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On the Convergence of the Collatz Conjecture

Sequence
Samer S. Saab

Abstract—The Collatz conjecture, also known as the 3n + 1

problem, is a famous unsolved problem in mathematics. This

work converts the conjecture dynamics into its corresponding dif-

ference equation. To determine the boundedness of the sequence,

we commence with a boundedness analysis. This process allows us

to identify a necessary and sufficient condition for the sequence to

be bounded. Following this, we employ standard mathematical

techniques to demonstrate conclusively that the 4-2-1 cycle is

the only one. Additionally, we show that it is impossible for the

sequence to diverge given any positive starting point. Ultimately,

we demonstrate that the sequence invariably converges to 1.

Index Terms—Collatz conjecture, 3n+1 problem, Ulam con-

jecture, Kakutani’s problem, Thwaites conjecture, Hasse’s algo-

rithm, Syracuse problem

I. INTRODUCTION

The Collatz Conjecture, named after the mathematician

Lothar Collatz who introduced the concept in 1937 [1], is

a well-known problem in mathematics. This problem is also

referred to by several other names, such as Ulam’s Conjecture,

the Hailstone Problem, the Syracuse Problem, Kakutani’s

Problem, Hasse’s Algorithm, 3n+1 problem, and the Collatz

Conjecture [2]. Despite the variety of names, they all describe

the same sequence generation process and the question of

whether or not, for any positive integer, the sequence even-

tually reaches the number 1. The different names come from

various researchers and contexts in which the problem has

been discussed or studied, but they all relate to the same

underlying problem.
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The conjecture applies to sequences generated by repeatedly

applying specific rules:

1) Start with any positive integer n.

2) If n is even, divide it by 2.

3) If n is odd, multiply it by 3 and add 1.

4) Repeat steps 2) and 3) until you reach the number 1.

The Collatz Conjecture posits that a specific sequence

invariably converges to the number 1. This conjecture remains

one of the most intriguing unsolved mysteries in mathematics

[3]. Despite its simplicity, it claims that a particular iterative

process, when applied to any positive integer, will ultimately

lead to the number one. Though straightforward in its premise,

the conjecture has resisted a definitive mathematical proof,

even though empirical evidence supports its validity for an

extraordinary range of cases.

In the quest to resolve the Collatz Conjecture, researchers

face several formidable challenges [4]. One of the key diffi-

culties lies in analyzing an infinite sequence. The conjecture

generates a never-ending series of numbers, which poses

significant challenges for both analysis and proof, as traditional

methods of mathematical proof often rely on a finite structure

for verification. Adding to the complexity is the exhaustive

search for a counterexample. Due to the conjecture’s infinitely

expansive nature, finding a counterexample is a daunting

task that stretches the limits of computational resources and

search methodologies [5]. Further complicating matters are

the pattern irregularities observed in the generated sequence.

While certain special cases of the sequence exhibit discernible

patterns [6], these patterns are not universally applicable across

all instances of the sequence. This lack of consistency renders
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many traditional mathematical approaches ineffective, leaving

researchers to grapple with the unpredictable and elusive na-

ture of the conjecture. The Collatz Conjecture shows how math

isn’t always neat and perfect. There’s no shortcut to a solution,

and mathematicians have to explore different approaches and

ideas to get closer to finding an answer [7].

Terras [8] demonstrated that for almost all positive integers,

the Collatz sequence either settles into a cycle or concludes

at 1. He achieved this by delineating limits on the ”stopping

time”—the requisite number of steps to either reach 1 or

commence a cycle. Although the findings do not provide a

definitive solution to the Collatz Conjecture, it introduces a

robust framework for examining stopping times associated

with this captivating problem in number theory.

Tao’s work [6] represents a significant foray into proba-

bilistic methods applied to the Collatz Conjecture, suggesting

that while individual sequences can behave unpredictably, they

exhibit a form of statistical regularity when considered in

aggregate. This approach opens new avenues for exploring

the conjecture and demonstrates the potential of leveraging

probabilistic and statistical methods to tackle long-standing

problems in number theory.

