
Int. J. Communications, Network and System Sciences, 2017, 10, 299-326
http://www.scirp.org/journal/ijcns

ISSN Online: 1913-3723
ISSN Print: 1913-3715

DOI: 10.4236/ijcns.2017.1012018 Dec. 15, 2017 299 Int. J. Communications, Network and System Sciences

HiMAC: Hierarchical Message Authentication
Code for Secure Data Dissemination in Mobile
Ad Hoc Networks

Khaleel Mershad, Ali Hamie, Mohamad Hamze

Department of Computer and Communications Engineering, Faculty of Engineering, Arts, Sciences, and Technology University
in Lebanon (AUL), Beirut, Lebanon

Abstract
Mobile ad-hoc networks are wireless self-organized networks in which mobile
nodes can connect directly to each other. This fact makes such networks
highly susceptible to security risks and threats, as malicious nodes can easily
disguise as new trusted nodes and start attacking the network after a certain
period of time. Hence, the security of data transmission in MANET has been a
hot topic in the past years. Several research works attempted to detect and
stop various attacks on MANET nodes and packets. This paper presents an ef-
ficient mechanism for secure data dissemination in MANETs. Our approach
is based on the identity based cryptography and Message Authentication Code
(MAC). The proposed security mechanism prevents malicious nodes from
tampering or replaying intermediate packets by means of signing and en-
crypting the packet at each intermediate trusted node. We tested the efficiency
of our system using the ns2 simulator by comparing it to a similar security
mechanism. The simulations illustrate that our approach obtains many ad-
vantages over other existing approaches for secure data dissemination in
MANETs.

Keywords
MANET, Security, ID Based Cryptography, MAC Protocol, Hierarchical
Security, Trust Mechanism, Cryptography Analysis, NS2

1. Introduction

Over the last years mobile computing and mobile ad hoc networks have rapidly
developed and expanded. Mobile computing is referred to any system that uses
dynamic wireless communications and does not depend on preinstalled infra-

How to cite this paper: Mershad, K., Ha-
mie, A. and Hamze, M. (2017) HiMAC:
Hierarchical Message Authentication Code
for Secure Data Dissemination in Mobile
Ad Hoc Networks. Int. J. Communications,
Network and System Sciences, 10, 299-326.
https://doi.org/10.4236/ijcns.2017.1012018

Received: October 28, 2017
Accepted: December 12, 2017
Published: December 15, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ijcns
https://doi.org/10.4236/ijcns.2017.1012018
http://www.scirp.org
https://doi.org/10.4236/ijcns.2017.1012018
http://creativecommons.org/licenses/by/4.0/

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 300 Int. J. Communications, Network and System Sciences

structure. Mobile ad hoc networks (MANETs) are a decentralized type of wire-
less networks which are basically deployed for the purpose of temporary com-
munication in both normal and adverse situations. It is called an ad hoc network
because it does not rely on a preexisting infrastructure, such as routers in wired
networks or Access Points (APs) in managed (infrastructure) wireless networks.
Instead, each node participates in routing by forwarding data to other nodes,
and the process of determining which nodes should forward data is dynamically
calculated based on the network connectivity. MANETs can use various routing
schemes like hop-by-hop communication or other classical and modern ap-
proaches. In addition to classic routing, MANETs can use flooding for forward-
ing data. Flooding itself becomes an important issue when we study network
congestion.

As MANET applications that include information sharing and data dissemi-
nation are increasing in a rapid pace, the demand for optimizing network re-
sources and attaining data security has become a paramount concern for the re-
search community. Achieving strong security in MANETs is a very challenging
task due to the presence of two main constraints: 1) constantly changing topol-
ogy and 2) high mobility of nodes. As nodes join and leave the network, the
network topology constantly changes. Under such circumstances, it is difficult to
maintain a constant routing table at each node which becomes a very expansive
process that consumes the node limited resources. Moreover, MANET nodes
might have high mobility in certain cases, such as natural disasters and evacua-
tion scenarios. Taking into regards the above challenges, a unified security ap-
proach that maintains fast and successful communication efficiency is required
for data dissemination in MANETs.

In this paper, we propose an approach that allows a source mobile node to
send a data packet securely to a destination mobile node, while ensuring that the
packet was forwarded through trusted intermediate mobile nodes. In other
words, our approach makes sure that a malicious node will be detected if it per-
forms an attack on a packet while it is being sent from a source to a destination.
Hence, our approach creates what we can call a trusted route between a source
and a destination. Contrary to other systems, our approach does not maintain
the trusted route at each node. Rather, the route is calculated dynamically on the
fly while the packet is being forwarded by an intermediate node. The trusted
route ensures that the packet is forwarded by trusted nodes only. In order to do
that, each intermediate node adds its own signature and a timestamp to the
packet before encrypting it with the destination’s public key. When the destina-
tion receives the packet, it hierarchically decrypts it and authenticates each in-
termediate node by checking its signature. Hence, the destination can reversely
track the route of the packet and make sure that all nodes that forwarded the
packet were trusted ones. We call our approach Hierarchical Message Authenti-
cation Code or HiMAC.

In addition to authenticating intermediate nodes, HiMAC strives to provide
trustworthiness between MANET nodes. In previous works, maintaining the

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 301 Int. J. Communications, Network and System Sciences

trust between nodes depended on the existence of a centralized authority to dis-
tribute certificates to the nodes. However, this approach may not work well in
MANETs since the assigned trusted third party may leave the network at any
time. Moreover, it might take a long time to establish the trust for a newly ar-
rived node. For these reasons, HiMAC maintains a trust mechanism via distri-
buted cooperation between all nodes. Although there exist many proposals for
secure communication in MANETs [1]-[8], they still face the problem of how to
maintain efficiency, trust, and security in a MANET framework.

The rest of the paper is organized as follows: A brief overview of securing data
dissemination in MANETS is presented in Section 2. The detailed description of
our proposed system is in Section 3, while Section 4 analyzes the encryption/
decryption delays via mathematical analysis. In Section 5 we evaluate our ap-
proach via software simulations. Finally, concluding remarks are presented in
Section 6. Before proceeding to Section 2, we present a list of the acronyms used
in this paper in Table 1.

2. Literature Review

A vast number of security mechanisms and protocols have been proposed for

Table 1. List of acronyms.

Acronym Definition

HiMAC Hierarchical Message Authentication Code

MANET Mobile Ad hoc Network

AP Access Point

QoS Quality of Service

DoS Denial of Service

SMT Secure Message Transmission

SEAD Secure Efficient Ad hoc Distance vector

PLRSA Promiscuous Listening Routing Security Algorithm

SecMR Secure Multipath Routing

SAODV Secure Ad hoc On-Demand Distance Vector

TAODV Trusted Ad hoc On-Demand Distance Vector

DSR Dynamic Source Routing

GKA Group Key Agreement

TTL Time-to-Live

RSA Rivest-Shamir-Adleman public-key cryptosystem

AES Advanced Encryption Standard

3DES Triple Data Encryption Standard

MIPS Million instructions per second

RREQ Route Request

RREP Route Reply

RWP Random Waypoint movement model

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 302 Int. J. Communications, Network and System Sciences

MANETs by the research community over the years. These protocols are studied
form different perspectives keeping in mind the properties and constraints of
MANETs. In general, the most studied security attacks in MANETs are the Gray
Hole attacks and the Black Hole attacks [9] [10] [11].

Hu et al. [1] presented the different attacks against routing in ad hoc net-
works, and the design and performance evaluation of a new secure on-demand
ad hoc network routing protocol which they gave the name Ariadne. They also
discussed the different types of Denial-of-Service attacks on routing paths and
the various preventive approaches. Papadimitratos et al. [3] [4] proposed the
Secure Message Transmission (SMT) protocol for mobile ad hoc networks. They
described that the SMT protocol is better matched to support QoS for real-time
communications in the ad hoc networking environment more than other envi-
ronments. Hu et al. [5] proposed a Secure Efficient Distance Vector Routing for
Mobile Wireless Ad Hoc Networks which they called the Secure Efficient Ad hoc
Distance vector routing protocol (SEAD). The proposed protocol uses one-way
hash functions instead of cryptographic operations in securing the routed mes-
sages.

