

Efficient XML Structural Similarity Detection using Sub-tree
Commonalities

Joe Tekli1, Richard Chbeir1, Kokou Yetongnon1

1
 LE2I Laboratory UMR-CNRS, University of Bourgogne

21078 Dijon Cedex France
{joe.tekli, richard.chbeir, kokou.yetongnon}@u-bourgogne.fr

Abstract. Developing efficient techniques for comparing XML-based documents
becomes essential in the database and information retrieval communities. Various
algorithms for comparing hierarchically structured data, e.g. XML documents, have
been proposed in the literature. Most of them make use of techniques for finding the
edit distance between tree structures, XML documents being modeled as ordered
labeled trees. Nevertheless, a thorough investigation of current approaches led us to
identify several unaddressed structural similarities, i.e. sub-tree related similarities,
while comparing XML documents. In this paper, we provide an improved comparison
method to deal with such resemblances. Our approach is based on the concept of tree
edit distance, introducing the notion of commonality between sub-trees. Experiments
demonstrate that our approach yields better similarity results with respect to
alternative methods, while maintaining quatratic time complexity.

1. Introduction

W3C’s XML (eXtensible Mark-up Language) has recently gained unparalleled importance as a
fundamental standard for efficient data management and exchange. Information destined to be
broadcasted over the web is henceforth represented using XML, in order to guaranty its
interoperability. Owing to the unprecedented web exploitation of XML, XML-based
comparison, especially for heterogeneous1 documents, becomes a central issue in the
information retrieval and database communities, its applications ranging over version control,
change management and data warehousing [Chawathe et al. 1996] [Chawathe 1999] [Cobéna et
al. 2002], XML query systems [Schlieder 2001] [Zhang et al. 2003], as well as the
classification/clustering of XML documents gathered from the web against a set of DTDs
declared in an XML database [Nierman and Jagadish 2002] [Bertino et al. 2004] [Dalamagas et al.
2006].

A range of algorithms for comparing semi-structured data, e.g. XML-based documents,
have been proposed in the literature. Most of these approaches make use of techniques for
finding the edit distance between tree structures, XML documents being treated as Ordered
Labeled Trees (OLT) [WWW Consortium]. Nonetheless, a thorough investigation of the most
recent and efficient XML structural similarity approaches [Chawathe 1999] [Nierman and
Jagadish 2002] [Dalamagas et al. 2006] led us to pinpoint certain cases where the corresponding
edit distance outcome is inaccurate, as we will see in the motivating examples.

1 We note by heterogeneous XML document, one that does not conform to a given grammar (DTD/XML

Schema), which is the case of a lot of XML documents found on the web [Nierman and Jagadish 2002].

1.1. Motivation
Consider, for example, dummy XML trees A, B and C in Figure 1. One can realize that tree A is
structurally more similar to B, than to C, the sub-tree A1, made up of nodes b, c and d, appearing
twice in B (B1 and B2) and only once in C (C1). Nonetheless, such (sub-tree) structural
similarities are left unaddressed by most existing approaches, e.g. Chawathe’s method
[Chawathe 1999] considered as a reference point for the latest tree edit distance algorithms
[Nierman and Jagadish 2002] [Dalamagas et al. 2006]. Chawathe’s edit distance process
[Chawathe 1999] permits applying changes to only one node at a time (using node insert, delete
and update operations, with unit costs), thus yielding the same structural similarity value while
comparing trees A/B and A/C.
− Dist(A, B) = Dist(A, C) = 3, which is the cost of three consecutive insert operations

introducing nodes b, c and d (e, f and g) in tree A transforming it into B (C).
− Therefore, Sim(A, B) = Sim(A, C) = 0.25 where Sim = 1 / (1+Dist).

In theory, structural resemblances such as those between trees A/B and A/C could be
taken into consideration by applying generalizations of Chawathe’s approach [Chawathe 1999],
developed in [Nierman and Jagadish 2002] and [Dalamagas et al. 2006] (introducing edit
operations allowing the insertion and deletion of whole sub-trees). Yet, our examination of the
approaches provided in [Nierman and Jagadish 2002] [Dalamagas et al. 2006] led us to identify
certain cases where sub-tree structural similarities are disregarded:
− Similarity between trees A/D (sub-trees A1 and D2) in comparison with A/E.
− Similarity between trees F/G (sub-trees F1 and G2) relatively to F/H.
− Similarity between trees F/I (sub-tree F1 and tree I) in comparison with F/J.

In fact, the authors of [Nierman and Jagadish 2002] make use of the contained in
relation between trees (cf. Definition 2) so as to capture sub-tree similarities. Following
[Nierman and Jagadish 2002], a tree A may be inserted in T only if A is already contained in the
source tree T. Similarly, a tree A may be deleted only if A is already contained in the destination
tree T. Therefore, the approach in [Nierman and Jagadish 2002] captures the sub-tree structural
similarities between XML trees A/B in Figure 1, transforming A to B in a single edit operation:
(inserting sub-tree B2 in A, B2 occurring in A as A1), whereas transforming A to C would always
need three consecutive insert operations (inserting nodes e, f and g).