Our literature review provides essential background in a

succinct format. While it does not encompass the wide range

of perspectives found in the extensive existing literature, our

study carves out a new pathway for addressing the problem.

The remainder of this paper is organized as follow. In

Section II, we transform the conjecture’s dynamics into an

nonlinear equivalent difference equation, laying the ground-

work for our analysis. From a control theory viewpoint, the

aim is to demonstrate the sequence’s stability and its eventual

convergence towards 1.

Specifically, we derive a closed-form solution for the dif-

ference equation, enabling a more effective handling of the

sequence. Our initial step in this transformation involves a

detailed examination of the boundedness of the resulting

sequence. Through a comprehensive boundedness analysis, we

successfully establish the necessary and sufficient conditions

under which the sequence remains bounded. This crucial de-

termination forms the basis for our subsequent investigations.

Proceeding to Section III, we leverage established mathe-

matical methodologies to provide irrefutable evidence support-

ing the uniqueness of the 4-2-1 cycle within the conjecture’s

framework. This section rigorously proves that the 4-2-1 cycle

stands alone, unchallenged by any potential rivals. In addition

to elucidating the singularity of this cycle, we further elucidate

the impossibility of sequence divergence when initiated from

any positive starting point. This finding negates the possibil-

ity of unbounded behavior, thus reinforcing the conjecture’s

stability.

Moreover, our analysis extends to demonstrate the inevitable

convergence of the sequence towards the unity. This conver-

gence, irrespective of the initial value provided it is finite,

underscores a fundamental characteristic of the conjecture’s

behavior. The sequence, through a series of transformations

and transitions, invariably seeks the simplicity and finality

of the number one. Furthermore, it is demonstrated that

the maximum number of steps required for the sequence to

converge to 1 is bounded by the highest value attainable by

the sequence, corresponding to its initial starting point.

II. PRELIMINARY RESULTS

We begin by converting the conjecture into its corresponding

difference equation, as follows:

xk+1 =


1+cos(πxk)

2
xk

2 + 1−cos(πxk)
2 (3xk + 1), if xk > 1

1, if xk = 1.

(1)

In this scenario, xk denotes a positive integer at the discrete-

time index k. When xk is odd, then 1+cos(πxk)
2 = 0 and

1−cos(πxk)
2 = 1. Similarly, when xk is even, then 1+cos(πxk)

2 =

1 and 1−cos(πxk)
2 = 0. Hence, when the initial state x0

represents any starting positive integer, Equation (1) effectively

models the conjecture across all corresponding steps with

each step denoted by k. The inclusion of the second case in

Equation (1), the total stopping time [9], serves to prevent the

sequence from entering the well-known loop of 4-2-1.
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If the iteration process terminates or if N does not approach

infinity, then according to (1), it implies that the sequence has

reached 1 in a finite number of steps.

Combining terms in (1) for xk > 1, we have:

xk+1 = (1.75− 1.25 cos(πxk))xk +
1− cos(πxk)

2
. (2)

Iterating (2), we obtain

xN =

(
N−1∏
i=0

ai

)
x0 +

N−1∑
k=0

 N−1∏
j=k+1

aj

 bk, (3)

where ai = 1.75 − 1.25 cos(πxi) ∈
{

1
2 , 3
}

and bi =

1−cos(πxi)
2 ∈ {0, 1}, with ai = 1

2 and bi = 0 for even xi,

and ai = 3 and bi = 1 for odd xi. We denote
∏N−1

j=N aj = 1.

We define ON as the total count of steps xN assumes odd

integer values, and EN as the number of instances xN assumes

even integer values. Thus, N = EN +ON ,

PN ≜
N−1∏
i=0

ai =

(
1

2

)EN

3ON , and SN ≜
N−1∑
k=0

 N−1∏
j=k+1

aj

 bk.