Wu et al. [6] presented a survey on various possible attacks and countermea-
sures in Mobile Ad Hoc networks. Li et al. [7] proposed a routing security algo-
rithm for mobile hosts to detect malicious attacks in the middle; and they named
it promiscuous listening routing security algorithm (PLRSA). Their proposed
algorithm is distributed in nature without any need of communication between
hosts. Each node in PLRSA, can switch into the promiscuous listening mode to
intercept all packets passing through the mobile host in order to monitor the
other nearby nodes. When a node performs a malicious behavior, such as drop-
ping or tampering data packets, the other nearby nodes will detect the spiteful
behavior.

Komninos et al. [8] discussed the main security issues for protecting mobile
ad hoc networks at the data link and network layers. They first identified the se-
curity requirements for these two layers and then the design criteria for creating
secure ad hoc networks using multiple lines of defense against malicious attacks.
Xiaopeng et al. [9] discussed the Gray Hole attack which leads to the Denial of
Service (DoS) attack. In the Gray Hole Attack an adversary silently drops some
or all of the data packets sent to it instead of forwarding them. Mavropodi [12]
proposed an on-demand multipath routing protocol which they named secure
multipath routing protocol (SecMR), and analyzed its security properties. Kom-
ninos et al. [13] described the layered security approach, design criteria and per-
formance analysis of some MANET security protocols.

Zhao et al. [14] proposed a secure routing protocol with proactive security
approach for MANETs. In this paper the authors allowed only legitimate nodes
to participate in the bootstrapping process, rather than trying to detect adversary
nodes while they are participating in the routing protocol. Marchang et al. [15]
proposed two intrusion detection techniques for MANETs, which rely on colla-

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 303 Int. J. Communications, Network and System Sciences

borative efforts of nodes in a neighborhood to detect a malicious node in that
neighborhood. Yeun et al. [16] proposed a group key agreement protocol for
end-to-end security in MANET environments that do not have any fixed infra-
structure. Cordasco et al. [17] presented a comparison between SAODV and
TAODV which address routing security through cryptographic and trust-based
means respectively. They also provided the performance comparison on actual
resource-limited hardware. Kim et al. [18] discussed the security of the route
discovery process in DSR.

Dutta et al. [19] proposed a generalized self-healing key distribution using a
vector space access structure. They described three efficient constructions for
scalable self-healing key distribution with t-revocation capability. Su [20] pro-
posed a wormhole-avoidance routing protocol on the basis of anomaly detec-
tion. Makri et al. [21] reviewed and evaluated a number of constant round
Group Key Agreement (GKA) protocols. Su [10] discussed the prevention of
some selective black hole attacks on MANETs through intrusion detection sys-
tems. Khalil et al. [22] presented a scalable countermeasure for the control traffic
tunneling attack. The proposed system uses trusted nodes called cluster heads
(CH) for global tracking of node locations in order to detect and isolate mali-
cious nodes. Bhalaji et al. [11] proposed a Dynamic Trust Based Method to alle-
viate Grey hole attack in MANETs. Singh et al. [23] presented a state of the art
survey on the ant-based routing protocols and a taxonomy of various ant colony
algorithms with their different advantages and disadvantages.

Omar et al. [24] propose a secure and reliable certificate chains recovery pro-
tocol for mobile ad hoc networks. In the proposed framework, the MANET us-
ers take the role of the certification service by issuing and managing the public-
key certificates. The shortest and the safest certificate chains are selected in order
to reduce the communication overhead and resist against compromised nodes
which can generate false certificates. The authors in [25] propose a mesh-based
multipath routing scheme to discover all possible secure paths using secure ad-
jacent position trust verification protocol. Better link optimal path is determined
by the Dolphin Echolocation Algorithm for efficient communication.

In addition to basic MANETs, the security of special types of Ad hoc Net-
works, such as Wireless Sensor Networks (WSNs) and Vehicular Ad hoc Net-
works (VANETs) have been extensively studied. For example, Dhyani et al. [26]
present a mechanism for averting black hole attack in VANETs by unicasting
data packet to vehicles and using the trust factor technique to detect routing
misbehavior and ensure the relaying of data packets to the destination. Mershad
et al. [27] introduce a system that takes advantage of the roadside units (RSUs)
that are connected to the Internet and to secure the communications between
VANET users. The system uses a hierarchal password-based key derivation
function to provide data confidentiality at each intermediate node. Jan et al. [28]
propose a lightweight payload-based mutual authentication scheme for a cluster-
based hierarchical WSN. The proposed scheme operates in two steps. First, an

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 304 Int. J. Communications, Network and System Sciences

optimal percentage of cluster heads is elected, authenticated, and allowed to
communicate with neighboring nodes. Second, each cluster head, in a role of
server, authenticates the nearby nodes for cluster formation.

As MANETs can encounter fast topological changes, security becomes a pa-
ramount concern to detect and stop attackers before they succeed in performing
their attacks. Security can be described in two folds: on route and data levels.
Existing security solutions [1]-[8] are able to secure the network against a certain
type of attacks, but remain vulnerable to other types of inside and outside at-
tacks. Although there exist many solutions to mitigate these attacks but they are
not sufficient enough with constant topological changes in the network. Hence a
unified mechanism is required which prevents packet drop and tampering,
packet replay, impersonation, and false data attacks. In this paper a trust me-
chanism between the different nodes is coupled with a strong authentication
scheme in order to detect and avoid the described attacks.

3. Proposed Mechanism

A large number of research works attempted different solutions to security
threats in various types of Ad hoc Networks, such as WSNs and VANETs. Nev-
ertheless, Security remains a major concern in the future of such networks.
Based on the literature review and the critical analysis of MANET security, we
can see that no framework have established a strong proof of high security, effi-
ciency, and trust classification at the same time. The main drawback in previous
works is the difficulty of establishing the trustworthiness of newly arrived node.
Many approaches in the literature establishes this trust by monitoring the beha-
vior of a new node for a certain period of time, and then classifying this node as
trustworthy if no malicious behavior was detected by it. However, an attacker
might hide its malicious behavior for a long period of time, and then perform its
attack after it is declared trustworthy by other nodes.

In our system, we argue that trust should be based on identity and not only on
behavior. In real life, a person might be trusted by some people and at the same
time not trusted by others. As mobile nodes are in reality the people operating
them, the trust of a mobile node should be coupled with its user’s identity. A
newly arrived node will broadcast its identity to its neighbors. If one of the
trusted neighbors acknowledges its trustworthiness, the node is saved as trusted
by the other neighbors. If no neighbor knows the new node, it remains saved as
suspicious until a certain trusted node in the network that knows the new node
discovers its existence and declares its trustworthiness; or until a certain time has
passed after which the behavior of the new node is classified as normal and its
trustworthiness is established.

In order to maintain this trust mechanism, a single parameter is added to the
neighbors list and to the routing table that are maintained by the routing proto-
col at each node. This parameter is called trust, and can have values equal to
“malicious”, “ambiguous”, “potentially trusted”, or “trusted”. When a new node

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 305 Int. J. Communications, Network and System Sciences

Nn arrives, its neighbors classify it as “ambiguous”. When a node N receives a
neighbor-broadcast packet from a “trusted” node NT that the new node Nn is
trusted, it changes the trust of Nn to “potentially trusted”. After that, N asks its
user whether Nn should be classified as “trusted” or not, by displaying a list of
the behavior of Nn so far, and the identity of the user of Nn as he announced
himself. It’s always up to the user of a node to declare that a certain node in the
network can be classified as “trusted”. As long as the user hasn’t stated so, Nn
remains “potentially trusted”, since it was not fully “trusted” by the user of the
node. At any time the user can change the trust of a node Nn from “potentially
trusted” to “trusted”, after he/she decides that he now trusts the user of Nn. Note
that some MANET nodes (such as wireless printer) will not have a user. These
nodes will not have the “potentially trusted” classification in their routing algo-
rithm. Rather, such node will declare a new node as “trusted” whenever it rece-
ives a neighbor-broadcast packet from a trusted neighbor that this new node is
“trusted”. On the contrary, if any node receives a neighbor-broadcast from a
“trusted” node that a certain node Nm is “malicious”, it changes the trust of Nm
to “malicious”. Note that a neighbor-broadcast packet is a packet that is broad-
casted only to neighbors, by setting the Time-to-Live (TTL) of the packet to 1.
Also, note that neighbor-broadcast packets will be secured using the HiMAC
security mechanism, as we will explain shortly.

