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Abstract 
Mobile ad-hoc networks are wireless self-organized networks in which mobile 
nodes can connect directly to each other. This fact makes such networks 
highly susceptible to security risks and threats, as malicious nodes can easily 
disguise as new trusted nodes and start attacking the network after a certain 
period of time. Hence, the security of data transmission in MANET has been a 
hot topic in the past years. Several research works attempted to detect and 
stop various attacks on MANET nodes and packets. This paper presents an ef-
ficient mechanism for secure data dissemination in MANETs. Our approach 
is based on the identity based cryptography and Message Authentication Code 
(MAC). The proposed security mechanism prevents malicious nodes from 
tampering or replaying intermediate packets by means of signing and en-
crypting the packet at each intermediate trusted node. We tested the efficiency 
of our system using the ns2 simulator by comparing it to a similar security 
mechanism. The simulations illustrate that our approach obtains many ad-
vantages over other existing approaches for secure data dissemination in 
MANETs. 
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1. Introduction 

Over the last years mobile computing and mobile ad hoc networks have rapidly 
developed and expanded. Mobile computing is referred to any system that uses 
dynamic wireless communications and does not depend on preinstalled infra-
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structure. Mobile ad hoc networks (MANETs) are a decentralized type of wire-
less networks which are basically deployed for the purpose of temporary com-
munication in both normal and adverse situations. It is called an ad hoc network 
because it does not rely on a preexisting infrastructure, such as routers in wired 
networks or Access Points (APs) in managed (infrastructure) wireless networks. 
Instead, each node participates in routing by forwarding data to other nodes, 
and the process of determining which nodes should forward data is dynamically 
calculated based on the network connectivity. MANETs can use various routing 
schemes like hop-by-hop communication or other classical and modern ap-
proaches. In addition to classic routing, MANETs can use flooding for forward-
ing data. Flooding itself becomes an important issue when we study network 
congestion.  

As MANET applications that include information sharing and data dissemi-
nation are increasing in a rapid pace, the demand for optimizing network re-
sources and attaining data security has become a paramount concern for the re-
search community. Achieving strong security in MANETs is a very challenging 
task due to the presence of two main constraints: 1) constantly changing topol-
ogy and 2) high mobility of nodes. As nodes join and leave the network, the 
network topology constantly changes. Under such circumstances, it is difficult to 
maintain a constant routing table at each node which becomes a very expansive 
process that consumes the node limited resources. Moreover, MANET nodes 
might have high mobility in certain cases, such as natural disasters and evacua-
tion scenarios. Taking into regards the above challenges, a unified security ap-
proach that maintains fast and successful communication efficiency is required 
for data dissemination in MANETs. 

In this paper, we propose an approach that allows a source mobile node to 
send a data packet securely to a destination mobile node, while ensuring that the 
packet was forwarded through trusted intermediate mobile nodes. In other 
words, our approach makes sure that a malicious node will be detected if it per-
forms an attack on a packet while it is being sent from a source to a destination. 
Hence, our approach creates what we can call a trusted route between a source 
and a destination. Contrary to other systems, our approach does not maintain 
the trusted route at each node. Rather, the route is calculated dynamically on the 
fly while the packet is being forwarded by an intermediate node. The trusted 
route ensures that the packet is forwarded by trusted nodes only. In order to do 
that, each intermediate node adds its own signature and a timestamp to the 
packet before encrypting it with the destination’s public key. When the destina-
tion receives the packet, it hierarchically decrypts it and authenticates each in-
termediate node by checking its signature. Hence, the destination can reversely 
track the route of the packet and make sure that all nodes that forwarded the 
packet were trusted ones. We call our approach Hierarchical Message Authenti-
cation Code or HiMAC. 

In addition to authenticating intermediate nodes, HiMAC strives to provide 
trustworthiness between MANET nodes. In previous works, maintaining the 
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trust between nodes depended on the existence of a centralized authority to dis-
tribute certificates to the nodes. However, this approach may not work well in 
MANETs since the assigned trusted third party may leave the network at any 
time. Moreover, it might take a long time to establish the trust for a newly ar-
rived node. For these reasons, HiMAC maintains a trust mechanism via distri-
buted cooperation between all nodes. Although there exist many proposals for 
secure communication in MANETs [1]-[8], they still face the problem of how to 
maintain efficiency, trust, and security in a MANET framework. 

The rest of the paper is organized as follows: A brief overview of securing data 
dissemination in MANETS is presented in Section 2. The detailed description of 
our proposed system is in Section 3, while Section 4 analyzes the encryption/ 
decryption delays via mathematical analysis. In Section 5 we evaluate our ap-
proach via software simulations. Finally, concluding remarks are presented in 
Section 6. Before proceeding to Section 2, we present a list of the acronyms used 
in this paper in Table 1. 

2. Literature Review 

A vast number of security mechanisms and protocols have been proposed for  
 

Table 1. List of acronyms.  

Acronym Definition 

HiMAC Hierarchical Message Authentication Code 

MANET Mobile Ad hoc Network 

AP Access Point 

QoS Quality of Service 

DoS Denial of Service 

SMT Secure Message Transmission 

SEAD Secure Efficient Ad hoc Distance vector 

PLRSA Promiscuous Listening Routing Security Algorithm 

SecMR Secure Multipath Routing 

SAODV Secure Ad hoc On-Demand Distance Vector 

TAODV Trusted Ad hoc On-Demand Distance Vector 

DSR Dynamic Source Routing 

GKA Group Key Agreement 

TTL Time-to-Live 

RSA Rivest-Shamir-Adleman public-key cryptosystem 

AES Advanced Encryption Standard 

3DES Triple Data Encryption Standard 

MIPS Million instructions per second 

RREQ Route Request 

RREP Route Reply 

RWP Random Waypoint movement model 
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MANETs by the research community over the years. These protocols are studied 
form different perspectives keeping in mind the properties and constraints of 
MANETs. In general, the most studied security attacks in MANETs are the Gray 
Hole attacks and the Black Hole attacks [9] [10] [11]. 

