N2- n2)  

  The remaining n1-m failed Gold connections will hard preempt silver connection t 

, under study ,with probability: 

P(B/ A,X) =  
N

          (3.28) 

 

b) n1 >  m and n1 ≥ M1  and m < M1: 

In this case, the number of failed Gold connections exceed the number of available 

backup paths as well as they exceed the quota , given that the quota is more than the 

available backups. So (M1-m) failed Gold connections will hard preempt some of the 

available (N2 – n2) silver connections. Thus the probability of hard preempting a 

silver connection is:  

           P(B/A,X) =  M
N

        (3.29) 

3.3 Analysis 

In this section we will evaluate the benefits of the Hard Preemption scheme. We will 

compare this new enhanced scheme with the Priority-Aware shared Protection scheme in order 

to pin point the improvements introduced. Hard preemption scheme will be studied with and 

without quota. We will also analyze the effect of quota in order to have a clearer comparison 

with other schemes discussed in this document, in an attempt to find an optimal value for quota.   
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3.3.1 Comparison with Priority Aware scheme 

 Improving the Gold connection availability is one of the major benefits achieved by 

introducing hard preemption. This major improvement in Gold connection availability can aid in 

reducing the number of backup paths installed. Backup paths are the longest disjoint links 

between a source and destination nodes. Reducing the number of such long redundant paths will 

result in a remarkable decrease in the cost of installing, maintaining and operating the network. 

 To view the improvement introduced, we will compare the hard preemption protection 

scheme with the priority aware protection scheme. We will study the priority aware scheme with 

1 backup and 2 backups, while consider only 1 backup path for the hard preemption scheme. In 

this example, we base our calculation on equations 3.6 .We vary the distance between 3200 and 

4000 Km. We consider 6 gold connections and 2 silver, while we set the MTTR to be 12hrs and 

the cut rate to be 4.39 cuts/yr / 1000miles. 
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Figure 3. 1 Gold connections’ availability due to Hard Preemption and priority aware protection 
schemes 

 
  

 

We observe in Figure 3.1, that introducing Hard preemption improved the availability of 

Gold connection by approximately 0.082% while adding another backup improved the 

availability by 0.073%. Thus, we can deduce that applying hard preemption technique is enough 

to save operators the cost of an additional backup path. 

As shown in Figure 3.1, Hard Preemption improved the availability to exceed 99.999% 

over long distances varying between 3200 and 4000 Km. This high availability can provide 

stability for Gold connections in cases where cut rate or mean time to repair increase 

dramatically.  
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In hard Preemption scheme, primary paths holding silver connections are considered as 

additional backup paths for the failing Gold connections. The process of preempting a silver 

connection on its primary path is “hard preemption”. This technique has resulted in a remarkable 

increase in the availability of Gold connection, but on the other hand penalized the silver 

connections. We will study the availability of silver connections using the same example 

analyzed for Gold connections.  
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Figure 3. 2 Silver connections’ availability due to Hard Preemption with quota M1=2 and priority 
aware protection schemes 

 

 Figure 3.2, depicts that the availability of silver connections is penalized and the loss in 

availability is approximately 0.136%. This loss in the availability can be clearly explained since 

the system studied above has only 1 backup and thus the probability of having hard preemption 

is high. This loss in availability is expected to decrease when considering huge systems with 

multiple backups. Another factor contributing to the high penalty is the distance which ranges 
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between 3200 and 4000Km. On the other hand, considering distances in the range of 800Km can 

give minor loss in availability approximately 0.03%. 

3.3.2 Gold Stability on High cut rates 

 Cut rates vary according to the causes of cable cuts and the average cut rate can differ 

notably depending on the geographic location where the fiber network is located.  We will study 

the effect of cut rate on the availability of Gold connections benefiting from the Hard preemption 

technique. We will consider an extreme case scenario where the number of Gold connections (8) 

is 2.6 times the number of silver connections (3). We will also consider the mean time to repair 

to be 20 hrs on a distance of 4000Km. 
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Figure 3. 3 Gold stability on high cut rates 
 

 As shown in figure 3.3, even on high Mean time to repair (20hrs) and long distances 

(4,000Km) the availability of the gold connections has preserved availability close to 100% 

when considering low cut rates. As cut rates increased, we started having a drop in the 

availability. We were able to retain availability of 99.999% for cut rates below 10, while the 
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availability reached 99.992% with a cut rate of 12. Indeed our hard preemption technique enables 

us to satisfy SLA requirements for Gold connections, while those requirements are impossible to 

be satisfied using the priority-aware and classical shared protection schemes. 

