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Bidirectional Electronic Textile Token Grid Network 

Topology 

 

Antonio F. Khalil 

 

 

Abstract 

 

 

Electronic Textile (e-textile) applications, seem to obtain more and more importance 

in our daily lives; the huge amount of fabrics around us help electronic textile to mingle 

and integrate seamlessly with our daily life without interfering or changing our habits 

and lifestyles. Reliability is a very important factor for an electronic textile application 

especially in the fields of medicine, security and other fields where system failure is 

not tolerable and promptness of response is very delicate. The contributions of this 

study focus on defining a token grid networking scheme that enhances fault tolerance 

for electronic textile systems and increases the communication speed between the 

communicating components vis-à-vis other e-textile token grid topologies, it also 

presents a simulation environment used to examine and validate the defined topology.  
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CHAPTER ONE 

1. INTRODUCTION 

Electronic textiles, also known as e-textiles, smart fabrics, smart textiles … 

are a growing field of applications. Electronic textiles have electronics and 

interconnections merged into the fabric. The E-Textile Research Group in [Hwang, 

1993] defines the electronic textiles as follows: "Electronic textiles (e-textiles) are 

fabrics that have electronics and interconnections woven into them, with physical 

flexibility and size that cannot be achieved with existing electronic manufacturing 

techniques. Components and interconnections are intrinsic to the fabric and thus are 

less visible and not susceptible to becoming tangled together or snagged by the 

surroundings. An e-textile can be worn in everyday situations where currently 

available wearable computers would hinder the user. E-textiles can also more easily 

adapt to changes in the computational and sensing requirements of an application, a 

useful feature for power management and context awareness."  

Clothes, carpets, curtains, furniture … are all every day materials that are 

totally or partially made from textiles. The presence of non-intrusive electronic 

systems in our daily usage is becoming more and more important. The mix of textiles 

and interconnected electronic devices blending together to make a system operate 

invisibly among everyday objects is needed. Electronic textiles are mostly emerging 

in fields like sports, health monitoring, emergency response and protective 

equipment [Martin May 2012]. A reliable electronic textile system is a must; textiles 

are susceptible to tears and ruptures, interconnection between devices is prone to 

disconnection, maintaining this connection along with an efficient and reliable 

networking topology is essential.  

The main objective of this thesis is to present the design and simulation of a 

network topology, the Bidirectional E-Textile Token Grid (BTTG). The BTTG is 

used as a network topology for electronic textiles systems, it assures minimal 

communication cost between electronic devices along with high fault tolerance. The 
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usage of such a network topology expresses its prominence in systems where 

promptness in response and intolerability of faults are delicate. For instance, burglar 

alarm systems as explained in [National Park Service 2002] are very hard to design 

and setup, they are bounded by many difficulties that cannot be avoided easily (large 

areas should be covered by detectors, detector should be nonintrusive, furniture 

should not block detectors, and many other physical and aesthetic considerations), 

the use of electronic textiles simplifies most of the hard conditions, and the use of 

reliable communication topologies such as the BTTG makes the system reliable and 

fault tolerant, it also makes thief tracking possible due to faster connection between 

detection devices.  

 

Below are the major contributions of this thesis: 

 The first contribution of this thesis is the design of a bidirectional 

communication scheme, which enhances the communication between 

nodes of the e-textile token grid, enables the communication over a 

minimal path, and minimizes the time cost in case of high 

communication traffic. 

 The second contribution is the design of a fault tolerant scheme that 

enhances the fault tolerance capability of the token grid while 

maintaining a relatively small wiring volume through the use of I2C 

bus in multi-master mode. 

 

The thesis is organized as follows: Chapter 2 discusses background 

information necessary for understanding the work performed in this research. 

Chapter 3 presents the Bidirectional E-Textile Token Grid and discusses in detail its 

network topology and operation schemes. Chapter 4 presents the simulation process 

of both the original e-textile token grid and the bidirectional e-textile token grid in 

normal and faulty situations and discusses simulation results along with theoretical 

and simulated transmission costs of the bidirectional e-textile token grid. Chapter 5 

presents conclusions and summarizes the contributions of this thesis. 
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CHAPTER TWO 

2. RELATED WORK 

This chapter reviews multiple electronic textile communication schemes: it 

focuses on the e-textile token grid network communication scheme [Nakad 2003] 

then examines two variations of the e-textile token grid; the E-Textile Token Grid 

with Dual Rings [Zheng, Wu, Chen, and Zhou 2006] and the E-Textile Token Grid 

with No Merge. Finally an overview of the OMNet++ simulation framework 

[OMNet++ community 2009] and the I2C bus topology [I2C Bus. 2012] are provided. 

If we consider an e-textile network as communicating nodes, many network 

schemes can be adopted for the communication, but not all are suitable and optimal 

for the requirements of an e-textile network. Important features of e-textiles network 

schemes are low power consumption, fault tolerance, and scalability [Nakad, Jones, 

Martin and Fawaz 2009]. Ease of implementation in textile and fast response to 

events are additional important features. 

In “Architectures for e-Textiles” in [Nakad 2003], two networking scheme 

for e-textile were discussed and proved unreliable. The first networking scheme is 

the hypercube network scheme. In this scheme, nodes connections are linearly 

dependent on the hypercube dimensions that make scalability extremely hard to 

accomplish. Thus hypercube topology is not suitable for e-textile. The second 

networking scheme that was considered is the tree network topology. However, the 

communication between the nodes is highly dependent on the parent nodes in the tree 

and any failure affecting the main nodes is not recoverable and fault tolerance is not 

efficient, thus this scheme cannot be considered. 

On the other hand, one of the most suitable network topologies for e-textile is 

the token grid network scheme, it is scalable and fault tolerant [Nakad 2003]. The e-

textile token grid networking scheme is discussed in the following section. 
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2.1 E-Textile Token Grid 

2.1.1 Network Topology 

The e-textile token grid (referred as TTG in what follows) is a two-

dimensional network architecture based on the token grid networking scheme 

presented in [Todd 1992] and [Todd 1994]. It is composed of nodes connected with 

each other through token rings in an X-Y layout which facilitates its implementation 

on a fabric backplane [Nakad, Jones, Martin and Fawaz 2009]. Figure 2.1 (a) is an 

example of a 4x4 TTG network. 

Each node in the TTG is connected to two token rings one on the row level 

and the other on the column level. A token that circulate on a token ring keeps 

information about the network topology and state of the nodes, it is also used by the 

nodes to acquire the “right to send” of data over the ring.  Z. Nakad in his TTG, 

presented a transverse dimension, this dimension was used to join processing nodes 

on different fabric pieces, it also helped in improving the communication speed, by 

decreasing the number of hops a token has to traverse on a ring (the number of hops 

is directly related to the number of nodes on a ring) [Nakad, Jones, Martin and Fawaz 

2009]. Figure 2.1 (b) gives an illustration about the transverse dimension. 

 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b)(a)

GRID 0 GRID 1

 

Figure 2.1: (a) is a 4x4 example of an E-Textile token grid TTG (based on Figure 6.20 in [Nakad 2003]). (b) 

Two TTG grids connected with a transverse ring dimension (based on Figure 6.1 in [Nakad 2003]) 

 

A fault tolerant scheme was introduced that overcomes link and node failures 

in the grid. Power saving is ensured through the handling of routing processes around 

sleeping nodes without the need for waking them unless needed. 
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In the following sections, the operation of the TTG in normal mode (without 

faults in the grid) is explained, as well as its operation when faults are introduced. 

 

2.1.2 Normal Operation Mode 

In a normal operation mode, two types of communication between nodes can 

be initiated. The first type of communication is when a node desires to send a data 

packet to another node on the same row ring or same column ring. In this case, the 

source node will have to wait for the corresponding ring token and once the token is 

acquired, the node sends the data packet on the ring and then relieves the token for 

the next node to acquire. The other nodes on the ring, once they receive the data 

packet they check if they are the intended destination, then they will consume the 

packet, otherwise the packet is forwarded to the next node along the ring. Figure 2.2 

is an example where Node (0, 1) sends a packet to Node (0, 3), a node on the same 

row ring.  

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 2.2: A communication along row ring 0 from Node (0, 1) to Node (0, 3) passing by Node (0, 2) 

 

The second type of communication is when a node desires to send a data 

packet to another node that is neither on its row ring nor on its column ring. In this 

case, the source node needs to send a merge request to a node on the same row ring 

of the source node and the same column ring of the destination node, or to a node on 

the same column ring of the source node and the same row ring of the destination 

node. When the intended node receives the merge request circulated within the 

token, it will wait to acquire the token of the other ring then it enters a merge state 
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and it sends a row/column token to its row ring that gives the nodes on the row ring 

the right to send packet to a destination on the merged node’s column, and once the 

row/column token is received by the merged node, it will send a column/row token to 

its column ring nodes and they can send a packet to a destination on the merged 

node’s row ring. After both tokens are captured by the initiating node it exits the 

merged state and a regular token operation is reinstated on the related row and 

column rings.  Figure 2.3 is an example where Node (0, 1) sends a packet to Node (3, 

3) and we can see Node (0, 3) in merge state. 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 2.3: A communication from Node (0, 1) to Node (3, 3) we can see the Node (0, 3) in merge state. 

 

 In the following section we will discuss the TTG networking schemes in case 

of faults or sleeping nodes; we will present the error detection and information 

propagation in case of error, then we will explain the routing schemes. 

2.1.3 Fault Tolerance and Sleeping Node Operation 

As a convention, the routing process around a sleeping node is treated the 

same way as the case of a failing node, for this reason in what follows we will 

explain the fault tolerant networking scheme.  

Faults can occur along a ring (row or column). A link failure disables the 

corresponding token ring connecting the failing link. However, a node failure will 

disable both column and row rings connected to the node. The failure of a ring will 

stop the communication between the nodes connected on the ring however the 

remaining grid token rings will continue to operate normally. Faults can either decay 
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the performance of the system or they can even destroy the grid communication 

depending on their location and the number of their occurrence on the token grid.  

 

2.1.3.1 Error Detection and Information Propagation 

In the TTG case, each node has three separate timeout counters each of which 

refers to a link on a ring (row, column and transverse rings). Each one of the counters 

is reset to zero at the moment the node receives a token, a data packet, or error packet 

from the corresponding ring. In case the counter is not reset to zero and it reaches a 

preset timeout period, the corresponding node creates an error packet and propagates 

it along the affected ring. Every node that receives this error packet will update a flag 

indicating that the corresponding ring is in error. 

In order to propagate the error information to the remaining nodes in the grid, 

the nodes on the affected ring, will propagate this information to the remaining rings 

they are connected to, and by this action the other nodes on the grid will be notified 

about the error. It is important to note that each node holds three different variables 

for errors occurring on rows, columns and transverse rings in the grid network. 

Figure 2.4 shows a TTG with errors along different locations in the grid. 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

xX

xX

xX

 

Figure 2.4: TTG 4x4 grid with failure along row ring 0, row ring 3 and column ring 2 

 

2.1.3.2 Fault Tolerant Routing Scheme 

In order to explain the routing scheme in case of faults, let us consider a 

simple case where Node (0, 0) wants to send a data packet to Node (1, 1) and 
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considering that a link fault is present on the destination row. Figure 2.5 illustrates 

the above case. After propagation of error information; Node (0, 0) requests Node (0, 

1) to go into a merged state. Node (0, 1) will receive the request for the merge 

through the row token. Once it receives the row/column token, Node (0, 0) releases 

the data packet that is forwarded by Node (0, 1) to Node (1, 1).  

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

xX

 

Figure 2.5: TTG with a link error at the destination row 

 

Another and more complex case of fault occurrences, is when there exist an 

error on both row rings or both column rings of the source and destination nodes. 