Nonetheless, when the containment relation is not fulfilled, certain structural similarities
are ignored. Consider, for instance, trees A and D in Figure 1. Since D2 is not contained in A, it
is inserted via four edit operations instead of one (insert tree), while transforming A to D,
ignoring the fact that part of D2 (sub-tree of nodes b, c, d) is identical to A1. Therefore, equal
distances are obtained when comparing trees A/D and A/E, disregarding A/D’s structural
resemblances.
− Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + CostIns(d) + CostIns(h) = 1 + 4 = 5
− Dist(A, E) = CostIns(h) + CostIns(e) + CostIns(f) + CostIns(g) + CostIns(h) = 1 + 4 = 5

Likewise for the D to A transformation (tree D2 will not be deleted via a single delete
tree operation since it is not contained in the destination tree A), achieving Dist(D, A) = Dist(E,
A) = 5. Other types of sub-tree structural similarities that are missed by [Nierman and Jagadish
2002]’s approach (and likewise missed by [Chawathe 1999] [Dalamagas et al. 2006]) can be
identified when comparing trees F/G and F/H, as well as F/I and F/J. The F, G, H case is
different than its predecessor (the A, D, F case) in that the sub-trees sharing structural
similarities (F1 and G2) occur at different depths (whereas with A/D, A1 and D2 are at the same
depth). On the other hand, the F, I, G case differs from the previous ones since single level trees
(I and J), which only encompass leaf nodes, are implicated in the comparison process.

Please note that [Dalamagas et al. 2006]’s algorithm yields the same results as [Nierman
and Jagadish 2002]’s algorithm, in the above examples, which is why it is not discussed in
detailed (it is as a specialized version of [Nierman and Jagadish 2002] where tree
insertion/deletion costs are computed as the sum of the costs of inserting/deleting all individual
nodes in the considered sub-trees).

Figure 1. Sample XML trees.

1.2. Contribution and Organization of the Paper
The goal of our study here is to provide an improved XML structural similarity method for
comparing heterogeneous XML documents. In short, we aim to build on existing approaches,
mainly [Chawathe 1999] [Nierman and Jagadish 2002], in order to take into account the various
sub-tree structural commonalities while comparing XML trees. The contribution of the paper
can be summarized as follows: i) introducing the notion of structural commonality between sub-
trees, putting forward an algorithm for its discovery, ii) introducing an efficient algorithm for
computing tree-based edit operations costs able to consider, via the sub-tree commonality
notion, XML sub-tree structural similarities, iii) developing a prototype to evaluate and validate
our approach. The remainder of this paper is organized as follows. Section 2 reviews
background in XML structural similarity. Section 3 presents preliminary definitions. In Section
4, we develop our XML structural similarity approach. Section 5 presents experimental
evaluation results. Conclusions and ongoing work are covered in Section 6.

2. Related Work
Various methods, for determining structural similarities between hierarchically structured data,
particularly XML documents, have been proposed. Most of them derive, in one way or another,
the dynamic programming techniques for finding edit distance between strings [Levenshtein
1966] [Wagner and Fisher 1974] [Wong and Chandra 1976]. In essence, all these approaches
aim at finding the cheapest sequence of edit operations that can transform one tree into another.
Nevertheless, tree edit distance algorithms can be distinguished by the set of edit operations that
are allowed as well as overall complexity and performance levels.

Early approaches in [Zhang and Shasha 1989] [Shasha and Zhang 1995] allow insertion,
deletion and relabeling of nodes anywhere in the tree. Yet, they are relatively complex. For
instance, the approach in [Shasha and Zhang 1995] has a time complexity O(|A||B| depth(A)

e

f g

a

b c

H1

H2

a

m

g

h i j

G1

G2

a

m

b

c d f

a

b

c d e

F1

a

b

c d h

e

f g

E1

h

a

b

c d h

b

c d h

D1

g

a

b

c d

e

f

a

b

d

b

c dc

a

b

c d A1

Tree A Tree C

B1 B2 C2

D2 E2

Tree E

Tree B

Tree I Tree G Tree H

Tree J

Tree DTree F

C1

depth(B)) (|A| and |B| denote tree cardinalities while depth(A) and depth(B) are the depths of
the trees). [Chawathe et al. 1996] [Cobéna et al. 2002] restrict insertion and deletion operations
to leaf nodes and add a move operator that can relocate a sub-tree, as a single edit operation,
from one parent to another. However, corresponding algorithms do not guaranty optimal results.
Recent work in [Chawathe 1999] restricts insertion and deletion operations to leaf nodes, and
allows the relabeling of nodes anywhere in the tree, while disregarding the move operation. The
overall complexity of [Chawathe 1999]’s algorithm is of O(N2). [Nierman and Jagadish 2002]
extend the approach in [Chawathe 1999] by adding two new operations: insert tree and delete
tree to allow insertion and deletion of whole sub-trees within in an Ordered Labeled Tree.
[Nierman and Jagadish 2002]’s overall complexity simplifies to O(N2) despite being
conceptually more complex than its predecessor. A specialized version of [Nierman and
Jagadish 2002]’s algorithm is provided in [Dalamagas et al. 2006]. On the other hand, an
original structural similarity approach is presented in [Flesca 2002]. It disregards OLTs and
utilizes the Fast Fourier Transform to compute similarity between XML documents. Yet, the
authors did not compare their algorithm’s optimality to existing edit distance approaches.
Another approach, disregarding edit distance computations was introduced by [Sanz et al.
2005]. It utilizes specific indexing structures rather than tree edit distance. Experimental results
in [Sanz et al. 2005] show that the approach is of linear complexity. Nonetheless, the authors of
[Sanz et al. 2005] did not compare their algorithm’s optimality to existing approaches.

3. Basic Definitions
Def. 1 - Ordered Labeled Tree: it is a rooted tree in which the nodes are ordered and labeled.
We note by λ(T) the label of the root node of tree T. In the rest of this paper, the term tree means
rooted ordered labeled tree.

Def. 2 - Tree “Contained in” relationship: a tree A is said to be contained in a tree T if all
nodes of A occur in T, with the same parent/child edge relationship and node order. Additional
nodes may occur in T between nodes in the embedding of A (e.g., tree J is contained in tree E).