3.3.3 Effect of quota variation on availability 

 Adding quota on the number of preemptions allowed, minimizes the loss in availability 

for silver connections and limits the number of silver connections being hard preempted by 

failing Gold connections. In an attempt to evaluate the effect of quota, we will study the variation 

of quota and its effect on the availability for both gold and silver connections. We consider the 

example having 8 gold connections, 4 silver connections and 1 backup path, while we set the 

MTTR and cut rate to be 12hrs and 4.39cuts /yr/1000miles respectively. We will base the study 

on equation 3.11 and fix the cable length to 3,000Km. 
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Figure 3. 4 Gold stability on high cut rates 
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 We observe from figure 3.4, that when quota is 0, then no preemption is permitted and 

both silver and gold connections are treated similarly which results in equal availability of 

99.924% (classical shared protection). When quota increases to 1, we started having class 

differentiation in restoring failed connections. Furthermore, since; as mentioned in the example, 

we consider 1 backup path then when a Gold connection fails, it either occupies the available 

backup path or hard preempts another silver connection if the backup path was unavailable. This 

procedure will drop the silver connection availability and increases that of the Gold. As quota 

increases, the availability of both classes of connections approaches steady state. 

 Using the above analysis procedure, operators can always select an optimal quota for 

hard preemption that satisfies the requirements agreed on with their clients in the SLA. 

 

3.4 Conclusion 

  The introduction of hard preemption scheme has provided major improvements on the 

priority aware scheme proposed in chapter 2. Providing the High class connections with the 

capability to utilize primary path of the lower class connections as additional backups, has 

improved the availability of higher class connections remarkably. Based on the analytical study, 

high levels of availability for high class connections were achieved even with high cut rates and 

long distances. This new approach proved to be cost effective, since less backup paths had to be 

deployed in the system. As well as it proved to give satisfactory quality of service for the clients. 

The major drawback has been the drop in availability of the low class connections. A slight 

improvement in availability was achieved by introducing quota on the number of preemptions. 

Therefore, another improvement must be added to the current scheme in order to attain an 

approach that provides acceptable quality of service for the different priority classes.     
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Chapter 4 

Hybrid Preemption Protection Scheme 

In the prior proposed schemes, we were able to improve the availability of high class 

connections and ensure high levels of availability in a cost effective manner. Achieving that firm 

availability for high class had its drawbacks on the availability of lower class connections which 

paid off for the introduced improvements. 

4.1 Proposal 

 In this chapter, we introduce an additional enhancement to the protection schemes under 

study. Our newly proposed scheme is the Hybrid Preemption Protection scheme, which is an 

improvement on the hard Preemption scheme introduced in Chapter 3. In Hybrid protection we 

consider the “Mutation probability” parameter that defines whether a failing High class 

connection should be considered as a high class connection or it should be downgraded to a low 

class connection. The main purpose behind this parameter is to minimize the probability of 

having low class connections penalized after failure of high class connections. 

 For simplicity we will consider two classes of service; Gold and Silver. When a primary 

path holding connection t belonging to Gold class fails, the connection will be treated as a Gold 

connection with probability p’. Furthermore, when a primary path holding connection t 

belonging to silver class fails, the connection will be treated as a silver connection with 

probability q’ = 1-p’ . Thereafter, the mutated connection will follow the hard preemption 

scheme discussed in section 3.1. 

  4.2 Mathematical Model 

In this section, we derive the analytical expression for the availability of connections 

using the hybrid preemption technique. Since the hybrid preemption is an improvement for the 

hard preemption scheme, we will base our derivations on section 3.2 and introduce the new 

parameter. We will develop the complete analytical expression for M:N Hybrid preemption 

scheme for two classes of service: gold and silver.  
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 We consider the same basic assumptions mentioned in section 3.2.1.  

Consider a system having M backup paths and N primary paths. For simplicity we 

consider 2 classes of service gold and silver. 

We also consider that all paths including backup have identical λ and µ. 

The availability of path is denoted by p and unavailability is q where: 

p=      and q = 1- p                   

Let N1  and N2 be the number of Gold & Silver connections respectively. 