Hu et al. [1] presented the different attacks against routing in ad hoc net-
works, and the design and performance evaluation of a new secure on-demand 
ad hoc network routing protocol which they gave the name Ariadne. They also 
discussed the different types of Denial-of-Service attacks on routing paths and 
the various preventive approaches. Papadimitratos et al. [3] [4] proposed the 
Secure Message Transmission (SMT) protocol for mobile ad hoc networks. They 
described that the SMT protocol is better matched to support QoS for real-time 
communications in the ad hoc networking environment more than other envi-
ronments. Hu et al. [5] proposed a Secure Efficient Distance Vector Routing for 
Mobile Wireless Ad Hoc Networks which they called the Secure Efficient Ad hoc 
Distance vector routing protocol (SEAD). The proposed protocol uses one-way 
hash functions instead of cryptographic operations in securing the routed mes-
sages. 

Wu et al. [6] presented a survey on various possible attacks and countermea-
sures in Mobile Ad Hoc networks. Li et al. [7] proposed a routing security algo-
rithm for mobile hosts to detect malicious attacks in the middle; and they named 
it promiscuous listening routing security algorithm (PLRSA). Their proposed 
algorithm is distributed in nature without any need of communication between 
hosts. Each node in PLRSA, can switch into the promiscuous listening mode to 
intercept all packets passing through the mobile host in order to monitor the 
other nearby nodes. When a node performs a malicious behavior, such as drop-
ping or tampering data packets, the other nearby nodes will detect the spiteful 
behavior.  

Komninos et al. [8] discussed the main security issues for protecting mobile 
ad hoc networks at the data link and network layers. They first identified the se-
curity requirements for these two layers and then the design criteria for creating 
secure ad hoc networks using multiple lines of defense against malicious attacks. 
Xiaopeng et al. [9] discussed the Gray Hole attack which leads to the Denial of 
Service (DoS) attack. In the Gray Hole Attack an adversary silently drops some 
or all of the data packets sent to it instead of forwarding them. Mavropodi [12] 
proposed an on-demand multipath routing protocol which they named secure 
multipath routing protocol (SecMR), and analyzed its security properties. Kom-
ninos et al. [13] described the layered security approach, design criteria and per-
formance analysis of some MANET security protocols. 

Zhao et al. [14] proposed a secure routing protocol with proactive security 
approach for MANETs. In this paper the authors allowed only legitimate nodes 
to participate in the bootstrapping process, rather than trying to detect adversary 
nodes while they are participating in the routing protocol. Marchang et al. [15] 
proposed two intrusion detection techniques for MANETs, which rely on colla-
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borative efforts of nodes in a neighborhood to detect a malicious node in that 
neighborhood. Yeun et al. [16] proposed a group key agreement protocol for 
end-to-end security in MANET environments that do not have any fixed infra-
structure. Cordasco et al. [17] presented a comparison between SAODV and 
TAODV which address routing security through cryptographic and trust-based 
means respectively. They also provided the performance comparison on actual 
resource-limited hardware. Kim et al. [18] discussed the security of the route 
discovery process in DSR.  

Dutta et al. [19] proposed a generalized self-healing key distribution using a 
vector space access structure. They described three efficient constructions for 
scalable self-healing key distribution with t-revocation capability. Su [20] pro-
posed a wormhole-avoidance routing protocol on the basis of anomaly detec-
tion. Makri et al. [21] reviewed and evaluated a number of constant round 
Group Key Agreement (GKA) protocols. Su [10] discussed the prevention of 
some selective black hole attacks on MANETs through intrusion detection sys-
tems. Khalil et al. [22] presented a scalable countermeasure for the control traffic 
tunneling attack. The proposed system uses trusted nodes called cluster heads 
(CH) for global tracking of node locations in order to detect and isolate mali-
cious nodes. Bhalaji et al. [11] proposed a Dynamic Trust Based Method to alle-
viate Grey hole attack in MANETs. Singh et al. [23] presented a state of the art 
survey on the ant-based routing protocols and a taxonomy of various ant colony 
algorithms with their different advantages and disadvantages. 

Omar et al. [24] propose a secure and reliable certificate chains recovery pro-
tocol for mobile ad hoc networks. In the proposed framework, the MANET us-
ers take the role of the certification service by issuing and managing the public- 
key certificates. The shortest and the safest certificate chains are selected in order 
to reduce the communication overhead and resist against compromised nodes 
which can generate false certificates. The authors in [25] propose a mesh-based 
multipath routing scheme to discover all possible secure paths using secure ad-
jacent position trust verification protocol. Better link optimal path is determined 
by the Dolphin Echolocation Algorithm for efficient communication. 

In addition to basic MANETs, the security of special types of Ad hoc Net-
works, such as Wireless Sensor Networks (WSNs) and Vehicular Ad hoc Net-
works (VANETs) have been extensively studied. For example, Dhyani et al. [26] 
present a mechanism for averting black hole attack in VANETs by unicasting 
data packet to vehicles and using the trust factor technique to detect routing 
misbehavior and ensure the relaying of data packets to the destination. Mershad 
et al. [27] introduce a system that takes advantage of the roadside units (RSUs) 
that are connected to the Internet and to secure the communications between 
VANET users. The system uses a hierarchal password-based key derivation 
function to provide data confidentiality at each intermediate node. Jan et al. [28] 
propose a lightweight payload-based mutual authentication scheme for a cluster- 
based hierarchical WSN. The proposed scheme operates in two steps. First, an 
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optimal percentage of cluster heads is elected, authenticated, and allowed to 
communicate with neighboring nodes. Second, each cluster head, in a role of 
server, authenticates the nearby nodes for cluster formation. 

As MANETs can encounter fast topological changes, security becomes a pa-
ramount concern to detect and stop attackers before they succeed in performing 
their attacks. Security can be described in two folds: on route and data levels. 
Existing security solutions [1]-[8] are able to secure the network against a certain 
type of attacks, but remain vulnerable to other types of inside and outside at-
tacks. Although there exist many solutions to mitigate these attacks but they are 
not sufficient enough with constant topological changes in the network. Hence a 
unified mechanism is required which prevents packet drop and tampering, 
packet replay, impersonation, and false data attacks. In this paper a trust me-
chanism between the different nodes is coupled with a strong authentication 
scheme in order to detect and avoid the described attacks. 