Def. 3 - Sub-tree: given two trees T and T’, T’ is a sub-tree of T if all nodes of T’ occur in T,
with the same parent/child edge relationship and node order, such as no additional nodes occur
in the embedding of T’ (e.g., tree J in Figure 1 is a sub-tree of C, whereas J does not qualify as a
sub-tree of E since node h occur in its embedding in E).

Def. 4 - Ld-pair representation of a node: it is defined as the pair (l, d) where: l and d are
respectively the node’s label and depth in the tree. We use p.l and p.d to refer to the label and
the depth of an ld-pair node p respectively.

 A1 = ((b, 0), (c, 1), (d, 1))
 B1 = ((b, 0), (c, 1), (d, 1))
 B2 = ((b, 0), (c, 1), (d, 1))
 C1 = ((b, 0), (c, 1), (d, 1))
 C2 = ((e, 0), (f, 1), (g, 1))

D1 = ((b, 0), (c, 1), (d, 1), (h, 1))
D2 = ((b, 0), (c, 1), (d, 1), (h, 1))
E1 = ((b, 0), (c, 1), (d, 1), (h, 1))
E2 = ((e, 0), (f, 1), (g, 1), (h, 1))
F1 = ((b, 0), (c, 1), (d, 1), (e, 1))

G1 = ((m, 0), (b, 1), (c, 2), (d, 2), (e, 2))
G2 = ((b, 0), (c, 1), (d, 1), (f, 1))
H1 = ((m, 0), (g, 1), (h, 2), (i, 2), (j, 2))
H2 = ((g, 0), (h, 1), (i, 1), (j, 1))

Figure 2. Ld-pair representations of all sub-trees in XML trees A, B, C, D, E, F, G, H1 in Figure 1.

Def. 5 - Ld-pair representation of a tree: the ld-pair representation of a tree is the list, in
preorder, of the ld-pairs of its nodes (cf. Figure 2). Given a tree in ld-pair representation T = (t1,
t2, …, tn), T[i] refers to the ith node ti of T. Consequently, T[i].l and T[i].d denote, respectively,
the label and the depth of the ith node of T, i designating the preorder traversal rank of node T[i]
in T.

Def. 6 - Structural commonality between sub-trees: given two sub-trees A = (a1, …, am) and
B = (b1, …, bn), the structural commonality between A and B, designated by ComSubTree(A, B),

1 Trees I and J only encompass leaf nodes which is why they are not considered in this example.

is a set of nodes N = {n1, …, np} such that ∀ ni ∈ N, ni occurs in A and B with the same label,
depth and relative node order (in preorder traversal ranking) as in A and B. For 1 ≤ i ≤ p ; 1 ≤
r ≤ m ; 1 ≤ u ≤ n :

(1) ni.l = ar.l = bu.l
(2) ni.d = ar.d = bu.d
(3) For any nj ∈ N / i ≤ j, ∃ as ∈ A and bv ∈ B such as:

• nj.l = as.l = bv.l
• nj.d = as.d = bv.d
• r ≤ s, u ≤ v

(4) There is no set of nodes N’ that satisfies conditions 1, 2 and 3 and is of larger cardinality
than N.

In other words, ComSubTree(A, B)1 identifies the set of matching nodes between sub-trees A
and B, node matching being undertaken with respect to node label, depth and relative preorder
ranking. Please note that in the rest of the paper, the term commonality always stands for the
structural commonality.

On the other hand, our edit distance XML structural similarity approach utilizes five
edit operations, adopted from [Chawathe 1999] [Nierman and Jagadish 2002]: node insertion,
node deletion and node update, as well as tree insertion and tree deletion. Nonetheless, due to
lack of space, corresponding formal definitions are disregarded.

4. Proposal

Our XML structural similarity approach consists of two algorithms: i) an algorithm for
identifying the Commonality Between two Sub-trees (CBS), ii) and an algorithm for computing
the Tree edit distance Operations Costs (TOC), making use of CBS, its results being exploited
via [Nierman and Jagadish 2002]’s main edit distance algorithm in order to identify the
structural similarity between two XML documents (cf. Figure 3).

Figure 3. Simplified activity diagram of our XML structural similarity approach.

4.1. Commonality Between Sub-trees (CBS)
In order to capture the sub-tree structural similarities unaddressed by [Nierman and Jagadish
2002]’s approach, we identify the need to replace the tree contained in relation making up a
necessary condition for executing tree insertion and deletion operations in [Nierman and
Jagadish 2002], by introducing the notion of commonality between two sub-trees. Following
Definition 6, the problem of finding the structural commonality between two sub-trees SbTi and
SbTj is equivalent to finding the maximum number of matching nodes in SbTi and SbTj
(|ComSubTree(SbTi, SbTj)|). On the other hand, the problem of finding the shortest edit distance
between SbTi and SbTj comes down to identifying the minimal number of edit operations that
can transform SbTi to SbTj. Those are dual problems since identifying the shortest edit distance
between two sub-trees (trees) underscores, in a roundabout way, their maximum number of
matching nodes.

1 Our sub-tree structural commonality definition can be equally applied to whole trees (a sub-tree being

basically a tree). However, in this study, it is mostly utilized with sub-trees.

TOC

CBS

Edit Distance
Tree T2

Tree T1

Therefore, we introduce in Figure 4 an algorithm (CBS), based on the edit distance
concept, to identify the structural commonality between sub-trees (similarly to [Myers 1986] in
which Myers develops an edit distance based approach for computing the longest common sub-
sequence between two strings). Note that in CBS, sub-trees are treated in their ld-pair
representations (cf. Figure 2). Using the ld-pair tree representations, sub-trees are transformed
into modified sequences (ld-pairs), making them suitable for standard edit distance
computations.