Figure 2.6 (a, b) presents examples where Node (0, 0) is the source node and Node 

(1, 1) is the destination node. In this case, the nodes needed for merge for the 

transmission to occur are both isolated, for this reason, the TTG forwards the 

message along a “Wrong Route" (the column in the case of Figure 2.6(a) and the row 

in case of Figure 2.6(b)). Once a node receives the data packet, it identifies that this 

packet should be saved in its data queue then processed when the right token is 

received. If we consider the example of figure 2.6 (a), the data packet will first reach 

Node (1, 0). At that node, the destination Node (1, 1) is not reachable because of the 

link error and the data packet is forwarded on the “Wrong Route" again, down the 

column. Node (2, 0) requests Node (2, 1) for a merge; this final merge enables the 

data packet to reach Node (1, 1) through the column ring. 

Additional detailed information about the fault tolerance scheme in the same 

grid and along a transverse link fault can be observed in [Nakad 2003]. 
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

xX

xX 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

xXxX

(a) (b)  

Figure 2.6: (a) TTG with links error along row ring of source Node(0, 0) and row ring of destination 

Node(1, 1). (b) TTG with links error along column ring of source Node(0, 0) and column ring of destination 

Node(1, 1). 

 

 

In the following section, the E-Textile Token Grid with Dual Rings is 

explained, a variation of the TTG with higher fault tolerance capability. 

2.2 E-textile Token Grid with Dual Rings 

A variant to the e-textile token grid is the e-textiles token grid with dual rings 

(TGDR) [Zheng, Wu, Chen, and Zhou 2006]. This grid network topology operates 

the same way as the TTG in case of normal mode operation. However, it enhances 

the fault tolerance capability through the introduction of additional rings parallel to 

every exiting ring with opposite direction of circulation. 

2.2.1 Network Topology 

The e-textile token grid with dual rings is a two dimensional grid composed 

out of M rows and N columns. A node in the TGDR grid has a row ID and a column 

ID which indicates its position in the token grid. Each node is connected to two rings 

on the row level and two other rings on the column level. The routes of two row 

rings or two column rings on the same node are connected in reverse directions. An 

example of a 4x4 TGDR grid is shown in Figure 2.7. 
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0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 2.7: 4x4 TGDR grid where primary rings are in black and the parallel rings with opposite routing 

direction are in red. 

 

In addition to the above, each node in the grid has 4 transmitters and 4 

receivers [Zheng, Wu, Chen, and Zhou 2006]. Each ring in the TGDR has a token 

circulating on it, keeping the information of the network and giving the nodes the 

access right to send data over the communication links. Each node has the chance of 

acquiring four tokens, two on the row level and two on the column level. 

2.2.2 Normal Operation Mode 

The normal operation mode of the TGDR is similar to the TTG grid operation 

explained in subsection 2.2.1.1 above. If a node wants to send a packet to another 

node on the same row or the same column ring, the node should wait for the 

corresponding ring token then release the packet on the ring for the destination node 

to grab it. In case the destination of the data packet is on a different row and column 

ring a merge request is sent to a node that intersects the row ring of the source and 

the column ring of the destination node, or a node that intersects the column node of 

the source and the row ring of the destination node in order to connect the source 

node with the destination node into one merged ring. More information regarding the 

normal operation mode can be found in details in [Todd 1992]. 

In what follows we discuss the fault tolerance and sleeping node operations 

of the TGDR. 
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2.2.3 Fault Tolerance Operation 

The TGDR altered the original TTG networking scheme through the 

introduction of dual rings. The following subsections explains how the introduction 

of the dual rings is supposed to enhance the fault tolerance ability of the TGDR. 

The TDGR follows the same error detection and information propagation 

scheme as the TTG explained in subsection 2.2.3.1. The use of delay counters is 

adopted to check a link or a node failure. 

As already stated, each node in the TGDR is connected to a dual ring on the 

row level and dual ring on the column level. If a failure occurs on one of the dual 

rings at the same level, the other ring will take charge of the packets transmission. 

For instance in the example presented in Figure 2.8, if one of the rings at the row 

level breaks, the other one is still operative and is able to communicate the nodes 

normally. 

 

0,0 0,1 0,2 0,3xX

 

Figure 2.8: When an error causes failure of one ring (black) the other ring (red) will take charge of the 

operation. 

 

On the other hand, if both dual rings at the same level are broken and the 

failure affects a single node in the dual rings, the other nodes will maintain 

connection with each other by bypassing the failing node. Also in case of several 

faults on the dual rings, each group of connected nodes are able to form their own 

rings and continue their operation. The variations in the grid are broadcasted to the 

remaining nodes on the TGDR network. Figure 2.9 illustrates such a case.  

With the dual rings and the fault-tolerant operations, even when a textile is 

worn and split into numerous fragments, the connectivity of the nodes residing on the 

same fragment is conserved for the remaining parts of the textile. Additional details 

about the fault tolerance scheme of the TDGR are presented in [Zheng, Wu, Chen, 

and Zhou 2006]. 
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0,0 0,1 0,2 0,3xXxX
xX 0,0 0,1 0,2 0,3

(a) (b)  

Figure 2.9: (a) Several faults on the dual ring (b) result of (a) 

2.2.4 Advantages and Disadvantages of the TDGR 

The main advantage of the TDGR over the TTG is that it enhances fault 

tolerance operation capability compared to the TTG network scheme. The TDGR 

also claims maintaining full ring connectivity in case one of the rings fails by mean 

of the dual ring. However, in real application, tears and ruptures will affect both dual 

rings and a case where only one of the rings is only destroyed is nearly impossible. 

The TDGR network scheme is hard to implement in real world textile applications 

because it introduces additional hardware (i.e. 4 transmitters and 4 receivers) at each 

node and needs at least double the wiring volume of the TTG, which makes the 

integration with the fabric very difficult. Thus further study on this scheme will not 

be considered. 

2.3 E-textile Token Grid with No Merge (TTGNM) 

Another approach to the e-textile token grid is the e-textiles token grid with 

No merge (TTGNM). This grid network topology has the same operation capability 

of the original gird in [Nakad 2003], but it enhanced the communication time cost 

when connecting two nodes lying on different row and column rings. 

The e-textile token grid without merge has the same structure as the original 

textile token grid, it is formed out of M row rings and N column rings a depicted in 

Figure 2.1 (a). 

2.3.1 Normal Operation Mode 

In normal operation, the communication between the different nodes of the 

TTGNM token grid are governed based on the below rules: 

Rule 1: If the destination node is on the same row ring or column ring of the source 

node, the source node will wait for the token ring. When the token ring is captured, 

the source node will release the data packet to the destination node through the ring 

route and once the packet is received by the destination node it will be consumed. 

Figure 2.2 represents a case where the source node and destination node are on the 

same ring.  
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Rule 2: If the source and destination nodes are on a different row and column rings, 

the source node waits to capture the row or column token ring and then releases the 

data packet to a node on the same row or same column ring as the destination node, 

based on the captured token. Once the data packet is received by the node 

intersecting the row and column rings of the source and destination nodes, it will be 

queued for transmission, this node waits for the other ring token and then it will send 

the data packet to the destination node, once the data is received at the destination 

node, it will consume it. Figure 2.10 illustrate the above case. 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 2.10: Node(0, 1) sends data to Node(3, 3), the data is first forwarded along the row ring once 

received by Node (0, 3) it is queued then it is forwarded to Node (3, 3) along the column ring of Node (0, 3) 

 

2.3.2 Advantages and Disadvantages of the TTGNM 

The TTGNM networking topology, decreased the waiting latency of the TTG 

by removing the merge operation of the nodes when sending data between two nodes 

on two different row and column rings. The TTGNM was not studied with a fault 

tolerance ability. Simulation and comparison results of the TTGNM are discussed in 

chapter 4. 

2.4 Simulation using OMNet++ 

OMNet++ is a component-based, modular and open-architecture discrete 

event simulation framework [OMNet++ community 2009] whose application area is 

the simulation of communication networks. OMNet++ generic and flexible 

architecture, made it successful in other areas like the simulation of complex IT 
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systems, queuing networks and hardware architectures as well. Network components 

are programmed in C++, and then assembled into larger models using a high-level 

language (NED). OMNet++ has extensive GUI support, and due to its modular 

architecture, the simulation kernel (and models) can be embedded easily into 

applications.  

The simulation in OMNet++ is based on basic components such as: modules, 

gates, messages, and channels. A module can contain sub-modules it is then called a 

compound module, otherwise it is a simple module. The module is implemented in 

C++ supported by an OMNet++ simulation library, it contains the algorithm of the 

model. Modules communicate by means of messages. Messages are sent using output 

gates and received over input gates. The gates are connected using channels that can 

be configured with data rates, propagation delays, and other parameters. 

2.5 I2C Bus 

The I2C bus also known as Inter IC bus, is a 2 wire hardware interface 

developed by Philips and is used to communicate electronic devices. It supports 

slave, master and multi-master configurations. The bus has two bidirectional wires 

that are used one for serial data and the other for a serial clock. Each device 

connected to the bus has a unique address and can function as both a transmitter and 

receiver, depending on its purpose. In addition to transmitters and receivers, devices 

can also be considered as masters or slaves when performing data transfers. A master 

is the device which initiates a data transfer on the bus and generates the clock signals 

to permit the transfer. The I2C bus can operate in a multi-master mode. In this case, 

more than one master can attempt to initiate a communication over the bus. 

Arbitration exist in case of simultaneous attempt to control the bus and the first 

master to gain control is the winner. 

Figure 2.11 below shows the send operation of the I2C bus. Device A wants 

to send information to device B; A controls the bus, it sends data to B and then 

terminates the transmission.  

 

 

Figure 2.11: write operation on the I2C bus. 

 



 

 

15 

 

For the I2C bus in the case of a token grid, all nodes should be considered as master 

devices, each bus connects only two nodes. Once a master transmits data on the bus, 

the other master device plays the role of a slave. Two nodes cannot initiate 

communication at the same time as only one of them possesses the token ring at a 

given time, and it is the one allowed to send data. Thus collision is not going to arise 

and arbitration is not needed. For detailed information about the I2C Bus 

specifications you can refer to [10].  

2.6 Conclusion 

This chapter introduced the E-Textile Token Grid networking scheme and 

two variants the Dual Ring Textile Token Grid and the E-Textile Token Grid with no 

Merge. It also introduced the OMNet++ simulation framework and I2C bus. In the 

following chapter, the Bidirectional E-Textile Token Grid Topology is discussed and 

its operation is explained. 
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CHAPTER THREE 

3. BIDIRECTIONAL E-TEXTILE TOKEN 

GRID (BTTG) NETWORK 

ARCHITECTURE 

The present chapter discusses the Bidirectional E-Textile Token Grid network 

architecture that is based on the E-Textile Token Grid Architecture discussed in 

Section 2.1. The BTTG enhances the communication speed and latency between the 

nodes of the token grid, it also enhances the fault tolerance capability of the textile 

token grid in case of rings and/or nodes failures. 

3.1 Proposal 

The BTTG (Bidirectional E-Textile Token Grid) networking architecture 

scheme is an extension to the E-Textile Token Grid architecture scheme discussed in 

section 2.1. This novel scheme introduces basic changes that contribute in 

minimizing the communication cost between nodes and maximizing the fault 

tolerance capabilities of the grid. 

As already presented in chapter 2, the TGDR (section 2.2) claimed (no proof) 

that it enhanced the fault tolerance capability of the original E-Textile Token Grid by 

introducing dual rings on the row and column levels of the token grid. Each ring has 

its own token and the dual ring will play a role of backup once the original ring is in 

failure. The above case is not always true, especially that in a real case situation both 

links, the original and the dual link, will be broken in case of a fabric split, thus the 

backup ring will also be lost. Also the introduction of additional transmitters and 

receivers to support the dual ring will burden the node. However, with the BTTG, 

fault tolerance is enhanced and optimal wiring and hardware usage is preserved by 

the use of I2C bus in multi-master mode (refer to section 2.5), thus no need for 

additional wires, transmitters and receivers. Furthermore, in the TTGNM (section 

2.4) the removal of the merge process enhanced the communication time cost by 

eliminating the merging latency factor; however, with the BTTG, cost is minimized 
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by minimizing hops that a packet should traverse on a row ring and on a column ring, 

presented later in section 3.2.3. 

In the following section, the network topology and communication scheme of 

the BTTG are discussed. 