In the following, we establish a relationship between Sk

and Pk. We adjust the indices in Equation (3) to enhance

flexibility, as our work utilizes either xN or xk, depending

on the derivation context.

Proposition 1: For any given x0 ∈ N, we have

Sk = Pk

k−2∑
j=0

2Ēj+1

3Ōj+1
bj + bk−1, (4)

where Ēj ≜ Ek − Ej−1 and Ōj ≜ Ok −Oj−1.

Proof. By expanding the terms in Sk, we obtain:

Sk = b0

k−1∏
j=1

aj + b1

k−1∏
j=2

aj + b2

k−1∏
j=3

aj + · · ·

+ bk−2 · ak−1 + bk−1

= b0
3O1

2E1
+ b1

3O2

2E2
+ · · ·+ bk−2

3Ok−1

2Ek−1
+ bk−1

=
3Ok

2Ek

(
b0

2Ek−E1

3Ok−O1
+ b1

2Ek−E2

3Ok−O2
+ · · ·+ bk−2

2Ek−Ek−1

3Ok−Ok−1

)
+ bk−1

In the final step, we multiplied by 3Ok

2Ek
· 2Ek

3Ok
= 1 and

utilized the identity 3Oi

2Ei
= 2−Ei

3−Oi
. Recognizing that Pk = 3Ok

2Ek

concludes the proof.

Example 1. To illustrate our derivation, we begin with an

example assuming both x0 and x2 are odd. From this, we

derive:

x1 = 3x0 + 1.

x2 = 3
2x0 +

1
2 .

x3 = 9
2x0 +

5
2 .

x4 = 9
4x0 +

5
4 = P4x0 + S4.

We analyze x4, noting that b0 = b2 = 1, b1 = b3 = 0,

a0 = a2 = 3, and a1 = a3 = 1
2 . Employing Equation (3),

we find P4 = a0a1a2a3 = 9
4 , leading to O4 = E4 = 2.

Consequently, S4 = b0a1a2a3 + b2a3 = 3
4 + 1

2 = 5
4 . Given

that a1a2a3 = 3
4 , we deduce O1 = 1 and E1 = 2, while for

the term a3 = 1
2 , it follows that O3 = 0 and E3 = 1.

Applying Equation (4), we derive S4 =

P4

(
b0

2E4−E1

3O4−O1
+ b2

2E4−E3

3O4−O3

)
= 9

4

(
1
3 + 2

9

)
= 5

4 .

Lemma 1: For any given initial value x0 ∈ N, the following

inequalities hold:

1) Upper bound for xN : xN ≤ 3
(
1
2

)EN
3ONx0 + 1 =

3PNx0 + 1, where PN =
(
1
2

)EN
3ON .

2) Upper bound for SN : SN ≤ 2PNx0 + 1.

Proof. The inequality stated in Lemma 1 is equivalent to:

xN ≤
(
1

2

)EN

3N+1−ENx0 + 1.

We first observe that N + 1 − EN = ON + 1. The proof of

the first part proceeds via induction.

This is valid for N = 1, as x1 ≤ 3x0 + 1. if x0 is odd,

x1 = 3x0 + 1 < 9x0 + 1; conversely, x1 = x0

2 < 3
2x0 + 1 if

x0 is even.

In this case, we have E1 = 0, O1 = 1 and P1 = 3 if x0 is odd,

where x1 = 3x0+1 < 9x0+1; conversely, x1 = x0

2 < 3
2x0+1

if x0 is even, resulting in E1 = 1, O1 = 0 and P1 = 1
2 .

We assume its validity for N−1. Therefore, we have xN−1 ≤(
1
2

)EN
3N−ENx0 + 1. By following a similar argument for

cases where xN−1 is odd or even, it results in

xN ≤ 3xN−1 + 1 ≤
(
1

2

)EN

3N+1−ENx0 + 1

= 3

(
1

2

)EN

3ONx0 + 1.

