
LEBANESE AMERICAN UNIVERSITY

Correlation Clustering via s-Club Cluster Edge Deletion: Theory and

Experiments

By

Norma Makarem

A thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

School of Arts and Sciences

May 2023

v

ACKNOWLEDGMENT

I would like to take this chapter as a window of opportunity to highlight my

deepest gratitude for my advisor Dr. Faisal Abu Khzam that has led and inspired

many generations in this field, where I am lucky to have been a member. In

particular, his review and ongoing advice in this work. An additional appreciation to

the committee members Dr. Ramzi Haraty and Dr. Eileen-Marie Hanna for their

stand for my achievement of this work. Finally, I could not have undertaken this

journey without the support of my husband and kids that are proud of my

achievement. My final and special thanks go to the institution that I have been part of

and proud of since 2004 the Lebanese American University.

vi

Correlation Clustering via s-Club Cluster Edge Deletion: Theory and

Experiments

Norma M. Makarem

ABSTRACT

Cluster Editing, a known model for correlation clustering, has garnered significant

consideration in the parameterized complexity area and has been utilized in a range

of practical contexts. In certain situations, the requirement for clusters to be cliques

was deemed excessively stringent, leading to the proposal of alternative relaxed

clique models for dense subgraphs, such as s-club. In this work, we implement three

approaches to tackle the 2-club clustering via edge deletion: a heuristic approach

based on the influence of the edge to resolve maximum conflicts, a parameterized

algorithm in which by deleting a maximum of k edges, the graph can be transformed

into a 2-club cluster based on a branching algorithm, and the approach in Integer

Linear Programming to find the optimized solution in an integer formulation. We run

these algorithms and cross-compare the three experiment results to the fastest Cluster

Editing algorithm which runs in O(1.62k) time. Our 2-club Cluster Edge Deletion

approach showed better performance than Cluster Editing in terms of running time,

and significantly less cost of modifications while preserving the information of the

underlying structure. Finally, we consider the 3-clubs Cluster Edge Deletion which

did not have much focus in the literature. The problem can be solved in time O(4k).

We present a first fixed-parameter algorithm that breaks this 4k barrier by solving the

problem in O(3.65k) time. In addition, we implement this 3CCED algorithm in the

heuristic approach and compare the experiments to Cluster Editing and 2CCED. The

results show that the 3-club Cluster Edge Deletion presents the highest performance

vii

in terms of running time and cost of modifications to reach the desired results. This

shows that deletion into a graph whose components are of bounded diameter can be a

better model for correlation clustering.

Keywords: Correlation Clustering, Cluster Editing, s-Club Cluster Edge Deletion, 2-

club, 3-club.

viii

TABLE OF CONTENTS

Chapter Page

I- Introduction . 1

II- Preliminaries . 5

2.1 Terminology . 5

2.2 Cluster Editing . 6

2.3 Parameterized Complexity . 7

2.4 Heuristic Algorithm . 7

2.5 2-Club Cluster Edge Deletion . 8

III- A Heuristic Approach for 2-Club Cluster Edge Deletion 9

3.1 Implementation .. 10

IV- A Fixed-Parameter Algorithm and its Implementation 12

4.1 Pre-processing Techniques .. 13

4.2 A Simple Branching Algorithm ... 13

4.3 Implementing the Fixed-parameter Algorithm .. 14

V- Experimental Analysis... 17

5.1 Heuristic vs. Parameterized 2CCED Results ... 17

5.2 Heuristic vs. Cluster Editing .. 18

5.3 2CCED vs. Cluster Editing .. 19

VI- Integer Linear Programming Formulation ... 21

6.1 Formulation ... 21

ix

6.2 Experimental Results ... 22

VII- Introducing 3-Clubs Cluster Edge Deletion .. 23

7.1 Problem Identification ... 24

7.2 A Reduction Procedure .. 25

7.3 Branching Rules .. 26

7.4 A Heuristic Approach for 3-Club Cluster Edge Deletion 35

7.5 Experimental Analysis ... 37

VIII- Summary and Future Work ... 39

 Bibliography…………………………………………………………………...……………….41-46

x

LIST OF TABLES

Table Page

1 Experiments for Heuristic and 2CCED algorithms 18

2 Experiments for Heuristic and Cluster Editing algorithms 19

3 Experiments for 2CCED and Cluster Editing algorithms 19

4 Experiments for 3CCED heuristic and Cluster Editing algorithms 38

5 Experiments for 3CCED heuristic and the 2CCED algorithms 38

xi

LIST OF FIGURES

Figure Page

1 A conflict quadruple also known as a P3 ... 14

2 Induced path and an edge in common. ... 14

3 A tail form of length four ... 26

4 Conflict quintuple with pendant endpoints .. 26

5 Conflict quintuple with pendant endpoints .. 27

6 b has a neighbor at a distance two from e. ... 29

7 Neighbor of b is at distance of three from e ... 29

8 Neighbor of c at distance three from e passing through d 30

9 Neighbor of c at distance three from e not passing through c and d 31

10 Neighbor of c at distance two from a ... 32

11 Neighbor of c at distance one from a and two from d 33

12 Neighbor of c at distance two from a and two from d 34

1

CHAPTER ONE

INTRODUCTION

Correlation Clustering also referred to as Cluster Editing is an optimization

problem that was extensively examined in various research works [1, 5, 3, 15, 16,

26, 28, 30, 34, 43], surveys [20], and practical settings [12, 13]. The technique entails

dividing a group of elements into uniform and distinct subsets. The vertices in this

problem represent the data elements, while the edges between the vertices represent

their similarity. The permitted number of modifications varies based on the particular

problem variation and its intended application. This problem has various applications,

including computational biology [43, 44], machine learning [11], bioinformatics [14],

and psychology [46].

Cluster editing from a graph theoretic view is an NP-Complete problem that

focuses on transforming graph G into G
t by applying addition and deletion

operations on a maximum of k edges, and the resulting graph contains only cliques as

connected components. To solve the problem, we must look for the lowest number

of edge adjustments required. When the edges are weighted, the modifications will

be given a certain cost that corresponds to the weights of the edges modified. In this

latter case, the problem would be named Weighted Cluster Editing, and the main

objective is to find the edge adjustments having in total the smallest weight.

In [1], a modified version was presented that incorporates multiple parameters.

This revised version establishes a minimum size for the clusters and also applies a

2

boundary on how many edges can be added or removed from a vertex. With these

modifications, the author was able to tackle this clustering approach in polynomial

time, provided that the total edge modifications for each vertex does not exceed half of

the minimum cluster size. However, they proved that even when only one edge deletion

or two edge deletions are allowed per vertex this problem is still NP-hard. By limiting

false positive and/or false negative correlations attributed to a specific variable, this

method enhances the efficiency of obtaining optimal correlation clustering solutions.

Another version of the graph clustering problem was studied in which every cluster

must fulfill a specific local constraint [37]. They focused on the cluster’s non-edges

count, the number of vertices in each cluster, and the number of non-neighboring

vertices that each vertex is allowed to have within its cluster. Additionally, they

demonstrated that the algorithm’s fixed-parameter tractability was determined by

these local constraints.