3.2 Network Topology 

The BTTG is a grid network structure with N x M interconnected nodes, 

where N and M being respectively the number of rows and columns in the BTTG 

grid. Each node in the grid is characterized by a unique Row ID and Column ID (Col 

ID) combination composed of its row position and its column position respectively in 

the token grid. For instance, the node intersecting at row 1 and column 3 will have a 

Row ID = 1 and a Col ID = 3, it will be identified as Node (1, 3). A 4x4 BTTG grid 

is shown in Figure 3.1(a). 

Each node in the BTTG is connected to two token rings one on the row level 

and the other on the column level. A token ring is characterized by its ability to pass 

information (token, data packet …) in both directions (Right or Left direction for a 

row ring and Down or Up direction for a column ring). The BTTG uses the I2C bus 

in multi-master mode to ensure the full duplex communication on its links. Figure 

3.1(b) illustrates the example of two rings intersecting at Node (1, 2). 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,2

1,0 1,1 1,2 1,3

2,2

3,2

(a) (b)
 

Figure 3.1: (a) is a 4x4 BTTG Token Grid (4 Rows and 4 Columns), (b) represents token rings intersecting 

at Node (1, 2). 
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Each ring has a token circulating between nodes, in a normal situation the 

token circulates in the right direction for a row ring from Node (A, B) to Node (A, 

B+1), and in the down direction for a column ring from Node (A, B) to Node(A+1, 

B). Once a node acquires a token it has the right to send data packets to other nodes 

in the grid and once it is done sending the packets it releases the token to the next 

node in the ring. A token that circulates on a token ring holds information about its 

type, it can be either a Normal token in a normal ring configuration or a U-Shaped 

token when the ring is in fault (explained in details in the following sections). The 

data packet can be sent to a destination node that lies on the same row or column ring 

of the sending node, otherwise, the destination node can be on different row and 

column rings. 

The following subsections explain the BTTG protocol for sending a data 

packet to a destination node that exists on the same row or same column ring as the 

source node. Next, details about sending a data packet to a node that falls on a 

different row and column rings than the source node are presented. The last 

subsection discusses finding minimal path in the BTTG and shows examples of both 

nodes on the same and on different rings. 

3.2.1 Sending a Data Packet on the Same Row or Column Ring 

As explained above one of the scenarios of sending a data packet is from a 

source node to a destination node on the same ring, row or column. In this case when 

the source node acquires the corresponding ring token it forwards the data packet to 

the destination node. An advantage in the BTTG networking topology is the fact that 

the data packet is sent along a minimal path (explained in subsection 3.2.3) from 

source to destination. 

A node in the grid holds information regarding its Row ID, Col ID, and the 

max number of nodes in its row ring and in its column ring. From this available data, 

the source node forwards the data packet to its neighbor, the receiving node checks if 

the received data packet destination ID is the same as its own ID, if this is the case 

then it consumes the data packet, otherwise, it forwards the data packet to the 

following node in the ring. 
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(a) (b) (c)

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 3.2: An illustration of a 4x4 gird where (a) shows two nodes on the same row ring, (b) shows two 

nodes on the same column ring, and (c) shows two node on different row and column rings. 

 

Figure 3.2(a) represents the case where both source node and destination 

node are on the same Row ring; Node (0, 0) source node and Node (0, 2) destination 

node. In this case, Node (0, 0) waits for the row ring token, once picked up, it sends 

the data packet to the next node in the row ring, Node (0, 1), then it releases the 

token. Node (0, 1) is not the intended destination for the packet, it forwards it to the 

next node in the ring, once the packet reaches Node (0, 2) it is consumed. After 

forwarding the data packet, Node (0, 0) releases the token to the next node in the 

chain. (Figure 3.2(b) represents the case where both source node and destination 

node are on the same Column ring; Node (0, 0) source node and Node (2, 0) 

destination node). 

3.2.2 Sending a Data Packet on a Different Row and Column Ring 

As a second scenario, the source node requests to send a data packet to a 

destination node that is not on the same row ring and column ring. In this case, after 

acquiring a ring (row or column) token, the source node forwards the data packet on 

its row ring or column ring (taking into consideration the minimal path explained in 

subsection 3.2.3), after the packet is fully transmitted the token is released. Once the 

packet is received by a node on the communication ring, the node checks the packet 

to identify if it is the intended destination node, if not, the node checks if the 

destination RowID (ColID case of column ring) of the data packet is the same as its 

RowID (ColID if column ring), if this is the situation, the data packet is forwarded to 

the next node in the ring. Otherwise, the capturing node checks if the data packet 

destination has the same ColID (RowID if column ring), if this is the case, then the 

node adds the data packet to its data queue and waits to acquire the other ring token 

to forward the packet to the intended destination node. Once the other ring token is 
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acquired, the node releases the packet to the next node in the ring, the packet 

circulates until it is captured by the destination node then it is consumed. Figure 3.3 

shows the case of a 4x4 BTTG grid where the source node Node (0, 0) and 

destination node Node (2, 1) are on different Row and Column rings. The example 

assumes that Node (0, 0) acquires the row ring token first, and then it releases the 

data packet to the next node on the row ring. Node (0, 1) captures the data packet; 

Node (0, 1) is not the intended destination, but the Col ID of the data packet’s 

destination node is equal to the Col ID of Node (0, 1), thus, Node (0, 1) adds the data 

to its column ring data queue and waits for the column ring token. Once the column 

token is captured, Node (0, 1) releases the data packet to the next node in the column 

ring, the packet reaches Node (1, 1), this node forwards the packet along the ring, 

then it reaches Node (2, 1), the intended destination, this node consumes the data 

packet. 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 3.3: 4x4 BTTG grid with source Node (0, 0) and destinatoin Node (2, 1) 

 

3.2.3 Sending a Data Packet on the Minimal Path 

As already stated, the rings in the BTTG have bidirectional communication 

links thus the node has the ability to send and receive information along the same 

link. On the other hand, the above capability of the BTTG makes it possible to 

forward data packets along the path that minimizes the cost of transmission. 

In normal mode operation, for the previous networking topologies based on 

the token grid explained in chapter 2, a data packet is always forwarded in one path 
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direction, the path direction of the ring Token circulation (right for a row ring and 

down for a column ring). However, in the BTTG a node has the ability to forward a 

data packet right/left on a row ring and down/up on a column ring thus enabling the 

data packet to be delivered over a minimal path.  

In the following subsections we will explain how the minimal (shortest) path 

is discovered for a communication between two nodes laying on the same row or 

column ring and on two different row and column rings. Finally, a couple of 

illustrative examples are presented. 

3.2.3.1 Minimal Path 

The ring of BTTG grid can be observed as an undirected graph with nodes as 

vertices and links between nodes as edges, with the graph having equal edge weights. 

Figure 3.4 represents two illustrations of undirected graphs. 

 

1 2 3 4 5

1 2 3 4

6

7

8

5

9

(a) (b)

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,3)

(2,3)

(3,3)

(4,3)

(0,0) (0,1) (0,2) (0,3) (0,4)

 

Figure 3.4: (a) A graph with 5 vertices representing a 5 nodes row or column token ring in the BTTG, (b) a 

graph with 9 vertices representing two 5 nodes rings row and column intersecting at a node in a BTTG. 

 

As a first situation; let us find the shortest path from Vertex (4) to Vertex (3) 

in Figure 3.4(a). The paths to consider are {4-5-1-2-3} and {4-3}. The total weight of 

path {4-5-1-2-3} is 4 and the total weight of path {4-3} is 1, thus, path {4-3} is the 

shortest path. Translating this fact to the BTTG ring, the paths from Node (0, 3) to 

Node (0, 2) can be either {(0, 3) - (0, 4) - (0, 0) - (0, 1) - (0, 2)} with cost 4 or {(0, 3) 

- (0, 2)} with cost 1, the second path is the minimal path having the lower cost. 

Next, let us find the shortest path from Vertex (1) to Vertex (8) in Figure 

3.4(b). The paths to consider are {1-2-3-4-6-7-8} with cost 6, {1-2-3-4-9-8} with 
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cost 5, {1-5-4-6-7-8} with cost 5, and path {1-5-4-9-8} with cost 4. In this case path 

{1-5-4-9-8} has the lowest cost and is considered the shortest path. Translating the 

above example to the BTTG grid, the minimal path form Node (0, 0) to Node (3, 3) 

will be {(0, 0) - (0, 4) - (0, 3) - (4, 3) - (3, 3)} (denoted as Path (0)) with cost 4. As 

Node (0, 3) is the intersecting node between the row and column ring and the 

communication between Node (0, 0) and Node (3, 3) should pass by Node (0, 3) for 

this reason the minimal path cost between Node (0, 0) and Node (3, 3) should be 

equal to the summation of the minimal paths costs between Node (0, 0) to Node (0, 

3) and Node (0, 3) to Node (3, 3). As a proof, the minimal path to send a data packet 

from Node (0, 0) to Node (0, 3) is path {(0, 0) - (0, 4) - (0, 3)} (denoted as Path (1)) 

with cost 2 and the minimal path to send a data packet from Node (0, 3) to Node (3, 

3) is path {(0, 3) - (4, 3) - (3, 3)} (denoted as Path (2))  with cost 2.  Resulting in the 

following:  

Cost Path (0) = Cost Path (1) + Cost Path (2) = 2+2 = 4 

 

In what follows, the minimal path discovery protocol used by the nodes of the 

BTTG is explained. 

3.2.4 Discovering the Minimal Path by the Node of BTTG 

Initially, the node to the top left of the token grid is configured manually with 

Row ID = 0 and Col ID = 0. At system start up, two pre-initiation tokens are released 

from Node (0, 0) on the row and column level respectively. The pre-initiation tokens 

holds information about the initiating node and a counter that is incremented at each 

node before being forwarded. Each of the nodes that receive the token at the row 

level, set their Row ID = Token Initiating Node Row ID and their Col ID = Token 

Initiating Node Col ID + Counter. On the column level the node that receive the 

token sets its Row ID = Token Initiating Node Row ID + Counter and their Col ID = 

Token Initiating Node Col ID. The Nodes at the row level once they set their ID they 

initiate a token to their column nodes for them to set their Row and Col IDs in the 

same way. 

Every node in the BTTG holds information regarding its Row ID, Col ID, the 

number of nodes in its row ring, the number of nodes on its column ring and if the 

link on a ring is related to a node with lower or higher index. For instance Node (1, 

2) in Figure 3.5 holds the following information: Row ID = 1, Col ID =2, Number 



 

 

23 

 

Row Ring Nodes = 5, Number Col Ring Nodes = 5, Right and Down link are 

connected to a higher node index, and Left and Up link are connected to a lower 

node index.  

The above information is enough to allow the node to take the decision 

regarding the path direction the node needs to take. The pseudo code of the algorithm 

used by a sending node to determine which path is minimal is presented below: 

 

// case of column ring communication 

If (Destination Row ID > Row ID) 

Down Path Cost = Destination Row ID - Row ID; 

Up Path Cost = Row ID + Total Number of Node on Row - Destination Row ID; 

Else 

Down Path Cost = Destination Row ID + Total Number of Node on Row - Row ID; 

Up Path Cost = Row ID - Destination Row ID; 

 

// case of row ring communication 

If (Destination Col ID > Col ID)  

Right Path Cost = Destination Col ID - Col ID;  

Left Path Cost = Col ID + Total Number of Node on Col - Destination Col ID; 

Else  

Right Path Cost = Destination Col ID + Total Number of Node on Col - Col ID; 

Left Path Cost = Col ID - Destination Col ID;  

 

If we consider the first example presented in subsection 3.2.3.1, we have 

Node (0, 3) requesting to send a data packet over its row ring to Node (0, 2). Node 

(0, 3) should decide whether to send the packet either using left or right ring 

direction based on the shortest path to the destination. The information that Node (0, 

3) can use for the decision are as per below: 

1. Row ID: 0 

2. Col ID: 3 

3. Total number of nodes in row ring: 5 

4. Node to the Right has higher Col ID 

5. Node to the Left has lower Col ID 

6. Destination Row ID: 0 

7. Destination Col ID: 2 
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If we apply the algorithm presented previously for the row ring case we get the 

following results: 

 Right Path Cost  = Destination Col ID + Total Number of Node on Col - Col ID 

   = 2 + 5 – 3 

   = 7 – 3 

   = 4 

  

Left Path Cost  = Col ID - Destination Col ID 

  = 3 – 2 

  = 1 

The Left Path Cost < Right Path Cost for this reason Node (0, 3) should forward the data 

packet to the path at its left; thus the path {(0, 3) – (0, 2)} is adopted. 