In order to secure data dissemination packets without affecting the route op-
timization, while at the same time maintaining trust between mobile nodes, we
propose a Hierarchical security protocol for message authentication and encryp-
tion (HiMAC). Using our protocol, a node S who wants to send a packet to
another node D, examines the set of possible nodes that can be selected as a
“next hop” to D. For example, in Figure 1, the set of nodes that can act as “next
hop” is {A1, B1, C1}. At this stage, two factors are considered in selecting a certain
node from this set: trust value and route efficiency. S first examines the trust of
each node in the list. If only one node in the list is “trusted”, then it is selected as
the “next hop”. If more than one node in the list is “trusted”, S selects among
these nodes the one that lies inside the most efficient route; i.e., the node whose
total path to the destination has the least cost. For example, in Figure 1, suppose

Figure 1. Example of multiple routes from source S to destination D.

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 306 Int. J. Communications, Network and System Sciences

that both B1 and C1 are “trusted”, and that the cost of the route B1-B2-B3 is equal
to 15, while the cost of C1-C2-C3 is equal to 20. Then S chooses B1 as the “next
hop”.

Before sending the packet to B1, S uses its private key to generate the message
signature using MAC algorithm. After that, S combines (concatenates) the mes-
sage, the generated signature, and a timestamp value into a single block, and en-
crypts this block using the receiver’s (i.e., D) public key. In HiMAC, each data
packet will contain an additional element within its payload, which is the list of
traversed nodes. This list is encrypted separately from the block that contains the
{message, signature, and timestamp}. So, S adds its ID to the list of traversed
nodes (S will be the first node in this list). Then S encrypts this list using D’s
public key. Next, S combines the encrypted block and the encrypted list of tra-
versed nodes into a single packet, and sends the packet to the “next hop”. Note
that a special character separator will be used to separate the encrypted block
from the encrypted list, and to separate the message, signature, and timestamp
within the encrypted block. The reason for encrypting the list of traversed nodes
is to prevent the attacker from maliciously changing the number of hops in the
packet without the knowledge of the destination. In SAODV [29], the hop count
is secured using hash chains. In HiMAC, we secure the hop count by integrating
the list of traversed nodes and encrypting it hierarchly as we explain next. So, the
final message that will be sent from S to “next hop” will be:

(){ } ()1 || || ||
D S DKPU p KPR p s KPU SM E M MAC M T E ID= (1)

where Mp is the original message, M1 is the cypher message, IDs is the ID of S
(which will be the only element in the list of traversed nodes at this stage), Ts is
the timestamp value,

DKPUE denotes the encryption using D’s public key,

SKPRMAC denotes the MAC signature using S’s private key, and || is a special
character.

Each intermediate node I will perform the same steps that were done by S,
with the exception that I will be using M1 as the message to work on instead of
Mp. First, I separates the encrypted block from the encrypted list of nodes, saves
the encrypted block as M11 and the encrypted list as M12. Then it calculates the
next hop, generates signature of M11 using its own private key, generates block of
{M11||MAC(M11)|| timestamp} and encrypts it using destination’s public key, and
adds itself to M12 and encrypts the result with the destination’s public key.
Hence, the message that is forwarded by node I to the “next hop” will be:

(){ } ()2 11 11 12|| || || ||
D I DKPU KPR s KPU IM E M MAC M T E M ID= (2)

where (){ }11 || ||
D SKPU p KPR p sM E M MAC M T= and ()12 DKPU SM E ID= .

This process will be repeated at each intermediate node, until the packet
reaches D. Here, D will follow a reverse hierarchical decryption technique to re-
trieve the ID of each intermediate node who forwarded the packet, check the
authenticity of each of these nodes using the latter’s MAC signature, and repeat
the process until it calculates the original message Mp. If all intermediate nodes

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 307 Int. J. Communications, Network and System Sciences

who forwarded the packet are “trusted” by D, and the signatures of all these
nodes were found correct, the packet will be considered fully secure. If one or
more intermediate nodes who forwarded the packet were classified by D as “ma-
licious” or “ambiguous”, D might drop the packet, based on the application and
the user’s decision.

In details, when a destination node D receives a cypher message Mn, the first
step is to separate the encrypted block (Mn1) from the encrypted list of nodes
(Mn2). Then D decrypts both parts and retrieves from Mn2 the ID of the last node
that forwarded the packet (suppose this node is called In). Next, D separates the
message, MAC signature, and timestamp from the decryption of Mn1 (which we
will call M(n−1), MACn, and Tsn). After that, D uses the public key of In, M(n−1), and
MACn as inputs to the MAC algorithm to check the correctness of the signature
and ensure the authenticity of In. If authenticity is established and In is “trusted”
by D, the latter moves to the next step, in which D decrypts M(n−1)2 (which is ob-
tained after removing In from Mn2) to obtain the ID of the intermediate node
that forwarded the packet before In (which we will call I(n−1)). Then D decrypts
M(n−1) to obtain M(n−2), MAC(n−1), and Ts(n−1). After that, D uses the public key of
I(n−1), in addition to M(n−2) and MAC(n−1) as inputs to the MAC algorithm to check
the authenticity of I(n−1), and so on … At the last step, the decrypted list of nodes
will contain one element, which is the ID of S, and the decrypted block will con-
tain the original message Mp, the MAC signature of S, and a timestamp. At this
final stage D will authenticate S using its signature and will use the data from Mp
in the application. Also, D will check the list of timestamps L{Ts} that were add-
ed by the intermediate nodes before encryption. If one or more timestamps are
old, or if the timestamps are not in decreasing sequence, this shows a possibility
of packet tampering or some kind of replay attack, in which case D will discard
the packet.

Note that HiMAC depends on the existence of an efficient public key crypto-
graphy mechanism in the MANET. In this scheme, each mobile node should
save the public key of each other “trusted” node in the network. In other words,
a node shares its public key with other “trusted” nodes only. This can be
achieved as follows: Suppose that a node N is currently classifying a new node Nn
as “ambiguous”. Now, N receives a neighbor-broadcast packet from a “trusted”
node NT that includes that Nn is “trusted”. N changes Nn to “potentially trusted”
and asks the user whether Nn should be trusted or not. Supposing that the user
acknowledges that Nn is “trusted”, then N changes the trust parameter of Nn to
“trusted”. After that, N checks if NT is within range. If yes, N sends a “Public Key
Request” packet to NT, asking it for the public key of Nn. The latter encrypts the
public key of Nn using the public key of N, and sends the result to N in a “Public
Key Reply” packet. If NT is not within range, N sends a neighbor-broadcast
packet to its neighbors requesting the public key of Nn. When N receives a “Pub-
lic Key Reply” packet that contains the public key of Nn from a neighbor N’, it
checks whether N’ is “trusted” or not. If N’ is trusted, N saves the received public

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 308 Int. J. Communications, Network and System Sciences

key of Nn; else, N discards the packet of N’.
The main objective in HiMAC is to prevent an intruder from capturing a cer-

tain route through which data is transmitted and performing attacks on the data
packets that are passing through the route. Mainly, we are concerned with data
tempering attack, replay attack, flooding attack, and impersonation attack. The
intruder will not be allowed to perform flooding attack since it will not be classi-
fied as “trusted” because it is not known by the users of the mobile nodes.
Hence, its packets will not be forwarded by intermediate nodes. If an intruder
performs a tampering attack on a packet, the destination will discover the attack
since it will not be able to correctly decrypt the received message. Even if the in-
truder follows the rule of HiMAC and uses its signature to sign the packet, the
destination will not be able to authenticate the intruder since it doesn’t know the
intruder’s public key. Also, HiMAC can be used to detect replay attacks by at-
tackers who capture a legitimate message and send it at a later time as a new
message. This can be done at the destination by checking the list of timestamps
that were added by the intermediate nodes as described before. Finally, HiMAC
enables a destination node to detect an impersonation attack as follows: If a node
Na adds itself to the packet as node No, the destination node will detect the attack
since it will not be able to verify the false signature of Na since it will be different
from the expected signature of No.