As the Cluster Editing problem imposes that each node is in a single cluster, yet a

member in a certain real-life application can have roles in multiple clusters, an example

is discussed in gene regulatory networks [2]. Hence, the clustering with overlaps

problem was introduced [23] and achieved fixed-parameter tractability and

parameterized hardness under certain constraints. The graph produced includes

maximal cliques that may overlap depending on the overlap parameter s. Hence, their

application on s-edge- overlap and s-vertex-overlap. In the same focus, a more recent

variant was introduced

[5] covering the problem of clustering with Vertex Splitting whereby allowing a single

vertex to be a member of many clusters after it is split into many vertices. This work

demonstrates that it is FPT (fixed-parameter tractable) if bounded by the count of edge

editing and vertex division operations.

An introduction to the problem of clustering via Vertex Deletion was initiated in

[27] where they allowed vertex deletion as the form of modifications and expected in

practical applications that this measure to be much lower than the edge-editing distance

because deleting a vertex would remove all its linked edges as well. An improvement

3

in its branching time is shown [17] by presenting a number of observations

incorporated into the algorithm. The variant of modifying the graph by deleting

vertices has attracted other considerable work [21, 31, 45].

The PACE Challenge which stands for "Parameterized Algorithms and

Computational Experiments" for the year 2021 [32] was focused on algorithms that

tackle the problem of Cluster Editing, and the majority of the submissions employed

a branch and bound algorithm, data reduction rules, bounded tree search pruning,

and local search. Out of all the participants, Tobias Heuer [33] emerged as the top-

ranked contestant, and his contribution will be referenced later in this work along with

the dataset used in this competition. The graphs used are gathered from different data

sources [19, 41, 49, 42, 35] to cover multiple areas, sizes, and complexity in

Bioinformatics, newsgroups posts, and social networks.

For many applications, It was discovered that the requirement for clusters to be in

the form of cliques was limiting and strict. Therefore, the use of clique relaxation as

a mean of identifying clusters obtained popularity in graph-based data clustering [29]

and alternative models to strict cliques have been proposed including quasi-clique, s-

plex, and s-club. These relaxed clique models are applicable to dense subgraphs and

involve defining vertex subsets that induce subgraphs with diameters no greater than

specified parameter s.

Allowing the model to have a more relaxed cluster is an advantage of s-clubs for

s ≥ 2, better-reflecting inaccuracies of the input data. In practical applications, the

low-diameter clusters have high significance, which has led to the utilization of this

model in various fields such as protein interaction networks [10] and social networks

[7].

The concept was introduced to model not only connected subgroups in social

networks [39] but "acquaintance groups" as well which are less tightly-knit,

homogeneous social groups, where each pair of members who are not in direct

contact have mutual acquaintances or share common third contacts.

Numerous types of NP-Complete graph editing problems [36] have been explored

4

with the goal of transforming a graph into disconnected groups of 2-clubs, including

2-Clubs Cluster Editing, 2-Club Cluster Edge Deletion, and 2-Club Cluster Vertex

Deletion. Additionally, according to [24], it was demonstrated that 2-Club Clustering

is W[2]-hard based on the number of altered edges, which implies that it is probably

not FPT. Moreover, the vertex deletion approach was proved to be FPT but not poly-

kernelizable only if NP ⊂ co-NP/poly.

In this work, we are tackling the 2-CLUB CLUSTER EDGE DELETION version

which we refer to as 2CCED. We present a heuristic approach and an exact

parameterized algorithm while testing their implementation with experience results.

We then cross-compare the results of both the beforementioned approaches and the

Cluster Editing algorithm. Moreover, we introduce a theoretical study of 3-club

cluster edge deletion, in addition to its experimental results of applying a heuristic

approach and presenting its comparative analysis with the 2-Club Edge Deletion and

Cluster Editing approaches.

The arrangement of the thesis goes as follows: In Chapter 2 we outline the

preliminaries; Chapter 3 illustrates the Heuristic approach, along with the 2CCED

algorithm; Chapter 4 presents the fixed Parameter Algorithm and its Implementation;

Chapter 5 consists of the Experimental Analysis; Chapter 6 presents the problem

formulation in Integer Linear Programming, Chapter 7 introduces the 3-clubs Edge

Deletion approach and its experimental results, while Chapter 8 provides the

concluding Summary and Future Work.

5

CHAPTER TWO

PRELIMINARIES

2.1 Terminology

Consider G, an undirected graph with no weights. We often write G = (V, E), with V

representing the set of G’s vertices and E for its edges. No self-loops or multi-edges

are allowed in G. The distance from vertex u to w is the length of the smallest route to

go from one vertex to another and is represented as d(u, w). The longest route, on the

other hand, would be the graph’s diameter. N(w) being the set of neighbors for vertex

w, and degree(w) = |N(w)| is hence its degree. If degree(w) = 1 then we call vertex w

a pendant one. We utilize the standard terminology of graph theory as present in [48].

A complete graph is defined as undirected where one cannot find any two vertices

that are not connected by an edge. Similarly, a clique is a complete subgraph. A

subgraph G
t(V

t, Et) of G has V
t and E

t as a subset of V and E, in G, respectively.

A graph is said to be undirected if the edges have no direction or orientation, and

unweighted if the edges are not assigned any values or weights. A graph is considered

connected when every vertex is connected to (or reachable from) all other vertices in

the graph. The use of weights in graphs typically involves assigning values to edges,

which may represent costs, distances, or other problem-specific values. However, in

this work, we do not consider weighted graphs, as we tackle only the simplest form of

unweighted graphs.

Furthermore, a path can be defined as a graph or subgraph in which its vertices

6

can be arranged in an order that ensures that two vertices are adjacent only if they

are adjacent (or consecutive) in the sequence. A path P is a series of distinct vertices

(v1, v2, v3, . . . vt) where vivi+1 ∈ E for all i ∈ {1,... t}. When the length of a path P is

k − 1, P is considered to be of length l, denoted as Pl (where Pl has l + 1 vertices). A

P3 is an induced path that has four distinct vertices. When given a P3 abcd, we refer to

a and d as the end vertices of this P3, and b and c as its internal vertices.

An s-club is a subgraph with a maximum diameter of s. Consequently, a clique is

obtained when s = 1. Hence, an s-club cluster graph has only s-clubs as components. In

this work, we focus on 2-clubs and 3-clubs graphs which are components with vertices

of distance at most 2 and 3 respectively.

2.2 Cluster Editing

Cluster Editing considers a graph G with an integer k, then seeks to determine if G can

be modified using k or less edge editing operations, to become a set of cliques. The

operations refer to either adding or deleting an edge from the graph. If each connected

component of G is of a clique form, then the graph is a cluster graph. Forbidden edges

are those that should not be included in the resulting graph, while permanent edges

must be present in the final graph.

A conflict triple refers to a sequence of three adjacent vertices forming a path of

length two. Its existence, as the name represents, forbids the solution to be

disconnected groups of cliques. We denote a conflict triple by (abc) of edges ab and

bc and nothing connecting a to c, and b is the center of the conflict triple. The most

basic approach to solving the Cluster Editing problem involves identifying a conflict

triple within the given graph. From there, the algorithm considers two possible

scenarios: removing one edge or adding an absent one to resolve the conflict. As

such, this algorithm runs in O
∗(3k). Notably, this problem limits each vertex to

belong to a single cluster. Other variants of the problem, such as clustering with

Overlaps and vertex splitting, allow a vertex to be part of more than one cluster.