Afterward, the maximum number of matching nodes between SbTi and SbTj,
|ComSubTree(SbTi, SbTj)|, is identified with respect to the computed minimum edit distance:
− Total number of deletions - we delete all nodes of SbTi except those having matching

nodes in SbTj:
Deletions
∑ = |SbTi| - |ComSubTree(SbTi , SbTj)|

− Total number of insertions - we insert into SbTi all nodes of SbTj except those having

matching nodes in SbTi:
Insertions
∑ = |SbTj| - |ComSubTree(SbTi , SbTj)|

− Following CBS, using constant unit costs (=1) for node insertion and deletion operations,
the edit distance between sub-trees SbTi and SbTj becomes as follows: Dist[|SbTi|][|SbTj|]

=
Deletions
∑ 1 +

Insertions
∑ 1 = |SbTi| + |SbTj| - 2 |ComSubTree(SbTi , SbTj)|

− Therefore,
| |+| | - [| |][| |]

| (,)| =
2

i j i j

i j

SbT SbT Dist SbT SbT
ComSubTree SbT SbT

Algorithm CBS()

Input: Sub-trees SbTi and SbTj (in ld-pair representations)
Output: |ComSubTree(SbTi, SbTj)|

Begin 1
Dist [][] = new [0...|SbTi|][0…|SbTj|]
Dist[0][0] = 0

For (n = 1 ; n ≤ |SbTi| ; n++) 5
{ Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n]) }

For (m = 1 ; m ≤ |SbTj| ; m++)
{ Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m]) }

For (n = 1 ; n ≤ |SbTi| ; n++) 10
{

For (m = 1 ; m ≤ |SbTj| ; m++)
{

Dist[n][m] = min{
If (SbTi[n].d = SbTj[m].d & SbTi[n].l = SbTj[m].l) 15

{ Dist[n-1][m-1] },
Dist[n-1][m] + CostDel(SbTi[n]), // simplified node
Dist[n][m-1] + CostIns(SbTj[m]) // operations syntaxes.
 }

} 20
}

Return
| |+| | - [| |][| |]i j i jSbT SbT Dist SbT SbT

2
 // |ComSubTree(SbTi, SbTj)|

End
25

Figure 4. Algorithm CBS for identifying the structural commonality between sub-trees.

For instance, |ComSubTree(A1,D1)|=3 (nodes b, c, d), |ComSubTree(E2,G2)|=1 (node f).

4.2. Tree Edit Operations Costs (TOC)
As stated previously, TOC is an algorithm dedicated to computing the tree edit distance
operations costs. These costs will be exploited via [Nierman and Jagadish 2002]’s main edit

distance approach (cf. Figure 6) providing an improved and more accurate XML structural
similarity measure. TOC, developed in Figure 5, consists of three main steps:
− Step 1 (lines 2-13) identifies the structural commonalities between each pair of non leaf

sub-trees in the source and destination trees respectively (T1 and T2), assigning tree
insert/delete operation costs accordingly.

− Step 2 (lines 14-18) identifies the structural commonalities between each non leaf node
sub-tree in the source tree (T1) and the destination tree (T2) as a whole, updating delete
tree operation costs correspondingly.

− Step 3 (lines 19-24) identifies the structural commonalities between each non leaf node
sub-tree in the destination tree (T2) and the source tree (T1) as a whole, modifying insert
tree operation costs accordingly.

Note that the relevance of steps 2 and 3 becomes obvious when single level trees (trees made of
leaf nodes) are involved in the comparison process (the F, I, J case discussed in Section 3.3).
The insert/delete tree operations costs corresponding to leaf node sub-trees are not computed in
TOC since such sub-trees come down to single nodes. Inserting/deleting a leaf node sub-tree is
ultimately undertaken via simple node insertion/deletion operations which are assigned constant
unit costs (=1). Using CBS, TOC identifies the structural commonality between each and every
pair of sub-trees (SbTi, SbTj) in the two trees A and B being compared (step 1), as well as their
commonalities with the whole trees A and B, respectively (steps 2 and 3).

Consequently, those values are normalized via corresponding tree/sub-tree cardinalities
Max(|SbTi| , |SbTj|) to be comprised between 0 and 1:

−
i j

i j

(SbT , SbT)

Max(|SbT | , |SbT |)

CBS
= 0

 When there is no structural commonality
 between SbTi and SbTj : CBS(SbTi, SbTj) = 0.

−
i j

i j

(SbT , SbT)

Max(|SbT | , |SbT |)

CBS
= 1

 When the sub-trees are identical:
 CBS(SbTi, SbTj) = |SbTi| = |SbTj|

For instance, 1 1

1 1

(A , D) 3
0.75

Max(|A | , |D |) 4

CBS
= = , 2 2

2 2

(E , G) 1
0.25

Max(|E | , |G |) 4

CBS
= = (cf. Figure 1).

Thus, using the normalized commonality, tree operations costs would vary as follows:

Maximum insert/delete tree cost for sub-tree Sbi: Minimum insert/delete tree cost for sub-tree Sbi:

 CostInsTree/DelTree(Sbi) = Ins/Del
All nodes of SbTi

 Cost () 1
x

x ×∑ CostInsTree/DelTree(Sbi) = Ins/Del
All nodes of SbTi

1

2
Cost ()

x
x ×∑

Following TOC, the maximal insert/delete tree operation cost for a given sub-tree SbTi (attained
when no sub-tree structural similarities with SbTi are identified in the source/destination tree
respectively) is the sum of the costs of inserting/deleting every individual node of Sbi. The
minimal insert/delete tree operation cost for SbTi (attained when a sub-tree structurally identical
to SbTi is identified in the source/destination tree respectively) is equal to half its corresponding
insert/delete tree maximum cost. The minimal tree operation cost is defined in such a way in
order to guaranty that the cost of inserting/deleting a tree will never be less than the cost of
inserting/deleting a single node (single node operations having unit costs). In fact, TOC is based
on the intuition that tree operations are more costly than node operations.