Considering a bit more complex example, presented in figure 3.5(a), where a 

node sends a packet to a node that is not its direct neighbor; Node (2, 2) wants to 

send a data packet to Node (2, 0). In this case the Node (2, 2) needs to decide on the 

minimal path direction; using the previous algorithm: 

 

Right Path Cost  = Destination Col ID + Total Number of Node on Col - Col ID 

   = 0 + 5 – 2 

   = 5 – 2 

   = 3 

  

Left Path Cost  = Col ID - Destination Col ID 

  = 2 – 0 

  = 2 

 

The Left Path Cost < Right Path Cost for this reason Node (2, 2) forwards the data packet to 

the path at its left, the packet reaches Node (2, 1) it uses the same way to determine 

the minimal path direction:  

 

Right Path Cost  = Destination Col ID + Total Number of Node on Col - Col ID 

   = 0 + 5 – 1 

   = 5 – 1 

   = 4 

  

Left Path Cost  = Col ID - Destination Col ID 

  = 1 – 0 

  = 1 
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The Left Path Cost < Right Path Cost for this reason Node (2, 1) forwards the data packet to 

the path at its left, the packet reaches Node (2, 0) it is the destination node and it 

consumes the packet. 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,4

1,4

2,4

3,4

4,0 4,1 4,2 4,3 4,4

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,4

1,4

2,4

3,4

4,0 4,1 4,2 4,3 4,4

(a) (b)  

Figure 3.5: (a) A 5x5 grid with source Node (2, 2) (Green) and destination Node (2, 0) (Red). The Blue path 

is the path taken by the unidirectional token grid, the Orange path is the minimal path followed by the 

BTTG protocol. (b) is another example with a source node and destination node each on a different row 

and column rings. 

 

Next, the case where both sending node and destination node fall on different 

row and column rings is considered. In this case, the minimal path the data packet 

should follow is the minimal path from the source node to a node that intersects with 

the ring of the destination node, then the minimal path from the intersecting node to 

the destination node. For instance in the example shown in Figure 3.5(b), Node (1, 1) 

desires to send a data packet to Node (4, 2), in this case Node (1, 1) can send the data 

over the row ring first to Node (1, 2) or over the column ring to Node (4, 1), where 

both nodes intersect with the rings of Node (4, 2). As both cases are dealt with in the 

same way, let us consider that Node (1, 1) wants to send the packet over the column 

ring first. In this case Node (1, 1) computes the cost of sending over the upper path as 

opposed to the lower path: 

 

Up Path Cost  = Row ID + Total Number of Node on Row - Destination Row ID 

   = 1 + 5 – 4 

   = 6 – 4 

   = 2 

  

Down Path Cost  = Destination Row ID - Row ID 

  = 4 – 1 
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  = 3 

From the above computation Up Path Cost < Down Path Cost thus Node (1, 1) sends the 

packet over the upper path, the data reaches Node (0, 1) that in its turn computes the 

paths costs: 

Up Path Cost  = Row ID + Total Number of Node on Row - Destination Row ID 

   = 0 + 5 – 4 

   = 5 – 4 

   = 1 

  

Down Path Cost  = Destination Row ID - Row ID 

  = 4 – 0 

  = 0 

 

Up Path Cost < Down Path Cost the decision of Node (0, 1) is to send the packet over the 

upper path. The data reaches Node (4, 1), the intersecting node, it adds the packet to 

its data queue. Once it acquires the row token, it decides whether to forward the data 

to the left or right path. Using the above, the path costs are as per below: 

Right Path Cost  = Destination Col ID - Col ID 

   = 2 – 1 

   = 1 

 

Left Path Cost  = Col ID + Total Number of Node on Col - Destination Col ID 

  = 1 + 5 – 1 

  = 6 – 1 

  = 5 

 

Right Path Cost < Left Path Cost the decision of Node (4, 1) is to send the packet over the 

right path, the data reaches Node (4, 2) the destination node, the data packet is 

consumed. 

Finally, as a conclusion, a node in the BTTG grid doesn’t need to hold 

information about the full path for communication, it just deduces the minimal path 

direction from source node to destination node, and forwards the packet along this 

path. Each node along the ring does the same until the data packet reaches the 

intended destination. 

In the following sections, the BTTG’s fault tolerance routing scheme in case 

of link and/or node failures is discussed. 

3.3 Fault Tolerance 

Harsh environments make a textile and any electronic part or wire inside of it 

susceptible to damages and tears resulting in a communication link failure. Thus, 
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Fault tolerance is of a great importance in electronic textile systems. In what follows 

the fault tolerant scheme adopted by the BTTG is discussed. As a convention we will 

consider that a node failure is equivalent to a failure of all links related to the node. 

3.3.1 Error Detection 

Each node in the BTTG is connected to two different rings (row and column 

rings). There are four different possibilities for link errors illustrated in Figure 3.6. 

An error can occur on the upper, lower, left, or right links of a node. The error can 

affect the node itself, equivalent to four link failures at the same time.  

Each node keeps two separate Idle State Counters each related to one of the 

node rings, and four separate flags that indicate the link’s status. Initially the counters 

are set to zero and they are reset every time the node receives data (token or other 

type of packets) over the ring. If any of these counters reaches a preset value 

(empirically set) an idle state is declared at the ring level and an error test is initiated 

to test the corresponding links.   

To check the link connections, the node sends a link test token to each of the gates in 

the corresponding ring; this token will be received by the neighbor node and then 

automatically resent back to the original sending node through the same link. Once 

the original node sends the link test tokens it initiates a time out counter, if the 

counter reaches a pre-specified value without receiving back a link test token, the 

corresponding link is flagged to be in failure mode and the node stops forwarding 

data through it. 
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Figure 3.6: four different link error possibilities on a node level, if this is the case the node can no more 

interact with the network.  
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In case a link failure is detected, the error information is not propagated and 

the token and data packet forwarding is handled locally at each node. The sending 

node in this case has error information regarding the direct link connections. Thus, 

the node sends the data packet on the links without error.  

3.3.2 Token Handling in Case of Fault 

A link failure along a ring will destroy the token circulating over the ring. 

The BTTG ring will not be disabled but instead a new token is reinitiated on the ring. 

Once a node detects a link failure, if the node’s left link (up link in case of a column 

ring) is damaged and the node’s right ring (down link in case of a column ring) is not 

damaged, the node will re-initiate a token with a U-Shape mode. U-Shape token, 

holds information regarding the Row ID and Col ID of the initiating node called 

“start node” and the last node in the partial ring called “end node”. A U-Shape token 

is inactive and a node cannot use it for communication unless both start and end 

nodes are set. Once initiated, the U-Shape token will have the Start Row ID and Start 

Col ID set to the Row ID and Col ID of the initiating node then it is forwarded along 

the ring. When the token reaches a node with a detected link failure in its right link 

(up link case of column ring) the node will set the End Row ID and End Col ID for 

the token to be equal to its Row ID and Col ID, the token is now active, its direction 

flow is reversed and it is forwarded in the opposite direction. 

 

0,0 0,1 0,2 0,3xX
 

Figure 3.7: a ring with a link failure between Node (0, 0) and Node (0, 1) 

 

Figure 3.7 displays a case where a link failure occurs between Node (0, 0) 

and Node (0, 1). In this example Node (0, 0) detects a failure at the right link level, 

and Node (0, 1) detects a failure at the left link level. As Node (0, 1) is the node with 

left link damaged and right link intact, this node will initiate a U-Shape token, it will 

set its Start Row ID = 0 and Start Col ID = 1 and the token is forwarded through the 

right link, it reaches Node (0, 2) then Node (0, 3), finally the token reaches Node (0, 

0), this node already detected a failure at its right link, it sets the End Row ID and 

End Col ID of the token, changes its direction, and it forwards the token in the 

opposite direction back to Node (0, 3) through the left link. It is important to note 
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that a node will forward a token along the preset direction and is not allowed to 

change this direction unless it has a detected link failure. 

From the above, it can be deduced that in the case where many failures occur 

at the level of a BTTG ring, multiple partial rings are formed and nodes in a partial 

ring can communicate with each other and with the remaining part of the grid 

through the connections they hold with other column or row rings.  For instance, in 

Figure 3.8, multiple link failures occurred at the level of the BTTG grid. At the level 

of row 0, we have 2 new partial rings, at the level of columns 1 and 2 we have two 

new partial rings. Node (0, 2) has only one intact link with Node (0, 1) using this 

link, Node (0, 2) can communicate with all the nodes reachable by Node (0, 1) in the 

BTTG.  
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Figure 3.8: a 5x5 BTTG grid with multiple faults and new formed partial rings 

 

For instance if Node (0, 2) wants to send a data packet to Node (0, 0), it waits 

to acquire the U-Shaped token and forwards the packet to Node (0, 1) in its turn 

Node (0, 1) forwards the token to Node (4, 1) on its column ring. Node (4, 1) 

forwards the packet to Node (4, 0) and it is finally delivered to Node (0, 0) the 

destination node. 

In the following subsection, we will discuss the data packet handling process 

in case of faults in the BTTG. 

 

 



 

 

30 

 

3.3.3 Data Packet Handling in Case of Faults 

A node with link failure is able to send packets to other nodes on the BTTG 

grid unless it is totally isolated from the network and all the links connecting the 

node to the grid are disabled or the node itself is disabled. After detecting the errors 

and re-initiating tokens , a node on a partial ring that desires to send a data packet, 

waits as usual to receive a token (active token if U-Shape mode); once the token is 

captured the node will send the packet along the appropriate path.  

The following subsections discuss the data packets forwarding protocol in 

case of faults. The discussed cases take into consideration a destination node at the 

same ring level of the source node and at a different row and column rings levels. 

3.3.3.1 Sending a Data Packet on the Same Row or Column Ring 

A node in the BTTG grid connected to a partial ring needs to send a data 

packet at the same ring level. The node has to wait for the U-Shape active token. To 

explain the protocol of forwarding the data packet, the row ring case is explained in 

what follows (same protocol is applied for the column ring with replacement of 

Column IDs with Row IDs check). When the node captures the U-Shaped token it 

follows the below steps to decide on the right path to send the node: 

1. Flags the data packet as Fixed Direction1 to be handled correctly in 

the next node and not be sent back in case the minimal path is in error. 

2. If the Token Start Column ID is smaller than the Token End Column 

ID 

a. In case the Destination Column ID of the data packet is equal 

to the Token Start Column ID, then the packet is forwarded on 

the left path. 

b. In case the Destination Column ID of the data packet is equal 

to the Token End Column ID, then the packet is forwarded on 

the right path. 

c. In case the Destination Column ID of the data packet is 

between the Token Start Column ID and Token End Column 

ID, if the Source Column ID of the data packet is smaller than 

                                                 
1 A node that receives a data packets with a Fixed Direction flag, should forward the flag in 

the same direction. It does not handle the packet based on the minimal path forwarding anymore. 
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its Destination Column ID the packet is forwarded on the right 

path else it is forwarded on the left path. 

d. Otherwise the destination node is not reachable through the 

partial ring. The data packet is flagged as Cross Ring2 and it is 

dealt with as being needed to be forwarded into the column 

ring. 