3. Proposed Mechanism 

A large number of research works attempted different solutions to security 
threats in various types of Ad hoc Networks, such as WSNs and VANETs. Nev-
ertheless, Security remains a major concern in the future of such networks. 
Based on the literature review and the critical analysis of MANET security, we 
can see that no framework have established a strong proof of high security, effi-
ciency, and trust classification at the same time. The main drawback in previous 
works is the difficulty of establishing the trustworthiness of newly arrived node. 
Many approaches in the literature establishes this trust by monitoring the beha-
vior of a new node for a certain period of time, and then classifying this node as 
trustworthy if no malicious behavior was detected by it. However, an attacker 
might hide its malicious behavior for a long period of time, and then perform its 
attack after it is declared trustworthy by other nodes. 

In our system, we argue that trust should be based on identity and not only on 
behavior. In real life, a person might be trusted by some people and at the same 
time not trusted by others. As mobile nodes are in reality the people operating 
them, the trust of a mobile node should be coupled with its user’s identity. A 
newly arrived node will broadcast its identity to its neighbors. If one of the 
trusted neighbors acknowledges its trustworthiness, the node is saved as trusted 
by the other neighbors. If no neighbor knows the new node, it remains saved as 
suspicious until a certain trusted node in the network that knows the new node 
discovers its existence and declares its trustworthiness; or until a certain time has 
passed after which the behavior of the new node is classified as normal and its 
trustworthiness is established. 

In order to maintain this trust mechanism, a single parameter is added to the 
neighbors list and to the routing table that are maintained by the routing proto-
col at each node. This parameter is called trust, and can have values equal to 
“malicious”, “ambiguous”, “potentially trusted”, or “trusted”. When a new node 
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Nn arrives, its neighbors classify it as “ambiguous”. When a node N receives a 
neighbor-broadcast packet from a “trusted” node NT that the new node Nn is 
trusted, it changes the trust of Nn to “potentially trusted”. After that, N asks its 
user whether Nn should be classified as “trusted” or not, by displaying a list of 
the behavior of Nn so far, and the identity of the user of Nn as he announced 
himself. It’s always up to the user of a node to declare that a certain node in the 
network can be classified as “trusted”. As long as the user hasn’t stated so, Nn 
remains “potentially trusted”, since it was not fully “trusted” by the user of the 
node. At any time the user can change the trust of a node Nn from “potentially 
trusted” to “trusted”, after he/she decides that he now trusts the user of Nn. Note 
that some MANET nodes (such as wireless printer) will not have a user. These 
nodes will not have the “potentially trusted” classification in their routing algo-
rithm. Rather, such node will declare a new node as “trusted” whenever it rece-
ives a neighbor-broadcast packet from a trusted neighbor that this new node is 
“trusted”. On the contrary, if any node receives a neighbor-broadcast from a 
“trusted” node that a certain node Nm is “malicious”, it changes the trust of Nm 
to “malicious”. Note that a neighbor-broadcast packet is a packet that is broad-
casted only to neighbors, by setting the Time-to-Live (TTL) of the packet to 1. 
Also, note that neighbor-broadcast packets will be secured using the HiMAC 
security mechanism, as we will explain shortly. 

In order to secure data dissemination packets without affecting the route op-
timization, while at the same time maintaining trust between mobile nodes, we 
propose a Hierarchical security protocol for message authentication and encryp-
tion (HiMAC). Using our protocol, a node S who wants to send a packet to 
another node D, examines the set of possible nodes that can be selected as a 
“next hop” to D. For example, in Figure 1, the set of nodes that can act as “next 
hop” is {A1, B1, C1}. At this stage, two factors are considered in selecting a certain 
node from this set: trust value and route efficiency. S first examines the trust of 
each node in the list. If only one node in the list is “trusted”, then it is selected as 
the “next hop”. If more than one node in the list is “trusted”, S selects among 
these nodes the one that lies inside the most efficient route; i.e., the node whose 
total path to the destination has the least cost. For example, in Figure 1, suppose  

 

 
Figure 1. Example of multiple routes from source S to destination D. 
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that both B1 and C1 are “trusted”, and that the cost of the route B1-B2-B3 is equal 
to 15, while the cost of C1-C2-C3 is equal to 20. Then S chooses B1 as the “next 
hop”. 

Before sending the packet to B1, S uses its private key to generate the message 
signature using MAC algorithm. After that, S combines (concatenates) the mes-
sage, the generated signature, and a timestamp value into a single block, and en-
crypts this block using the receiver’s (i.e., D) public key. In HiMAC, each data 
packet will contain an additional element within its payload, which is the list of 
traversed nodes. This list is encrypted separately from the block that contains the 
{message, signature, and timestamp}. So, S adds its ID to the list of traversed 
nodes (S will be the first node in this list). Then S encrypts this list using D’s 
public key. Next, S combines the encrypted block and the encrypted list of tra-
versed nodes into a single packet, and sends the packet to the “next hop”. Note 
that a special character separator will be used to separate the encrypted block 
from the encrypted list, and to separate the message, signature, and timestamp 
within the encrypted block. The reason for encrypting the list of traversed nodes 
is to prevent the attacker from maliciously changing the number of hops in the 
packet without the knowledge of the destination. In SAODV [29], the hop count 
is secured using hash chains. In HiMAC, we secure the hop count by integrating 
the list of traversed nodes and encrypting it hierarchly as we explain next. So, the 
final message that will be sent from S to “next hop” will be: 

( ){ } ( )1 || || ||
D S DKPU p KPR p s KPU SM E M MAC M T E ID=          (1) 

where Mp is the original message, M1 is the cypher message, IDs is the ID of S 
(which will be the only element in the list of traversed nodes at this stage), Ts is 
the timestamp value, 

DKPUE  denotes the encryption using D’s public key, 

SKPRMAC  denotes the MAC signature using S’s private key, and || is a special 
character. 

Each intermediate node I will perform the same steps that were done by S, 
with the exception that I will be using M1 as the message to work on instead of 
Mp. First, I separates the encrypted block from the encrypted list of nodes, saves 
the encrypted block as M11 and the encrypted list as M12. Then it calculates the 
next hop, generates signature of M11 using its own private key, generates block of 
{M11||MAC(M11)|| timestamp} and encrypts it using destination’s public key, and 
adds itself to M12 and encrypts the result with the destination’s public key. 
Hence, the message that is forwarded by node I to the “next hop” will be: 

( ){ } ( )2 11 11 12|| || || ||
D I DKPU KPR s KPU IM E M MAC M T E M ID=        (2) 

where ( ){ }11 || ||
D SKPU p KPR p sM E M MAC M T=  and ( )12 DKPU SM E ID= . 