7

2.3 Parameterized Complexity

Efficient and exact solving algorithms for NP-complete or NP-hard problems are un-

likely. However, some problems are solved in time that is a polynomial function of the

input size, while having an exponential size of the associated (assumed to be small or

fixed) parameter. These algorithms are known as fixed-parameter tractable (FPT), and

they are effective in solving problems for (fixed) parameters of a small value. If a

parameterized problem that has a fixed parameter k can be solved using an FPT

approach, it is considered a fixed-parameter tractable problem. Parameterized

algorithms require a cost limit k to be specified beforehand. When considering a

minimization problem, if a solution is found with a budget at k or less, then the

algorithm returns a positive answer and a solution is found; otherwise, it informs that

no solution has been found.

Kernelization is the technique for efficient algorithms that use preprocessing in

which inputs to the algorithm are substituted by a smaller input that is called a "kernel."

It is usually easy to demonstrate that a kernel, which has predetermined constraints

on its size, can be obtained within polynomial time. A reduction of a parameterized

problem from an instance (I, k) into (I’, k’) by:

1. (I, k) instance has a positive answer if only if (I’, k’) has a positive answer.

2. k’ ≤ k.

3. |I’| ≤ f(k) for a measurable function f .

2.4 Heuristic Algorithm

Heuristic algorithms are intended to solve problems more quickly and efficiently than

traditional methods by prioritizing speed over optimality, accuracy, precision, or

completeness. These algorithms can either generate a solution on their own or be

combined with optimization algorithms to provide a solid starting point (see [4, 22]

for more in- formation on such hybrid methods). Heuristic algorithms are often the

8

preferred choice when approximate solutions are adequate and exact solutions are too

computationally demanding.

2.5 2-Club Cluster Edge Deletion

The problem at hand involves a graph G = (V, E) that is undirected and a k ∈ N. We

are looking to see if the graph is transformable to a set of disjoint 2-clubs by deleting

no more than k edges. The diameter of a 2-clubs graph cannot exceed two. For any

given vertices u, v ∈ V , this means that they are either adjacent or have a neighbor in

common. A path P3 = stuv in G is called a conflict quadruple if dist(s, v) = 3. Here, P3

represents the shortest path connecting s and v. Consequently, G is considered a 2-club

cluster graph only if it does not contain any restricted P3.

9

CHAPTER THREE

A HEURISTIC APPROACH FOR 2-

CLUB CLUSTER EDGE DELETION

Our work addresses the problem of 2-clubs Cluster Edge Deletion by first

introducing a heuristic approach and its implementation. The objective of this

approach is to develop an algorithm that can quickly produce a practical solution

while compromising on optimality. The approach operates by removing the least

number of edges that would eliminate all conflict quadruples in the graph, thus

achieving a fast solution. Consequently, the algorithm leverages the influence level of

an edge, which indicates the number of P3s passing through it, to determine which

edges to cut.

In other words, an edge influence would indicate the number of P3s that decreases

in the overall graph whenever this edge gets deleted. The higher the number of P3s it

affects, the higher the edge’s influence value is. Hence, by deleting the edges with the

highest influence, we are minimizing the cost of edge deletion in the overall problem

to transform graph G to a disjoint union of 2-clubs. To know the influence value for

all edges, we apply the following. We assign a vertex as the source, then by using

the Depth First Search method we traverse the graph from this vertex to its 3rd-degree

neighbors. We count the number of P3s it is part of and increase its weight by this

10

number. We loop through all the vertices, with each vertex being a source and depth-

first search is applied to find P3s and update the edges’ weights accordingly. When

the final edge weights are allocated then begins the edge deletion process. Starting

with the highest weight, its edge is deleted which will decrease the highest number of

P3s in this current graph version. Because of this deletion, edges’ weights would be

affected, hence a recalculation of weights is done after each edge deletion, only to the

affected edges and not all graph edges. The affected edges when a deletion is applied

are the ones connecting the vertices of the direct neighborhood and second-degree

neighborhood. The algorithm will continue to iterate until the graph no longer contains

any conflict quadruples. The algorithm does not make any prior assumptions on the

number of clusters or their structure while assuming the input graph is undirected and

unweighted.

3.1 Implementation

We have implemented the algorithm on the PACE dataset described earlier and the

experimental results are presented in the following chapters. The implementation was

written in CPP programming language.

We first initialize all edge weights to 0. Weights represent the influence level in

this approach. Then we traverse the graph using depth-first search to store the weight

of each edge representing the number of P3s it went through, hence its influence. We

traverse the graph by looping through all the vertices as the source. Accordingly, we

then delete the edge with the highest weight. Then, to optimize on time, we update the

weights on the affected edges only which are linked to the vertices at distances 1 and

2. Then repeat the last two steps until all edge weights are 0, hence no P3 is found in

graph G which is converted o a disjoint union of 2-clubs.

11

Algorithm 1: Heuristic 2-clubs cluster edge deletion pseudo code

Input : A graph G = (V, E)
Output: The minimum edge deletions

wi ← 0
initialize all edges weight to 0;

for each v ∈ V do

DFS from source v ∈ V.
if edge e is part of a P3 then

w(e) = w(e)+1
else

Do nothing

end

end

while w(e) > 0 do

Delete the highest weighted edge. Recalculate the weights of the nearest

edges only which are linked to vertices at distances 1 and 2 from the

deleted edge.
end

12

CHAPTER FOUR

A FIXED-PARAMETER ALGORITHM

AND ITS IMPLEMENTATION

We tackle the 2CCED problem by presenting a fixed-parameter approach and its

implementation. Staring from an undirected and unweighted graph, and an integer

value of k that indicates the budget of edge deletion we have. In other words, it is the

maximum number of edge deletion operations we can apply before we can say "no

solution". This algorithm is based on the approach discussed previously [6] that

resolves the conflict quadruples by removing one of its three edges. With each

removal, which we call the branch in this work, we decrease the k parameter by one.

However, during some branching, we further decrease k where more than one conflict

intersects in a certain way. In addition, we describe cases where we can identify the

edges that should be deleted without loss of optimality. We tackle these cases in

polynomial time by applying reduction rules.

In this chapter, we will discuss the implementation details of our (previously

published) fixed-parameter 2-clubs cluster edge deletion algorithm. For the sake of

completeness, we present the pre-processing techniques and well as the main strategy

(or logic) behind the branching algorithm, and finally the algorithm method.

13

4.1 Pre-processing Techniques

During the search process, We apply pre-processing actions by reduction rules on the

input graph G, in polynomial time, whenever applicable.

Rule 1. The algorithm ends without a solution when k reaches a value below 0.

Rule 2. When the graph is empty, the algorithm ends and gives a solution-found result.

Rule 3. Delete all connected components that represent a 2-club sub-graph which

includes all singletons.

Rule 4. Search for two non-adjacent vertices u and w with common neighbors more

than k, then remove the connections between u and w to N(u) \ N2[w] and N(w) \ N2[u]

respectively.