3. If the Token Start Column ID is greater than the Token End Column 

ID 

a. In case the Destination Column ID of the data packet is equal 

to the Token Start Column ID, the packet is forwarded on the 

left path. 

b. In case the Destination Column ID of the data packet is equal 

to the Token End Column ID, the packet is forwarded on the 

right path. 

c. In case the Destination Column ID is smaller than both Token 

Start and Token End Column IDs, the data packet is forwarded 

left if its Source Colum ID is greater than its Destination 

Column ID and smaller than or equal to its Token End Col ID, 

else it is forwarded right. 

d. In case the Destination Column ID is greater than both Token 

Start and Token End Column IDs, the data packet is forwarded 

right if its Source Colum ID is smaller than its Destination 

Column ID and greater than or equal to its Token End Col ID, 

else it is forwarded left.  

e. Otherwise the destination node is not reachable through the 

partial ring. The data packet is flagged as Cross Ring and it is 

dealt with as being needed to be forwarded into the column 

ring. 

 

 

 

                                                 
2 A node that receives a data packet that is flagged as Cross Ring, it insert the packet in its 

data queue to be handled later, and does not return it to its source as it is known to be in error and 

unable to handle it. 
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A detailed algorithm that shows both row and column ring cases is presented below: 

 

//Case of a Row Ring 

Flag the data packet as fixed direction 

{ 

        if (Token Start Col ID < Token End Col ID) 

        { 

            if(Destination Col ID == Token Start Col ID) 

            { 

                Send on Left Path 

            } 

            else if(Destination Col ID == Token End Col ID) 

            { 

                Send on Right Path 

            } 

            else if(Destination Col ID > Token Start Col ID && Destination Col ID < Token End Col ID) 

            { 

                if (Source Col ID < Destination Col ID) 

                { 

                    Send on Right Path 

                } 

                else 

                { 

                    Send on Left Path 

                } 

            } 

            else 

            { 

 Flag the data packet as Cross Ring 

 Wait for Column Token and Forward over Column down path if not disabled else over up path 

(in this case the first node to capture the data packet queues it and waits for the row token to forward 

the token as explained in sections 3.2.2 and 3.2.3) 

            } 

        } 

        else if (Token Start Col ID > Token End Col ID) 

        { 

            if(Destination Col ID == Token Start Col ID) 

            { 

                Send on Left Path 

            } 

            else if(Destination Col ID == Token End Col ID) 

            { 

                Send on Right Path 

            } 

            else if(Destination Col ID < Token Start Col ID && Destination Col ID < Token End Col ID) 

            { 

                if (Source Col ID < Destination Col ID) 

                { 

                    Send on Right Path 

                } 

                else if (Source Col ID > Destination Col ID && Source Col ID <= Token End Col ID) 

                { 

                    Send on Left Path 

                } 

                else if (Source Col ID > Destination Col ID && Source Col ID >= Token Start Col ID) 

                { 

                    Send on Right Path 

                } 

            } 

            else if(Destination Col ID > Token Start Col ID && Destination Col ID > Token End Col ID) 

            { 

                if (Source Col ID > Destination Col ID) 

                { 

                    Send on Left Path 

                } 

                else if (Source Col ID < Destination Col ID && Source Col ID <= Token End Col ID) 

                { 

                    Send on Left Path 

                } 

                else if (Source Col ID < Destination Col ID && Source Col ID >= Token Start Col ID) 

                { 

                    Send on Right Path 

                } 

            } 
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            else 

            { 

Flag the data packet as Cross Ring 

 Wait for Column Token and Forward over Column down path if not disabled else over up path 

(in this case the first node to capture the data packet queues it and waits for the row token to forward 

the token as explained in sections 3.2.2 and 3.2.3) 

            } 

        } 

    } 

 
 

 

//Case of a Col Ring 

Flag the data packet as fixed direction 

{ 

        if (Token Start Row ID < Token End Row ID) 

        { 

            if(Destination Row ID == Token Start Row ID) 

            { 

                Send on Upper Path 

            } 

            else if(Destination Row ID == Token End Row ID) 

            { 

                Send on Lower Path 

            } 

            else if(Destination Row ID > Token Start Row ID && Destination Row ID < Token End Row ID) 

            { 

                if (Source Row ID < Destination Row ID) 

                { 

                    Send on Lower Path 

                } 

                else 

                { 

                    Send on Upper Path 

                } 

            } 

            else 

            { 

                  Flag the data packet as Cross Ring 

 Wait for Row Token and Forward over Row Right Path if not disabled else over left path 

(in this case the first node to capture the data packet queues it and waits for the row token to forward 

the token as explained in sections 3.2.2 and 3.2.3) 

            } 

        } 

        else if (Token Start Row ID > Token End Row ID) 

        { 

            if(Destination Row ID == Token Start Row ID) 

            { 

                Send on Upper Path 

            } 

            else if(Destination Row ID == Token End Row ID) 

            { 

                Send on Lower Path 

            } 

            else if(Destination Row ID < Token Start Row ID && Destination Row ID < Token End Row ID) 

            { 

                if (Source Row ID < Destination Row ID) 

                { 

                    Send on Lower Path 

                } 

                else if (Source Row ID > Destination Row ID && Source Row ID <= Token End Row ID) 

                { 

                    Send on Upper Path 

                } 

                else if (Source Row ID > Destination Row ID && Source Row ID >= Token Start Row ID) 

                { 

                    Send on Lower Path 

                } 

            } 

            else if(Destination Row ID > Token Start Row ID && Destination Row ID > Token End Row ID) 

            { 

                if (Source Row ID > Destination Row ID) 

                { 

                    Send on Upper Path 

                } 

                else if (Source Row ID < Destination Row ID && Source Row ID <= Token End Row ID) 
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                { 

                    Send on Upper Path 

                } 

                else if (Source Row ID < Destination Row ID && Source Row ID >= Token Start Row ID) 

                { 

                    Send on Lower Path 

                } 

            } 

            else 

            { 

                  Flag the data packet as Cross Ring 

 Wait for Row Token and Forward over Row Right Path if not disabled else over left path 

(in this case the first node to capture the data packet queues it and waits for the row token to forward 

the token as explained in sections 3.2.2 and 3.2.3) 

            } 

        } 

    } 

 

 For instance Figure 3.9(a) shows an example where Node (2, 2) desires to 

send a data packet to Node (2, 0) with link failure between Node (2, 0) and Node (2, 

1). Assuming that the link error is already detected and the U-Shape token is 

circulated and active, once Node (2, 2) receives the token it checks using the above 

protocol to decide whether to send the data over the left or right link path. 

Destination Col ID = Token End Col ID = 0 for this reason the data packet is flagged 

as fixed direction and is forwarded along the right path to Node (2, 3). As the data 

packet direction is fixed the other nodes are obliged to forward it the same direction 

until it reaches the destination Node (2, 0) where it is consumed. 
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Figure 3.9: (a) Node (2, 2) sending a data packet for Node (2, 0) with link failure between Node (2, 0) and 

Node (2, 1). (b) Node (2, 2) sending a data packet for Node (2, 0) with two links failures isolating Node (2, 0) 

from the ring of Node (2, 2) 

 

 

Another more complex example is shown in Figure 3.9(b) where Node (2, 2) 

desires to send a data packet to Node (2, 0) that is isolated from the row ring of Node 
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(2, 2). In this case Node (2, 2) waits to acquire the U-Shape token as in the previous 

example and checks using the above algorithm regarding the appropriate gate over 

the row ring to forward the packet, however due to the fact that the Destination Col 

ID falls outside the partial ring of the source node, Node (2, 2) flags the data packet 

as Cross Ring, adds it to the data queue, and waits to capture the column token, then 

it forwards the data packet through the down path over the column ring. Node (3, 2) 

receives the data packet flagged as Cross Ring, it acts as the sender of the packet and 

adds it to the data queue and waits for the row ring token and then forwards the data 

packet to an intersecting node, Node (3, 0), (as explained previously in sections 3.2.2 

and 3.2.3 above) then the node is forwarded to the destination node where it is 

consumed. 

3.3.3.2 Sending a Data Packet on a Different Row and Column Ring 

Whenever a node tries to connect with a node on a different row and column 

rings, the source node waits until it acquires a token (row or column) once the token 

is acquired the data will be forwarded over the appropriate ring until it reaches a 

node that intersects with the destination node, if the ring is in error the algorithm 

explained in section 3.3.3.1 is considered, and once the packet reaches an 

intersecting node it will be handled based on what was previously discussed.  
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Figure 3.10: (a) Node (0, 0) sending a data packet for Node (2, 2) with link failure between Node (0, 1) and 

Node (0, 2). (b) Node (0, 0) sending a data packet for Node (2, 2) with two link failures isolating Node (0, 2) 

from the column ring. 

 

For instance, Figure 3.10(a) depicts an example where Node (0, 0) wants to 

send a data packet to Node (2, 1). In this example Node (0, 0) captures the row U-
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shaped token, the link between Node (0, 1) and Node (0, 2) the intersecting node is in 

error, for this reason, Node (0, 0) sends the data packet to Node (0, 2) through the left 

gate (not on the minimal path). Once the data packet reaches Node (0, 2) it adds it to 

the data queue. Node (0, 2) waits to capture the column token then it forwards the 

data packet to the destination, Node (2, 2). 

Another more complex example is shown in Figure 3.10(b) where Node (0, 

0) wants to send a data packet to Node (2, 2) with links between Nodes (0, 1), Node 

(0, 2)  and Node (0, 2), Node (1, 2) and Node (0, 2), Node (4, 2) are all in error. In 

this case if Node (0, 0) acquires the row token first, it doesn’t know that the 

intersecting node is disconnected from its column ring and sends the data packet to 

Node (0, 2). Once Node (0, 2) receives the data packet, it flags it as forced and sends 

it to Node (0, 3). When Node (0, 3) receives the data packet with forced option, it 

adds it to the data queue and acts as a sender of the packet knowing that it cannot be 

sent to the node on its left gate as it was received in a forced direction mode. Thus, 

Node (0, 3) waits for the column token and sends the data packet to Node (2, 3) the 

intersecting node. Once the data packet reaches Node (2, 3) this node adds it to the 

data queue and waits for the row token to forward it to the destination node, Node (2, 

2). 

This chapter presented the BTTG token grid network topology, the BTTG 

operation was discussed in normal fault-free condition along with the minimal path 

routing scheme. The BTTG operation in a faulty environment was presented.  

The next chapter discusses the simulation results of the BTTG networking 

topology and compares them to the simulation results of the TTG and TTGNM. It 

demonstrates that the BTTG transmission cost is better than the other topologies’ 

costs, and the fault tolerant scheme of the BTTG is more reliable. 
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CHAPTER FOUR 

4. SIMULATION 

This chapter starts by discussing the transmission costs in the BTTG 

networking scheme. Afterwards, it compares the costs with the TTG and TTGNM 

networking schemes costs. Simulation results of the BTTG, TTG, and TTGNM are 

also presented and the efficiency offered by the BTTG over the other schemes is 

deduced. 

4.1 TTG Costs 

In order to demonstrate the efficiency of the BTTG networking scheme, the 

enumerations of the transmission costs from a source node to a destination node is 

discussed in the following sections. Two costs will be introduced, the first cost 

represents the cost of transmission for the source node, and the second represents the 

number of hops for a data packet in the network to reach the destination. 

4.1.1 Fault-Free BTTG Grid 

The transmission cost of sending a data packet to a node on the same row or 

column ring of a fault free BTTG grid is first reflected. The source node initially 

waits for the ring token, the waiting time is denoted by TWtoken. Once the token is 

captured, the node sends the data packet to the destination node then it releases the 

token. The time needed to send the data packet is denoted by TSdata. The operation of 

the BTTG network requires that a token is always rotated around the ring same as for 

the TTG in [Nakad 2003]; TSdata is considered to be the extra cost of transmitting the 

data packet. Table 4.1 presents a set of variables that will be used in the discussion 

that follows. Two assumptions were taken to simplify the discussion: 

1. The current node is not holding the token but it released it to the ring 

previously. Thus, the only parameter to consider in the case of a node 

waiting to receive a token is the token waiting time, and any other 

delays are considered to be negligible.  
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2. Link latencies and node processing time are considered to be 

insignificant. 

Table 4.1: Terms and Variables 

Variable Value Description 

Grid - A BTTG network grid, with nodes connected in 

row and column rings. 