This process will be repeated at each intermediate node, until the packet 
reaches D. Here, D will follow a reverse hierarchical decryption technique to re-
trieve the ID of each intermediate node who forwarded the packet, check the 
authenticity of each of these nodes using the latter’s MAC signature, and repeat 
the process until it calculates the original message Mp. If all intermediate nodes 
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who forwarded the packet are “trusted” by D, and the signatures of all these 
nodes were found correct, the packet will be considered fully secure. If one or 
more intermediate nodes who forwarded the packet were classified by D as “ma-
licious” or “ambiguous”, D might drop the packet, based on the application and 
the user’s decision. 

In details, when a destination node D receives a cypher message Mn, the first 
step is to separate the encrypted block (Mn1) from the encrypted list of nodes 
(Mn2). Then D decrypts both parts and retrieves from Mn2 the ID of the last node 
that forwarded the packet (suppose this node is called In). Next, D separates the 
message, MAC signature, and timestamp from the decryption of Mn1 (which we 
will call M(n−1), MACn, and Tsn). After that, D uses the public key of In, M(n−1), and 
MACn as inputs to the MAC algorithm to check the correctness of the signature 
and ensure the authenticity of In. If authenticity is established and In is “trusted” 
by D, the latter moves to the next step, in which D decrypts M(n−1)2 (which is ob-
tained after removing In from Mn2) to obtain the ID of the intermediate node 
that forwarded the packet before In (which we will call I(n−1)). Then D decrypts 
M(n−1) to obtain M(n−2), MAC(n−1), and Ts(n−1). After that, D uses the public key of 
I(n−1), in addition to M(n−2) and MAC(n−1) as inputs to the MAC algorithm to check 
the authenticity of I(n−1), and so on … At the last step, the decrypted list of nodes 
will contain one element, which is the ID of S, and the decrypted block will con-
tain the original message Mp, the MAC signature of S, and a timestamp. At this 
final stage D will authenticate S using its signature and will use the data from Mp 
in the application. Also, D will check the list of timestamps L{Ts} that were add-
ed by the intermediate nodes before encryption. If one or more timestamps are 
old, or if the timestamps are not in decreasing sequence, this shows a possibility 
of packet tampering or some kind of replay attack, in which case D will discard 
the packet.  

Note that HiMAC depends on the existence of an efficient public key crypto-
graphy mechanism in the MANET. In this scheme, each mobile node should 
save the public key of each other “trusted” node in the network. In other words, 
a node shares its public key with other “trusted” nodes only. This can be 
achieved as follows: Suppose that a node N is currently classifying a new node Nn 
as “ambiguous”. Now, N receives a neighbor-broadcast packet from a “trusted” 
node NT that includes that Nn is “trusted”. N changes Nn to “potentially trusted” 
and asks the user whether Nn should be trusted or not. Supposing that the user 
acknowledges that Nn is “trusted”, then N changes the trust parameter of Nn to 
“trusted”. After that, N checks if NT is within range. If yes, N sends a “Public Key 
Request” packet to NT, asking it for the public key of Nn. The latter encrypts the 
public key of Nn using the public key of N, and sends the result to N in a “Public 
Key Reply” packet. If NT is not within range, N sends a neighbor-broadcast 
packet to its neighbors requesting the public key of Nn. When N receives a “Pub-
lic Key Reply” packet that contains the public key of Nn from a neighbor N’, it 
checks whether N’ is “trusted” or not. If N’ is trusted, N saves the received public 
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key of Nn; else, N discards the packet of N’. 
The main objective in HiMAC is to prevent an intruder from capturing a cer-

tain route through which data is transmitted and performing attacks on the data 
packets that are passing through the route. Mainly, we are concerned with data 
tempering attack, replay attack, flooding attack, and impersonation attack. The 
intruder will not be allowed to perform flooding attack since it will not be classi-
fied as “trusted” because it is not known by the users of the mobile nodes. 
Hence, its packets will not be forwarded by intermediate nodes. If an intruder 
performs a tampering attack on a packet, the destination will discover the attack 
since it will not be able to correctly decrypt the received message. Even if the in-
truder follows the rule of HiMAC and uses its signature to sign the packet, the 
destination will not be able to authenticate the intruder since it doesn’t know the 
intruder’s public key. Also, HiMAC can be used to detect replay attacks by at-
tackers who capture a legitimate message and send it at a later time as a new 
message. This can be done at the destination by checking the list of timestamps 
that were added by the intermediate nodes as described before. Finally, HiMAC 
enables a destination node to detect an impersonation attack as follows: If a node 
Na adds itself to the packet as node No, the destination node will detect the attack 
since it will not be able to verify the false signature of Na since it will be different 
from the expected signature of No.  

Figure 2 represents the Hierarchical Message Authentication Code (HiMAC) 
general functioning. Here a data message is to be sent form Sender (S) to Re-
ceiver (R). First we describe the case when S is a neighbor of R. In this case S in-
corporates the message with the MAC (M) which is generated with the help of  

 

 
Figure 2. Hierarchical Message Authentication Code (HiMAC) operations from Sender (S) to Receiver(R). 
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MAC algorithm, and with a timestamp. At the receiver end the message is de-
crypted and the MAC is matched with the sender MAC and checked, if it is the 
same then R confirms the integrity of the sender. Otherwise the message integr-
ity is not certified and the message should be dropped. 

In the second scenario, we consider that there are some intermediary nodes 
I1, I2, I3 … Then the message should have to pass through these intermediary 
nodes. Each intermediate node will add its MAC and timestamp, in addition to 
its ID to the list of IDs in the message, as shown in Figure 2. The receiver node 
(R) will decrypt each layer of the message to generate the corresponding MAC 
and check the identity of the corresponding node after decrypting the list of IDs 
as shown in Figure 2. Figure 3 and Figure 4 illustrate the algorithms at the 
sender and receiver for the first and the second scenarios, while Figures 5-7 de-
scribe the steps of the algorithms of scenario 2 using flowchart diagrams. We in-
cluded only the flowcharts of scenario 2 as those of scenario 1 are simpler and 
can be deduced easily from scenario 2. 