Rule 5. Search for connected components C with the highest degree is two, then C can

optimally be altered into a subgraph of 2-clubs. We then decrease k: k = k − d where

d is the count of edges removed.

A tail is nothing but an induced path with a pendant endpoint. A 3-tail is a tail of

length three.

Rule 6. Search for a 3-tail T = (a, b, c, d), then remove the edge ab and reduce k =

k − 1.

4.2 A Simple Branching Algorithm

As our main objective is to transform graph G into 2-clubs connected components,

hence the primary structure that forbids this club from forming is what we call a P3,

also known as conflict quadruple, which is a length three path and the distance between

its endpoints is exactly three as shown in Figure 1 where abcd form a P3 where the

distance between a and d is exactly 3 in G. The solution to our problem will result

from searching for each P3 and resolving it by deleting one of its three edges ab, bc,

or cd. This algorithm runs in a O
∗(3k).

15

A similar approach is applied to all special cases discussed in [6] where we delete

edges in a specific order to get the most efficient results.

The method can be viewed as a search-tree traverse and works in a recursive

manner. Therefore, the running time is proportional to the number of recursive calls.

For this matter, we use the O∗ notation, which indicated the count of recursive calls

and conceals polynomial factors.

An edge is marked permanent if all the searches following its selection have

returned a no-solution answer. Then this edge is not part of the solution.

The algorithm converges to an end when there is no P3 found with a 0 or positive k

which indicated a solution found, or the search has been completed with all instances

resulting in a negative parameter k.

The algorithm does not make any prior assumptions on the number of clusters or

their structure while assuming the input graph is undirected and unweighted,

parameter k (positive integer). We also consider that an instance (G, k) was

preprocessed by comprehensively applying the reduction process.

16

Algorithm 2: Parametrized 2-clubs cluster edge deletion pseudo code

Input : A graph G = (V, E) preprocessed, and integer k
Output: A disjoint union of 2-clubs clusters, count of deletion operations

while k≥ 0 do

for each v ∈ V as source do
Search for a P3; if no P3 was found for all v then

Return True;
else

compare the selected P3 form to the special cases; if the selected P3

form is found to be similar to a special case then
branch accordingly;

else
branch exhaustively going through the 3 edges;

end

After each branch, k = k-number of deletions;

end

end

end

17

CHAPTER FIVE

EXPERIMENTAL ANALYSIS

In this chapter, we discuss the findings of running our algorithms on a set of different-

size graph networks that were used by the exact cluster editing solver ranked first [25]

by the PACE Challenge 2021 (Parameterized Algorithms and Computational

Experiments). The algorithms built for this work were implemented using the CPP

language and run on a PC Intel Core i5, 1.19 GHz with 8 GB RAM. The objective

behind these applications is to show the results of the parameterized approach and

compare it to different approaches such as the Heuristic approach of a 2-club cluster

editing and the cluster editing presented in [25].

5.1 Heuristic vs. Parameterized 2CCED Results

We work with graphs with vertices ranging between 20 and 350. The results are

reported in Table 1 below with a comparison between the Heuristic 2-clubs cluster

editing and the exact parameterized approaches implemented and discussed earlier in

this work. In the results, the metrics measured are:

(i) Time of the job running in milliseconds;

(ii) Cost: is the count of deletions during the process; and

(iii) Clusters: the number of components in the resulting graph including singletons.

18

Table 1: Experiments on different graphs for Heuristic and 2CCED algorithms

Graph Heuristic 2CCED 2CCED

Nodes Edges Time(ms) Cost Clusters Time(ms) Cost Clusters

20 97 0.17 1 2 0.31 2 3

144 1191 6.55 8 40 405.02 8 40

144 3089 10.39 6 14 261.89 6 14

159 425 2.97 7 57 210.13 7 57

184 441 3.88 8 53 1250.34 8 54

216 3054 15.08 14 50 74.67 13 51

232 5582 16.02 4 32 17.56 1 32

263 1288 8.69 8 99 18.50 5 99

313 1764 12.57 3 109 40.18 3 109

350 1770 14.70 10 146 1103.05 9 146

Table 1 results show that, on average, the heuristic approach is 4.5 times faster in

terms of running time, but might not be optimal in terms of effectiveness. We can

observe that the parameterized approach takes relatively more running time but proves

effectiveness in its final clusters and its lower cost of edge deletion.

5.2 Heuristic vs. Cluster Editing

The experiment was conducted on the same set of graphs as described earlier but with

different approaches to cluster editing. The comparison was made between the

Heuristic 2-clubs clustering and the fixed-parameter cluster editing algorithm [25],

which clusters a graph with the smallest count of editing operations on the edges. The

results, presented in 1, adopt the same metrics as in the previous experiment.

Table 2 results show that the cost is on average 10 times lower in the Heuristic

2CCED approach than the cluster editing while preserving an average of an equal

number of resulting clusters. This proves that aiming for 2-clubs clustering instead of

hard complete graphs has a much lower cost and maintains very close results in terms

of connectivity and the number of clusters.

19

Table 2: Experiments on different graphs in Heuristic and Cluster Editing algorithm

Graph Heuristic 2CCED Cluster Editing

Nodes Edges Time(ms) Cost Clusters Time(ms) Cost Clusters

20 97 0.17 1 2 80 46 1

144 1191 6.55 8 40 60 132 43

144 3089 10.39 6 14 274 78 20

159 425 2.97 7 57 289 42 55

184 441 3.88 8 53 326 72 64

216 3054 15.08 14 50 908 134 56

232 5582 16.02 4 32 177 20 34

263 1288 8.69 8 99 822 56 107

313 1764 12.57 3 109 883 100 117

350 1770 14.70 10 146 873 106 153

5.3 2CCED vs. Cluster Editing

The aim of this experiment is to assess the effectiveness of the parameterized method

for 2-clubs cluster edge deletion in comparison to the cluster editing algorithm [25] that

was previously discussed. Graphs with orders varying from 20 to 350 were utilized

for this purpose. The outcomes of the clustering were evaluated by applying both

techniques to the same graphs that were utilized in the preceding experiments. The

findings are presented in Table 3, which also adopts the metrics used in the previous

experiments (time, cost and number of clusters found).

Table 3: Experiments on different graphs for 2CCED and Cluster Editing algorithms

Graph 2CCED Cluster Editing

Nodes Edges Time(ms) Cost Clusters Time(ms) Cost Clusters

20 97 0.31 2 3 80 46 1

144 1191 405.02 8 40 60 132 43

144 3089 261.89 6 14 274 78 20

159 425 210.13 7 57 289 42 55

184 441 1250.34 8 54 326 72 64

216 3054 74.67 13 51 908 134 56

232 5582 17.56 1 32 177 20 34

263 1288 18.50 5 99 822 56 107

313 1764 40.18 3 109 883 100 117

350 1770 1103.05 9 146 873 106 153

20

Although the running time of the parameterized approach of the 2-clubs cluster

edge deletion is on average 9 times higher (for 80 percent of the experiments), the cost

of edge operations is 12 times lower than the Cluster Editing approach that gives a

union of complete graphs, while maintaining a close output in terms of connectivity

and the number of clusters.