Ring - Row or Column 

N - Number of nodes in a row or column ring 

N2 - Number of nodes in a grid (case considered is a 

square grid) 

BW - Bandwidth of the links communicating nodes 

TStoken Sizetoken / BW The Time needed to transmit a token 

TWtoken 

No Fault 

  Time waiting to receive a token 

TWtoken (Minimum) TStoken previous node is sending the token 

TWtoken (Maximum) (N – 1)*TStoken next node is sending the token 

TWtoken (Average) (N/2)*TStoken Average token waiting time 

TWtoken 

With Fault 

  Time waiting to receive a token 

TWtoken (Minimum) TStoken previous node is sending the token 

TWtoken (Maximum) [(N – 2) + (N – 1)]*TStoken = 

(2N – 3)*TStoken 

next node is sending the token 

TWtoken (Average) (N – 1)*TStoken Average token waiting time 

TSdata Sizedata / BW The Time needed to send a data packet 

 

Considering the above stated assumptions, TWtoken = (# of hops)*TStoken. For 

instance in Figure 4.1, if Node (0, 0) is the sending node, then TWtoken has a 

minimum value of TStoken when the token is in Node (0, N-1) and a maximum value 

of (N-1)TStoken when the token is at Node (0, 1). There are (N-2) cases for this ring 

with wait values of 1, 2, 3, 4… N-1 multiples of TStoken: the resulting average will be: 

(TStoken + (N-1)TStoken)/2 = (N/2)TStoken. 

 

0,0 0,1 0,2 0,N-1...

Sending Node

Cost: (N-1)TStoken Cost: TStoken

 

Figure 4.1: A ring with N nodes, with Node (0, 0) as sending node. 

 

Another case to consider is the transmission cost of sending a data packet to a 

node that lies on a different row and column rings in the fault free BTTG grid. The 

source node initially waits for the ring token, the waiting time is denoted as TWtoken. 

Once the token is captured, the node sends the data packet to a node that intersects 

with the destination node ring, the time needed is TSdata. The intersecting node in its 
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turn waits for the corresponding token ring (TWtoken). Once the token is captured, the 

intersecting node sends the data packet to the destination node then the node releases 

the token. The time needed to send the data packet is another TSdata. In this case, the 

total token waiting time is doubled and the total time to send data is also doubled in 

comparison the transmission over the same ring. Table 4.1 presents the values and 

description of variables that will be used in the discussion that follows. 

 

Table 4.2: Sending Node communication timing costs 

Variable Destination 

Location 

Total 

Time 

Additional 

Cost 

Description 

Ring Token - TWtoken +  

TStoken 

- Time Waiting for Token 

Time to send the Token 

Data Packet Same Ring TWtoken +  

TSdata +  

TStoken 

TSdata Time Waiting for Token 

Time to send data 

Time to send the Token 

Different Row 

and Column 

Rings3 

2TWtoken +  

2TSdata + 

2TStoken 

TWtoken + 

2TSdata + 

TStoken 

Time Waiting for Token (for source node and 

intersecting node) 

Time to send data packet for two nodes 

Time to send the token for two nodes 

 

 

Table 4.2 offers the cost of communication as perceived by the sending node. 

When the destination node is on the same ring, the source node waits to capture the 

ring token, sends the data packet, and then releases the token. This operation is the 

same if the destination is the next node in the ring or the furthest. The increase of 

cost in sending to a farther node is observed in the number of hops traversed; this 

cost is reported in Table 4.3. On the other hand, if the destination node is on a 

different row and column rings, the source node waits to capture the ring token, 

sends the packet, and then releases the token. The data packet is captured by a node 

intersecting with the ring of the destination node. The intersecting node waits to 

capture the corresponding token ring, send the data to the destination node, and then 

releases the token. In this case, as previously stated, the operation is the same if the 

destination is the closest or the furthest node in the ring, the cost will increase 

depending on the number of hops the packet traverses; this cost is identified in table 

4.3. 

                                                 
3 In this case we have two sending nodes for the data packet: a- the initial source node, b- the node intersecting with the source 

node ring and destination node ring. 
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As a last case to consider is the operation of the BTTG in a large network, 

where the number of nodes increases in the network and affects the network 

performance. Two costs should be reflected, the cost to the sending node and the cost 

in number of hops traversed to reach the destination. As already shown in Table 4.2, 

the cost to the sending node depends on TWtoken, which in its turn depends on the 

number of nodes N in a ring (as explained in Table 4.1). Thus, the cost to the sending 

node is directly affected by the number of nodes in a ring N.  

Regarding the cost in number of hops traversed to reach the destination, the 

connection cost in its turn depends on N, the number of nodes in a ring, illustrated in 

Table 4.3. 

Table 4.3: Network Costs in term of Number of Hops 

Variable Destination 

Location 

N (Even 

or Odd) 

Total Cost Description 

Ring Token - Even/Odd 1 - 

Data Packet 

No Grid 

Faults 

Same Ring Even Minimum 1 Destination is the next node 

Maximum N/2 Destination is the ring middle 

node relative to the sending 

node 

Average (N+2)/4  

Odd Minimum 1 Destination is the next node 

Maximum (N-1)/2 Destination is the ring middle 

node relative to the sending 

node 

Average (N+1)/4  

Different Row 

and Columns 

Rings 

Even Minimum 2 One Row and One Column 

off 

Maximum N (N/2) Rows and (N/2) 

Columns off 

Average (N+2)/2  

Odd Minimum 2 One Row and One Column 

off 

Maximum N-1 ((N-1)/2) Rows and ((N-1)/2) 

Columns off 

Average (N+1)/2  

Data Packet 

With Link 

Failure 

Same Ring Even/Odd Minimum 1 Destination is the next node 

Maximum N-1 Destination is the ring middle 

node relative to the sending 

node 

Average N/2  

Different Row 

and Columns 

Rings (Row or 

Column Ring 

Even Minimum 2 One Row and One Column 

off 

Maximum (3N-2)/2 (N-1) Rows/Columns and 

(N/2) Columns/Rows off 

Average (3N+2)/4  
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with one link 

fault) 

Odd Minimum 2 One Row and One Column 

off 

Maximum (3N-3)/2 (N-1) Rows/Columns and 

((N-1)/2) Columns/Rows off 

Average (3N+1)/4  

Different Row 

and Columns 

Rings (Row 

and Column 

Rings each 

with one link 

fault) 

Even/Odd Minimum 2 One Row and One Column 

off 

Maximum 2N-2 (N-1) Rows and (N-1) 

Columns/Rows off 

Average N  

 

4.1.2 Faulty BTTG Grid 

In case of link and/or node failures, the cost of transmission increases in the 

BTTG grid when this failure is directly affecting the minimal path from the source 

node to the destination node and whenever the ring of the sending node is affected by 

the failure. The same measures, already discussed in the previous sub section, are 

used to determine the overall cost in a faulty BTTG grid. 

Table 4.1 presents the token waiting time for a node in case of a fault in the 

ring as:  

TWtoken = (# of hops)*TStoken. As Table 4.1shows, as average, TWtoken = (N-1) 

*TStoken in case of a ring fault and this value can be deduced by following the 

example in Figure 4.2. As defined previously in chapter 3, in case of link failure the 

token navigates in a U-Shaped mode from Node (0, 1) to Node (0, 0) and vice versa. 

If Node (0, 1) is the sending node, then TWtoken has a minimum value of TStoken when 

the token is in Node (0, 2) and Node(0, 1) is the next node in the token chain, and a 

maximum value of (2N-3)TStoken when the token is at Node (0, 2); in case the token 

is being forwarded toward Node (0, 3) thus it has to go all the way to reach Node(0, 

0) then return to Node (0, 1) through the reverse path. The resulting average in this 

situation will be (TStoken + (2N-3)TStoken)/2 = (N-1)TStoken. 

 

0,0 0,1 0,2 0,N-1...

Sending Node

Cost: (2N-3)TStoken

Cost: TStoken

 

Figure 4.2: A ring with N nodes, with Node (0, 1) as sending node, with link Error between Node (0, 0) and 

Node (0, 1). 
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On the other hand, the cost in number of hops a data packet needs to take in 

order to reach the destination node is also affected by the ring faults. Table 4.3 

introduces the costs in number of hops of the three main cases of communication 

presented in Figure 4.3 below, where part (a) represents the case of a communication 

with source and destination nodes over the same ring and the ring is in fault. In Part 

(b) the source node ring is in failure but the destination node ring is fault free. In Part 

(c) both rings are in fault.  

 

0,0 0,1 0,2 0,N-1...

Sending Node
Destination 

Node

0,0 0,1 0,2 0,N-1...

Sending Node

1,2

2,2

N-1,2

...

D
e

s
tin

a
tio

n
 

N
o

d
e

0,0 0,1 0,2 0,N-1...

Sending Node

1,2

2,2

N-1,2

...

D
e

s
tin

a
tio

n
 N

o
d

e

(a)

(b)

(c)  
Figure 4.3: Communication between source and destination node where: a- Both on the same ring and the 

ring is in fault. b- Each node on a different row and column ring and row ring is in fault. c- Each node on a 

different row and column ring and the two rings are in fault. 

 

As a general case if the data packet needs to cross over more than two rings 

from source node in order to reach the destination node, the cost in number of hops 

will be calculated as being the sum of #hops for each ring being in use. For instance, 

Figure 4.4 presents a case where Node (0, 0) sends a data packet to Node (2, 1), in 

this case the communication occurs either on the green path, with two rings from 

three being with a link fault, in this case the cost in number of hops is in average 

equivalent to (N+2)/4 + (N/2) + (N/2). If the communication occurs on the red path 
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with one ring with link fault, then the average number of hops is equivalent to 

(N+2)/4 + (N+2)/4 + (N/2). 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

 

Figure 4.4: Communication from Node (0, 0) to Node (2, 1) should pass by three different rings. 

 

 

4.2 Analytical vs. Simulated Communication Cost 

This section provides an analytical study for the total cost of communication 

for a N2 nodes BTTG token grid network with N row and N column rings. The 

analytical results are then proved by simulation results. The first sub section analyzes 

the cost of a fault free grid network. The second sub section analyzes the cost of a 

grid with one or multiple occurring link failures.  

In order to quantify the analytical study, an example where Node (0, 0) sends 

data packets to all the other nodes in the token grid network is used. Once a node 

receives a data packet from Node (0, 0), it replies back with another packet. Node (0, 

0) waits for the reply packet before sending a new data packet. The process ends at 

the time all the nodes replies back to Node (0, 0). The time spent to finish the 

communication process is reported afterwards. This time represents an incremental 

counter that records the cost in terms of token waiting time for a sending node and 

the number of hops it takes to deliver a data packet to the destination node, which 

complies with the metrics stated in the previous section. As an assumption, TSdata 

and TStoken are considered to be negligible, thus TWtoken is only dependent on the 

number of nodes in a ring. 
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4.2.1 Fault Free Grid 

This section, introduces the operation of the TTG, TTGNM and BTTG 

networking schemes in a fault free environment. The first case to consider is when a 

node requires to send a data packet to a destination node located on the same ring; in 

this case the total cost as explained in the previous sections is split into two main 

parts, the token waiting time for the sending node and the cost in number of hops for 

the data packet to reach the destination. Considering the values in Table 4.1, TWtoken 

= N/2. On the other hand Table 4.3 depicts the value of the cost in number of hops 

as; #Hops = (N+2)/4 when N is even, and #Hops = (N+1)/4 when N is odd. Thus, the 

total cost of sending a data packet on the same ring denoted as SRBTTG is the 

following: 

SRBTTG = TWtoken + #Hops 

If N is even: 

SRBTTG (even N) = (N/2) + (N+2)/4 

SRBTTG (even N) = (3N+2)/4 

If N is odd:  

SRBTTG (odd N) = (N/2) + (N+1)/4 

SRBTTG (odd N) = (3N+1)/4 

 

The second case to consider is when a node requires sending a data packet to a 

node on a different row and column rings. In this case, the total cost of sending the 

data packet denoted as DRBTTG is the following: 

DRBTTG = 2TWtoken + #Hops 

If N is even: 

DRBTTG (even N) = 2*(N/2) + (N+2)/2 

DRBTTG (even N) = (3N+2)/2 

If N is odd:  

DRBTTG (odd N) = 2*(N/2) + (N+1)/2 

DRBTTG (odd N) = (3N+1)/2 

 

Finally the total cost, denoted TCBTTG, of a N2 nodes BTTG grid with no faults 

should consider the fact that Node (0, 0) has to send data packets for (2N-2) nodes on 

the same ring; (N-1) nodes on the same row ring and other (N-1) nodes on the same 



 

 

45 

 

column ring, the other data packets should be sent to the remaining [N2-(2N-2)-1] = 

(N2-2N+1) nodes. Thus the total cost is: 

TCBTTG = 2*[(2N-2)* SRBTTG + (N2-2N+1)*DRBTTG] 

If N is even: 

TCBTTG (even N) = 2*[(2N-2)* (3N+2)/4 + (N2-2N+1)* (3N+2)/2] 

TCBTTG (even N) = 3N3-N2-2N     (A) 

If N is odd:  

TCBTTG (odd N) = 2*[(2N-2)* (3N+1)/4 + (N2-2N+1)* (3N+1)/2] 

TCBTTG (odd N) = 3N3-2N2-N     (B) 

 

The total cost of communication of the TTG (check details in [Nakad 2003]) and the 

TTGNM in case of no faults, conducting the same calculation steps as above, are as 

follows: 

SRTTG  = TWtoken(TTG) + #Hops(TTG)  

(TWtoken(TTG) is the average token waiting time in the TTG grid being equal to N/2 and #Hops(TTG) is the average 

number of hops in the TTG grid equal to N/2.) 