Figure 2 represents the Hierarchical Message Authentication Code (HiMAC)
general functioning. Here a data message is to be sent form Sender (S) to Re-
ceiver (R). First we describe the case when S is a neighbor of R. In this case S in-
corporates the message with the MAC (M) which is generated with the help of

Figure 2. Hierarchical Message Authentication Code (HiMAC) operations from Sender (S) to Receiver(R).

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 309 Int. J. Communications, Network and System Sciences

MAC algorithm, and with a timestamp. At the receiver end the message is de-
crypted and the MAC is matched with the sender MAC and checked, if it is the
same then R confirms the integrity of the sender. Otherwise the message integr-
ity is not certified and the message should be dropped.

In the second scenario, we consider that there are some intermediary nodes
I1, I2, I3 … Then the message should have to pass through these intermediary
nodes. Each intermediate node will add its MAC and timestamp, in addition to
its ID to the list of IDs in the message, as shown in Figure 2. The receiver node
(R) will decrypt each layer of the message to generate the corresponding MAC
and check the identity of the corresponding node after decrypting the list of IDs
as shown in Figure 2. Figure 3 and Figure 4 illustrate the algorithms at the
sender and receiver for the first and the second scenarios, while Figures 5-7 de-
scribe the steps of the algorithms of scenario 2 using flowchart diagrams. We in-
cluded only the flowcharts of scenario 2 as those of scenario 1 are simpler and
can be deduced easily from scenario 2.

4. System Analysis

In the next section, we test the performance of the proposed security framework
using network simulations. An important parameter that should be studied is
the time required to encrypt/decrypt a message using HiMAC. In this section,
we analyze the various factors that affect this parameter, and compare the results
of our analysis with the simulation results in the next section. First, we note that
we will be using the RSA algorithm from the Crypto++ library [30] in the simu-
lations; hence, the benchmarks that will be presented in this section are based on
Crypto++ RSA. Also, we note that when a message is encrypted by a source or
an intermediate node and when the message is decrypted at the destination
node, two main factors will affect the time needed for encryption/decryption: 1)
the size of the RSA key, and 2) the size of the message. Several studies, such as
[31] and [32] proved that the RSA encryption/decryption delay will increase as
the key size increases. Also, it is well known that when we want to encrypt a
large message using RSA, we first generate a symmetric key using a symmetric
key cryptography algorithm (such as AES, 3DES, PRESENT, ...) and use it to en-
crypt the message, then we encrypt the symmetric key with the RSA public key.
Hence, we use both symmetric and asymmetric encryption and decryption when
using RSA to encrypt/decrypt large messages.

In this section, we will consider a plain-text message of size Sd0 bytes at the
sender. At the source and at each intermediate node, additional data will be
added to the encrypted message as we explained in Section 3. Hence, the size of
the message that should be encrypted will increase at each intermediate node.
The mathematical analysis performed in [33] and [34] proved that the encryp-
tion/decryption delay of AES depends on the message size (Sd) and the number
of million instructions per second (MIPS) of the processor (Cp). The encryption
delay of AES was derived in [34] and found to be equal to:

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 310 Int. J. Communications, Network and System Sciences

Figure 3. HiMAC algorithms for sender S and receiver R for scenario 1.

Figure 4. HiMAC algorithms for sender S, intermediate node I, and receiver R for scenario 2.

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 311 Int. J. Communications, Network and System Sciences

Figure 5. Flowchart of HiMAC algorithm for sender S using scenario 2.

Figure 6. Flowchart of HiMAC algorithm for intermediate node I using scenario 2.

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 312 Int. J. Communications, Network and System Sciences

Figure 7. Flowchart of HiMAC algorithm for receiver R using scenario 2.

() 8
,

128
d AES Enc

AES Enc d p
p

S T
T S C

C
−

−

×
= × (3)

where Sd is given in bits and Cp is given in MIPS. On the other hand, TAES−Enc is
the number of processing cycles required to encrypt one block of data, which is
equal to 6168 processing cycles for a 128 bit key (which is the size of the AES
session key that we will use in the simulations). In a similar way, the authors in
[34] calculate the number of processing cycles needed to decrypt one block of
data (TAES−Dec) and use it to calculate the total decryption delay of a packet, which

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 313 Int. J. Communications, Network and System Sciences

is derived as:

() 8
,

128
d AES Dec

AES Dec d p
p

S T
T S C

C
−

−

×
= × (4)

In order to analyze the performance of HiMAC, we need to know the time
that will be taken by both operations: 1) encrypting the two parts of the message
(where the first part contains the message, signature, and timestamp and the
second part contains list of IDs) using AES key, and 2) encrypting the AES key
using the RSA public key (and decrypting these three parts at the receiver). The
delay of the second operation is constant at all nodes, since they will be using the
same size for RSA and AES keys. This delay will be equal to that of a single RSA
encryption operation. As for the first part; since the encryption/decryption using
AES depends on the message size (Sd), we need to derive the message size at the
source node and at each intermediate node Ni, (where N1 is the first intermediate
node, N2 is the second intermediate node, and so on).

At the source node, the two parts of the message will be encrypted separately
using the AES key. The size of the first part will be equal to (Sd0 + size-of-signature
(Sd0) + size-of-timestamp). Since the RSA signature size is always equal to the
size of the used key, hence we will obtain a signature of size 128 bytes when us-
ing a 1024 bit key. Also, considering that the timestamp has a size equal to 4
bytes, the total size of part 1 will be equal to (Sd0 + 132) bytes. Knowing that AES
adds padding to the message to make it a multiple of the AES block size, the re-
sulting message size will become:

()0
1

132d
d

S
S Bl

Bl
 +

= × 
 

 (5)

where Bl is the size of one encryption block in AES, which is equal to 128 bits.
With respect to the second part of the total message, it will depend on the num-
ber of intermediate nodes. In this section, we will derive the average expected
number of hops (i.e., intermediate nodes) between any two nodes in the network
E[H]. Suppose that the ID of each intermediate node requires 2 bytes, then the
size of the second part will be equal to (2 × E[H]). After encryption, the size of
the second part will be the same for all intermediate nodes, which is equal to Bl
(since the size of 2 × E[H] is less than Bl in normal cases).