21

CHAPTER SIX

INTEGER LINEAR PROGRAMMING

FORMULATION

Integer programming models (ILP) have been part of many works to solve cluster

editing and particularly 2-clubs clustering [10, 18] with a simple formulation,

straightforward generalization of the classical maximum clique mainly focusing on

vertex deletion operations. Another extension of this approach [47] introduced two

new mixed- integer programming models.

6.1 Formulation

We provide in this section an ILP approach for the 2-Clubs Cluster Edge Deletion. The

main requirement of this problem is that the resulting graph has to be a 2-club cluster

graph which is a subgraph of maximum cardinality with a diameter at most two. To

satisfy that condition, the resulting subgraph should include no conflict quadruple or

as we note it in this work, induced P3s.

We denote by N(i) the neighborhood of node i ∈ V , i.e., N(i) = { j ∈ V | (i, j) ∈ E}.

So, for any induced P3 ≡ abcd in graph G, if N(a) ∩ N(d) = ∅; then at least one

edge from ab, bc, or cd must be deleted for this conflict to be solved. We introduce a

variable xi for each edge i ∈ E. The value of this variable is 1 if i is in the set of the

edges deleted, and it will take the value of 0 if i is not in the maximum 2-club solution

22

set. We shall label the edges ab, bc, and cd by u, v, and w respectively. This leads to

the below ILP formulation. The aim is to find the minimal count of edges to be deleted

for the solution to be a 2-club cluster graph, hence it is a minimization optimization

with the edge deletion as the cost.

Hence, we need to find the minimal cost of the sum of all xi where i ∈ E.

minimize:

∑i∈ E xi

subject to: xu + xv +xw >=1 for all induced P3’s abcd in G.

xi ∈ {0,1} for all i ∈ E

6.2 Experimental Results

The algorithm above was coded in the CPP language and run on a PC Intel Core i5,

1.19 GHz with 8 GB RAM, and solved with ILOG/CPLEX 22.1. Many tools are

focused on linear optimization problems and implement optimizers based on simplex

algorithms such as Baron, Cplex, and Gurobi. In this work, we have chosen to work

with the CPLEX tool.

The experiments were performed on the dataset used in the previous approaches

and were compared against the heuristic approach. The results showed that the cost is

almost the same on all tested graphs, proving the effectiveness of the 2CCED approach

presented earlier in this work. For example, the graph with 159 nodes and 425 edges

showed a cost of 7 deleted edges, and the graph with 184 nodes and 441 edges showed

a cost output of 8 edge deletions which are equal to our 2CCED approach presented

earlier. Graphs with more than 500 edges were too large to be completed within a

reachable time because the ILP approach would run exhaustively on every path of 3

and study the cost of each of these 3 edges. Hence this conclusion was based on the

smaller graphs that have been able to be completed within a reasonable time.

23

CHAPTER SEVEN

INTRODUCING 3-CLUBS CLUSTER

EDGE DELETION

In various practical cases, the requirement for clusters to be cliques was limiting and

strict, subsequently, several alternative relaxed clique models were introduced.

Noting that 2-clubs and 3-clubs are presented as the most rational diameter-

relaxations of clique [10, 40], a few approaches were presented to deal with 3-club as

well. Similar to the 2-clubs, 3-clubs clustering is proven to be run in polynomial time

on a tree form graph [8]. Another work on the 3-club problem focuses on presenting

an Integer formulation [9]. Their work shows that the compact approach has high

competition with the methods presented prior to that work [18] that explores a branch

and limit algorithm based on Vertex Deletion. The 3-Club 2-Cluster Edge Deletion

approach [38] was also presented and proven that it cannot be solved in time

2o(k)nO(1) unless ETH fails.

A modified version of the 3-Clubs Clustering problem is here introduced that

concentrates solely on the Edge Deletion operation. An algorithmic method is

presented that involves progressively removing special setups, such as bounded-

degree-three, a four- length tail, special three-length paths, and five-length paths,

after implementing some reduction procedures that are presumed to be carried out

during the search process and prior to making any deletion decisions. The findings

reveal a runtime of O(3.65k).

24

7.1 Problem Identification

The 3-CLUB CLUSTER EDGE DELETION (3CCED) problem at hand involves an

undirected graph G = (V, E) and an integer k ∈ N. We are looking to delete at most k

edges from G to convert it into a collection of disjoint 3-clubs.

When the highest degree in a graph is two or less, the 3CCED problem can be easily

solved in polynomial time. When a path in the graph is identified as P = (v1, v2, . . . vs),

we can consecutively remove edges v4iv4i+1 for i = 1, 2 . . ., until there are no more

3-clubs left to remove. In this situation, this approach results in the optimal solution.

Taking another case of a cycle-connected component of length > 7 then we shall

delete a random edge resulting in a path that is disconnected and can be resolved as

described earlier.

A 3CCED problem produces a solution graph that comprises of connected

components known as 3-clubs graph, which are subgraphs of diameter three. A path

with a length of four and endpoints that are precisely four hops apart from each other

will be denoted in this work as a conflict quintuple, and it is the primary structure that

we need to destruct due to the fact that its existence hinders a graph from being a 3-

clubs graph.

The method we use to solve the problem is to search for a conflict quintuple and

attempt to resolve it by eliminating one of the four edges that form it. As we proceed,

the parameter k is reduced by one in each branch. This produces a O
∗(4k) approach.

Nevertheless, there are instances where multiple conflicts overlap in a manner that

permits us to decrease the parameter even more in certain branches. In addition, there

are less complex scenarios where we are aware of the precise edge or set of edges to

eliminate "without losing optimality." These situations can be addressed using

polynomial-time procedures that rely on reduction rules.

25

7.2 A Reduction Procedure

Before executing the search-tree backtracking algorithm, we presume that the

reduction procedure has been thoroughly implemented. Additionally, during the

search procedure, the reduction rules are applied before any selection or determination

is made by the search algorithm. We outline below the primary reduction rules which

are expected to be executed sequentially.

Reduction Rule 1. Whenever the parameter k reaches a negative value, the algorithm

terminates and outputs a message indicating the absence of an instance.

Reduction Rule 2.Assuming k ≥ 0 as per the previous rule, the algorithm ends and

returns a positive instance if the graph is empty.

Reduction Rule 3. If we find a 3-club connected component C in G, then we remove

C.

In case G comprises a connected component C that meets the criteria of being a

3-club, then we delete this component.

Notice that applying Rule 3 exhaustively leads to the elimination of all singletons.

Reduction Rule 4. If a connected component D with a maximum degree of two is

found in the graph, then D can be transformed into a 3-clubs subgraph in an optimal

manner. k value will be reduced by the number of edges that were removed.

Soundness. A connected component with the highest degree equal to two would be a

cycle or a path and can be resolved as explained earlier.

Reduction Rule 6. If a form of 4-tail T = (a, b, c, d, e) was found in the graph (as

depicted in Figure 3), then the edge ab will be removed, and k value decreased by 1.

Soundness. As the a and d vertices should be members of two distinct 3-clubs, then

we must remove one of the three edges that make up T , because removing the edge

ab creates an isolated 3-club which is the path consisting of b, c, d, and e. And cannot

reach a suboptimal solution.

26

N(a) a b c d N(d)

Figure 3: A tail form of length four.