SRTTG = N/2 + N/2 

SRTTG = N 

 

DRTTG  = TWtoken(TTG) + TWmerge-token(TTG) + #Hops(TTG) 

(TWmerge-token(TTG) is the average merge token waiting time in the TTG grid being equal to 2.5TWtoken = 2.5N/2) 

DRTTG = N/2 + 2.5TWtoken(TTG) + N 

DRTTG = 3.5 * N/2 + N 

DRTTG = 3.5 N/2 + N 

 

TCTTG = 2*[(2N-2)* SRTTG + (N2-2N+1)*DRTTG] 

TCTTG = 2*[(2N-2)* N + (N2-2N+1)*(3.5N/2 + N)] 

TCTTG = 5.5N3-7N2+1.5N     (C) 

 

And 

 

SRTTGNM = TWtoken(TTGNM) + #Hops(TTGNM) 

(TWtoken(TTGNM) is the average token waiting time in the TTGNM grid being equal to N/2 and #Hops(TTGNM) is the 

average number of hops in the TTGNM grid equal to N/2.) 

SRTTGNM = N/2 + N/2 
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SRTTGNM = N 

DRTTGNM = 2TWtoken(TTGNM) + #Hops(TTGNM) 

DRTTGNM = 2N/2 + N 

DRTTGNM = 2N 

 

TCTTGNM = 2*[(2N-2)* SRTTG + (N2-2N+1)*DRTTG] 

TCTTGNM = 2*[(2N-2)* N + (N2-2N+1)*2N] 

TCTTGNM = 4N3-4N2      (D) 

 

To analyze the efficiency of BTTG vs TTG and TTGNM network schemas, the 

percentage decrease in total cost between the three schemas is calculated.  

 

The first case to consider is for N being even thus (A) should be compared to both 

(C) and (D): 

Efficiency % BTTG vs TTG: 

{[(C)-(A)]/(C)}*100 =  

{[(5.5N3-7N2+1.5N)-( 3N3-N2-2N)]/( 5.5N3-7N2+1.5N)}*100 = 

{(2.5N3-6N2+3.5N)/ ( 5.5N3-7N2+1.5N)}*100 = 

{(2.5N2-6N+3.5)/ ( 5.5N2-7N+1.5)}*100   (E) 

 

Efficiency % BTTG vs TTGNM: 

{[(D)-(A)]/(D)}*100 =  

{[(4N3-4N2)-( 3N3-N2-2N)]/( 4N3-4N2)}*100 = 

{(N3-3N2+2N)/ ( 4N3-4N2)}*100 = 

{(N2-3N+2)/ ( 4N2-4N)}*100     (F) 

 

The next case to consider is for N being odd thus (B) should be compared to both (C) 

and (D): 

Efficiency % BTTG vs TTG: 

{[(C)-(B)]/(C)}*100 =  

{[(5.5N3-7N2+1.5N)-( 3N3-2N2-N)]/( 5.5N3-7N2+1.5N)}*100 = 

{(2.5N3-5N2+2.5N)/ ( 5.5N3-7N2+1.5N)}*100 = 

{(2.5N2-5N+2.5)/ ( 5.5N2-7N+1.5)}*100   (G) 
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Efficiency % BTTG vs TTGNM: 

{[(D)-(B)]/(D)}*100 =  

{[(4N3-4N2)-( 3N3-2N2-N)]/( 4N3-4N2)}*100 = 

{(N3-2N2+N)/ ( 4N3-4N2)}*100 = 

{(N2-2N+1)/ ( 4N2-4N)}*100     (H) 

 

Table 4.4 depicts the cost efficiency percentage for grids with N=4, 5, 6, and 7. The 

values are calculated using the equations previously presumed. An average 

improvement of 37% in communication cost is detected on BTTG over TTG and an 

average improvement of 18% is detected on BTTG over TTGNM. 

 

Table 4.5 presents the simulated results for the analysis done in Table 4.4. In 

simulation, BTTG is showing 24% improvement over TTG and 12% over TTGNM. 

 

 

 

Table 4.4: Analytical results of BTTG, TTG, and TTGNM networking schemes 

N 

TTG 

Analytical 

Cost4 

TTGNM 

Analytical 

Cost5 

BTTG 

Analytical 

Cost6 

BTTG vs 

TTG Cost 

efficiency %7 

BTTG vs 

TTGNM 

Cost 

efficiency 

%8 

4 246 192 168 31.707% 12.5% 

5 520 400 320 38.462% 20% 

6 945 720 600 36.508% 16.667% 

7 1554 1176 924 40.541% 21.429% 

 

 

 

                                                 
4 Using equation (C) 
5 Using equation (D) 
6 Using equation (A) for even N and equation (B) for N odd 
7 Using equation (E) for even N and equation (G) for N odd 
8 Using equation (F) for even N and equation (H) for N odd 
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Table 4.5: Simulation results of BTTG, TTG, and TTGNM networking schemes 

N 

TTG 

Simulation 

Cost 

TTGNM 

Simulation 

Cost 

BTTG 

Simulation 

Cost 

BTTG vs 

TTG Cost 

efficiency % 

BTTG vs 

TTGNM 

Cost 

efficiency 

% 

4 198 183 159 19.697% 13.115% 

5 408 353 336 17.647% 4.816% 

6 730 616 520 28.767% 15.584% 

7 1188 985 839 29.377% 14.822% 

 

 

 

 

Figure 4.5: Theoretical Results with increasing grid size 
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Figure 4.6: Simulated Results with increasing grid size 

 

4.2.2 Fault Introduction 

This section introduces links failure and reports the respective 

communication costs for both the TTG and BTTG networking schemes, the TTGNM 

scheme is not examined, due to the fact that fault tolerance was not handled in this 

scheme. 

In order to show the efficiency of the BTTG over the TTG, a 4x4 grid with 

link faults at one link, two link and three link failures are analyzed. The fault analysis 

study introduced in [Nakad 2003] is considered. 
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1,0 1,1 1,2 1,3
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xX

0,0 0,1 0,2 0,3
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3,0 3,1 3,2 3,3

(b)

xX

 

Figure 4.7: (a) Grid with one link on diffrent ring than Node (0, 0), (b) Grid with link error on same ring as 

Node (0, 0) 
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Figure 4.7(a) represents the case of a 4x4 TTG grid with one link failure, in 

this case the link failure affects the ring of the sending Node (0, 0), and the analytical 

total cost of communication is equal to 275. On the other hand, if the link failure, as 

show in Figure 4.7 (b), affects a ring not directly connected to the sending node, the 

analytical total cost of communication is equal to 350. 

The same scenario is analyzed for a 4x4 BTTG gird. In the BTTG case, as 

previously explained in chapter 3, a link failure will not disable the ring, it will affect 

the communication path direction. Using the results of Tables 4.1 and 4.3 and as 

previously discussed in subsection 4.1.2 the total cost of communication as presented 

in Figure 4.7 (a) is affected by the fact that the grid has a link failure on a ring 

directly connected to the sending node in this case the total cost to a data packet on 

this ring is as follows: 

SREBTTG= TWtoken (with fault) + #Hops (with fault) 

SREBTTG= (N-1) + N/2 

SREBTTG= (3N-2)/2 

The Total cost of communication in this case is a below: 

TCBTTG= 2*(3* SREBTTG + 3* SRBTTG (even N) + 9* DRBTTG (even N)) 

TCBTTG= 2*(3* [(3N-2)/2] + 3* [(3N+2)/4] + 9* [(3N+2)/2]) 

TCBTTG= 2*(3*5 + 3*3.5 + 9*7)   with  N=4 

TCBTTG= 177 

In case the link failure is not directly affecting the sending node ring, case of Figure 

4.7(b), the total cost of sending a data packet to a node with an affected ring used in 

communication is: 

DREBTTG= TWtoken+ #Hops+ TWtoken (with fault) + #Hops (with fault) 

DREBTTG= SRBTTG + SREBTTG 

DREBTTG= (3N+2)/4 + (3N-2)/2 

DREBTTG= (9N-2)/4 

The Total cost of communication in this case is a below: 

TCBTTG= 2*(6* SRBTTG + 3* DREBTTG + 6* DRBTTG (even N)) 

TCBTTG= 2*(6* [(3N-2)/2] + 3* [(9N-2)/4] + 6* [(3N+2)/2]) 

TCBTTG= 2*(6*5 + 3*8.5 + 6*7)   with  N=4 

TCBTTG= 195 
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Figure 4.8: Five Trials with one link failure 

 

A simulation was conducted on TTG and BTTG 4x4 grids with one link 

failure at different locations. Figure 4.8 shows five trials and the simulated counter 

value for both the TTG and the BTTG networking schemes. Table 4.6 depicts the 

simulated results for the trial cases presented in figure 4.8  

 

Table 4.6: Five Trials with one link fault 

Trial 
TTG Simulation 

Cost 

BTTG Simulation 

Cost 

BTTG vs TTG Cost 

efficiency % 

1 293 161 45 

2 219 155 29 

3 208 167 20 

4 220 147 33 

5 315 198 37 

 

Table 4.6 shows that the BTTG networking scheme performed better that the 

TTG networking scheme in case of one link failure. This better performance is due to 

the fact that a link failure does not disable the whole ring however the minimal path 

might be affected, preserving the connection over the resulting virtual ring. 
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Comparing the values of the BTTG in case of one link failure to the BTTG with no 

link failure, it can be shown that the cost in communication is hardly affected. 

 

The same general communication scheme was tested with two link errors in 

the network. Figure 4.9 presents 5 trial cases tested for both the TTG and the BTTG. 

The recorded communication cost values for the two link errors trials are presented 

in Table 4.7. 
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Figure 4.9: Five Trials with two links failure 

 

 

Table 4.7: Five Trials with two links fault 

Trial 

TTG 

Simulation 

Cost 

TTG Nodes 

not Reached  
BTTG 

Simulation Cost 

BTTG vs TTG Cost 

efficiency % 

1 201 Node (3, 3)  161 20 

2 349 Node (0, 2) 218 38 

3 -  192 - 

4 315  217 31 

5 209 Node (1, 1) 177 15 
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The values presented in Table 4.7 shows that the BTTG networking scheme 

is more efficient than the original TTG networking scheme. In the presence of two 

links errors, the BTTG induces an average of 26% decrease in communication cost 

vis-à-vis the TTG. Although a closer look to the simulation, shows that in Trials 1, 2, 

and 5 the TTG networking scheme fails to deliver the data packet for one node in 

each trial, this is due to the fact that the row and column rings of the corresponding 

nodes are both with link errors, thus the node is not reachable anymore. Also Trial 3 

shows that for TTG case, Node (0, 0) was unable to initiate the communication as it 

is isolated from the network. The above cases are not encountered in the BTTG as 

the faced link failures will not disable the ring and connection between nodes is 

persevered. 