Similar to the source node, each intermediate node will encrypt three things:
the two parts of the message that were encrypted by the previous node will be
encrypted using a 128-bit AES key (after adding necessary information as ex-
plained in Section 3), and the AES key using the receiver’s public RSA key. The
sizes of the second part of the message and the size of the encrypted AES key will
be the same as those calculated previously for the source node. With respect to
the first part of the message, we will derive it as follows: at the first intermediate
node, the size of the first part of the message is Sd1. The first intermediate node
will add the signature of this part and the timestamp to it. Hence, the total size
will be equal to (Sd1 + 132), then it will add the padding to make the final size

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 314 Int. J. Communications, Network and System Sciences

multiple of AES block size, which will result in a message of size equal to:

()1
2

132d
d

S
S Bl

Bl
 +

= × 
 

 (6)

In general, the size of the first part of the message that will be encrypted by
Node Ni is:

()
()

1

132di
d i

S
S Bl

Bl+

 +
= × 
 

 (7)

Before we derive the encryption/decryption delay, we calculate the average
expected number of hops between two nodes in a MANET. Similar to [35], we
assume a rectangular topology with area a × b and uniform distribution of
nodes. Two nodes can form a direct link if the distance S between them is ≤ r0,
where r0 is the maximum node transmission range. We seek to compute the ex-
pected number of hops between any two nodes. Using stochastic geometry, the
probability density function of S is given in [35] as:

() 2
2 2

4 0.5
2

sf s ab as bs s
a b

π = − − + 
 

 (8)

for 0 ≤ s < b < a. It is concluded that if two nodes are at a distance s0 from each
other, the number of hops between them, when there are a sufficient number of
nodes to form a connected network, would tend toward s0/r0. Hence, E[H], the
expected minimum number of hops between any two nodes in the network, is
equivalent to dividing E[S], the expected distance, by r0. It should be noted that
the value of E[H] represents a lower bound because when nodes are sparse in the
network, the number of hops will inevitably increase due to having to route
through longer distances to reach a certain node. When a = b, the expected
number of hops, as depicted in [35], is

[] 00.521E H a r= (9)

In order to calculate the average delay of the HiMAC encryption and decryp-
tion operations, we benchmark the delay of Crypto++ RSA using the same server
that we will use to carry out the simulations in the next section. Table 1 shows
the benchmarking results, where TERSA and TDRSA are the encryption and de-
cryption delays of a single RSA operation (i.e., delay for encrypting/decrypting
one block of data), while TSRSA and TVRSA are the delays for a single RSA signing

Table 1. Benchmarking RSA on R1208WT2GSR Intel Server System with 18 cores and
128 GB RAM while running Ubuntu server 14.04. The RSA key size was varied between
512 and 4096 bits. Each result is the average of 100 operations.

Milliseconds/Operation 512 1024 2048 3072 4096

TERSA 0.0035 0.0186 0.0742 0.2484 0.5776

TDRSA 0.0591 0.3712 2.731 6.629 12.438

TSRSA 0.0587 0.3702 2.716 6.581 12.252

TVRSA 0.0035 0.0185 0.0739 0.247 0.5441

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 315 Int. J. Communications, Network and System Sciences

and verification operation, respectively. We notice in Table 1 that all delays in-
crease as the key size increases.

Finally, we derive the average encryption and decryption delays of HiMAC.
First, with respect to encryption, each node Ni (where N0 is the source node and
{Ni/i > 0} is an intermediate node) will encrypt three different parts as explained
before. The first part is the one that contains the message from the previous
node (or the plain-text message at the source node), in addition to the signature
and the timestamp. The size of this part was derived to be equal to Sd(i+1). The
second part is the list of IDs, which will have a size equal to (2 × E[H]). As for
the third part, which is the encryption of the AES session key with the RSA pub-
lic key, it will take a delay equal to TERSA. Hence, the average encryption delay of
HiMAC can be calculated as:

[]()
[] ()()

[]()()()

1

0

81
1281

8 2 1

128

E H
d i AES Enc

HiMAC RSA
i p

AES Enc
RSA

p

S T
TE TS

CE H

E H T
TE

C

+ −

=

−

  ×  = + ×  +    
  × × +  + × +     

∑
 (10)

With respect to the decryption operation, which will be performed at the des-
tination node, its equation can be derived similarly to that of the encryption de-
lay, with a main difference that the encryption delay is calculated as the average
of the encryption operations at all intermediate nodes (in addition to the source
node), while the decryption delay is calculated as the sum of all decryption oper-
ations at the destination node (where each decryption operation is the decryp-
tion of one of the encryption operations at a single node). Hence, the average
expected decryption delay is:

[]()
[]()()()

[]

()()0 1

8 2 1
1

128

8

128

AES Dec
HiMAC RSA RSA

p

d i AES Dec

i E H p

E H T
TD E H TD TV

C

S T
C

−

+ −

=

   × × +   = + × + + ×        
  ×  + ×     

∑

 (11)

As can be deduced from Equations ((10) and (11)), the encryption and de-
cryption delays of HiMAC depend on several parameters: the plain-text message
size Sd0, the network dimension a, the transmission range r0 (from E[H]),

AES EncT − , AES DecT − , and Cp, and { RSATE , RSATD , RSATS , RSATV }. In Figure 8,
we show the effect of varying Sd0 between 0.1 and 100 Kilobytes on the encryp-
tion and decryption delays. To be consistent with the simulations in the next
section, we set a to 1000 m and r0 to 100 m. We also use a key size equal to 1024
bits for RSA and session key size equal to 128 bits for AES. The values of

AES EncT − and AES DecT − were calculated similar to the approach in [34] for a
128-bit AES key. On the other hand, Cp was calculated for the R1208WT2GSR

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 316 Int. J. Communications, Network and System Sciences

Figure 8. Encryption and decryption delays of HiMAC calculated using Equations (10)
and (11) for different values of the plain-text message size Sd0.

Intel Server that we used in the simulations and found to be equal to 250 KMIPS.

We notice from Figure 8 that the encryption and decryption delays of Hi-
MAC increase as the size of the plain-text message Sd0 increases. This can be ex-
pected since in this case the message will be divided by AES into a higher num-
ber of blocks and each block will be separately encrypted/decrypted, which will
increase the delay. We also notice that HiMAC decryption delay is much larger
than the encryption delay, due to the fact that the encryption delay is calculated
as the average of the encryption delays at the source and intermediate nodes. On
the other hand, the decryption delay is calculated at the destination node and in-
cludes the decryption of all encryptions that were done by the source and interme-
diate nodes, which will be much greater than a single encryption at one node. Fi-
nally, we notice that the decryption delay starts to increase heavily when Sd0 in-
creases above 5 KB. Hence, we can deduce that when the size of the plain-text
message is large, it is better to divide it into multiple messages and encrypt/send
each message separately to avoid large decryption delay at the destination node. In
the next section, we compare the experimental simulations encryption/decryption
delays with the analytical delays from Equations ((10) and (11)).

5. Experimental Evaluation

We used the network simulation ns2 software (version 2.35) to test the perfor-
mance of HiMAC. The operations of HiMAC were implemented as functions
that were integrated within the AODV routing protocol, although these func-
tions could be integrated within any MANET routing protocol. We choose
AODV in order to compare the performance of our system with that of secure
AODV (SAODV) [29], which is a secure data dissemination protocol that was
extensively studied and enhanced in the literature. SAODV provides integrity,
authentication and non-repudiation of routing information. Two mechanisms
are used to secure AODV messages, digital signatures to authenticate the non-
mutable fields of AODV messages so that every message is signed, and hash

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 317 Int. J. Communications, Network and System Sciences

chains to secure the hop count information of AODV messages in such a way
that allows every node that receives the message to verify that the hop count has
not been decremented by an attacker. We implemented an enhanced version of
SAODV, whose authors called adaptive SAODV or A-SAODV [36]. A-SAODV
optimizes the performance of SAODV by performing the cryptographic opera-
tions via a dedicated thread to avoid blocking the processing of other messages.
In A-SAODV, Every node has a queue of routing messages to be signed or veri-
fied and the length of the queue implies the load state of the routing thread.
Whenever a node processes a route request and has enough information to gen-
erate a RREP on behalf of the destination, it first checks its routing message
queue length. If the length of the queue is below a threshold, then it replies, oth-
erwise, it forwards the RREQ without replying. The value of threshold can be
modified during execution. This adaptive reply decision has a significant im-
provement on the performance of SAODV. Also, A-SAODV maintains a cache
of latest signed and verified messages in order to avoid signing and verifying the
same message twice.