For the second part of this lemma, we have xN = PNx0 +

SN ≤ 3PNx0+1, then SN ≤ 2PNx0+1. This concludes the

proof.
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Theorem 1. Given any x0 ∈ N, the boundness of Equation

(3) is guaranteed if only if limN→∞
∏N−1

i=0 ai is bounded.

Proof.

Necessary condition: The boundedness of xN necessitates that

limN→∞
∏N−1

i=0 ai be bounded; otherwise, limN→∞ xN =

limN→∞(PNx0 + SN ) becomes unbounded.

Sufficient condition: This follows directly from Lemma 1,

as xN ≤ 3
(
1
2

)EN
3ONx0 + 1 is bounded if and only if∏N−1

i=0 ai =
(
1
2

)EN
3ON is bounded.

Remark 1. The convergence of this nonlinear system, as gov-

erned by Equation (1), towards a specific equilibrium point is

influenced by its initial conditions. Setting xk+1 = xk = x ∈

R in Equation (2) to deduce the equilibrium points, we identify

potential points at x = 0 and x = −0.5. However, within

the framework of Equation (1), the scenario for x = −0.5

or x = 0 is not applicable since the system is confined to

states where xk can only assume positive values, making

the non-positive equilibrium points irrelevant. However, the

system in (1) restricts that as xk = 1, xk+m = 1 for all

m ∈ N. Therefore, when considering the system’s behavior

with respect to positive integers, the legitimate equilibrium

point identified is at x = 1.

III. MAIN RESULTS

We initially define what constitutes a cycle and prove

that the 4-2-1 cycle is unique, as stated in Theorem 2.

Subsequently, in Theorem 3, we demonstrate the sequence’s

boundedness. Lemma 2 establishes that the convergence of the

sequence {xk} necessarily implies convergence to 1. Finally,

we establish that the sequence converges to 1 from any finite

starting point.

Cycle: A cycle occurs when the sequence of numbers gen-

erated by repeatedly applying the Collatz function eventually

returns to a previously encountered number, and from that

point on, the sequence keeps repeating the same set of numbers

in a specific order.

In a cycle, with number of steps equals to N , we have:

x0 → x1 → x2 → x3 → · · · → xN−1 → xN = x0.

For example, in the 4-2-1 cycle, if x0 = 2, then x3 = 2.

Similarly, if x0 = 4, we obtain x3 = 4.

Clearly, any starting number xi in a cycle xi ∈

{x0, x1, . . . xN−1} returns to itself taking the same number

of steps.

Theorem 2. For any initial value x0 ∈ N with subsequent

terms xk ∈ N, the 4-2-1 cycle is the only cycle.

Proof. We begin by demonstrating that if x0 = xN for some

N ∈ N, then PN < 1. Employing an inductive approach,

we examine possible classes of loops where xk > xN for

1 ≤ k ≤ N − 1. Ultimately, we identify a contradiction by

showing that PN > 1 for any loop other than the 4-2-1 loop,

thereby establishing the uniqueness of the 4-2-1 loop under

these conditions.

Assume ∃N ∈ N and x0 ∈ N such that xN = x0. Then,

Equation (3) implies that

x0 = PNx0 + SN , (5)

where PN =
∏N−1

i=0 ai and SN =
∑N−1

k=0

(∏N−1
j=k+1 aj

)
bk.

Therefore,

x0 =
SN

1− PN
.

Given that SN > 0, PN > 0, and x0 ∈ N, it follows

that 0 < PN < 1. Note that PN ̸= 0, otherwise, it would

imply SN = 0 and x0 = 0, which contradicts the given

condition. Additionally, PN =
(
1
2

)EN
3ON , where ON is the

total number of steps xk assumes odd integer vales, and EN

is the number of instances xk assumes even integer values. If

PN = 1, then ON

EN
= log(2)

log(3) /∈ Q. Given that N = EN +ON , a

finite N cannot yield PN = 1. Additionally, if PN = 1, then

from (3), we deduce that SN = 0, which implies that xk is

even ∀k > 0. The latter implies that xk → 1 in N = log(x0)
log(2)

steps.