7.3 Branching Rules

We introduce here our bounded search tree algorithm. It is a recursive procedure whose

running time is directly proportional to the number of recursive calls. As a result,

we employ the O∗ notation that represents the aggregate count of recursive calls and

conceals any polynomial factor.

We examine a pre-processed instance (G, k) of 3CCED, where reduction rules have

been exhaustively applied. Hence, a solution is found when graph G is empty, or each

connected component of G has one or more vertices with a degree of 3 or higher and

at least two vertices situated at a distance of precisely four from each other. We apply

this sequence of events to the following branching rules as well. Therefore, in every

instance, we presume that none of the circumstances mentioned earlier apply.

Case 1. Neighbors of endpoints of a P3.

In case there exists an induced path P = (a, b, c, d) of length three where |N(a)\ N3[d] ∪

N(d) \ N3[a]| ≥ 2, as shown in Figure 4, we can branch by deleting ab, bc, or cd, or

all the vertices in N(a) \ N3[d] ∪N(d) \ N3[a]. This leads to a worst-case recurrence of

T (k) = 3T (k − 1) + T (k − 2), with a running time of O∗(3.303k).

Figure 4: Conflict quintuple with pendant endpoints

Soundness. Concerning the first three branches, each branch deletes one of the four

x

a b c d e

y

27

a b c d e

edges of a conflict quintuple that includes a sub-path (a, b, c, d). At the fourth

branch, the edges ab, bc, and cd turn to a permanent state making it necessary to

delete any neighbor of a that is at a distance of four from d, in addition to any

neighbor of d that is at a distance of four from vertex a.

Remark. We shall exclude two notable cases in the following discussion, where the

above branching scenario implicitly applies.

• If a path (a, b, c, d, e) has internal vertices (b,c and d) of degree-two, then the

distance from d to every neighbor of a is exactly four, and the same logic holds

true for the situation of e and b. Therefore, we can apply Case 1 branching

condition on the path (a, b, c, d). We will implicitly exclude this case henceforth.

• When two vertices u and w where the distance d(u, w) = 5, then the four vertices

between them on the shortest path will abide by Case 1 condition as well.

Case 2. Conflict quintuple with pendant endpoints.

In this case, as shown in Figure 5 we have a conflict quintuple (a, b, c, d, e) where the

degree of the endpoints vertices a and e is 1, and the internal vertices b and d have

only one neighbor of degree-one (otherwise we will apply Case 1). Hence the deletion

of edge bc or cd will solve only one conflict and might lead to more conflicts, but

the deletion of the edge ab or de can solve one or more conflicts without creating

additional conflict quintuples. For that reason, the branching in this particular case

will be the deletion of either ab or de, which results in a running time of O∗(2k).

Figure 5: Conflict quintuple with pendant endpoints

Henceforth, we can assume that vertex e has one or more neighbors other than d.

The distance between this neighbor of e and the internal vertex b is, therefore, two or

28

a b c d e

x y

three, because if the distance between b and this neighbor is four, then we cannot in

fact have a path (b, c, d, e) in the graph.

Case 3. b has a neighbor at distance two from e.

Let x and y be adjacent vertices and the neighbors of b and e respectively, as shown in

Figure 6. The objective is to break the conflict quintuple abcde but first deleting the

edge ab, if that returned no solution then the edge ab becomes permanent. Our second

option would be deleting edge bc which should coincide with deleting one of the 3

edges in the path bxye in order for the distance between a and e not to be 4. Then we

continue with the same logic with for edges cd and de. Hence, we branch as follows:

- delete edge ab;

- delete edges bc and bx;

- delete edges bc and xy;

- delete edges bc and ey;

- delete edges cd and bx;

- delete edges cd and xy;

- delete edges cd and ey.

- delete edges de and bx.

- delete edges de and xy.

- delete edges de and ey.

The recurrence of the above will be T (k) = T (k − 1) + 9T (k − 2) and generates a

running time of O∗(3.541k).

29

a b c d e

w x y

Figure 6: b has a neighbor at a distance two from e.

Case 4. b has a neighbor at distance three from e.

We consider an induced path P4(b, w, x, y, e) that corresponds to this scenario, as

illustrated in Figure 7. The distance between a and y will be four.

Figure 7: Neighbor of b is at distance of three from e.

If the distance between a and y is four then first we branch with ab, then we need

to delete 2 edges, one of the 3 edges in bcde and another from the 3 edges in bwxy,

hence the branching will be as follows:

- delete ab;

- delete bc and bw;

- delete bc and wx;

- delete bc and xy;

- delete cd and bw;

- delete cd and wx;

- delete cd and xy;

- delete de and bw;

- delete de and wx;

- delete de and xy;

30

a b c d e

x

The recurrence of the above will be T (k) = T (k − 1) + 9T (k − 2) and generates a

running time of O∗(3.541k).

If the distance between a and y is three then we first need to delete ey then delete 3

branches to separate b from e and 3 branches to separate a from y. This will also lead

to T (k) = T (k − 1) + 9T (k − 2) and generates a running time of O∗(3.541k).

If the distance between b and y is three, we cannot assume d(a,y) = 2 because the

distance between a and e would be less than four, hence no conflict quintuple.

From this point onward, we assume that b and d are of degree 2. Because if b has

a neighbor of distance 1 from e then there is no conflict quintuple. if b has a neighbor

of distance 2, 3, or 4 from e then we have solved it in the above cases. Similarly, it

applies to its symmetric version on vertex d.

Case 5. c and a has a neighbor at distance one from a and three from e.

We consider in this case that vertices a and c has a common neighbor other than b,

and the distance between this neighbor and vertex e is three passing through c and d as

shown in 8.

Note. if the distance between this neighbor and e was less or equal to two than the

conflict quintuple will not exist as d(a,e) will be < 4.

Figure 8: Neighbor of c at distance three from e passing through d.

To solve this conflict we will branch first by removing edges cd or de. Then when

these edges become permanent, deleting ab will coincide with the deletion of ax or cx

, and the same logic when branching with the edge bc.

For this case, the branching will be as follows:

31

a b c d e

w x y

- delete cd;

- delete de;

- delete ab and ax;

- delete ab and cx;

- delete bc and ax;

- delete bc and cx.

The recurrence of the above will be T (k) = 2T (k − 1) + 4T (k − 2) and generates a

running time of O∗(3.236k).

Case 6. c has a neighbor at distance three from e from two paths.

We consider in this case that vertices a and c has a common neighbor other than b, and

the distance between this neighbor and vertex e is three passing through two vertices

other than c and d as shown in 9.

Figure 9: Neighbor of c at distance three from e not passing through c and d.

For this case, the branching will be as follows:

- delete ey and de;

- delete ey and cd;

- delete aw and ab;

- delete aw and bc.

The recurrence of the above will be T (k) = 4T (k− 2) and generates a running time

32

of O∗(2k).

Figure 10: Neighbor of c at distance two from a.

Case 7. c has a neighbor at a distance two from a.

We consider in this case that c has a neighbor at a distance two from a and at a distance

three from e as shown in 10.

For this case, the branching will be as follows:

- delete cd;

- delete de;

- delete ab and aw;

- delete aw and wx;

- delete aw and cx;

- delete bc and aw;

- delete bc and wx;

- delete bc and cx;

The recurrence of the above will be T (k) = 2T (k − 1) + 6T (k − 2) and generates a

running time of O∗(3.646k).