5.1. Simulation Setup

We compare HiMAC with A-SAODV: both were implemented within AODV,
and both were tested using the setup that will be explained next. The simulated
network has a topography size equal to 1000 × 1000 m2. The wireless bandwidth
and the transmission range were assumed to be 6 Mbps and 100 m, respectively.
The mobile nodes were randomly distributed in the topography and followed
the Random Waypoint (RWP) movement model. We simulated six scenarios, in
which the number of mobile nodes in the network was set to 50, 100, 200, 300,
400, and 500 respectively. Each scenario was repeated ten times for both proto-
cols, and the reading of the ten repetitions were averaged to calculate the results.
The mobility of the nodes in the network followed the RWP model in which the
minimum and maximum speeds of the nodes (Vmin and Vmax) were set to 0.01
and 2.00 m/s, respectively, and the pause time to 100 seconds. Each scenario
lasted for 4000 seconds, in which the first 200 seconds were used to setup the
network, the security requirements (key exchange), and the routing tables. After
the 200 seconds, each node in the network sends a data packet to another ran-
dom node using the tested security protocol. The size of a data packet (payload)
was set to 10 KB, and the time interval between two data packets was set to 100
seconds. A summary of the simulation parameters can be found in Table 2.

The cryptographic operations of HiMAC were implemented using the Cryp-
to++ library [30]. The widely used RSA algorithm was used for the encryption
and decryption of messages. The size of public and private keys used for encryp-
tion, decryption, signing, and verification was set to 1024 bits. The Crypto++ li-
brary was integrated into ns2 and its necessary classes were used within AODV.
The attack model was simulated as follows: in each scenario, the nodes were di-
vided randomly into 2 groups. The first group constitutes m percent of the total

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 318 Int. J. Communications, Network and System Sciences

Table 2. Simulation parameters.

Simulation Parameter Parameter Value

Simulation Time 4000 (seconds)

Network Dimensions 1000 × 1000 m2

Wireless Bandwidth 6 Mbps

Number of nodes 50 → 500

Packet Request Rate (at each node) 1 Packet/100 sec

Data Packet Payload Size 10 KB

Node Transmission Range 100 m

Routing Protocol HiMAC enhanced AODV

Node mobility model Random Way Point

Node Speed (v) 0.01 → 2 m/s

Maximum Queue Size 200

number of nodes (N), and its members are malicious nodes who listen to packets
and forward them without applying the security mechanism. The second group
constitutes (N-m) percent of all nodes, and whose members are recognized as
trusted by all nodes in the second group. Each time an attacker NA listens to a
packet that is sent to a destination D, it adds random data to the packet, incre-
ment the hop count, and forward the packet to one of the trusted node. When D
receives the packet, it will detect that the packet has been tampered since the de-
cryption algorithm will fail to decrypt the data that was added by the attacker. In
the simulations, the value of m was set to 10%.

The metrics used for evaluating the two compared protocols are:
1) Latency: we tested three different delays: a) Encryption delay (Denc), which

is the average time needed to perform a single encryption operation in HiMAC
or A-SAODV, b) Decryption delay (Ddec), which is the average time needed to
perform a decryption operation in HiMAC or A-SAODV, and c) End-to-End
delay (DEtE), which is the time between the instance a node generates a new
packet (before encrypting it) to the instance that the destination decrypts the
packet and recovers the data. The definitions of Denc and Ddec for HiMAC are the
same as those of TEHiMAC and TEHiMAC in Section 4.

2) Success ratio (RS): the average percentage of data packets (per node) that
are successfully received at their destinations.

3) Hop count (HC): the average number of hops a data packet traverses before
it reaches its destination (i.e., the number of times a data packet is forwarded by
intermediate nodes).

4) Queue Length (LQ): the average length of the queue of packets at each node
(the queue will contain packets that are waiting to be forwarded to the next hop).

5) Network Traffic (Traff): the total number of data packets sent, forwarded,
or received per node during the simulation time.

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 319 Int. J. Communications, Network and System Sciences

5.2. Simulation Results

Figure 9 presents the encryption, decryption, and End-to-End delays of HiMAC
and A-SAODV. The encryption delay was calculated as follows: each time a
node generates a data packet, it encrypts both (()|| ||

Sp KPR p sM MAC M T) and
(IDS). The total time of both encryptions is saved to a log file. Also, each time an
intermediate node encrypts both parts of the packet as explained in Section 3,
the total encryption time is also recorded into the log file. At the end, the average

(a)

(b)

(c)

Figure 9. Latency of HiMAC and A-SAODV: (a) Encryption delay; (b) Decryption delay;
and (c) End-to-End delay while varying the number of nodes in the network.

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 320 Int. J. Communications, Network and System Sciences

of all encryptions is calculated for each scenario. With respect to decryption,
each time a node receives a packet destined to it; it executes the hierarchical de-
cryption algorithm described in Section 3. The decryption delay Ddec is the total
time from the instance the destination node starts decrypting the outer en-
crypted layer of the packet body, until it recovers the original data message Mp.
As for the End-to-End delay, it is calculated as follows: each time a source node
generates a new data packet, it records the time at the instance before encrypting
the packet, and includes this time (Ti) in the packet (unencrypted). After the
destination decrypts the packet and recovers Mp, it subtracts Ti from the current
time to calculate DEtE. Similarly in A-SAODV, the encryption and decryption
delays were calculated for each instance a node performs an encryption or de-
cryption of the packet payload, and DEtE was calculated similar to HiMAC.

From Figure 9, we notice that the encryption and decryption delays of Hi-
MAC are much higher than those of A-SAODV. However, the End-to-End delay
of HiMAC is slightly higher than that of A-SAODV. First, the encryption delay
of HiMAC is higher than that of A-SAODV since the former involves two en-
cryption parts: that of (()|| ||

Sp KPR p sM MAC M T) and of (IDS), while that of
A-SAODV doesn’t include the second part. As we stated in Section 3, we en-
crypted the list of traversed nodes to prevent an attacker from tampering the hop
count without being detected by the destination. The decryption delay of Hi-
MAC is also much higher than that of A-SAODV (Figure 9(b)) since HiMAC
decryption process includes a hierarchy of decryption operations, while that of
A-SAODV includes a single decryption operation. The overhead in encryption
and decryption delays that occurs in HiMAC is compensated by the fast com-
munication delay that can be deduced from Figure 9(c). The reason why the
End-to-End delay of HiMAC is only slightly greater than that of A-SAODV al-
though it is cryptographically much slower is that it requires much less commu-
nication time and overhead. This happens because A-SAODV doesn’t include a
trust mechanism in which the “next hop” decision is based on trust in addition
to route efficiency. In addition, the adaptive “double signature” process in
A-SAODV required a lot of time to obtain the destination signature before a se-
cure route can be established and before forwarding the data packet. Also, the
separation of routing and data packets queues requires that a data packet will
wait for the route to be established before it can be forwarded, which will take a
lot of time if the routing queue is overwhelmed. In general, the slight overhead
in DEtE is compensated in HiMAC by the advantages that each node on the mes-
sage path is trusted and that the destination nodes makes sure of the integrity of
each intermediate node that forwarded the message. Finally, we notice from
Figure 9 that the analysis encryption/decryption delays that were calculated
from Equations ((10) and (11)) have similar values to the simulation encryption/
decryption delays, which reflects the accuracy of the analysis equations in de-
picting the most important parameters that affect the delays.

These observations are verified by the results in Figure 10 which show that

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 321 Int. J. Communications, Network and System Sciences

(a)

(b)

Figure 10. (a) Average hop count and (b) Average queue length of HiMAC and
A-SAODV while varying the number of nodes in the network.

HiMAC has a less hop count and smaller packet queue size on average than
A-SAODV. While A-SAODV relies on securing RREQ and RREP to establish
secure path, which requires routing overhead; HiMAC establishes secure routing
dynamically using the proposed trust mechanism that was described in section 3.
The process of choosing the next hop based on “trust” value and on ordinary
AODV routing data, reduces the overhead required to establish secure route and
decreases the number of hops to the destination, as the packet will remain a
much less time waiting in the queue, which gives it a higher probability to find
the optimal route and at the same time reaches the destination faster. From Fig-
ure 10(a), the average hop count of HiMAC is about 3.5 while that of A-SAODV
is about 6.6. Also, from Figure 10(b), the average queue length in HiMAC is 98
packets while that in A-SAODV is 152 packets, which shows that a packet will
stay in the queue less time in HiMAC as compared to A-SAODV.