Proof: The smallest sub-tree that can be treated via a tree operation is a sub-tree
consisting of two nodes. For such a tree, the minimum insert/delete tree operation cost would be
equal to 1 (its maximum cost being equal to 2), equivalent to the cost of inserting/deleting a
single node, which is the lowest tree operation cost attainable following TOC.

Algorithm TOC()

Input: Trees T1 and T2
Output: Insert tree and delete tree operations costs

Begin 1

For each sub-tree SbTi in T1 / |SbTi| > 1 // Excluding leaf
{ // node sub-trees in T1.

CostDelTree(SbTi) =
i

x

x∑ Del
All nodes of SbT

Cost ()

For each sub-tree SbTj in T2 / |SbTj| > 1 // Excluding leaf 5
{ // node sub-trees in T2.

CostInsTree(SbTj) =
j

x

x∑ Ins
All nodes of SbT

Cost ()

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),

i ji

 i j

(,)

(| | , | |)

x

x ×∑ Del
All nodes of SbT

1
Cost ()

SbT SbT
1 +

Max SbT SbT

CBS
 }

CostInsTree(SbTj) = Min{ CostInsTree(SbTj), 10

i jj

 i j

(,)

(| | , | |)

x ×∑ Ins
All nodes of SbT

1
Cost ()

SbT SbT
1 +

Max SbT SbT

x CBS
 }

}
}

For each sub-tree SbTi in T1 / |SbTi| > 1 // Excluding leaf
{ // node sub-trees in T1. 15

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),

ii

 i

(,)

(| | , | |)

x

x ×∑ Del
All nodes of SbT 2

2

1
Cost ()

SbT T
1 +

Max SbT T

CBS
}

}

For each sub-tree SbTj in T2 / |SbTj| > 1 // Excluding leaf
{ // node sub-trees in T2. 20

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),

jj

 j

(,)

(| | , | |)

x

x ×∑ Ins
All nodes of SbT 1

1

1
Cost ()

T SbT
1 +

Max T SbT

CBS
}

}

End 25

Figure 5. Tree edit distance Operations Costs algorithm.

Using TOC, we compute the costs of tree insertion and deletion operations based on

their corresponding trees’ maximum normalized commonality values (a maximum commonality
value inducing a minimum tree operation cost). Therefore, instead of utilizing the contained in
relation introduced in [Nierman and Jagadish 2002] (cf. Definition 2) in order to permit or deny
tree insertion/deletion operations (thus disregarding certain sub-tree structural similarities while
comparing two XML trees as shown in Section 3.3), we permit the insertion and deletion of
any/all sub-trees by varying their corresponding tree insertion/deletion operation costs with

respect to their structural similarities with the source/destination trees/sub-trees respectively.
Note that inserting/deleting the whole destination/source trees is not allowed in our approach. In
fact, by rejecting such operations, one cannot delete the entire source tree in one step and insert
the entire destination tree in a second step, which completely undermine the purpose of the
insert/delete tree operations.

Algorithm EditDistance()

Input: Trees A and B
Output: Edit distance between A and B

Begin 1

M = Degree(A) // The number of first level sub-trees in A.
N = Degree(B) // The number of first level sub-trees in B.

Dist [][] = new [0...M][0…N]
Dist[0][0] = CostUpd(λ(A), λ(B)) 5

For (i = 1 ; i ≤ M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }
For (j = 1 ; j ≤ N ; j++) { Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }
For (i = 1 ; i ≤ M ; i++)
 {

For (j = 1 ; j ≤ N ; j++) 10
 {

Dist[i][j] = min{
Dist[i-1][j-1] + EditDistance(Ai, Bj), //Dynamic
Dist[i-1][j] + CostDelTree(Ai), //programming
Dist[i][j-1] + CostInsTree(Bj) 15

 }
 }

}
Return Dist[M][N]

End 20

Figure 6. Edit distance algorithm [Nierman and Jagadish 2002].

4.3. Computation Examples
Due to space limitations, we only detail the edit distance computations when comparing XML
documents A, D and E. For the remaining cases, results are reported in Table 1. Recall that trees
D and E are considered similar with respect to A following current approaches, i.e. [Chawathe
1999] [Nierman and Jagadish 2002] [Dalamagas et al. 2006], despite the fact that A/D share
more structural similarities than A/E (as discussed in Section 3.3). In order to compare trees
A/D, we start by executing algorithm TOC which yields the following insertion/deletion
operations costs. When applied to XML trees A and D, our approach yields EditDistance(A, D)
= 3.2856 (cf. Table 1) having:

CostDelTree(A1) =
 Del

1 1 1

1 1

All nodes of A

1
3 1.7143

(A , D) 1+0.75
1

Max(|A | , |D |)

1

Cost () = =
 +

x CBS

x × ×∑

Likewise, CostInsTree(D1) = CostInsTree(D2)= 4 × 1/(1+0.75) = 2.2856

Table 1. Computing edit distance for XML trees A and D.
 λ(D) D1 D2

λ(A) 0 2.2856 4.5712
A1 1.7143 1 3.2856

• Dist[1, 1] = 1: cost of transforming A1 to D1 (inserting node h).
• Dist[1, 2] = 2.2856 + Dist[1, 1] = 3.2856: inserting D2 into A.

On the other hand, when applied to XML trees A and E, our approach yields EditDistance(A, E)
= 5 (cf. Table 2) having:

CostDelTree(A1) = Del
1 1 1

1 1

All nodes of A

1
3 1.7143

(A , E) 1+0.75
1

Max(|A | , |E |)

1

Cost () = =
+

x CBS

x × ×∑

Likewise, CostInsTree(E1)=4 × 1/(1+0.75)=2.2856 and CostInsTree(E2)=4 × 1/(1+0)=4

Table 2. Computing edit distance for XML trees A and E.

