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Abstract. Developing efficient techniques for comparing XML-based documents 
becomes essential in the database and information retrieval communities. Various 
algorithms for comparing hierarchically structured data, e.g. XML documents, have 
been proposed in the literature. Most of them make use of techniques for finding the 
edit distance between tree structures, XML documents being modeled as ordered 
labeled trees. Nevertheless, a thorough investigation of current approaches led us to 
identify several unaddressed structural similarities, i.e. sub-tree related similarities, 
while comparing XML documents. In this paper, we provide an improved comparison 
method to deal with such resemblances. Our approach is based on the concept of tree 
edit distance, introducing the notion of commonality between sub-trees. Experiments 
demonstrate that our approach yields better similarity results with respect to 
alternative methods, while maintaining quatratic time complexity. 

1. Introduction 

W3C’s XML (eXtensible Mark-up Language) has recently gained unparalleled importance as a 
fundamental standard for efficient data management and exchange. Information destined to be 
broadcasted over the web is henceforth represented using XML, in order to guaranty its 
interoperability. Owing to the unprecedented web exploitation of XML, XML-based 
comparison, especially for heterogeneous1 documents, becomes a central issue in the 
information retrieval and database communities, its applications ranging over version control, 
change management and data warehousing [Chawathe  et al. 1996] [Chawathe 1999] [Cobéna et 
al. 2002], XML query systems [Schlieder 2001] [Zhang et al. 2003], as well as the 
classification/clustering of XML documents gathered from the web against a set of DTDs 
declared in an XML database [Nierman and Jagadish 2002] [Bertino et al. 2004] [Dalamagas et al. 
2006]. 

A range of algorithms for comparing semi-structured data, e.g. XML-based documents, 
have been proposed in the literature. Most of these approaches make use of techniques for 
finding the edit distance between tree structures, XML documents being treated as Ordered 
Labeled Trees (OLT) [WWW Consortium]. Nonetheless, a thorough investigation of the most 
recent and efficient XML structural similarity approaches [Chawathe 1999] [Nierman and 
Jagadish 2002] [Dalamagas et al. 2006] led us to pinpoint certain cases where the corresponding 
edit distance outcome is inaccurate, as we will see in the motivating examples. 

 

                                                 
1 We note by heterogeneous XML document, one that does not conform to a given grammar (DTD/XML 

Schema), which is the case of a lot of XML documents found on the web [Nierman and Jagadish 2002]. 



  

1.1. Motivation 
Consider, for example, dummy XML trees A, B and C in Figure 1. One can realize that tree A is 
structurally more similar to B, than to C, the sub-tree A1, made up of nodes b, c and d, appearing 
twice in B (B1 and B2) and only once in C (C1). Nonetheless, such (sub-tree) structural 
similarities are left unaddressed by most existing approaches, e.g. Chawathe’s method 
[Chawathe 1999] considered as a reference point for the latest tree edit distance algorithms 
[Nierman and Jagadish 2002] [Dalamagas et al. 2006]. Chawathe’s edit distance process 
[Chawathe 1999] permits applying changes to only one node at a time (using node insert, delete 
and update operations, with unit costs), thus yielding the same structural similarity value while 
comparing trees A/B and A/C. 
− Dist(A, B) = Dist(A, C) = 3, which is the cost of three consecutive insert operations 

introducing nodes b, c and d (e, f and g) in tree A transforming it into B (C). 
− Therefore, Sim(A, B) = Sim(A, C) = 0.25 where  Sim = 1 / (1+Dist). 

In theory, structural resemblances such as those between trees A/B and A/C could be 
taken into consideration by applying generalizations of Chawathe’s approach [Chawathe 1999], 
developed in [Nierman and Jagadish 2002] and [Dalamagas et al. 2006] (introducing edit 
operations allowing the insertion and deletion of whole sub-trees). Yet, our examination of the 
approaches provided in [Nierman and Jagadish 2002] [Dalamagas et al. 2006] led us to identify 
certain cases where sub-tree structural similarities are disregarded: 
− Similarity between trees A/D (sub-trees A1 and D2) in comparison with A/E. 
− Similarity between trees F/G (sub-trees F1 and G2) relatively to F/H. 
− Similarity between trees F/I (sub-tree F1 and tree I) in comparison with F/J. 

In fact, the authors of [Nierman and Jagadish 2002] make use of the contained in 
relation between trees (cf. Definition 2) so as to capture sub-tree similarities. Following 
[Nierman and Jagadish 2002], a tree A may be inserted in T only if A is already contained in the 
source tree T. Similarly, a tree A may be deleted only if A is already contained in the destination 
tree T. Therefore, the approach in [Nierman and Jagadish 2002] captures the sub-tree structural 
similarities between XML trees A/B in Figure 1, transforming A to B in a single edit operation: 
(inserting sub-tree B2 in A, B2 occurring in A as A1), whereas transforming A to C would always 
need three consecutive insert operations (inserting nodes e, f and g).  