We use the established bound for PN , 0 < PN < 1, which

is related to the sufficient condition for boundedness provided

in Theorem 1.

In what follows, we use an induction argument to demon-

strate that x0 cannot be part of any cycle for all x0 > 4, we

acknowledge the segment of the conjecture as valid for any

starting point greater than 4 and less or equal to X0, where
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X0 ≫ 1. For simplification, we set x0 = X0 + 1, aiming to

prove that x0 does not become entrapped in a cycle of any

period.

If x0 is even then x1 = x0

2 < X0. Therefore, x0 must be odd.

We examine two scenarios: the first where xN−1 < x0 and

the second one where xN−1 > x0.

Scenario 1: If xN−1 < xN = x0 while noting that xi ∈ N,

then by the induction argument, this configuration cannot be

part of any cycle. Another perspective can be explained as

follows: for xN−1 to progress to its next step xN = x0, it

necessitates that xN−1 is odd, while x0 is even. Hence, we

deduce xN+1 = x0

2 . Based on the induction context, x0

2 < X0

cannot be a part of any cycle.

Scenario 2: When xN−1 > x0 = xN , it implies xN−1 is even.

Thus, xN−1 = 2x0. We explore the case where xN−2 can be

either odd or even where we provide a general examination.

If xN−2 is odd, then xN−1 = 3xN−2+1, or xN−2 = 2x0

3 − 1
3 .

The latter implies that xN−2 < x0, which, according to the

induction argument, cannot enter into a cycle.

In light of the recent findings, the following is established:

xN−2 = 4x0.

xN−1 = 2x0.

xN = x0.

x1 = 3x0 + 1.

x2 = 3
2x0 +

1
2 .

x3 = 9
2x0 +

5
2 . Note that if x2 were even, then x3 < x0.

x4 = 9
4x0 +

5
4 .

It is important to highlight the following:

if x1 = xN−2, then x0 = 1 as expected from the 4-2-1 loop.

if x2 = xN−2, then x0 = 1
5 < 1.

if x3 = xN−2, then x0 = −5 < 0.

if x4 = xN−2, then x0 = 5
7 < 1.

Before the sequence begins its non-stop descent to its initial

value, an odd value of xk must be encountered. Therefore,

∃k > 4 such that xk+1 = 3xk + 1 = 2nx0 where n ≥ 2. We

can express xk+1 as follows:

xk+1 = Pk+1x0 + Sk+1 = 2nx0.

Assume that, for N > 4, ∃N such that x0 = xN = PNx0 +

SN . It follows that:

Pk+1x0 + Sk+1 = 2nPNx0 + 2nSN .

Thus, PN = Pk+1

2n and SN = Sk+1

2n . Subsequently, we can

express x0 as follows:

x0 =
SN

1− PN
=

Sk+1

2n

1− Pk+1

2n

=
Sk+1

2n − Pk+1
=

3Sk + 1

2n − 3Pk

=
Sk + 1

3
2n

3 − Pk

.

In this derivation, we leverage the relationships Pk+1 = 3Pk

and Sk+1 = 3Sk + 1 because we are considering the case

where xk is odd. Additionally,

xk = Pkx0 + Sk

=
xk+1 − 1

3

=
Pk+1

3
x0 +

Sk+1 − 1

3

=
2nPN

3
x0 +

2nSN − 1

3

Consequently, Pk = 2nPN and Sk = 2nSN−1
3 or SN =

3
2nSk + 1

2n . Since n ≥ 2, then SN < Sk + 1
3 . The latter

inequality is based on the fact that
(
1− 3

2n

)
Sk > 0 > 1

2n −
1
3 .

Next, consider

xk =
2nx0 − 1

3
= Pkx0 + Sk.

Therefore,

x0 =
Sk + 1

3
2n

3 − Pk

=
SN

1− PN
.

Since x0 > 0 and Sk + 1
3 > 0, then 2n

3 − Pk > 0. We have

SN < Sk + 1
3 , which implies that 1 − PN < 2n

3 − Pk or

PN > 1 +
(
2n

3 − Pk

)
> 1 since 2n

3 − Pk > 0.