 0 E1 E2
0 0 2.2856 6.2856

A1 1.7143 1 5

• Dist[1, 1] = 1: transforming A1 into E1 (inserting node h).
• Dist[1, 2] = 4 + Dist[1, 1] = 5: cost of inserting E2 into A.

Therefore, our approach is able to efficiently compare XML documents A, D and E
underlining that documents A/D are more similar than A/E (pointing out structural similarities
that are not detected via existing approaches):

− Sim(A/D) = 1/(1+Dist(A, D)) = 1 /(1 + 3.2836) = 0.2333
− Sim(A/E) = 1/(1+Dist(A, E)) = 1 /(1 + 5) = 0.1667

As for XML trees A, D and E, our approach detects the structural similarities between
A/B (with respect to A/C), F/G (with respect to F/H), as well as between F/I (with respect to
F/J). Results are reported in Table 3.

Table. 3. Distance/similarity values attained using our comparison approach for the various XML
comparison examples treated throughout the paper.

 Our Approach
 Distance Similarity Nierman & Jagadish. Dalamagas et al. Chawathe

A/B 1.5 0.4
A/C 3 0.25 Detected Not detected Not detected

A/D 3.2856 0.2333
A/E 5 0.1667 Not detected Not detected Not detected

F/G 5.4106 0.1560
F/H 7 0.125 Not detected Not detected Not detected

F/I 5.2856 0.1591
F/J 6 0.1429 Not detected Not detected Not detected

4.4. Overall Complexity
The overall complexity of our approach simplifies to O(|T1||T2|):
− Our CBS algorithm for the identification of the commonality between two sub-trees is of

complexity: O(|SbTi||SbTj|) where |SbTi| and |SbTj| denote the cardinalities of the
compared sub-trees.

− Our TOC algorithm for computing the costs of tree insertion/deletion operations is of
complexity O(|T1||T2|) (encompassing CBS ’s complexity):

11 2 2 1 2 2

2 1 2 2 1 2

| | 1| | 1 | | 1 | | 11

1 1 1 1

| | | | 1 | | 1

1 1 1

(| | | | + | | | | + | | | |)

 = (| | | | + | | | | + | | | |)

T T T

T T T

T nT n T n T nT

i j i 2 j 1
i j i j

T n T n T n

i j 2 i 1 j
j i j

 O SbT SbT SbT T SbT T

O SbT SbT T SbT T SbT

− −− − − − − −

= = = =

− − − − − −

= = =

∑ ∑ ∑ ∑

∑ ∑
1 1| | 1 1

1

 (| || |)

TT n

i

1 2O T T

− −

=

≤

∑ ∑

where:
•

1Tn and
2Tn represent the number of leafs in T1 and T2 (the compared trees)

• SbTi and SbTj underline sub-trees of T1 and T2 respectively.
•

11 T|T | - n - 1 designates the number of sub-trees in T1 that do not consist of leaf nodes

(similarly for
11 T|T | - n - 1 and the destination tree T2).

− The edit distance algorithm (cf. Figure 6), which utilizes the results attained by TOC (tree
operation costs), is of complexity O(|T1||T2|).

5. Experimental Evaluation

5.1. Evaluation Metrics
In order to validate our structural similarity approach and compare its relevance with alternative
methods, we make use of structural clustering. In our experiments, we adopt the well known
single link hierarchical clustering techniques [Gower and Ross 1969][Halkidi et al. 2001]
although any form of clustering could be utilized.

In order to evaluate clustering quality, we utilize precision and recall metrics introduced
in [Dalamagas et al. 2006]. Having an a priori knowledge of which documents should be
members of the appropriate cluster (mapping between original DTD clusters and the extracted
clusters), the authors in [Dalamagas et al. 2006] define precision PR and recall R as:

1

1 1
 +

n

ii
n n

i ii i

a
PR

a b
=

= =

∑
=
∑ ∑

1

1 1
 +

n

ii
n n

i ii i

a
R

a c
=

= =

∑
=
∑ ∑

where:
− n is the total number of clusters in the clustering set considered
− ai is the number of XML documents in Ci that indeed correspond to DTDi (correctly

clustered documents).
− bi is the number of XML documents in Ci that do not correspond to DTDi (mis-clustered

documents).
− ci is the number of XML documents not in Ci, although they correspond to DTDi

(documents that should have been clustered in Ci).

Nonetheless, in addition to comparing one approach’s precision improvement to another’s recall
improvement, it is a common practice to compare F-values, F-value = 2 PR R/(PR+R).
Therefore, as with traditional information retrieval evaluation, high precision and recall, and
thus high F-value (indicating in our case excellent clustering quality) characterize a good
similarity method.

5.2. Clustering XML Documents
In each of our experiments, we compute a series of PR/R doublets, varying the clustering level
(similarity threshold) in the [0, 1] interval. In other words, we construct a dendrogram (cf.
Figure 7) such as:

− For the initial clustering level s1=0 (or s1= the minimum similarity value attainable
between any pair of documents), all XML documents appear in one global cluster, the
starting cluster.

− For the final clustering level sn=1 (with n the total number of levels, i.e. number of
clustering sets in the dendrogram), each XML document will appear in a distinct cluster
(to the exception of identical documents, which will remain in the same corresponding
cluster).

− Intermediate clustering sets will be identified for levels si where s1<si<sn.