4. System Analysis 

In the next section, we test the performance of the proposed security framework 
using network simulations. An important parameter that should be studied is 
the time required to encrypt/decrypt a message using HiMAC. In this section, 
we analyze the various factors that affect this parameter, and compare the results 
of our analysis with the simulation results in the next section. First, we note that 
we will be using the RSA algorithm from the Crypto++ library [30] in the simu-
lations; hence, the benchmarks that will be presented in this section are based on 
Crypto++ RSA. Also, we note that when a message is encrypted by a source or 
an intermediate node and when the message is decrypted at the destination 
node, two main factors will affect the time needed for encryption/decryption: 1) 
the size of the RSA key, and 2) the size of the message. Several studies, such as 
[31] and [32] proved that the RSA encryption/decryption delay will increase as 
the key size increases. Also, it is well known that when we want to encrypt a 
large message using RSA, we first generate a symmetric key using a symmetric 
key cryptography algorithm (such as AES, 3DES, PRESENT, ...) and use it to en-
crypt the message, then we encrypt the symmetric key with the RSA public key. 
Hence, we use both symmetric and asymmetric encryption and decryption when 
using RSA to encrypt/decrypt large messages. 

In this section, we will consider a plain-text message of size Sd0 bytes at the 
sender. At the source and at each intermediate node, additional data will be 
added to the encrypted message as we explained in Section 3. Hence, the size of 
the message that should be encrypted will increase at each intermediate node. 
The mathematical analysis performed in [33] and [34] proved that the encryp-
tion/decryption delay of AES depends on the message size (Sd) and the number 
of million instructions per second (MIPS) of the processor (Cp). The encryption 
delay of AES was derived in [34] and found to be equal to: 

https://doi.org/10.4236/ijcns.2017.1012018


K. Mershad et al. 
 

 

DOI: 10.4236/ijcns.2017.1012018 310 Int. J. Communications, Network and System Sciences 
 

 
Figure 3. HiMAC algorithms for sender S and receiver R for scenario 1. 

 

 
Figure 4. HiMAC algorithms for sender S, intermediate node I, and receiver R for scenario 2. 
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Figure 5. Flowchart of HiMAC algorithm for sender S using scenario 2. 

 

 
Figure 6. Flowchart of HiMAC algorithm for intermediate node I using scenario 2. 
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Figure 7. Flowchart of HiMAC algorithm for receiver R using scenario 2. 
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where Sd is given in bits and Cp is given in MIPS. On the other hand, TAES−Enc is 
the number of processing cycles required to encrypt one block of data, which is 
equal to 6168 processing cycles for a 128 bit key (which is the size of the AES 
session key that we will use in the simulations). In a similar way, the authors in 
[34] calculate the number of processing cycles needed to decrypt one block of 
data (TAES−Dec) and use it to calculate the total decryption delay of a packet, which 
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is derived as: 

( ) 8
,

128
d AES Dec

AES Dec d p
p

S T
T S C

C
−

−

×
= ×                 (4) 

In order to analyze the performance of HiMAC, we need to know the time 
that will be taken by both operations: 1) encrypting the two parts of the message 
(where the first part contains the message, signature, and timestamp and the 
second part contains list of IDs) using AES key, and 2) encrypting the AES key 
using the RSA public key (and decrypting these three parts at the receiver). The 
delay of the second operation is constant at all nodes, since they will be using the 
same size for RSA and AES keys. This delay will be equal to that of a single RSA 
encryption operation. As for the first part; since the encryption/decryption using 
AES depends on the message size (Sd), we need to derive the message size at the 
source node and at each intermediate node Ni, (where N1 is the first intermediate 
node, N2 is the second intermediate node, and so on).  

At the source node, the two parts of the message will be encrypted separately 
using the AES key. The size of the first part will be equal to (Sd0 + size-of-signature 
(Sd0) + size-of-timestamp). Since the RSA signature size is always equal to the 
size of the used key, hence we will obtain a signature of size 128 bytes when us-
ing a 1024 bit key. Also, considering that the timestamp has a size equal to 4 
bytes, the total size of part 1 will be equal to (Sd0 + 132) bytes. Knowing that AES 
adds padding to the message to make it a multiple of the AES block size, the re-
sulting message size will become: 

( )0
1

132d
d

S
S Bl

Bl
 +

= × 
 

                     (5) 

where Bl is the size of one encryption block in AES, which is equal to 128 bits. 
With respect to the second part of the total message, it will depend on the num-
ber of intermediate nodes. In this section, we will derive the average expected 
number of hops (i.e., intermediate nodes) between any two nodes in the network 
E[H]. Suppose that the ID of each intermediate node requires 2 bytes, then the 
size of the second part will be equal to (2 × E[H]). After encryption, the size of 
the second part will be the same for all intermediate nodes, which is equal to Bl 
(since the size of 2 × E[H] is less than Bl in normal cases). 

Similar to the source node, each intermediate node will encrypt three things: 
the two parts of the message that were encrypted by the previous node will be 
encrypted using a 128-bit AES key (after adding necessary information as ex-
plained in Section 3), and the AES key using the receiver’s public RSA key. The 
sizes of the second part of the message and the size of the encrypted AES key will 
be the same as those calculated previously for the source node. With respect to 
the first part of the message, we will derive it as follows: at the first intermediate 
node, the size of the first part of the message is Sd1. The first intermediate node 
will add the signature of this part and the timestamp to it. Hence, the total size 
will be equal to (Sd1 + 132), then it will add the padding to make the final size 
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multiple of AES block size, which will result in a message of size equal to: 

( )1
2

132d
d

S
S Bl

Bl
 +

= × 
 

                     (6) 

In general, the size of the first part of the message that will be encrypted by 
Node Ni is: 

( )
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                    (7) 

Before we derive the encryption/decryption delay, we calculate the average 
expected number of hops between two nodes in a MANET. Similar to [35], we 
assume a rectangular topology with area a × b and uniform distribution of 
nodes. Two nodes can form a direct link if the distance S between them is ≤ r0, 
where r0 is the maximum node transmission range. We seek to compute the ex-
pected number of hops between any two nodes. Using stochastic geometry, the 
probability density function of S is given in [35] as: 