Nonetheless, when the containment relation is not fulfilled, certain structural similarities 
are ignored. Consider, for instance, trees A and D in Figure 1. Since D2 is not contained in A, it 
is inserted via four edit operations instead of one (insert tree), while transforming A to D, 
ignoring the fact that part of D2 (sub-tree of nodes b, c, d) is identical to A1. Therefore, equal 
distances are obtained when comparing trees A/D and A/E, disregarding A/D’s structural 
resemblances. 
− Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + CostIns(d) +  CostIns(h) = 1 + 4 = 5 
− Dist(A, E) = CostIns(h) + CostIns(e)  + CostIns(f) + CostIns(g) + CostIns(h)  = 1 + 4 = 5 

Likewise for the D to A transformation (tree D2 will not be deleted via a single delete 
tree operation since it is not contained in the destination tree A), achieving Dist(D, A) = Dist(E, 
A) = 5. Other types of sub-tree structural similarities that are missed by [Nierman and Jagadish 
2002]’s approach (and likewise missed by [Chawathe 1999] [Dalamagas et al. 2006]) can be 
identified when comparing trees F/G and F/H, as well as F/I and F/J. The F, G, H case is 
different than its predecessor (the A, D, F case) in that the sub-trees sharing structural 
similarities (F1 and G2) occur at different depths (whereas with A/D, A1 and D2 are at the same 
depth). On the other hand, the F, I, G case differs from the previous ones since single level trees 
(I and J), which only encompass leaf nodes, are implicated in the comparison process.  



  

Please note that [Dalamagas et al. 2006]’s algorithm yields the same results as [Nierman 
and Jagadish 2002]’s algorithm, in the above examples, which is why it is not discussed in 
detailed (it is as a specialized version of [Nierman and Jagadish 2002] where tree 
insertion/deletion costs are computed as the sum of the costs of inserting/deleting all individual 
nodes in the considered sub-trees). 

 

   

   
 

 

 

  
 

Figure 1. Sample XML trees. 

1.2. Contribution and Organization of the Paper 
The goal of our study here is to provide an improved XML structural similarity method for 
comparing heterogeneous XML documents. In short, we aim to build on existing approaches, 
mainly [Chawathe 1999] [Nierman and Jagadish 2002], in order to take into account the various 
sub-tree structural commonalities while comparing XML trees. The contribution of the paper 
can be summarized as follows: i) introducing the notion of structural commonality between sub-
trees, putting forward an algorithm for its discovery, ii) introducing an efficient algorithm for 
computing tree-based edit operations costs able to consider, via the sub-tree commonality 
notion, XML sub-tree structural similarities, iii) developing a prototype to evaluate and validate 
our approach. The remainder of this paper is organized as follows. Section 2 reviews 
background in XML structural similarity. Section 3 presents preliminary definitions. In Section 
4, we develop our XML structural similarity approach. Section 5 presents experimental 
evaluation results. Conclusions and ongoing work are covered in Section 6. 

2. Related Work 
Various methods, for determining structural similarities between hierarchically structured data, 
particularly XML documents, have been proposed. Most of them derive, in one way or another, 
the dynamic programming techniques for finding edit distance between strings [Levenshtein 
1966] [Wagner and Fisher 1974] [Wong and Chandra 1976]. In essence, all these approaches 
aim at finding the cheapest sequence of edit operations that can transform one tree into another. 
Nevertheless, tree edit distance algorithms can be distinguished by the set of edit operations that 
are allowed as well as overall complexity and performance levels.  

Early approaches in [Zhang and Shasha 1989] [Shasha and Zhang 1995] allow insertion, 
deletion and relabeling of nodes anywhere in the tree. Yet, they are relatively complex. For 
instance, the approach in [Shasha and Zhang 1995] has a time complexity O(|A||B| depth(A) 
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depth(B)) (|A| and |B| denote tree  cardinalities while depth(A) and depth(B) are the depths of 
the trees). [Chawathe et al. 1996] [Cobéna et al. 2002] restrict insertion and deletion operations 
to leaf nodes and add a move operator that can relocate a sub-tree, as a single edit operation, 
from one parent to another. However, corresponding algorithms do not guaranty optimal results. 
Recent work in [Chawathe 1999] restricts insertion and deletion operations to leaf nodes, and 
allows the relabeling of nodes anywhere in the tree, while disregarding the move operation. The 
overall complexity of [Chawathe 1999]’s algorithm is of O(N2). [Nierman and Jagadish 2002] 
extend the approach in [Chawathe 1999] by adding two new operations: insert tree and delete 
tree to allow insertion and deletion of whole sub-trees within in an Ordered Labeled Tree. 
[Nierman and Jagadish 2002]’s overall complexity simplifies to O(N2) despite being 
conceptually more complex than its predecessor. A specialized version of [Nierman and 
Jagadish 2002]’s algorithm is provided in [Dalamagas et al. 2006]. On the other hand, an 
original structural similarity approach is presented in [Flesca 2002]. It disregards OLTs and 
utilizes the Fast Fourier Transform to compute similarity between XML documents. Yet, the 
authors did not compare their algorithm’s optimality to existing edit distance approaches. 
Another approach, disregarding edit distance computations was introduced by [Sanz et al. 
2005]. It utilizes specific indexing structures rather than tree edit distance. Experimental results 
in [Sanz et al. 2005] show that the approach is of linear complexity. Nonetheless, the authors of 
[Sanz et al. 2005] did not compare their algorithm’s optimality to existing approaches. 