The fact that a packet stays in the queues for less time on average (Figure
10(b)) and traverses less nodes on its way to the destination (Figure 10(a)),
leads to a higher success ratio, as can be seen in Figure 11(a). The success ratio
of HiMAC reaches a maximum of 96% when the number of nodes is equal to

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 322 Int. J. Communications, Network and System Sciences

(a)

(b)

Figure 11. (a) Average success ratio and (b) Average traffic per node of HiMAC and
A-SAODV while varying the number of nodes in the network.

300 and has an average value of 91%, as compared to A-SAODV which has an
average success ratio of 79% and a maximum value of 82%. A packet doesn’t
reach its destination when it is dropped for any reason, such as when it stays for
a long time in the queue, when the queue is full, or when no route can be found
to the destination. The last reason is common between the two protocols, which
makes us deduce that the first two reasons cause the difference between the suc-
cess ratios of the two protocols. The packet queues in A-SAODV will be more
full on average than those in HiMAC, which leads to more packets dropped for
this reason. Also, a packet will stay in the A-SAODV queue for longer periods
than HiMAC, which causes more packets to be dropped for queue TTL expiry.
These two reasons explain the higher success ratio of HiMAC.

Finally, Figure 11(b) illustrates that A-SAODV creates much more traffic in
the network than HiMAC. The traffic shown in the figure is the average number
of data packets created (and sent), forwarded, or received at a node during the
simulation time (average for all nodes). The main difference which causes
A-SAODV to create much more traffic is the number of forwarded packets,
which was calculated in the simulation scenarios and found to be much higher

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 323 Int. J. Communications, Network and System Sciences

in A-SAODV than HiMAC. This is mainly because the number of hops tra-
versed by a data packet is higher by 2.5 (on average) in A-SAODV than HiMAC.
Hence, the total number of forwarded packets is higher. Also, the success ratio is
lower in A-SAODV, which causes more data packets to be resent after they fail to
reach the destination, which creates an additional number of forwarded packets.

In general, we deduce that HiMAC produces very good performance although
it contains heavy cryptographic operations. The high processing overhead
caused by multiple encryption and decryption operations per packet is compen-
sated by the trust mechanism, which enables a node to dynamically choose the
next node on the path, without maintaining a secure route all the time which
puts additional overhead on the routing protocol. This overhead is eliminated in
HiMAC by means of dynamically established secure-route based on trust me-
chanism. In addition, HiMAC eliminates the possibility of any attack by an in-
termediate node on the routing path, by authenticating each intermediate node
at the destination. HiMAC will operate well as long as the data message size is
not very large. As can be deduced from the analysis and simulation results, the
encryption/decryption and End-to-End delays of HiMAC will increase with the
message size. After a certain size limit, the high security advantages offered by
HiMAC will not compensate the increased overhead delay of the encryption/
decryption operations.

6. Conclusion and Future Work

We presented a trust-based mechanism with hierarchical Message Authentica-
tion Code solution for securing data dissemination in Mobile Ad hoc Networks.
Our approach depends on establishing the trust between mobile nodes based on
the knowledge and expertise of users and based on the nodes’ behaviors. Our
proposed HiMAC prevents attackers from tampering data packets or modifying
their hop count by means of signing and encrypting the packet at each interme-
diate node. Our system dynamically establishes a route based on the “trust” of
neighbors and also based on securing routing data in order to prevent malicious
nodes from inserting false data into trusted nodes’ routing tables. We tested our
proposed system by comparing its performance to another security mechanism
for MANETs. The results illustrated that HiMAC performs better than
A-SAODV, although it has high overhead in cryptographic operations. For fu-
ture work, we will study how to decrease the cryptographic overhead produced
by HiMAC while maintaining secure data transmission. One possible direction
is to find the optimal key size that reduces the encryption and decryption delays
and at the same time keeps the message secure; since a hierarchical encryption
operation is done, there is no need for a very large key since the attacker needs
several decryption stages to reach the original message.

References
[1] Hu, Y.C., Perrig, A. and Johnson, D.B. (2002) Ariadne: A Secure On-Demand

https://doi.org/10.4236/ijcns.2017.1012018

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 324 Int. J. Communications, Network and System Sciences

Routing Protocol for Ad Hoc Networks. Wireless Networks, 11, 21-38.
https://doi.org/10.1145/570645.570648

[2] Chlamtac, I., Conti, M. and Liu, J.J.N. (2003) Mobile Ad Hoc Networking: Impera-
tives and Challenges. Ad Hoc Networks, 1, 13-64.
https://doi.org/10.1016/S1570-8705(03)00013-1

[3] Panagiotis, P. and Zygmunt, J.H. (2003) Secure Data Transmission in Mobile Ad
Hoc Networks. Proceedings of the 2003 ACM Workshop on Wireless Security,
41-50.

[4] Papadimitratos, P. and Haas, Z.J. (2003) Secure Message Transmission in Mobile
Ad Hoc Networks. Ad Hoc Networks, 1, 193-209.
https://doi.org/10.1016/S1570-8705(03)00018-0

[5] Hu, Y.C., Johnson, D.B. and Perrig, A. (2003) SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad Hoc Networks. Ad Hoc Networks, 1,
175-192. https://doi.org/10.1016/S1570-8705(03)00019-2

[6] Wu, B., Chen, J., Wu, J. and Cardei, M. (2007) A Survey of Attacks and Counter-
measures in Mobile Ad Hoc Networks. In: Wireless Network Security, Springer,
Boston, 103-135. https://doi.org/10.1007/978-0-387-33112-6_5

[7] Li, J.S. and Lee, C.T. (2006) Improve Routing Trust with Promiscuous Listening
Routing Security Algorithm in Mobile Ad Hoc Networks. Computer Communica-
tions, 29, 1121-1132. https://doi.org/10.1016/j.comcom.2005.06.025

[8] Komninos, N., Vergados, D. and Douligeris, C. (2006) Layered Security Design for
Mobile Ad Hoc Networks. Computers & Security, 25, 121-130.
https://doi.org/10.1016/j.cose.2005.09.005

[9] Xiaopeng, G. and Wei, C. (2007) A Novel Gray Hole Attack Detection Scheme for
Mobile Ad-Hoc Networks. Proceedings of the IFIP International Conference on
Network and Parallel Computing Workshops, 209-214.
https://doi.org/10.1109/NPC.2007.88

[10] Su, M.Y. (2011) Prevention of Selective Black Hole Attacks on Mobile Ad Hoc
Networks through Intrusion Detection Systems. Computer Communications, 34,
107-117. https://doi.org/10.1016/j.comcom.2010.08.007

[11] Bhalaji, N. and Shanmugam, A. (2012) Dynamic Trust Based Method to Mitigate
Greyhole Attack in Mobile Ad Hoc Networks. Procedia Engineering, 30, 881-888.
https://doi.org/10.1016/j.proeng.2012.01.941

[12] Mavropodi, R., Kotzanikolaou, P. and Douligeris, C. (2007) SecMR—A Secure Mul-
tipath Routing Protocol for Ad Hoc Networks. Ad Hoc Networks, 5, 87-99.
https://doi.org/10.1016/j.adhoc.2006.05.020

[13] Komninos, N., Vergados, D.D. and Douligeris, C. (2007) Authentication in a
Layered Security Approach for Mobile Ad Hoc Networks. Computers & Security,
26, 373-380. https://doi.org/10.1016/j.cose.2006.12.011

[14] Zhao, S., Aggarwal, A., Liu, S. and Wu, H. (2008) A Secure Routing Protocol in
Proactive Security Approach for Mobile Ad-Hoc Networks. Proceedings of the IEEE
Wireless Communications and Networking Conference, 2627-2632.
https://doi.org/10.1109/WCNC.2008.461