Given that PN > 1, we encounter a contradiction, which

bolsters our induction argument. This completes the proof.

Remark 2. There exists a class of enormously vast starting

points that converge to 1. For example, based on the literature

(see, e.g., [10] and [5]), we assume that sequences with starting

points up to y < x0 converge to 1. If x0 = 2my, y < x0,∀m ∈

N, then the sequence, with starting point equals x0 = 2my,

would converge to 1.

This is due to the fact that if xk = 2my, where y < x0 for all
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m ∈ N, x0 is even, hence x1 = 2m−1y. Subsequently, after an

additional m−1 divisions by 2, we arrive at xk+n = y. Based

on the induction argument, it is inferred that y converges to

1, implying that the sequence starting with x0 also converges

to 1.

Motivation. We provide context for Theorem 3, focusing on

the boundedness of the sequence {xk}. Given any positive

x0 ∈ N, if the sequence {xk} diverges, then as k → ∞, we

have Ek → ∞ and Ok → ∞.

It follows that there will be infinite odd numbers and infinite

divisions by 2, as whenever xk is odd, then xk+2 = xk+1

2 . Ad-

ditionally, as stipulated by Theorem 2, the sequence is required

to produce an infinite number of distinct values, prohibiting

the recurrence of any identical numbers. Consequently, one

can infer that the only viable initial point is zero.

Theorem 3. Consider the system governed by Equation (1).

For any initial finite value x0 ∈ N with subsequent terms

xk ∈ N, the sequence {xk} is bounded.

Proof. The fundamental premise of the proof restricts that

{xk} ⊂ N, and if the sequence {xk} diverges, then as k → ∞,

we have Ek → ∞ and Ok → ∞.

We show that if xk diverges, then the starting point x0 cannot

be positive.

As in the proof of Proposition 1, we consider the expansion

of xk − bk−1 ∈ N since bk−1 ∈ {0, 1}. Thus, xk − bk−1 =

Pkx0 + Sk − bk−1. Making use of (4), we obtain

xk − bk−1 = Pkx0 + Pk

k−2∑
j=0

2Ēj+1

3Ōj+1
bj

=
3Ok

2Ek
x0 +

3Ok

2Ek

k−2∑
j=0

2Ēj+1

3Ōj+1
bj

=
3Okx0 + 3Ok

∑k−2
j=0

2Ēj+1

3Ōj+1
bj

2Ek
.

Note that since Ok ≥ Ōj+1, 0 ≤ j ≤ k − 2, then∑k−2
j=0

2Ēj+1

3Ōj+1
bj is a positive integer. For xk − bk−1 ∈ N, then

the numerator must by a multiple of 2Ek , that is,

3Okx0 + 3Ok

k−2∑
j=0

2Ēj+1

3Ōj+1
bj = 2Ekm, m ∈ N.

Since the two terms in the left-hand side are positive integers,

then m ≥ 1. Therefore,

x0 +

k−2∑
j=0

2Ēj+1

3Ōj+1
bj =

2Ek

3Ok
m =

1

Pk
m.

Theorem 1 implies that if xk → ∞ diverges, then Pk → ∞.

Consequently,

lim
Pk→∞

x0 +

k−2∑
j=0

2Ēj+1

3Ōj+1
bj

 = 0. (6)

We next show that Sk−bk−1

Pk
=
∑k−2

j=0
2Ēj+1

3Ōj+1
bj is bounded.

Using Lemma 1, we obtain

Sk − bk−1

Pk
≤ 2Pkx0 + 1− bk−1

Pk
= 2x0 +

1− bk−1

Pk
.

As Pk → ∞, then

k−2∑
j=0

2Ēj+1

3Ōj+1
bj → 2x0. (7)

Consequently, utilizing the limits introduced in (6) and (7), we

infer that as Pk → ∞, it follows that x0 cannot be a positive

integer. Therefore, Pk must be bounded. we can directly invoke

Theorem 1. This theorem ensures that the sequence xk is also

bounded. Therefore, we have proven that the sequence xk is

bounded.