3. Basic Definitions 
Def. 1 - Ordered Labeled Tree: it is a rooted tree in which the nodes are ordered and labeled. 
We note by λ(T) the label of the root node of tree T. In the rest of this paper, the term tree means 
rooted ordered labeled tree.  

Def. 2 - Tree “Contained in” relationship: a tree A is said to be contained in a tree T if all 
nodes of A occur in T, with the same parent/child edge relationship and node order. Additional 
nodes may occur in T between nodes in the embedding of A (e.g., tree J is contained in tree E). 

Def. 3 - Sub-tree: given two trees T and T’, T’ is a sub-tree of T if all nodes of T’ occur in T, 
with the same parent/child edge relationship and node order, such as no additional nodes occur 
in the embedding of T’ (e.g., tree J in Figure 1 is a sub-tree of C, whereas J does not qualify as a 
sub-tree of E since node h occur in its embedding in E).   

Def. 4 - Ld-pair representation of a node: it is defined as the pair (l, d) where: l and d are 
respectively the node’s label and depth in the tree. We use p.l and p.d to refer to the label and 
the depth of an ld-pair node p respectively.  
 

 

 A1 = ((b, 0), (c, 1), (d, 1)) 
 B1 = ((b, 0), (c, 1), (d, 1)) 
 B2 = ((b, 0), (c, 1), (d, 1)) 
 C1 = ((b, 0), (c, 1), (d, 1)) 
 C2 = ((e, 0), (f, 1), (g, 1)) 

 

D1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
D2 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
E1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
E2 = ((e, 0), (f, 1), (g, 1), (h, 1))  
F1 = ((b, 0), (c, 1), (d, 1), (e, 1)) 
 

 

G1 = ((m, 0), (b, 1), (c, 2), (d, 2), (e, 2)) 
G2 = ((b, 0), (c, 1), (d, 1), (f, 1)) 
H1 = ((m, 0), (g, 1), (h, 2), (i, 2), (j, 2)) 
H2 = ((g, 0), (h, 1), (i, 1), (j, 1)) 

 

Figure 2. Ld-pair representations of all sub-trees in XML trees A, B, C, D, E, F, G, H1 in Figure 1. 
 

Def. 5 - Ld-pair representation of a tree: the ld-pair representation of a tree is the list, in 
preorder, of the ld-pairs of its nodes (cf. Figure 2). Given a tree in ld-pair representation T = (t1, 
t2, …, tn), T[i] refers to the ith node ti of T. Consequently, T[i].l and T[i].d denote, respectively, 
the label and the depth of the ith node of T, i designating the preorder traversal rank of node T[i] 
in T. 

Def. 6 - Structural commonality between sub-trees: given two sub-trees A = (a1, …, am) and 
B = (b1, …, bn), the structural commonality between A and B, designated by ComSubTree(A, B), 
                                                 
1  Trees I and J only encompass leaf nodes which is why they are not considered in this example. 



  

is a set of nodes N = {n1, …, np} such that ∀ ni ∈ N, ni occurs in A and B with the same label, 
depth and relative node order (in preorder traversal ranking) as in A and B. For  1 ≤ i ≤  p  ;  1 ≤ 
r ≤ m  ;  1 ≤ u ≤ n : 

(1) ni.l  = ar.l = bu.l  
(2) ni.d  = ar.d = bu.d 
(3) For any nj ∈ N / i ≤ j, ∃  as ∈ A and bv ∈ B such as: 

• nj.l = as.l = bv.l 
• nj.d = as.d = bv.d 
• r ≤ s, u ≤ v 

(4) There is no set of nodes N’ that satisfies conditions 1, 2 and 3 and is of larger cardinality 
than N.    

In other words, ComSubTree(A, B)1 identifies the set of matching nodes between sub-trees A 
and B, node matching being undertaken with respect to node label, depth and relative preorder 
ranking. Please note that in the rest of the paper, the term commonality always stands for the 
structural commonality. 
 

On the other hand, our edit distance XML structural similarity approach utilizes five 
edit operations, adopted from [Chawathe 1999] [Nierman and Jagadish 2002]: node insertion, 
node deletion and node update, as well as tree insertion and tree deletion. Nonetheless, due to 
lack of space, corresponding formal definitions are disregarded. 

4. Proposal 

Our XML structural similarity approach consists of two algorithms: i) an algorithm for 
identifying the Commonality Between two Sub-trees (CBS), ii) and an algorithm for computing 
the Tree edit distance Operations Costs (TOC), making use of CBS, its results being exploited 
via [Nierman and Jagadish 2002]’s main edit distance algorithm in order to identify the 
structural similarity between two XML documents (cf. Figure 3). 