( ) 2
2 2

4 0.5
2

sf s ab as bs s
a b

π = − − + 
 

               (8) 

for 0 ≤ s < b < a. It is concluded that if two nodes are at a distance s0 from each 
other, the number of hops between them, when there are a sufficient number of 
nodes to form a connected network, would tend toward s0/r0. Hence, E[H], the 
expected minimum number of hops between any two nodes in the network, is 
equivalent to dividing E[S], the expected distance, by r0. It should be noted that 
the value of E[H] represents a lower bound because when nodes are sparse in the 
network, the number of hops will inevitably increase due to having to route 
through longer distances to reach a certain node. When a = b, the expected 
number of hops, as depicted in [35], is 

[ ] 00.521E H a r=                        (9) 

In order to calculate the average delay of the HiMAC encryption and decryp-
tion operations, we benchmark the delay of Crypto++ RSA using the same server 
that we will use to carry out the simulations in the next section. Table 1 shows 
the benchmarking results, where TERSA and TDRSA are the encryption and de-
cryption delays of a single RSA operation (i.e., delay for encrypting/decrypting 
one block of data), while TSRSA and TVRSA are the delays for a single RSA signing  

 
Table 1. Benchmarking RSA on R1208WT2GSR Intel Server System with 18 cores and 
128 GB RAM while running Ubuntu server 14.04. The RSA key size was varied between 
512 and 4096 bits. Each result is the average of 100 operations. 

Milliseconds/Operation 512 1024 2048 3072 4096 

TERSA 0.0035 0.0186 0.0742 0.2484 0.5776 

TDRSA 0.0591 0.3712 2.731 6.629 12.438 

TSRSA 0.0587 0.3702 2.716 6.581 12.252 

TVRSA 0.0035 0.0185 0.0739 0.247 0.5441 
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and verification operation, respectively. We notice in Table 1 that all delays in-
crease as the key size increases. 

Finally, we derive the average encryption and decryption delays of HiMAC. 
First, with respect to encryption, each node Ni (where N0 is the source node and 
{Ni/i > 0} is an intermediate node) will encrypt three different parts as explained 
before. The first part is the one that contains the message from the previous 
node (or the plain-text message at the source node), in addition to the signature 
and the timestamp. The size of this part was derived to be equal to Sd(i+1). The 
second part is the list of IDs, which will have a size equal to (2 × E[H]). As for 
the third part, which is the encryption of the AES session key with the RSA pub-
lic key, it will take a delay equal to TERSA. Hence, the average encryption delay of 
HiMAC can be calculated as: 
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      (10) 

With respect to the decryption operation, which will be performed at the des-
tination node, its equation can be derived similarly to that of the encryption de-
lay, with a main difference that the encryption delay is calculated as the average 
of the encryption operations at all intermediate nodes (in addition to the source 
node), while the decryption delay is calculated as the sum of all decryption oper-
ations at the destination node (where each decryption operation is the decryp-
tion of one of the encryption operations at a single node). Hence, the average 
expected decryption delay is: 
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 (11) 

As can be deduced from Equations ((10) and (11)), the encryption and de-
cryption delays of HiMAC depend on several parameters: the plain-text message 
size Sd0, the network dimension a, the transmission range r0 (from E[H]), 

AES EncT − , AES DecT − , and Cp, and { RSATE , RSATD , RSATS , RSATV }. In Figure 8, 
we show the effect of varying Sd0 between 0.1 and 100 Kilobytes on the encryp-
tion and decryption delays. To be consistent with the simulations in the next 
section, we set a to 1000 m and r0 to 100 m. We also use a key size equal to 1024 
bits for RSA and session key size equal to 128 bits for AES. The values of 

AES EncT −  and AES DecT −  were calculated similar to the approach in [34] for a 
128-bit AES key. On the other hand, Cp was calculated for the R1208WT2GSR  
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Figure 8. Encryption and decryption delays of HiMAC calculated using Equations (10) 
and (11) for different values of the plain-text message size Sd0. 

 
Intel Server that we used in the simulations and found to be equal to 250 KMIPS. 

We notice from Figure 8 that the encryption and decryption delays of Hi-
MAC increase as the size of the plain-text message Sd0 increases. This can be ex-
pected since in this case the message will be divided by AES into a higher num-
ber of blocks and each block will be separately encrypted/decrypted, which will 
increase the delay. We also notice that HiMAC decryption delay is much larger 
than the encryption delay, due to the fact that the encryption delay is calculated 
as the average of the encryption delays at the source and intermediate nodes. On 
the other hand, the decryption delay is calculated at the destination node and in-
cludes the decryption of all encryptions that were done by the source and interme-
diate nodes, which will be much greater than a single encryption at one node. Fi-
nally, we notice that the decryption delay starts to increase heavily when Sd0 in-
creases above 5 KB. Hence, we can deduce that when the size of the plain-text 
message is large, it is better to divide it into multiple messages and encrypt/send 
each message separately to avoid large decryption delay at the destination node. In 
the next section, we compare the experimental simulations encryption/decryption 
delays with the analytical delays from Equations ((10) and (11)). 

5. Experimental Evaluation 

We used the network simulation ns2 software (version 2.35) to test the perfor-
mance of HiMAC. The operations of HiMAC were implemented as functions 
that were integrated within the AODV routing protocol, although these func-
tions could be integrated within any MANET routing protocol. We choose 
AODV in order to compare the performance of our system with that of secure 
AODV (SAODV) [29], which is a secure data dissemination protocol that was 
extensively studied and enhanced in the literature. SAODV provides integrity, 
authentication and non-repudiation of routing information. Two mechanisms 
are used to secure AODV messages, digital signatures to authenticate the non- 
mutable fields of AODV messages so that every message is signed, and hash 
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chains to secure the hop count information of AODV messages in such a way 
that allows every node that receives the message to verify that the hop count has 
not been decremented by an attacker. We implemented an enhanced version of 
SAODV, whose authors called adaptive SAODV or A-SAODV [36]. A-SAODV 
optimizes the performance of SAODV by performing the cryptographic opera-
tions via a dedicated thread to avoid blocking the processing of other messages. 
In A-SAODV, Every node has a queue of routing messages to be signed or veri-
fied and the length of the queue implies the load state of the routing thread. 
Whenever a node processes a route request and has enough information to gen-
erate a RREP on behalf of the destination, it first checks its routing message 
queue length. If the length of the queue is below a threshold, then it replies, oth-
erwise, it forwards the RREQ without replying. The value of threshold can be 
modified during execution. This adaptive reply decision has a significant im-
provement on the performance of SAODV. Also, A-SAODV maintains a cache 
of latest signed and verified messages in order to avoid signing and verifying the 
same message twice. 