 N1 + N2 = N which is the total number of primary connections 

Let M be the number of Backup paths 

Let M1 be the quota on preemptions allowed. 

Let p’ be the mutation probability, and q’ = 1- p ’.                                                      (4.1) 

Define the state descriptors as follows: 

n1= # of failed gold connections 

n2= # of failed silver connections 

n’ = # of failed gold connections treated as gold class connections during failure.    

m= # of operational backups 

We set the state X to have probability P(X) where 

P(X) = p(n1) p(n2) p(m) p(n’/n1)                   (4.2) 

  Then as proven in the section 2.2.2.3,  

P(n1) =                                                                                               
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P(n2) =                                                                                                

 

Whereas the probability of m operating backups can be defined by: 

P(m) =                                                                                             

     The probability of having n’ gold connections out of the n1 failed ones: 

 P(n’/n1) =                     (4.3)                             

 

Calculating Unavailability for Gold connections 

A connection t belonging to Gold class is unavailable in a system in state X , if both 

conditions are satisfied : 

1) A = Primary path, holding connection t, is down 

2) B = t is not restored by neither the backup path nor a primary path of silver 

connections. 

 Unavailability of Gold Ugold =  ∑ P A, B, X  , ,  

  Ugold= P {B/A, X}. P{A/X} .P {X}       

P(X) = P(n1) P(n2) P(m)  P(n’/n1)                                                                                                

The probability of having primary path holding connection t down, given state X is: 

P (A/X) =           

The probability of having condition B applied given condition A and state X is 

always equal to zero except in the following conditions: 
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Probability that P( B/A,X) ≠ 0 can be similarly derived as in chapter 4, except the 

following substitutions: 

1- n’ = n1, we substitute n1 by n’ since only n’ out of the n1 failed Gold connections 

will be treated as a Gold class connection, while the remaining (n1- n’) will be 

demoted to silver class connections.  

2- n2= n2 + (n’-n1) , since the demoted failed gold connections will be added to the 

number of failed silver connections. 

 

Calculating Unavailability for Silver connections 

A connection t belonging to Silver class is unavailable in a system in state X, if both 

conditions are satisfied: 

1) A = Primary path ,holding connection t , is down 

2) B = t is not restored by the backup path  

3) C = Primary path ,holding connection t , is up 

4) D = t is hard preempted on its primary path. 

 Unavailability of Silver Usilver  

              Usilver= ∑x   P( A,B, X) + ∑x   P( C,D, X) 
                Usilver = ∑x   P( B/A,X) P ( A/X) P(X) + ∑x   P( D/C,X) P ( C/X) P(X) 

                                                     

P(X) = P(n1) P(n2) P(m)  P(n’/n1) 

The probability of having primary path holding connection t down, given state X is: 

P (A/X) =           

While the probability of having primary path holding connection t up, given state X is 

simply 1- P (A/X), therefore: 
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P (C/X) = 1             

Probability that P( B/A,X)  & P( D/C,X)  ≠ 0 can be similarly derived as in chapter 3, 

except the following substitutions: 

1- n’ = n1, we substitute n1 by n’ since only n’ out of the n1 failed Gold 

connections will be treated as a Gold class connection, while the remaining 

(n1- n’) will be demoted to silver class connections.  

2- n2= n2 + (n’-n1) , since the demoted failed gold connections will be added to 

the number of failed silver connections. 

 

4.3 Analysis 

In this section we will evaluate the benefits of the Hybrid Preemption scheme. We 

compare this new improved scheme with the Hard Preemption Protection scheme in order to pin 

point the improvements introduced. We will study the availability achieved by hybrid 

Preemption scheme over a varying distance.  Moreover, we will focus our analysis on the effect 

of mutation probability, in an attempt to find an optimal value that satisfies the quality of 

services for both gold and silver clients. 

4.3.1 Comparison with Hard preemption scheme 

 The major benefit behind introducing Hybrid preemption is improving the availability of 

silver connections while retaining high level of availability for Gold connections. To view the 

enhancement introduced, we will compare the hybrid preemption protection scheme with the 

hard Preemption protection scheme. In the following example we will consider both Gold and 

Silver classes in both schemes to have a comprehensible idea on the variations occurring in 

availability. We consider 6 primary connections ( 4 gold & 2 silver) and 1 backup while we set 

the cut rate and MTTR to be 5 cuts/yr/1000miles and 15 hrs respectively. 