Figure 3. Simplified activity diagram of our XML structural similarity approach. 

4.1. Commonality Between Sub-trees (CBS) 
In order to capture the sub-tree structural similarities unaddressed by  [Nierman and Jagadish 
2002]’s approach, we identify the need to replace the tree contained in relation making up a 
necessary condition for executing tree insertion and deletion operations in  [Nierman and 
Jagadish 2002], by introducing the notion of commonality between two sub-trees. Following 
Definition 6, the problem of finding the structural commonality between two sub-trees SbTi and 
SbTj is equivalent to finding the maximum number of matching nodes in SbTi and SbTj 
(|ComSubTree(SbTi, SbTj)|). On the other hand, the problem of finding the shortest edit distance 
between SbTi and SbTj comes down to identifying the minimal number of edit operations that 
can transform SbTi to SbTj. Those are dual problems since identifying the shortest edit distance 
between two sub-trees (trees) underscores, in a roundabout way, their maximum number of 
matching nodes. 

                                                 
1  Our sub-tree structural commonality definition can be equally applied to whole trees (a sub-tree being 

basically a tree). However, in this study, it is mostly utilized with sub-trees.  

TOC 

CBS 

Edit Distance 
Tree T2 

Tree T1 



  

Therefore, we introduce in Figure 4 an algorithm (CBS), based on the edit distance 
concept, to identify the structural commonality between sub-trees (similarly to [Myers 1986] in 
which Myers develops an edit distance based approach for computing the longest common sub-
sequence between two strings). Note that in CBS, sub-trees are treated in their ld-pair 
representations (cf. Figure 2). Using the ld-pair tree representations, sub-trees are transformed 
into modified sequences (ld-pairs), making them suitable for standard edit distance 
computations.  

Afterward, the maximum number of matching nodes between SbTi and SbTj, 
|ComSubTree(SbTi, SbTj)|, is identified with respect to the computed minimum edit distance: 
− Total number of deletions - we delete all nodes of SbTi except those having matching 

nodes in SbTj:  
Deletions
∑ = |SbTi| - |ComSubTree(SbTi , SbTj)|  

− Total number of insertions - we insert into SbTi all nodes of SbTj except those having 

matching nodes in SbTi:  
Insertions
∑ = |SbTj| - |ComSubTree(SbTi , SbTj)| 

− Following CBS, using constant unit costs (=1) for node insertion and deletion operations, 
the edit distance between sub-trees SbTi and SbTj becomes as follows: Dist[|SbTi|][|SbTj|] 

=  
Deletions
∑  1 + 

Insertions
∑   1 = |SbTi| + |SbTj| - 2 |ComSubTree(SbTi , SbTj)| 

− Therefore, 
| |+| | - [| |][| |]

| ( , )| =
2

i j i j

i j

SbT SbT Dist SbT SbT
ComSubTree SbT SbT  

 

Algorithm CBS() 
 

Input: Sub-trees SbTi and SbTj (in ld-pair representations) 
Output: |ComSubTree(SbTi, SbTj)|                  
 

Begin                                                                                                            1 
Dist [][] = new [0...|SbTi|][0…|SbTj|]                                                             
Dist[0][0] = 0 
                                                                                                                                               

For (n = 1 ; n ≤ |SbTi| ; n++)                                                                    5 
{ Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n]) }                                           

For (m = 1 ; m ≤ |SbTj| ; m++)  
{ Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m]) }                                        

  

For (n = 1 ; n ≤ |SbTi| ; n++)                                                                 10 
{                                                                                                                    

For (m = 1 ; m ≤ |SbTj| ; m++)                                                                  
{ 

Dist[n][m] = min{                                                                                  
If (SbTi[n].d = SbTj[m].d & SbTi[n].l = SbTj[m].l)                   15 

{ Dist[n-1][m-1]  }, 
Dist[n-1][m] + CostDel(SbTi[n]),        // simplified node                   
Dist[n][m-1] + CostIns(SbTj[m])        // operations syntaxes.           
                 } 

}                                                                                                       20     
}                                                                                                                    

Return 
| |+| | - [| |][| |]i j i jSbT SbT Dist SbT SbT

2
        // |ComSubTree(SbTi, SbTj)|         

End                                                                                                                            
25                          
 

Figure 4. Algorithm CBS for identifying the structural commonality between sub-trees. 

For instance, |ComSubTree(A1,D1)|=3 (nodes b, c, d), |ComSubTree(E2,G2)|=1 (node f). 

4.2. Tree Edit Operations Costs (TOC) 
As stated previously, TOC is an algorithm dedicated to computing the tree edit distance 
operations costs. These costs will be exploited via [Nierman and Jagadish 2002]’s main edit 



  

distance approach (cf. Figure 6) providing an improved and more accurate XML structural 
similarity measure. TOC, developed in Figure 5, consists of three main steps: 
− Step 1 (lines 2-13) identifies the structural commonalities between each pair of non leaf 

sub-trees in the source and destination trees respectively (T1 and T2), assigning tree 
insert/delete operation costs accordingly. 