5.1. Simulation Setup 

We compare HiMAC with A-SAODV: both were implemented within AODV, 
and both were tested using the setup that will be explained next. The simulated 
network has a topography size equal to 1000 × 1000 m2. The wireless bandwidth 
and the transmission range were assumed to be 6 Mbps and 100 m, respectively. 
The mobile nodes were randomly distributed in the topography and followed 
the Random Waypoint (RWP) movement model. We simulated six scenarios, in 
which the number of mobile nodes in the network was set to 50, 100, 200, 300, 
400, and 500 respectively. Each scenario was repeated ten times for both proto-
cols, and the reading of the ten repetitions were averaged to calculate the results. 
The mobility of the nodes in the network followed the RWP model in which the 
minimum and maximum speeds of the nodes (Vmin and Vmax) were set to 0.01 
and 2.00 m/s, respectively, and the pause time to 100 seconds. Each scenario 
lasted for 4000 seconds, in which the first 200 seconds were used to setup the 
network, the security requirements (key exchange), and the routing tables. After 
the 200 seconds, each node in the network sends a data packet to another ran-
dom node using the tested security protocol. The size of a data packet (payload) 
was set to 10 KB, and the time interval between two data packets was set to 100 
seconds. A summary of the simulation parameters can be found in Table 2. 

The cryptographic operations of HiMAC were implemented using the Cryp-
to++ library [30]. The widely used RSA algorithm was used for the encryption 
and decryption of messages. The size of public and private keys used for encryp-
tion, decryption, signing, and verification was set to 1024 bits. The Crypto++ li-
brary was integrated into ns2 and its necessary classes were used within AODV. 
The attack model was simulated as follows: in each scenario, the nodes were di-
vided randomly into 2 groups. The first group constitutes m percent of the total  
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Table 2. Simulation parameters. 

Simulation Parameter Parameter Value 

Simulation Time 4000 (seconds) 

Network Dimensions 1000 × 1000 m2 

Wireless Bandwidth 6 Mbps 

Number of nodes 50 → 500 

Packet Request Rate (at each node) 1 Packet/100 sec 

Data Packet Payload Size 10 KB 

Node Transmission Range 100 m 

Routing Protocol HiMAC enhanced AODV 

Node mobility model Random Way Point 

Node Speed (v) 0.01 → 2 m/s 

Maximum Queue Size 200 

 
number of nodes (N), and its members are malicious nodes who listen to packets 
and forward them without applying the security mechanism. The second group 
constitutes (N-m) percent of all nodes, and whose members are recognized as 
trusted by all nodes in the second group. Each time an attacker NA listens to a 
packet that is sent to a destination D, it adds random data to the packet, incre-
ment the hop count, and forward the packet to one of the trusted node. When D 
receives the packet, it will detect that the packet has been tampered since the de-
cryption algorithm will fail to decrypt the data that was added by the attacker. In 
the simulations, the value of m was set to 10%. 

The metrics used for evaluating the two compared protocols are: 
1) Latency: we tested three different delays: a) Encryption delay (Denc), which 

is the average time needed to perform a single encryption operation in HiMAC 
or A-SAODV, b) Decryption delay (Ddec), which is the average time needed to 
perform a decryption operation in HiMAC or A-SAODV, and c) End-to-End 
delay (DEtE), which is the time between the instance a node generates a new 
packet (before encrypting it) to the instance that the destination decrypts the 
packet and recovers the data. The definitions of Denc and Ddec for HiMAC are the 
same as those of TEHiMAC and TEHiMAC in Section 4.  

2) Success ratio (RS): the average percentage of data packets (per node) that 
are successfully received at their destinations.  

3) Hop count (HC): the average number of hops a data packet traverses before 
it reaches its destination (i.e., the number of times a data packet is forwarded by 
intermediate nodes). 

4) Queue Length (LQ): the average length of the queue of packets at each node 
(the queue will contain packets that are waiting to be forwarded to the next hop).  

5) Network Traffic (Traff): the total number of data packets sent, forwarded, 
or received per node during the simulation time. 
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5.2. Simulation Results 

Figure 9 presents the encryption, decryption, and End-to-End delays of HiMAC 
and A-SAODV. The encryption delay was calculated as follows: each time a 
node generates a data packet, it encrypts both ( ( )|| ||

Sp KPR p sM MAC M T ) and 
(IDS). The total time of both encryptions is saved to a log file. Also, each time an 
intermediate node encrypts both parts of the packet as explained in Section 3, 
the total encryption time is also recorded into the log file. At the end, the average  

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Latency of HiMAC and A-SAODV: (a) Encryption delay; (b) Decryption delay; 
and (c) End-to-End delay while varying the number of nodes in the network. 
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of all encryptions is calculated for each scenario. With respect to decryption, 
each time a node receives a packet destined to it; it executes the hierarchical de-
cryption algorithm described in Section 3. The decryption delay Ddec is the total 
time from the instance the destination node starts decrypting the outer en-
crypted layer of the packet body, until it recovers the original data message Mp. 
As for the End-to-End delay, it is calculated as follows: each time a source node 
generates a new data packet, it records the time at the instance before encrypting 
the packet, and includes this time (Ti) in the packet (unencrypted). After the 
destination decrypts the packet and recovers Mp, it subtracts Ti from the current 
time to calculate DEtE. Similarly in A-SAODV, the encryption and decryption 
delays were calculated for each instance a node performs an encryption or de-
cryption of the packet payload, and DEtE was calculated similar to HiMAC. 