Case 8. c has a neighbor at distance one from a and three from e not passing

through c.

We consider in this case that c has a neighbor at a distance one from a other than b and

a b c d e

x w

33

a b c d e

x w y

at a distance two from d not passing through c as shown in 11.

For this case, the branching will be as follows:

Figure 11: Neighbor of c at distance one from a and two from d.

- delete de;

- delete ab and ax;

- delete bc and ax;

- delete cd and xw;

- delete cd and dw;

The recurrence of the above will be T (k) = T (k − 1) + 4T (k − 2) and generates a

running time of O∗(2.562k).

Case 9. c has a neighbor at distance two from a and two from d not passing

through c.

We consider in this case that c has a neighbor at a distance two from a not passing

through b and at a distance two from d not passing through c as shown in Figure 12.

a b c d e

x w

34

Figure 12: Neighbor of c at distance two from a and two from d.

For this case, the branching will be as follows:

- delete de;

- delete ab and ax;

- delete ab and xw;

- delete bc and ax;

- delete bc and xw;

- delete cd and wy;

- delete cd and dy;

The recurrence of the above will be T (k) = T (k − 1) + 6T (k − 2) and generates a

running time of O∗(3k).

Taking all of the above branching cases into consideration, we conclude that:

Theorem 1. The 3-Clubs Cluster Edge Deletion problem can be solved in O∗(3.65k).

7.4 A Heuristic Approach for 3-Club Cluster Edge

Deletion

In this chapter, we introduce and implement a heuristic approach to solve the 3-clubs

Cluster Edge Deletion problem. The aim is to find a working solution within a

reasonable time frame. The method to reach a solution is to cut as minimum edges as

possible that would destroy all conflict quintuples in the graph. Therefore, this

35

algorithm is based on the influence level of an edge. The edge influence value

indicates the number of P4s that this edge is part of. Hence, an edge influence

designates the number of P4s that decreases in the overall graph whenever this edge

gets deleted. Thus, to minimize the cost of edge deletions in the overall problem, we

need to delete the edges with the highest influence first and subsequently transform

graph G to a disjoint union of 3-clubs.

To calculate the influence value for the edges, we apply the following approach.

We assign a vertex v as the source, then with Depth First Search we traverse the graph

from v to its 4th-degree neighbors: vertices within distance 4 from v. For each edge,

we count the number of P4s it is part of and increase its weight by this number. We loop

through all the vertices, for each vertex being a source, we apply the depth-first search

to count the number of P4s, then update the edges’ weights accordingly. Obviously,

this procedure takes quadratic time.

When the final weights have been allocated to the edges then the edge deletion

process can begin. Starting with the highest weight edge deletion which will decrease

the highest number of P4s in this current graph version. Because of this deletion, near

edges’ weights are affected, hence, after each deletion, a recalculation of weights is

computed to the affected edges only and not to all graph edges. The affected edges

when a deletion is applied are the ones connecting the vertices of the direct

neighborhood, second-degree, and third-degree neighborhood. The algorithm will

continue to iterate until the graph no longer contains conflict quintuples.

We do not assume in this algorithm any pre-existing assumptions about the

number or structure of the clusters while assuming the input graph is undirected and

unweighted.

Algorithm 3: Heuristic 3CCED Algorithm

Input: A graph G = (V,E)
Output: The minimum 3-club edge deletions
1: ∀i : wi ← 0; //initialize all edges weight to 0.

36

2: Run a DFS algorithm for each v ∈ V.

3: For each time a P4 runs through an edge e, w(e) = w(e)+1.

4: Delete the highest weighted edge.

5: Recalculate the weights of the nearest edges only which are linked to

vertices at distances 1,2, and 3 from the deleted edge.

6: Repeat step 4 until no w(e) > 0 exist in the graph.

37

7.5 Experimental Analysis

The algorithm was implemented and tested on datasets used in the previous approaches

of this work. The machine specs are the same as described previously. The

implementation was written in CPP programming language, and the experimental

results will follow.

In this experiment, the input graphs used are similar to the previous experiments,

of orders ranging between 20 and 350. Table 4 below presents the results of the

clustering measures with a comparison between the Heuristic 3-clubs clustering with

edge deletion and the Cluster Editing [33] implemented and discussed earlier in this

work. Again, in the presented results, the adopted metrics measured are:

(i) Time of the job running in milliseconds;

(ii) Cost: the number of edges deleted during the process; and

(iii) Clusters: the number of components in the resulting graph, including singletons.

The results show that the 3-clubs clustering with edge deletion approach had close

results in terms of the number of clusters in the output graphs, an average of 88%

similarity with the Cluster Editing approach, yet the 3CCED running time was on

average 4 times faster, and the cost of deleted edges was on average 17 times less than

the Cluster Editing approach.

Another comparison was applied between the 3-clubs clustering with edge deletion

algorithm and the previously discussed 2-clubs clustering with edge deletion FPT

algorithm. Table 5 shows a 93% similarity (on average) in the resulting graphs’

number of clusters and almost double the time and half the cost in favor of 3CCED

being faster and less costly for the majority of the graphs.

We can conclude that adopting a more relaxed method of clustering than the dis-

joint union of cliques and even 2-clubs Clustering with Edge Deletion has reached

close clustering results but with relatively faster time and lower cost.

38

Table 4: Experiments on different graphs using our 3CCED heuristic and the Cluster

Editing algorithm

Graph 3CCED heuristic Cluster Editing

Nodes Edges Time(ms) Cost Clusters Time(ms) Cost Clusters

20 97 10.2 1 2 80 46 1

144 1191 121 7 39 60 132 43

144 3089 271 15 13 274 78 20

159 425 51 6 56 289 42 55

184 441 54 6 51 326 72 64

216 3054 179 2 46 908 134 56

232 5582 334 0 31 177 20 34

263 1286 88 0 95 822 56 107

313 1764 121 0 106 883 100 117

350 1770 191 5 142 873 106 153

Table 5: Experiments on different graphs using our 3CCED heuristic and the 2CCED

algorithms

Graph 3CCED heuristic 2CCED

Nodes Edges Time(ms) Cost Clusters Time(ms) Cost Clusters

20 97 10.2 1 2 0.311 2 3

144 1191 121 7 39 405.02 8 40

144 3089 271 15 13 261.89 6 14

159 425 51 6 56 210.13 7 57

184 441 54 6 51 1250.34 8 54

216 3054 179 2 46 74.67 13 51

232 5582 334 0 31 17.56 1 32

263 1286 88 0 95 18.50 5 99

313 1764 121 0 106 40.18 3 109

350 1770 191 5 142 1103.05 9 146

39

CHAPTER EIGHT

SUMMARY AND FUTURE WORK

In this work, we tackled the 2-CLUB CLUSTER EDGE DELETION in graphs which

is the transformation of a graph G into a set of disjoint union of 2-clubs. The technical

implementation of this work was based on the latest improved 2-CLUB CLUSTER

EDGE DELETION algorithm which presented a running time of O
∗(2.695k). This

approach begins with the elimination of specific scenarios such as particular paths of

length two or length four, bounded-degree-two, and the tail of length three, followed by

the branching process. Branching is applied mainly by searching for specific cases and

solving them faster than exhaustively. We also implemented a heuristic approach

algorithm to transform graph G into a disjoint set of 2-clubs based on the edge’s

influence level. A performance cross-comparison has been applied between all three

approaches: the implemented algorithms (heuristic and fixed-parameter), and the

cluster editing algorithm that was top-ranked in Parameterized Algorithms and

Computational Experiments Challenge (PACE) 2021. Results show that the heuristic

approach compared to the 2CCED fixed-parameter algorithm is 4.5 times faster, on

average, but might not be optimal in terms of effectiveness. But when compared to the

Custer Editing approach, the Heuristic is 30 times faster and 10 times lower in terms

of cost while preserving similar resulting clusters. On the other hand, the 2CCED

FPT algorithm is 9 times faster than the Cluster Editing approach with 12 times lower

cost while maintaining a close output number of clusters.