− Step 2 (lines 14-18) identifies the structural commonalities between each non leaf node 
sub-tree in the source tree (T1) and the destination tree (T2) as a whole, updating delete 
tree operation costs correspondingly. 

− Step 3 (lines 19-24) identifies the structural commonalities between each non leaf node 
sub-tree in the destination tree (T2) and the source tree (T1) as a whole, modifying insert 
tree operation costs accordingly. 

Note that the relevance of steps 2 and 3 becomes obvious when single level trees (trees made of 
leaf nodes) are involved in the comparison process (the F, I, J case discussed in Section 3.3). 
The insert/delete tree operations costs corresponding to leaf node sub-trees are not computed in 
TOC since such sub-trees come down to single nodes. Inserting/deleting a leaf node sub-tree is 
ultimately undertaken via simple node insertion/deletion operations which are assigned constant 
unit costs (=1). Using CBS, TOC identifies the structural commonality between each and every 
pair of sub-trees (SbTi, SbTj) in the two trees A and B being compared (step 1), as well as their 
commonalities with the whole trees A and B, respectively (steps 2 and 3).  

Consequently, those values are normalized via corresponding tree/sub-tree cardinalities 
Max(|SbTi| , |SbTj|) to be comprised between 0 and 1: 
 

− 
i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS
= 0 

       When there is no structural commonality 
       between SbTi and SbTj : CBS(SbTi, SbTj) = 0. 

− 
i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS
= 1 

       When the sub-trees are identical: 
       CBS(SbTi, SbTj) = |SbTi| = |SbTj| 

 

For instance, 1 1

1 1

(A , D ) 3
0.75

Max(|A | , |D |) 4

CBS
= = , 2 2

2 2

(E , G ) 1
0.25

Max(|E | , |G |) 4

CBS
= =  (cf. Figure 1). 

Thus, using the normalized commonality, tree operations costs would vary as follows: 
 

Maximum insert/delete tree cost for sub-tree Sbi: Minimum insert/delete tree cost for sub-tree Sbi: 

  CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes  of  SbTi

 Cost ( )     1
x

x ×∑  CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes of  SbTi

1

2
Cost ( )   

x 
x ×∑   

 
Following TOC, the maximal insert/delete tree operation cost for a given sub-tree SbTi (attained 
when no sub-tree structural similarities with SbTi are identified in the source/destination tree 
respectively) is the sum of the costs of inserting/deleting every individual node of Sbi. The 
minimal insert/delete tree operation cost for SbTi (attained when a sub-tree structurally identical 
to SbTi is identified in the source/destination tree respectively) is equal to half its corresponding 
insert/delete tree maximum cost. The minimal tree operation cost is defined in such a way in 
order to guaranty that the cost of inserting/deleting a tree will never be less than the cost of 
inserting/deleting a single node (single node operations having unit costs). In fact, TOC is based 
on the intuition that tree operations are more costly than node operations.   
 



  

Proof: The smallest sub-tree that can be treated via a tree operation is a sub-tree 
consisting of two nodes. For such a tree, the minimum insert/delete tree operation cost would be 
equal to 1 (its maximum cost being equal to 2), equivalent to the cost of inserting/deleting a 
single node, which is the lowest tree operation cost attainable following TOC. 

 

Algorithm TOC() 
 

Input: Trees T1 and T2 
Output: Insert tree and delete tree operations costs 
 

Begin                                                                                                                   1 
               

For each sub-tree SbTi in T1 / |SbTi| > 1         // Excluding leaf  
{                                                                      // node sub-trees in T1. 

CostDelTree(SbTi) = 
i

 
x

x∑ Del
All  nodes  of SbT

Cost ( )                                                            

 

For each sub-tree SbTj in T2 / |SbTj| > 1       // Excluding leaf                       5 
{                                                                   // node sub-trees in T2. 

CostInsTree(SbTj) = 
j

 
x

x∑ Ins
All  nodes  of SbT

Cost ( )  

                                                                                                      

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),  

                    
i ji

 i  j

 
( , )

(| | , | |)

x

x ×∑ Del
All  nodes  of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

CBS
 } 

 

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),                                         10 

                   
i jj

 i  j

 
( , )

(| | , | |)

x ×∑ Ins
All  nodes of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

x CBS
 }     

} 
}   
 

For each sub-tree SbTi in T1 / |SbTi| > 1                 // Excluding leaf    
{                                                                            // node sub-trees in T1.      15 

CostDelTree(SbTi) = Min{ CostDelTree(SbTi), 

                    
ii

 i

 
( , )

(| | , | |)

x 

x ×∑ Del
All  nodes of SbT 2

2

1
Cost ( )   

SbT T   
1 + 

Max SbT T

CBS
} 

} 
 

For each sub-tree SbTj in T2 / |SbTj| > 1                 // Excluding leaf                      
{                                                                             // node sub-trees in T2.     20    

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),  

                          
jj

 j

 
( , )

(| | , | |)

x

x ×∑ Ins
All  nodes  of SbT 1

1

1
Cost ( )   

T SbT   
1 + 

Max T SbT

CBS
} 

} 
                                                                                                                           

End                                                                                                                    25     

Figure 5. Tree edit distance Operations Costs algorithm. 
 