From Figure 9, we notice that the encryption and decryption delays of Hi-
MAC are much higher than those of A-SAODV. However, the End-to-End delay 
of HiMAC is slightly higher than that of A-SAODV. First, the encryption delay 
of HiMAC is higher than that of A-SAODV since the former involves two en-
cryption parts: that of ( ( )|| ||

Sp KPR p sM MAC M T ) and of (IDS), while that of 
A-SAODV doesn’t include the second part. As we stated in Section 3, we en-
crypted the list of traversed nodes to prevent an attacker from tampering the hop 
count without being detected by the destination. The decryption delay of Hi-
MAC is also much higher than that of A-SAODV (Figure 9(b)) since HiMAC 
decryption process includes a hierarchy of decryption operations, while that of 
A-SAODV includes a single decryption operation. The overhead in encryption 
and decryption delays that occurs in HiMAC is compensated by the fast com-
munication delay that can be deduced from Figure 9(c). The reason why the 
End-to-End delay of HiMAC is only slightly greater than that of A-SAODV al-
though it is cryptographically much slower is that it requires much less commu-
nication time and overhead. This happens because A-SAODV doesn’t include a 
trust mechanism in which the “next hop” decision is based on trust in addition 
to route efficiency. In addition, the adaptive “double signature” process in 
A-SAODV required a lot of time to obtain the destination signature before a se-
cure route can be established and before forwarding the data packet. Also, the 
separation of routing and data packets queues requires that a data packet will 
wait for the route to be established before it can be forwarded, which will take a 
lot of time if the routing queue is overwhelmed. In general, the slight overhead 
in DEtE is compensated in HiMAC by the advantages that each node on the mes-
sage path is trusted and that the destination nodes makes sure of the integrity of 
each intermediate node that forwarded the message. Finally, we notice from 
Figure 9 that the analysis encryption/decryption delays that were calculated 
from Equations ((10) and (11)) have similar values to the simulation encryption/ 
decryption delays, which reflects the accuracy of the analysis equations in de-
picting the most important parameters that affect the delays. 

These observations are verified by the results in Figure 10 which show that  
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(a) 

 
(b) 

Figure 10. (a) Average hop count and (b) Average queue length of HiMAC and 
A-SAODV while varying the number of nodes in the network. 

 
HiMAC has a less hop count and smaller packet queue size on average than 
A-SAODV. While A-SAODV relies on securing RREQ and RREP to establish 
secure path, which requires routing overhead; HiMAC establishes secure routing 
dynamically using the proposed trust mechanism that was described in section 3. 
The process of choosing the next hop based on “trust” value and on ordinary 
AODV routing data, reduces the overhead required to establish secure route and 
decreases the number of hops to the destination, as the packet will remain a 
much less time waiting in the queue, which gives it a higher probability to find 
the optimal route and at the same time reaches the destination faster. From Fig-
ure 10(a), the average hop count of HiMAC is about 3.5 while that of A-SAODV 
is about 6.6. Also, from Figure 10(b), the average queue length in HiMAC is 98 
packets while that in A-SAODV is 152 packets, which shows that a packet will 
stay in the queue less time in HiMAC as compared to A-SAODV. 

The fact that a packet stays in the queues for less time on average (Figure 
10(b)) and traverses less nodes on its way to the destination (Figure 10(a)), 
leads to a higher success ratio, as can be seen in Figure 11(a). The success ratio 
of HiMAC reaches a maximum of 96% when the number of nodes is equal to  
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(a) 

 
(b) 

Figure 11. (a) Average success ratio and (b) Average traffic per node of HiMAC and 
A-SAODV while varying the number of nodes in the network. 

 
300 and has an average value of 91%, as compared to A-SAODV which has an 
average success ratio of 79% and a maximum value of 82%. A packet doesn’t 
reach its destination when it is dropped for any reason, such as when it stays for 
a long time in the queue, when the queue is full, or when no route can be found 
to the destination. The last reason is common between the two protocols, which 
makes us deduce that the first two reasons cause the difference between the suc-
cess ratios of the two protocols. The packet queues in A-SAODV will be more 
full on average than those in HiMAC, which leads to more packets dropped for 
this reason. Also, a packet will stay in the A-SAODV queue for longer periods 
than HiMAC, which causes more packets to be dropped for queue TTL expiry. 
These two reasons explain the higher success ratio of HiMAC. 

Finally, Figure 11(b) illustrates that A-SAODV creates much more traffic in 
the network than HiMAC. The traffic shown in the figure is the average number 
of data packets created (and sent), forwarded, or received at a node during the 
simulation time (average for all nodes). The main difference which causes 
A-SAODV to create much more traffic is the number of forwarded packets, 
which was calculated in the simulation scenarios and found to be much higher 
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in A-SAODV than HiMAC. This is mainly because the number of hops tra-
versed by a data packet is higher by 2.5 (on average) in A-SAODV than HiMAC. 
Hence, the total number of forwarded packets is higher. Also, the success ratio is 
lower in A-SAODV, which causes more data packets to be resent after they fail to 
reach the destination, which creates an additional number of forwarded packets.  

In general, we deduce that HiMAC produces very good performance although 
it contains heavy cryptographic operations. The high processing overhead 
caused by multiple encryption and decryption operations per packet is compen-
sated by the trust mechanism, which enables a node to dynamically choose the 
next node on the path, without maintaining a secure route all the time which 
puts additional overhead on the routing protocol. This overhead is eliminated in 
HiMAC by means of dynamically established secure-route based on trust me-
chanism. In addition, HiMAC eliminates the possibility of any attack by an in-
termediate node on the routing path, by authenticating each intermediate node 
at the destination. HiMAC will operate well as long as the data message size is 
not very large. As can be deduced from the analysis and simulation results, the 
encryption/decryption and End-to-End delays of HiMAC will increase with the 
message size. After a certain size limit, the high security advantages offered by 
HiMAC will not compensate the increased overhead delay of the encryption/ 
decryption operations. 

6. Conclusion and Future Work 

We presented a trust-based mechanism with hierarchical Message Authentica-
tion Code solution for securing data dissemination in Mobile Ad hoc Networks. 
Our approach depends on establishing the trust between mobile nodes based on 
the knowledge and expertise of users and based on the nodes’ behaviors. Our 
proposed HiMAC prevents attackers from tampering data packets or modifying 
their hop count by means of signing and encrypting the packet at each interme-
diate node. Our system dynamically establishes a route based on the “trust” of 
neighbors and also based on securing routing data in order to prevent malicious 
nodes from inserting false data into trusted nodes’ routing tables. We tested our 
proposed system by comparing its performance to another security mechanism 
for MANETs. The results illustrated that HiMAC performs better than 
A-SAODV, although it has high overhead in cryptographic operations. For fu-
ture work, we will study how to decrease the cryptographic overhead produced 
by HiMAC while maintaining secure data transmission. One possible direction 
is to find the optimal key size that reduces the encryption and decryption delays 
and at the same time keeps the message secure; since a hierarchical encryption 
operation is done, there is no need for a very large key since the attacker needs 
several decryption stages to reach the original message.  
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