 

The same general communication scheme was tested with three link errors in 

the network. Figure 4.10 presents 5 trial cases tested for both the TTG and the 

BTTG. The recorded communication cost values for the above trials are presented in 

Table 4.8.  
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Figure 4.10: Five Trials with three links failure 
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Table 4.8: Five Trials with three links fault 

Trial 

TTG 

Simulation 

Cost 

TTG Nodes 

not Reached 
BTTG 

Simulation Cost 

BTTG vs TTG Cost 

efficiency % 

1 
190 

Node (2, 1) – 

Node (2, 3) 
177 

7 

2 219  174 21 

3 318 Node (2, 0) 201 37 

4 
383 

Node (0, 1) – 

Node (2, 1) 
159 

58 

5 377 Node (2, 3) 173 54 

 

The simulation results presented in Table 4.8 shows that with three link 

failures, the BTTG behaves better than the TTG in two different aspect. As a first 

point, the BTTG decreases the cost of communication by an average of 35%, 

although the BTTG is able to deliver the packets to all the nodes in the grid, the case 

that is not always true for the TTG (Trials 1,3,4,5 all fails to deliver to all nodes). 
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Figure 4.11: (a) and (b) are grids with 3 links failures each on a row, (c) grid with 4 links failures on row 

rings 

 

Figure 4.11 shows three additional cases of faults, these faults are resulted 

from tears through the textile that are expected during the operation of e-textiles. 

Cases in Figures 4.11 (a) and (b) represents three faults affecting 3 of the four rows 

and Figures 4.11 (c) represents a tear affecting the four rows of the grid. For the TTG 

the communication in case (a) and (b) is still possible as Node (0, 0) retain one ring 

connected to the network, although the BTTG communication is tolerated and 
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connection can be operated over the different rings 1 normally and three with fault 

tolerance in opposite direction. Table 4.9 presents the collected simulation results. 

 

Table 4.9: Simulation Results for cases in Figure 4.11 

Trial 
TTG Simulation 

Cost 

BTTG Simulation 

Cost 

BTTG vs TTG Cost 

efficiency % 

4.11(a) 459 175 62 

4.11(b) 211 175 17 

4.11(c) - 187 100 

 

As results shows in Table 4.9, the BTTG performs better than the TTG with 

an average of 40% decrease in communication cost (4.11(a) and 4.11(b)). Also when 

TTG fails the BTTG is able to deliver data to all nodes case of Figure 4.11 (c). 

4.3 Increasing the load 

This section simulates the performance of the BTTG in case of load increase, 

where the sample introduced in the previous sections is adopted with a gradual 

increase in the number of sending nodes from one node to two nodes, three nodes 

and finally four nodes. This test is adopted on grids with N=4, 5, 6, and 7 nodes in a 

ring. Table 4.10, 4.11, 4.12, and 4.13 represents the simulated results of BTTG, TTG, 

and TTGNM grids of different sizes and loads. This particular technique of 

increasing the sending nodes and using these nodes to communicate with the 

matching destinations was chosen to elevate conflict and show the decreasing 

response of the networking schemes. 

The simulation results show that when the number of sending nodes 

increases, the cost increases. This increase is highly noticeable in the TTG 

networking scheme. According to [Nakad 2003] this increase is due to three major 

factors:  

1- The waiting period increase for data packets waiting in the data queues. 

2- Nodes need to send on a same ring but merge token is in action, thus 

token will be missed and wait time will increase. 

3- Need to wait for a merge state to end until another one can occur on the 

same ring. 
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The simulation on grids with different sizes shows that the occurrence of these 

factors increases with increasing the load. The increase in the TTGNM and the 

BTTG is much lower than the TTG case. This increase in performance is related to 

the fact that the only increase in waiting time is related to the waiting period increase 

for data packets in the data queues compared to the TTG where time is consumed in 

merge operations. Also the BTTG shows the best performance between the three 

networking schemes due to communication over the minimal path. This makes the 

BTTG better by an average of 35% from the TTG networking scheme and 11% from 

the TTGNM networking scheme. 

Table 4.10: Simulation results of a 4x4 grid with load increase 

Sending Nodes TTG TTGNM BTTG BTTG vs TTG 

Cost efficiency 

% 

BTTG vs 

TTGNM Cost 

efficiency % 

(0, 0) 198 183 159 19.7 13.1 

(0, 0), (3, 3) 221 192 173 21.7 9.9 

(0, 0), (3, 3), (0, 3) 339 212 204 39.8 3.8 

(0, 0), (3, 3), (0, 3), 
(3, 0) 

368 239 218 40.8 8.8 

 

Table 4.11: Simulation results of a 5x5 grid with load increase 

Sending Nodes TTG TTGNM BTTG 
BTTG vs TTG 

Cost efficiency 

% 

BTTG vs 

TTGNM 

Cost 

efficiency % 

(0, 0) 408 353 294 27.9 20.1 

(0, 0), (4, 4) 452 363 336 25.7 8 

(0, 0), (4, 4), (0, 4) 640 412 377 41.1 9.3 

(0, 0), (4, 4), (0, 4), 
(4, 0) 

751 445 400 
46.7 11.2 

 

Table 4.12: Simulation results of a 6x6 grid with load increase 

Sending Nodes TTG TTGNM BTTG BTTG vs 

TTG Cost 

efficiency % 

BTTG vs 

TTGNM Cost 

efficiency % 

(0, 0) 730 616 521 28.6 18.2 

(0, 0), (5, 5) 801 648 583 27.2 11.1 

(0, 0), (5, 5), (0, 5) 1083 700 658 39.2 6.4 
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(0, 0), (5, 5), (0, 
5), (5, 0) 

1328 741 676 
49.1 9.6 

 

Table 4.13: Simulation results of a 7x7 grid with load increase 

Sending Nodes TTG TTGNM BTTG BTTG vs TTG 

Cost efficiency 

% 

BTTG vs 

TTGNM Cost 

efficiency % 

(0, 0) 1188 985 839 29.4 17.4 

(0, 0), (6, 6) 1285 1036 911 29.1 13.7 

(0, 0), (6, 6), (0, 6) 1920 1098 1035 46.1 6.1 

(0, 0), (6, 6), (0, 6), 
(6, 0) 

2117 1172 1081 
48.9 8.4 

 

 

Plotted results of the simulations of the BTTG, TTGNM and the TTG can be 

visualized in figures 4.12 till 4.15. The figures show clearly that the BTTG is always 

performing better than the other schemes, followed by the TTGNM. The TTG is with 

the lowest performance. 

 

 

Figure 4.12: Pattern of communication cost increase of a 4x4 grids with load increase 
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Figure 4.13: Pattern of communication cost increase of a 5x5 grids with load increase 

 

 

Figure 4.14: Pattern of communication cost increase of a 6x6 grids with load increase 
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Figure 4.15: Pattern of communication cost increase of a 7x7 grids with load increase 
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CHAPTER FIVE 

5. CONCLUSION 

This research introduced the Bidirectional Electronic Textiles Token Grid 

networking topology. It aims at improving the cost of communication between the 

token grid's nodes along with improving the fault tolerance capability of the token 

grid. 

This goal was reached by developing a new communication protocol for the 

token grid architecture that allows the nodes of the grid to send and receive 

information in both directions over a link. This capability allowed the 

communication over a minimal path between the source and destination nodes. The 

bidirectional feature of the grid links, along with the minimal path routing algorithm 

that was applied, enhanced the cost of communication between the nodes of the 

token grid. On the other hand, fault tolerance was also enhanced. The bidirectional 

communication capability, allowed for partial rings formation in cases of link and/or 

node errors. A ring that has link errors is transformed into one or multiple partial 

rings. The communication over partial rings was governed by U-Shaped tokens, 

minimal path routing was applied for communication over rings as the decision of 

path routing was governed locally in the sending node (source and intersecting 

nodes). 

A simulation was developed using the OMNet++ simulation environment. 

This simulation took into consideration the communication in a fault free token grid 

environment for three different schemes; the TTG, TTGNM, and the BTTG. The 

BTTG showed the best performance in the cost of communication. This 

enhancement resulted from two main parameters. The first parameter was the 

absence of merge operations while communicating between nodes laying on different 

row and column rings which eliminated the merge waiting time in intersecting nodes. 

The second parameter was the minimal path routing capability of the BTTG grid 

which allowed the minimization in number of hops between the source and 

destination nodes. Another simulation was held in a faulty environment for the TTG 
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and the BTTG networking schemes. The results showed that the BTTG fault 

tolerance performance is better than the performance of the TTG. This capability was 

revealed by the fact that the BTTG showed better communication cost in cases where 

both TTG and BTTG were able to deliver successfully the data packets to all 

intended nodes in the grid. Moreover, the BTTG was able to deliver packets to all 

nodes in cases where the TTG failed to communicate with one or more destination 

nodes due to link failures on the source or destination nodes level, which isolated the 

node from the token grid in the TTG topology, however, the node was reachable in 

the BTTG topology. 

Finally, the BTTG networking scheme can be used for future applications 

development and implementation. One of the best applications is the carpet based 

burglar alarm system that consist of theft detection electronic devices embedded in a 

carpet textile and communicating by means of the BTTG networking topology. This 

system will be trustworthy in intrusion detection due to three basic parameters: 

reliable fault tolerance, speed in communication, and inevitable detection system as 

the carpet is a textile that can cover a very large area in the premises. 

 

  

 

  



 

 

62 

 

REFERENCES 

 

Hwang, K. (1993). Advanced computer architecture: Parallelism, scalability, 

programmability. West Patel Nagar, New Delhi: Tata McGraw-Hill Higher 

Education. 

 

Martin, T. (2012). Creating the future of textiles: E-textile technology. Specialty 

Fabrics Review. Retrieved from 

http://specialtyfabricsreview.com/articles/0512_fot_etextile_technology.html. 

 

National Park Service. (2002). Museum collections security and fire protection. In 

J.W. Roberts, J. Pasiuk, C. Barton & J. Bacharach (Eds), NPS Museum 

Handbook: Museum collections (pp. 9:1-9:51). Washington, USA: National 

Park Service 

 

Nakad, Z. (2003). Architectures for e-textiles (Ph.D. Dissertation, Virginia 

Polytechnic Institute and State University, Virginia). Retrieved from 

http://www.ccm.ece.vt.edu/etextiles/publications/Dissertation_Zahi_Nakad.p

df 

 

Nakad, Z., Jones M., Martin, T., & Fawaz, W. (2009, December 10). Networking in 

e-textiles. Elsevier Computer Communications, 33, 665-666. 

 

Zheng, N., Wu, Z., Chen, L., & Zhou, Y. (2006). The e-textile token grid network 

with dual rings. In M. L. Gavrilova & V. Kumar (Eds), Computational 

science and its applications – ICCSA 2006 (pp. 1149-1158). Glasgow, UK: 

Springer Berlin Heidelberg 

 

Todd, T. D. (1992). The token grid: Multidimensional media access for local and 

metropolitan networks. IEEE Computer and Communications Societies, 3, 

2415-2424. 

 

Ross, F. E. (1989, September). An overview of FDDI: The fiber distributed data 

interface. IEEE J. Select Areas, 7(7), 1043-1051. 

 

OMNet++ Community. (2009). What is OMNet++. Retrieved from 

http://www.omnetpp.org/home/what-is-omnet. 

 

I2C Bus. (2012). I2C bus specification and user manual. Retrieved from 

http://www.nxp.com/documents/user_manual/UM10204.pdf 

 

Todd, T.D. (1994, June). The token grid network. IEEE/ACM Transactions on 

Networking, 2(3), 279-287. 

 

http://www.ccm.ece.vt.edu/etextiles/publications/Dissertation_Zahi_Nakad.pdf
http://www.ccm.ece.vt.edu/etextiles/publications/Dissertation_Zahi_Nakad.pdf