Then, we compute precision and recall values for each clustering set identified in the
dendrogram, thus constructing their corresponding graphs that describe the system’s evolution
throughout the clustering process. Overall average precision/recall values: Ave(PR) and Ave(R)
(consequently Ave(F-Value)) considering the whole dendrogram, are computed on the basis of
the attained series, providing yet another indicator of clustering quality (structure-based
comparison quality) for the comparison method being tested. A sample dendrogram with
detailed precision and recall computations, underlining the clustering evolution of 15 XML
documents of the ACM SIGMOD Record1 (5 sampled from each of the OrdinaryIssuePage.dtd,
ProceedingsPage.dtd and SigmodRecord.dtd DTD definitions), is given in Figure 7.

Figure 7. Dendrogram and detailed PR/R computations when clustering (using our structural
comparison approach) 15 XML documents sampled from the SIGMOD record.

1 Available at http://www.acm.org/sigmod/xml.

Ord5

Ord1
Ord2
Ord3
Ord4
Ord5
Pro1
Pro2
Pro3
Pro4
Pro5
Sig1
Sig2
Sig3
Sig4
Sig5

Ord1
Ord2
Ord3
Ord4

Pro2
Pro3
Pro4
Pro5
Sig1
Sig2
Sig3
Sig4
Sig3

Pro1

Sig1
Sig2
Sig3

Sig4
Sig5

Sig4
Sig5

Sig1
Sig3
Sig2

Sig1
Sig5

Pro1
Pro3
Pro5

Pro2
Pro4

Ord1
Ord2
Ord4
Ord5
Ord3
Pro1
Pro3
Pro5
Pro2
Pro4
Sig1
Sig3
Sig2
Sig4
Sig5

Pro2
Pro3
Pro4
Pro5

Ord3
Pro1

Ord1
Ord2
Ord4
Ord5

Sig1
Sig2
Sig3

Pro2
Pro3
Pro4
Pro5

Pro1

Sig4
Sig5

Pro2
Pro3
Pro4
Pro5

Pro1
Pro2
Pro3
Pro4
Pro5

Pro1

Sig2
Sig4
Sig5

Sig1
Sig3
Sig2
Sig4
Sig5

Level:

PR =
R =

1 & 2

0.3333
1

3 & 4

1
1

5

1
0.8667

6 & 7

1
0.8

8

1
0.5333

9

1
0.4667

10

1
0.2667

…, 14

0.2

∑a =

∑b =

5

10

15

0

13

0

12

0

8
0

7

0

4

0 0

∑c = 0 0 2 3 7 8 11 12

Ord5

Ord1
Ord2
Ord3
Ord4

Ord1
Ord2
Ord4
Ord5
Ord3

Ord1
Ord2
Ord4
Ord5
Ord3

Ord1
Ord2
Ord4
Ord5
Ord3

Legend: Cluster mapped to OrdinaryIssuePage.dtd

Cluster mapped to ProceedingsPage.dtd

Cluster mapped to SigmodRecord.dtd

Cluster not mapped to any DTD

3

1

5.3. Experimental Results
We conducted experiments on real and synthetic XML documents. Two sets of 600 documents
were generated from 20 real-case1 and synthetic DTDs, using an adaptation of the IBM XML
documents generator2. We varied the MaxRepeats parameter to determine the number of times a
node will appear as a child of its parent node. For a real dataset, we considered the online
version of the ACM SIGMOD Record. We experimented on a set of 104 documents
corresponding to OrdinaryIssuePage.dtd (30 documents), ProceedingsPage.dtd (47 documents)
and SigmodRecord.dtd (27 documents)3.

 Precision, recall and F-value graphs are presented in Figures 8, 9 and 10.
Corresponding Ave(PR), Ave(R) and Ave(F-value) values are reported in Table 4.

0

0.2

0.4

0.6

0.8

1

1.2

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1.2

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

1.2

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

F-
Va

lu
e

Figure 8. PR,R, F-Value graphs for clustering real SIGMOD Record XML documents.

0

0.2

0.4

0.6

0.8

1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1.2

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

F-
Va

lu
e

Figure 9. PR,R, F-Value graphs for clustering XML documents of synthetic set 1 (MaxRepeats = 5).

Table 4. Average PR, R and F-values obtained by varying the clustering level between [0, 1].
 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10)
 PR R F-value PR R F-value PR R F-value

Nierman & Jagadish 0.8095 0.6429 0.7165 0.3624 0.5840 0.4474 0.3349 0.3197 0.3271
Dalamagas et al. 0.8571 0.5667 0.6823 0.3788 0.4671 0.4184 0.3312 0.2844 0.3061

Chawathe 0.8571 0.5667 0.6823 0.3707 0.4581 0.4098 0.3320 0.2788 0.3031
Our approach 0.9048 0.6095 0.7253 0.3644 0.5845 0.4489 0.3359 0.3624 0.3487

Results, with respect to all three data sets, indicate that our approach yields improved

global clustering quality (i.e. structural comparison quality) in comparison with current
alternative approaches. To further validate our approach, a set of experimental tests on more
complex structure document corpus including macromolecular tree patterns encoded in XML
(e.g. RNA structures) is currently ongoing. It is worth noting that our experiments will not

1 From http://www.xmlfiles.com and http://www.w3schools.com
2 http://www.alphaworks.ibm.com.
3 We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its

relatively large size (479KB) in comparison with the XML documents corresponding to the other two DTDs
(10KB of average size per document), we carefully decomposed SigmodRecord.xml to 27 documents, creating a
set of XML documents conforming to SigmodRecord.dtd.

Nierman & Jagadish Dalamagas et al. Chawathe Our App.

Nierman & Jagadish Dalamagas et al. Chawathe Our App.

address the current INEX (INitiative for the Evaluation of XML Retrieval) XML corpus since
its collections present little heterogeneity in both the tags and structures (INEX focuses mainly
on text-rich documents).

0

0.2

0.4

0.6

0.8

1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1.2

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Clustering levels

F-
Va

lu
e

Figure 10. PR,R, F-value graphs for clustering XML documents of synthetic set 2 (MaxRepeats = 10).