Using TOC, we compute the costs of tree insertion and deletion operations based on 

their corresponding trees’ maximum normalized commonality values (a maximum commonality 
value inducing a minimum tree operation cost). Therefore, instead of utilizing the contained in 
relation introduced in [Nierman and Jagadish 2002] (cf. Definition 2) in order to permit or deny 
tree insertion/deletion operations (thus disregarding certain sub-tree structural similarities while 
comparing two XML trees as shown in Section 3.3), we permit the insertion and deletion of 
any/all sub-trees by varying their corresponding tree insertion/deletion operation costs with 



  

respect to their structural similarities with the source/destination trees/sub-trees respectively. 
Note that inserting/deleting the whole destination/source trees is not allowed in our approach. In 
fact, by rejecting such operations, one cannot delete the entire source tree in one step and insert 
the entire destination tree in a second step, which completely undermine the purpose of the 
insert/delete tree operations. 

 
 

Algorithm EditDistance() 
 
Input: Trees A and B 
Output: Edit distance between A and B 
 
Begin                                                                                                                      1 

 

M = Degree(A)                        // The number of first level sub-trees in A.                   
N = Degree(B)                             // The number of first level sub-trees in B. 
 

Dist [][] = new [0...M][0…N]                                                                                    
Dist[0][0] = CostUpd(λ(A), λ(B))                                                                          5     
 

For (i = 1 ; i ≤ M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }                             
For (j = 1 ; j ≤ N ; j++) { Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }                               
For (i = 1 ; i ≤ M ; i++) 
 {                                                                                                                             

For (j = 1 ; j ≤ N ; j++)                                                                                  10 
 {                                                                                                                         

Dist[i][j] = min{                                                                                               
Dist[i-1][j-1] + EditDistance(Ai, Bj),     //Dynamic                
Dist[i-1][j] + CostDelTree(Ai),                 //programming                    
Dist[i][j-1] + CostInsTree(Bj)                                                                    15 

                  }                                                                                               
   }                                                                                                                       

}                                                                                                                              
Return Dist[M][N]                                                                                         

End                                                                                                                       20    

Figure 6. Edit distance algorithm [Nierman and Jagadish 2002]. 

4.3. Computation Examples 
Due to space limitations, we only detail the edit distance computations when comparing XML 
documents A, D and E. For the remaining cases, results are reported in Table 1. Recall that trees 
D and E are considered similar with respect to A following current approaches, i.e. [Chawathe 
1999] [Nierman and Jagadish 2002] [Dalamagas  et al. 2006], despite the fact that A/D share 
more structural similarities than A/E (as discussed in Section 3.3). In order to compare trees 
A/D, we start by executing algorithm TOC which yields the following insertion/deletion 
operations costs. When applied to XML trees A and D, our approach yields EditDistance(A, D) 
= 3.2856 (cf. Table 1) having: 

CostDelTree(A1) =
 Del

1 1 1

1 1

All  nodes  of A

1
3 1.7143

(A , D ) 1+0.75
1

Max(|A | , |D |)

 
1

Cost ( ) =  = 
 + 

 
x CBS

x × ×∑  
  

Likewise, CostInsTree(D1) = CostInsTree(D2)= 4 × 1/(1+0.75) = 2.2856 

Table 1. Computing edit distance for XML trees A and D. 
 λ(D) D1 D2 

λ(A) 0 2.2856 4.5712 
A1 1.7143 1 3.2856 

 
 

• Dist[1, 1] = 1: cost of transforming A1 to D1 (inserting node h). 
• Dist[1, 2] = 2.2856 + Dist[1, 1] = 3.2856: inserting D2 into A. 



  

On the other hand, when applied to XML trees A and E, our approach yields EditDistance(A, E) 
= 5 (cf. Table 2) having: 

CostDelTree(A1) = Del
1 1 1

1 1

All  nodes  of A

1
3 1.7143

(A , E ) 1+0.75
1 

Max(|A | , |E |)

 
1

Cost ( ) =  = 
+ 

  
x CBS

x × ×∑  
  

Likewise,  CostInsTree(E1)=4 × 1/(1+0.75)=2.2856 and CostInsTree(E2)=4 × 1/(1+0)=4 

Table 2. Computing edit distance for XML trees A and E. 

 0 E1 E2 
0 0 2.2856 6.2856 

A1 1.7143 1 5 
 

• Dist[1, 1] = 1: transforming A1 into E1 (inserting node h). 
• Dist[1, 2] = 4 + Dist[1, 1] = 5: cost of inserting E2 into A. 