[15] Marchang, N. and Datta, R. (2008) Collaborative Techniques for Intrusion Detec-
tion in Mobile Ad-Hoc Networks. Ad Hoc Networks, 6, 508-523.
https://doi.org/10.1016/j.adhoc.2007.04.003

[16] Yeun, C.Y., Han, K., Vo, D.L. and Kim, K. (2008) Secure Authenticated Group Key
Agreement Protocol in the MANET Environment. Information Security Technical

https://doi.org/10.4236/ijcns.2017.1012018
https://doi.org/10.1145/570645.570648
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1016/S1570-8705(03)00018-0
https://doi.org/10.1016/S1570-8705(03)00019-2
https://doi.org/10.1007/978-0-387-33112-6_5
https://doi.org/10.1016/j.comcom.2005.06.025
https://doi.org/10.1016/j.cose.2005.09.005
https://doi.org/10.1109/NPC.2007.88
https://doi.org/10.1016/j.comcom.2010.08.007
https://doi.org/10.1016/j.proeng.2012.01.941
https://doi.org/10.1016/j.adhoc.2006.05.020
https://doi.org/10.1016/j.cose.2006.12.011
https://doi.org/10.1109/WCNC.2008.461
https://doi.org/10.1016/j.adhoc.2007.04.003

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 325 Int. J. Communications, Network and System Sciences

Report, 13, 158-164. https://doi.org/10.1016/j.istr.2008.10.002

[17] Cordasco, J. and Wetzel, S. (2008) Cryptographic versus Trust-Based Methods for
MANET Routing Security. Electronic Notes in Theoretical Computer Science, 197,
131-140. https://doi.org/10.1016/j.entcs.2007.12.022

[18] Kim, J. and Tsudik, G. (2009) SRDP: Secure Route Discovery for Dynamic Source
Routing in MANETs. Ad Hoc Networks, 7, 1097-1109.
https://doi.org/10.1016/j.adhoc.2008.09.007

[19] Dutta, R., Mukhopadhyay, S. and Collier, M. (2010) Computationally Secure
Self-Healing Key Distribution with Revocation in Wireless Ad Hoc Networks. Ad
Hoc Networks, 8, 597-613. https://doi.org/10.1016/j.adhoc.2009.11.005

[20] Su, M.Y. (2010) WARP: A Wormhole-Avoidance Routing Protocol by Anomaly
Detection in Mobile Ad Hoc Networks. Computers & Security, 29, 208-224.
https://doi.org/10.1016/j.cose.2009.09.005

[21] Makri, E. and Konstantinou, E. (2011) Constant Round Group Key Agreement
Protocols: A Comparative Study. Computers & Security, 30, 643-678.
https://doi.org/10.1016/j.cose.2011.08.008

[22] Khalil, I., Awad, M. and Khreishah, A. (2012) CTAC: Control Traffic Tunneling
Attacks’ Countermeasures in Mobile Wireless Networks. Computer Networks, 56,
3300-3317. https://doi.org/10.1016/j.comnet.2012.06.003

[23] Singh, G., Kumar, N. and Verma, A.K. (2012) Ant Colony Algorithms in MANETs:
A Review. Journal of Network and Computer Applications, 35, 1964-1972.
https://doi.org/10.1016/j.jnca.2012.07.018

[24] Omar, M., Boufaghes, H., Mammeri, L., Taalba, A. and Tari, A. (2016) Secure and
Reliable Certificate Chains Recovery Protocol for Mobile Ad Hoc Networks. Journal
of Network and Computer Applications, 62, 153-162.
https://doi.org/10.1016/j.jnca.2016.01.007

[25] Borkar, G.M. and Mahajan, A.R. (2017) A Secure and Trust Based On-Demand
Multipath Routing Scheme for Self-Organized Mobile Ad-Hoc Networks. Wireless
Networks, 23, 2455-2472. https://doi.org/10.1007/s11276-016-1287-y

[26] Dhyani, I., Goel, N., Sharma, G. and Mallick, B. (2017) A Reliable Tactic for De-
tecting Black Hole Attack in Vehicular Ad Hoc Networks. In: Advances in Com-
puter and Computational Sciences, Springer, Singapore, 333-343.
https://doi.org/10.1007/978-981-10-3770-2_31

[27] Mershad, K. and Artail, H. (2013) A Framework for Secure and Efficient Data Ac-
quisition in Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Tech-
nology, 62, 536-551. https://doi.org/10.1109/TVT.2012.2226613

[28] Jan, M., Nanda, P., Usman, M. and He, X. (2017) PAWN: A Payload-Based Mutual
Authentication Scheme for Wireless Sensor Networks. Concurrency and Computa-
tion: Practice and Experience, 29, 64. https://doi.org/10.1002/cpe.3986

[29] Zapata, M.G. (2002) Secure Ad Hoc On-Demand Distance Vector Routing. ACM
SIGMOBILE Mobile Computing and Communications Review, 6, 106-107.
https://doi.org/10.1145/581291.581312

[30] Crypto++ Library (2017). http://www.cryptopp.com/

[31] Crypto++ Benchmarks (2017). https://www.cryptopp.com/benchmarks.html

[32] Hoffmann, J., Uellenbeck, S. and Holz, T. (2012) SMARTPROXY: Secure Smart-
phone-Assisted Login on Compromised Machines. Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
184-203.

https://doi.org/10.4236/ijcns.2017.1012018
https://doi.org/10.1016/j.istr.2008.10.002
https://doi.org/10.1016/j.entcs.2007.12.022
https://doi.org/10.1016/j.adhoc.2008.09.007
https://doi.org/10.1016/j.adhoc.2009.11.005
https://doi.org/10.1016/j.cose.2009.09.005
https://doi.org/10.1016/j.cose.2011.08.008
https://doi.org/10.1016/j.comnet.2012.06.003
https://doi.org/10.1016/j.jnca.2012.07.018
https://doi.org/10.1016/j.jnca.2016.01.007
https://doi.org/10.1007/s11276-016-1287-y
https://doi.org/10.1007/978-981-10-3770-2_31
https://doi.org/10.1109/TVT.2012.2226613
https://doi.org/10.1002/cpe.3986
https://doi.org/10.1145/581291.581312
http://www.cryptopp.com/
https://www.cryptopp.com/benchmarks.html

K. Mershad et al.

DOI: 10.4236/ijcns.2017.1012018 326 Int. J. Communications, Network and System Sciences

[33] Doomun, M.R. and Soyjaudah, K.M.S. (2009) Analytical Comparison of Crypto-
graphic Techniques for Resource-Constrained Wireless Security. International
Journal of Network Security, 9, 82-94.

[34] Xenakis, C., Laoutaris, N., Merakos, L. and Stavrakakis, I. (2006) A Generic Cha-
racterization of the Overheads Imposed by IPsec and Associated Cryptographic Al-
gorithms. Computer Networks, 50, 3225-3241.
https://doi.org/10.1016/j.comnet.2005.12.005

[35] Bettstetter, C. and Eberspacher, J. (2003) Hop Distances in Homogeneous Ad Hoc
Networks. Proceedings of the 57th IEEE Semiannual Vehicular Technology Confe-
rence, Vol. 4, 2286-2290. https://doi.org/10.1109/VETECS.2003.1208796

[36] Cerri, D. and Ghioni, A. (2008) Securing AODV: The A-SAODV Secure Routing
Prototype. IEEE Communications Magazine, 46, 120-125.
https://doi.org/10.1109/MCOM.2008.4473093

https://doi.org/10.4236/ijcns.2017.1012018
https://doi.org/10.1016/j.comnet.2005.12.005
https://doi.org/10.1109/VETECS.2003.1208796
https://doi.org/10.1109/MCOM.2008.4473093

	HiMAC: Hierarchical Message Authentication Code for Secure Data Dissemination in Mobile Ad Hoc Networks
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Proposed Mechanism
	4. System Analysis
	5. Experimental Evaluation
	5.1. Simulation Setup
	5.2. Simulation Results

	6. Conclusion and Future Work
	References