Our experimental prototype, including implementations of our XML comparison
method and those of [Chawathe 1999], [Nierman and Jagadish 2002] and [Dalamagas et al.
2006] is available online for research purposes1.

5.4. Timing Analysis
Following the complexity analysis developed in Section 4.4, our XML structural similarity
method is linear in the number of nodes of each tree, and polynomial (quadratic) in the size of
the two trees being compared: O(|T1||T2|) (which simplifies to O(N2), N being the maximum
number of nodes in trees T1 and T2). This linear dependency on the size of each tree is
experimentally verified, timing results being presented in Figure 11. Timing experiments were
carried out on a DELL PC with a Xeon 2.66 GHz processor (1GB RAM).

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
in

 s
ec

on
ds

) 100
200
300
400
500
600
700
800
900
1000

Figure 11. Timing results obtained using our comparison method.

Figure 11 shows that the time to identify the structural similarity between two XML OLTs
(Ordered Labeled Trees) of various sizes grows in an almost prefect linear fashion with tree
size. Therefore, despite appearing theoretically more complex, timing results demonstrate that
our method’s complexity, which simplifies to O(|T1||T2|), is the same as the approaches in
[Chawathe 1999] [Nierman and Jagadish 2002] as well as [Dalamagas et al. 2006].

6. Conclusion
In this paper, we proposed a structure based similarity approach for comparing XML
documents. Based on a tree edit distance technique, our approach takes into account previously
unaddressed sub-tree structural similarities in XML comparison. Our theoretical study as well as

1 http://www.u-bourgogne.fr/Dbconf/XS2

Nierman & Jagadish Dalamagas et al. Chawathe Our App.

Number
of nodes
in tree T2

Number of nodes in tree T1

our experimental evaluation showed that our approach yields improved structural similarity
results with respect to existing alternatives, while having the same time complexity (O(N2)).

As continuing work, we are exploring the use of our approach in order to compare, not
only the structure of XML documents (element/attribute labels) but also their information
content (element/attribute values). In such a framework, XML Schemas might have to be
integrated in the comparison process, schemas underlining element/attribute data types which
are required to compare corresponding element/attribute values. We are also working on
extending our approach to encompass semantic similarity assessment between element/attribute
node labels while comparing XML documents (taking into account synonyms, antonyms,
acronyms, etc., in the edit distance process). In addition, we plan on releasing a public web
service version of our experimental prototype.

References
Aho A., Hirschberg D., and Ullman J., Bounds on the Complexity of the Longest Common Subsequence

Problem. Association for Computing Machinery, 23, 1, 1976, 1-12.
Bertino E., Guerrini G., Mesiti M., A Matching Algorithm for Measuring the Structural Similarity

between an XML Documents and a DTD and its Applications, Elsevier Computer Science, 29, 2004,
23-46.

Chawathe S., Rajaraman A., Garcia-Molina H., and Widom J., Change Detection in Hierarchically
Structured Information. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD), Montreal, Quebec, Canada, 1996.

Chawathe S., Comparing Hierarchical Data in External Memory. In Proceedings of the Twenty-fth Int.
Conf. on Very Large Data Bases, 1999, 90-101.

Cobéna G., Abiteboul S. and Marian A., Detecting Changes in XML Documents. In Proceedings of the
IEEE Int. Conf. on Data Engineering, 2002, 41-52.

Dalamagas, T., Cheng, T., Winkel, K., and Sellis, T. 2006. A methodology for clustering XML
documents by structure. Inf. Syst. 31, 3, May. 2006, 187-228.

Flesca S., Manco G., Masciari E., Pontieri L., and Pugliese A., Detecting Structural Similarities Between
XML Documents. In Proc. of the 5th Int. Workshop on The Web and Databases, 2002.

Gower J. C. and Ross G. J. S., Minimum Spanning Trees and Single Linkage Cluster Analysis, Applied
Statistics, 18, 1969, 54-64.

Halkidi M., Batistakis Y. and Vazirgiannis M., Clustering Algorithms and Validity Measures, in SSDBM
Conference, Virginia, USA, 2001.

Levenshtein V., Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Sov. Phys.
Dokl., 6, 1966, 707-710.

Myers E., An O(N D) Difference Algorithm and Its Variations. Algorithmica, 1, 2, 1986, 251-266.
Nierman A. and Jagadish H. V., Evaluating structural similarity in XML documents. In Proceedings of

SIGMOD WebDB’02, 2002.
Sanz I., Mesiti M., Guerrini G. and Berlanga Lavori R., Approximate Subtree Identification in

Heterogeneous XML Documents Collections. Xsym’05, 2005, 192-206.
Schlieder T., Similarity Search in XML Data Using Cost-based Query Transformations. In Proceedings

of SIGMOD WebDB’01, 2001.
Shasha D. and Zhang K., Approximate Tree Pattern Matching. In Pattern Matching in Strings, Trees and

Arrays, chapter 14, Oxford University Press, 1995.
Wagner J. and Fisher M., The String-to-String correction problem. Journal of the Association of

Computing Machinery, 21, 1, 1974, 168-173.
Wong C. and Chandra A., Bounds for the String Editing Problem. Journal of the Association for

Computing Machinery, 23, 1, January 1976, 13-16.
WWW Consortium, The Document Object Model, http://www.w3.org/DOM.
Zhang K. and Shasha D., Simple Fast Algorithms for the Editing Distance Between Trees and Related

Problems. SIAM Journal of Computing, 18, 6, 1989, 1245-1262.
Zhang Z., Li R., Cao S. and Zhu Y., Similarity Metric in XML Documents. Knowledge Management and

Experience Management Workshop, 2003.