Therefore, our approach is able to efficiently compare XML documents A, D and E 
underlining that documents A/D are more similar than A/E (pointing out structural similarities 
that are not detected via existing approaches): 

− Sim(A/D) = 1/(1+Dist(A, D)) = 1 /(1 + 3.2836) = 0.2333 
− Sim(A/E) = 1/(1+Dist(A, E)) = 1 /(1 + 5) = 0.1667 

As for XML trees A, D and E, our approach detects the structural similarities between 
A/B (with respect to A/C), F/G (with respect to F/H), as well as between F/I (with respect to 
F/J). Results are reported in Table 3. 

Table. 3. Distance/similarity values attained using our comparison approach for the various XML 
comparison examples treated throughout the paper. 

 Our Approach 
 Distance Similarity Nierman & Jagadish. Dalamagas et al. Chawathe 

A/B 1.5 0.4 
A/C 3 0.25 Detected Not detected Not detected 

A/D 3.2856 0.2333 
A/E 5 0.1667 Not detected Not detected Not detected 

F/G 5.4106 0.1560 
F/H 7 0.125 Not detected Not detected Not detected 

F/I 5.2856 0.1591 
F/J 6 0.1429 Not detected Not detected Not detected 

4.4. Overall Complexity 
The overall complexity of our approach simplifies to O(|T1||T2|):  
− Our CBS algorithm for the identification of the commonality between two sub-trees is of 

complexity: O(|SbTi||SbTj|) where |SbTi| and |SbTj| denote the cardinalities of the 
compared sub-trees. 

− Our TOC algorithm for computing the costs of tree insertion/deletion operations is of 
complexity O(|T1||T2|) (encompassing CBS ’s complexity): 
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where:  
• 

1Tn  and 
2Tn represent the number of leafs in T1 and T2 (the compared trees) 

• SbTi and SbTj underline sub-trees of T1 and T2 respectively. 
• 

11 T|T | - n  - 1  designates the number of sub-trees in T1 that do not consist of leaf nodes 

(similarly for 
11 T|T | - n  - 1  and the destination tree T2). 

− The edit distance algorithm (cf. Figure 6), which utilizes the results attained by TOC (tree 
operation costs), is of complexity O(|T1||T2|). 

 

5. Experimental Evaluation 

5.1. Evaluation Metrics 
In order to validate our structural similarity approach and compare its relevance with alternative 
methods, we make use of structural clustering. In our experiments, we adopt the well known 
single link hierarchical clustering techniques [Gower and Ross 1969][Halkidi et al. 2001] 
although any form of clustering could be utilized.  

In order to evaluate clustering quality, we utilize precision and recall metrics introduced 
in [Dalamagas et al. 2006]. Having an a priori knowledge of which documents should be 
members of the appropriate cluster (mapping between original DTD clusters and the extracted 
clusters), the authors in [Dalamagas et al. 2006] define precision PR and recall R as:  

1
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where: 
− n is the total number of clusters in the clustering set considered 
− ai is the number of XML documents in Ci that indeed correspond to DTDi (correctly 

clustered documents). 
− bi is the number of XML documents in Ci that do not correspond to DTDi (mis-clustered 

documents).  
− ci is the number of XML documents not in Ci, although they correspond to DTDi 

(documents that should have been clustered in Ci). 
 

Nonetheless, in addition to comparing one approach’s precision improvement to another’s recall 
improvement, it is a common practice to compare F-values, F-value = 2 PR R/(PR+R). 
Therefore, as with traditional information retrieval evaluation, high precision and recall, and 
thus high F-value (indicating in our case excellent clustering quality) characterize a good 
similarity method.  

 

 



  

5.2. Clustering XML Documents 
In each of our experiments, we compute a series of PR/R doublets, varying the clustering level 
(similarity threshold) in the [0, 1] interval. In other words, we construct a dendrogram (cf. 
Figure 7) such as: 

− For the initial clustering level s1=0 (or s1= the minimum similarity value attainable 
between any pair of documents), all XML documents appear in one global cluster, the 
starting cluster. 

− For the final clustering level sn=1 (with n the total number of levels, i.e. number of 
clustering sets in the dendrogram), each XML document will appear in a distinct cluster 
(to the exception of identical documents, which will remain in the same corresponding 
cluster). 

− Intermediate clustering sets will be identified for levels si where s1<si<sn. 

Then, we compute precision and recall values for each clustering set identified in the 
dendrogram, thus constructing their corresponding graphs that describe the system’s evolution 
throughout the clustering process. Overall average precision/recall values: Ave(PR) and Ave(R) 
(consequently Ave(F-Value)) considering the whole dendrogram, are computed on the basis of 
the attained series, providing yet another indicator of clustering quality (structure-based 
comparison quality) for the comparison method being tested. A sample dendrogram with 
detailed precision and recall computations, underlining the clustering evolution of 15 XML 
documents of the ACM SIGMOD Record1 (5 sampled from each of the OrdinaryIssuePage.dtd, 
ProceedingsPage.dtd and SigmodRecord.dtd DTD definitions), is given in Figure 7. 

 

 

Figure 7. Dendrogram and detailed PR/R computations when clustering (using our structural 
comparison approach) 15 XML documents sampled from the SIGMOD record.    