Lemma 2. Consider the system governed by Equation (1). For

any x0 ∈ N, if {xk} is convergent, then limk→∞ xk = 1.

Proof. If iteration ceases, (1) indicates the sequence reaches 1

in finite steps; otherwise, we assume k approaches infinity.

Given that x0 ∈ N, Theorem 3 guarantees that for all k > 0,

xk = Pkx0 + Sk is bounded, and in the context of this

lemma, the sequence {xk} is assumed to be convergent. It

is worthwhile noting that x0, Pk and Sk are all positive and

bounded. If, in the limit, either Pk or Sk does not converge,

then the sequence xk will undergo either division by two

or multiplication by three plus one. Consequently, xk cannot

converge if either Sk or Pk fails to converge. Consequently,

limk→∞ Sk is also convergent. Utilizing Equation (4), we

deduce

lim
k→∞

Sk − bk−1 = lim
k→∞

Pk

k−2∑
j=0

2Ēj+1

3Ōj+1
bj
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must likewise be convergent.

Given that the terms in the summation are bounded, it follows

that ∃C > 0 such that ∀j, 0 < 2Ēj+1

3Ōj+1
bj ≤ C < ∞ or

2Ēj+1

3Ōj+1
bjPk ≤ CPk. Therefore, for some integers n and m

with 0 < n < m < ∞, we can express

m∑
j=n

lim
k→∞

2Ēj+1

3Ōj+1
bjPk ≤ C(m− n+ 1) lim

k→∞
Pk. (8)

Using the Cauchy criterion for series, specifically,
∑∞

k=0 pk

converges if and only if, for every ϵ > 0, there exists a

positive integer N such that for all m > n ≥ N , it holds

that
∑m

k=n pk < ϵ.

We use the value C(n−m+1)ϵ
3x0

to further bound the sum in (8).

Consequently, limk→∞ Pk < ϵ
3x0

. From Lemma1, we have

limk→∞ xk ≤ limk→∞ 3Pkx0 +1 < 1+ ϵ. Since limk→∞ xk

must be an integer, then limk→∞ xk = 1.

Theorem 4. Given the system described by Equation (1), for

any initial condition x0 ∈ N, the sequence {xk} converges

to 1 in a finite number of steps. Furthermore, the number of

steps required for xk to converge to 1 is bounded above by

the maximum value of xk corresponding to the initial value

x0.

Proof. Theorem 3 guarantees that for all k > 0, xk is bounded.

Therefore, for each x0 ∈ N, ∃M ∈ N such that xk ≤ M < ∞.

In addition, Lemma 2 implies that if limk→∞ xk = µ ≤ M ,

then the sequence {xk} → 1. Therefore, if {xk} does not

converge, then it must span infinite integers.

However, as implied by Theorem 2, if the sequence generates

an infinite number of distinct values, thereby preventing any

repetition of values, it follows that there cannot be more than

M distinct integer values. This is because Theorem 3 dictates

that xk ≤ M < ∞. Consequently, the sequence {xk} is

constrained to span at most M distinct values. Furthermore, as

stipulated by Lemma 2 and the system described by Equation

(1), the iteration halts upon reaching xk = 1. Thus, the

sequence {xk} inevitably converges to 1 within a maximum

of M steps.

IV. CONCLUSION

Our investigation commenced with the formulation of a

discrete-time system model to encapsulate the dynamics em-

bedded in the conjecture. Central to our analysis was the

establishment of a necessary and sufficient condition for the

sequence’s boundedness. Through this framework, we identi-

fied a condition for the existence of potential cycles and sub-

stantiated the 4-2-1 cycle as the only viable cycle. Moreover,

we established the impossibility of sequence divergence from

any positive starting point. Ultimately, our findings affirm that

the sequence invariably converges to 1.
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