 

 

54 
 



1000 1100 1200 1300 1400 1500 1600 1700 1800
99.88

99.89

99.9

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

Length in Km

A
va

ila
bi

lit
y

 

 

Hard Preemption- Gold
Hybrid Preemption- Gold
Hard Preemption- Silver
Hybrid Preemption- SIlver

 

Figure 4. 1 Hybrid preemption Scheme with P’=0.85 & M1=2 
 
 

 Figure 4.1 shows that the availability of Silver connections is improved by approximately 

0.05%. The effect of introducing mutation probability equal to 0.85 has treated 15% of the failed 

Gold connection as Silver, which resulted in minimizing the penalty paid by silver connection 

due to hard preemption scheme. On the other hand, the Gold connection availability has 

decreased due to the introduction of mutation probability, without going beyond 99.992%. In 

summary, introducing the mutation quota made it possible for us to regulate the availability of 

both classes of services to achieve the required levels.  
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4.3.2 Effect of Mutation Probability on availability 

 The introduction of Mutation Probability is the key that operators and network designers 

need in order to attain certain availability levels in their networks. In this section, we will study 

the effect of varying the mutation probability on both Gold and silver classes. We will set the 

range of mutation probability to be between 0.6 and 1, while we fix the cable length to 2000Km. 

We also consider 6 primary paths 4 of which are occupied by gold connections, while we 

consider 1 backup path. We keep same assumptions as previous example for MTTR and cut rate 

to be 12hrs and 4.39 cuts/yr/1000 miles respectively. 
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Figure 4. 2 Effect of Mutation probability with Quota M1=2 
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 As shown in figure 4.2, increasing the mutation probability has increased the divergence 

between the availability of Gold and Silver class connections. When the mutation probability 

approaches 0, all the Gold connections are treated as silver connections and therefore the system 

performs as described in the classical shared protection scheme. On the other hand, when the 

mutation probability approaches 1, the system performs as described in the hard preemption 

scheme. Choosing the right mutation probability can provide a reliable network without 

penalizing severely the low class connection while achieving high levels of availability for the 

high class connections.     

 

4.4 Conclusion 

The introduction of Hybrid protection scheme has provided major improvement on the 

quota based Hard preemption scheme proposed in chapter 4. The introduction of mutation 

probability has resolved the drawbacks of the hard preemption scheme by improving the 

availability of the low class connections. Based on the analytical study, setting the optimal 

mutation probability is the key to achieve the requirements of both service classes. In short, the 

mutation probability parameters give operators and network designers the flexibility to vary the 

availabilities of both high and low class connections to suit the requirements of the SLA.
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Chapter 5 

Conclusion 

The frequent occurrence of fiber cuts and the tremendous loss that a cut may cause are 

motivating the design of survivable optical networks. Parallel to this, there is increasingly a 

strong need for quality of service differentiation due to the introduction of new services, each 

presenting different quality of service requirements. Hence, a great deal of effort is being put into 

the design of quality of service aware fault resilient strategies.  

Contributing to the design of such strategies, this work proposed three novel availability-

aware protection schemes that provide predictable levels of availability for the different client 

classes. The first proposed scheme introduced relative priority among the failing primary 

connections contending for the use of the shared backup resources. The second protection 

scheme uses a hard preemption strategy that equips gold connections with the capability of 

hardly preempting silver connections and thus improves the availability of gold connections. In 

an attempt to prevent gold connections from severely penalizing silver connections, we opted to 

place an upper limit on the number of preempting gold connections. The enhanced hard 

preemption strategy to which we referred as the quota-based hard preemption strategy allowed us 

to protect the silver connection in the face of the greediness of gold connections. Our results in 

this respect show that the improvement the silver connections witness as a result of the 

introduction of quotas is not sufficiently high. This is especially true since we were still unable to 

accommodate the requirements of silver connections with the quota-based hard preemption 

strategy. This led us to the development of a third availability-aware protection scheme which 

we referred to as the hybrid protection scheme. For this scheme, we envisaged having a failing 

gold connection act as a silver connection with a predefined probability called the mutation 

probability.  It was made clear through our numerical results that the third protection scheme 

outperforms the other schemes since it ensures a reasonable compromise between resource usage 

and connections’ availability satisfaction. 
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Appendix A: Under Sea -Fiber Optic Map 
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