 

                                                 
1 Available at http://www.acm.org/sigmod/xml. 
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5.3. Experimental Results 
We conducted experiments on real and synthetic XML documents. Two sets of 600 documents 
were generated from 20 real-case1 and synthetic DTDs, using an adaptation of the IBM XML 
documents generator2. We varied the MaxRepeats parameter to determine the number of times a 
node will appear as a child of its parent node. For a real dataset, we considered the online 
version of the ACM SIGMOD Record. We experimented on a set of 104 documents 
corresponding to OrdinaryIssuePage.dtd (30 documents), ProceedingsPage.dtd (47 documents) 
and SigmodRecord.dtd (27 documents)3.  

 Precision, recall and F-value graphs are presented in Figures 8, 9 and 10. 
Corresponding Ave(PR), Ave(R) and Ave(F-value) values are reported in Table 4. 
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Figure 8. PR,R, F-Value graphs for clustering real SIGMOD Record XML documents. 
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Figure 9. PR,R, F-Value graphs for clustering XML documents of synthetic set 1 (MaxRepeats = 5). 

Table 4. Average PR, R and F-values obtained by varying the clustering level between [0, 1]. 
 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10) 
 PR R F-value PR R F-value PR R F-value 

Nierman & Jagadish 0.8095 0.6429 0.7165 0.3624 0.5840 0.4474 0.3349 0.3197 0.3271 
Dalamagas et al. 0.8571 0.5667 0.6823 0.3788 0.4671 0.4184 0.3312 0.2844 0.3061 

Chawathe 0.8571 0.5667 0.6823 0.3707 0.4581 0.4098 0.3320 0.2788 0.3031 
Our approach 0.9048 0.6095 0.7253 0.3644 0.5845 0.4489 0.3359 0.3624 0.3487 

 
Results, with respect to all three data sets, indicate that our approach yields improved 

global clustering quality (i.e. structural comparison quality) in comparison with current 
alternative approaches. To further validate our approach, a set of experimental tests on more 
complex structure document corpus including macromolecular tree patterns encoded in XML 
(e.g. RNA structures) is currently ongoing. It is worth noting that our experiments will not 

                                                 
1  From http://www.xmlfiles.com and  http://www.w3schools.com 
2  http://www.alphaworks.ibm.com. 
3 We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its 

relatively large size (479KB) in comparison with the XML documents corresponding to the other two DTDs 
(10KB of average size per document), we carefully decomposed SigmodRecord.xml to 27 documents, creating a 
set of XML documents conforming to SigmodRecord.dtd.  
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address the current INEX (INitiative for the Evaluation of XML Retrieval) XML corpus since 
its collections present little heterogeneity in both the tags and structures (INEX focuses mainly 
on text-rich documents). 
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Figure 10. PR,R, F-value graphs for clustering XML documents of synthetic set 2 (MaxRepeats = 10). 

 

Our experimental prototype, including implementations of our XML comparison 
method and those of [Chawathe 1999], [Nierman and Jagadish 2002] and [Dalamagas et al. 
2006] is available online for research purposes1. 

5.4. Timing Analysis 
Following the complexity analysis developed in Section 4.4, our XML structural similarity 
method is linear in the number of nodes of each tree, and polynomial (quadratic) in the size of 
the two trees being compared: O(|T1||T2|) (which simplifies to O(N2), N being the maximum 
number of nodes in trees T1 and T2). This linear dependency on the size of each tree is 
experimentally verified, timing results being presented in Figure 11. Timing experiments were 
carried out on a DELL PC with a Xeon 2.66 GHz processor (1GB RAM). 
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Figure 11. Timing results obtained using our comparison method. 

Figure 11 shows that the time to identify the structural similarity between two XML OLTs 
(Ordered Labeled Trees) of various sizes grows in an almost prefect linear fashion with tree 
size. Therefore, despite appearing theoretically more complex, timing results demonstrate that 
our method’s complexity, which simplifies to O(|T1||T2|), is the same as the approaches in 
[Chawathe 1999] [Nierman and Jagadish 2002] as well as [Dalamagas et al. 2006]. 

6. Conclusion 
In this paper, we proposed a structure based similarity approach for comparing XML 
documents. Based on a tree edit distance technique, our approach takes into account previously 
unaddressed sub-tree structural similarities in XML comparison. Our theoretical study as well as 

                                                 
1  http://www.u-bourgogne.fr/Dbconf/XS2 
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our experimental evaluation showed that our approach yields improved structural similarity 
results with respect to existing alternatives, while having the same time complexity (O(N2)).  

As continuing work, we are exploring the use of our approach in order to compare, not 
only the structure of XML documents (element/attribute labels) but also their information 
content (element/attribute values). In such a framework, XML Schemas might have to be 
integrated in the comparison process, schemas underlining element/attribute data types which 
are required to compare corresponding element/attribute values. We are also working on 
extending our approach to encompass semantic similarity assessment between element/attribute 
node labels while comparing XML documents (taking into account synonyms, antonyms, 
acronyms, etc., in the edit distance process). In addition, we plan on releasing a public web 
service version of our experimental prototype. 
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