In addition to the work on 2CCED, we have presented a new fixed-parameter

40

algorithm for 3-CLUB CLUSTER EDGE DELETION, which simply transforms a graph

into a disjoint set of 3-clubs. Obviously, a 3CCED is the natural extension to the previous

work on 2CCED, and a 3-club can be considered a reasonable diameter-relaxation of Clique.

In this approach, we have reached a running time of O
∗(3.65k). We also implemented a

heuristic approach for the 3CCED problem using the proposed edge influence level

approach. A performance comparison has been applied between the three approaches:

heuristic algorithm for 3CCED, fixed-parameter algorithm for 2CCED, and Cluster Editing.

Results show that the 3CCED is 4 times faster and 17 times lower cost than the Cluster

Editing approach, and it is twice faster and half costly as the fixed parameter 2CCED

approach. It shows that correlation clustering via 3-CLUB CLUS- TER EDGE DELETION

can be more relevant to practical work and show information as significant as the rigid

Cluster Editing model.

For future work, it would be interesting to see the experimental implementation of

our new fixed-parameter algorithm for 3-CLUB CLUSTER EDGE DELETION. Another

direction would be exploring the vertex deletion approach that results in 3- clubs which can

be useful when dealing with outliers in some practical areas.

41

BIBLIOGRAPHY

[1] F. N. Abu-Khzam. On the complexity of multi-parameterized cluster editing.

Journal of Discrete Algorithms, 45:26–34, 2017.

[2] F. N. Abu-Khzam, N. E. Baldwin, M. A. Langston, and N. F. Samatova. On

the relative efficiency of maximal clique enumeration algorithms, with applica-

tions to high-throughput computational biology. In International Conference on

Research Trends in Science and Technology, pages 1–10, 2005.

[3] F. N. Abu-Khzam, C. Bazgan, K. Casel, and H. Fernau. Clustering with lower-

bounded sizes - A general graph-theoretic framework. Algorithmica, 80(9):2517–

2550, 2018.

[4] F. N. Abu-Khzam, S. Cai, J. Egan, P. Shaw, and K. Wang. Turbo-charging domi-

nating set with an FPT subroutine: Further improvements and experimental anal-

ysis. In T. V. Gopal, G. Jäger, and S. Steila, editors, Theory and Applications of

Models of Computation - 14th Annual Conference, TAMC 2017, Bern, Switzer-

land, April 20-22, 2017, Proceedings, volume 10185 of Lecture Notes in Com-

puter Science, pages 59–70, 2017.

[5] F. N. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw. Cluster editing with

vertex splitting. In International Symposium on Combinatorial Optimization,

pages 1–13. Springer, 2018.

[6] F. N. Abu-Khzam, N. Makarem, and M. Shehab. An improved fixed-parameter

algorithm for 2-club cluster edge deletion. Theor. Comput. Sci., 958:113864,

2023.

42

[7] R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of

Mathematical Sociology, 3(1):113–126, 1973.

[8] M. Almeida and F. Carvalho. The k-club problem: new results for k= 3. Centro

de, 2008.

[9] M. T. Almeida and F. D. Carvalho. Integer models and upper bounds for the

3-club problem. Networks, 60(3):155–166, 2012.

[10] B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing

biological networks. Journal of Combinatorial Optimization, 10(1):23–39, 2005.

[11] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning,

56(1):89–113, 2004.

[12] J. R. Barr, P. Shaw, F. N. Abu-Khzam, and J. Chen. Combinatorial text classi-

fication: the effect of multi-parameterized correlation clustering. In 2019 First

International Conference on Graph Computing (GC), pages 29–36. IEEE, 2019.

[13] J. R. Barr, P. Shaw, F. N. Abu-Khzam, T. Thatcher, and S. Yu. Vulnerability

rating of source code with token embedding and combinatorial algorithms. Inter-

national Journal of Semantic Computing, 14(04):501–516, 2020.

[14] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.

Journal of Computational Biology, 6(3-4):281–297, 1999.

[15] S. Böcker and J. Baumbach. Cluster editing. In Conference on Computability in

Europe, pages 33–44. Springer, 2013.

[16] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:

Evaluation and experiments. Algorithmica, 60(2):316–334, 2011.

[17] A. Boral, M. Cygan, T. Kociumaka, and M. Pilipczuk. A fast branching algorithm

for cluster vertex deletion. Theory of Computing Systems, 58(2):357–376, 2016.

43

[18] J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maxi-

mum k-club problem in an undirected graph. European journal of operational

research, 138(1):21–28, 2002.

[19] R. Cook. Wcs data archives.

[20] C. Crespelle, P. G. Drange, F. V. Fomin, and P. A. Golovach. A survey of pa-

rameterized algorithms and the complexity of edge modification. arXiv preprint

arXiv:2001.06867, 2020.

[21] M. Doucha and J. Kratochvíl. Cluster vertex deletion: A parameterization be-

tween vertex cover and clique-width. In MFCS, volume 2012, pages 348–359.

Springer, 2012.

[22] M. M. A. El-Wahab, F. N. Abu-Khzam, K. Wang, and P. Shaw. Semi-exact

exponential-time algorithms: an experimental study. In 2020 Second Interna-

tional Conference on Transdisciplinary AI (TransAI), pages 96–99, 2020.

[23] M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Graph-

based data clustering with overlaps. Discrete Optimization, 8(1):2–17, 2011.

[24] A. Figiel, A.-S. Himmel, A. Nichterlein, and R. Niedermeier. On 2-clubs in

graph-based data clustering: Theory and algorithm engineering. In CIAC, pages

216–230, 2021.

[25] Gottesbüren. Parameterized algorithms and computational experiments, 2021.

[26] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data cluster-

ing: Fixed-parameter algorithms for clique generation. In Italian Conference on

Algorithms and Complexity, pages 108–119. Springer, 2003.

[27] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of

search tree algorithms for hard graph modification problems. Algorithmica,

39(4):321–347, 2004.

44

[28] J. Guo. A more effective linear kernelization for cluster editing. Theoretical

Computer Science, 410(8-10):718–726, 2009.

[29] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more relaxed model

for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete

Mathematics, 24(4):1662–1683, 2010.

[30] P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. Generalized

graph clustering: recognizing (p, q)-cluster graphs. In International Workshop on

Graph-Theoretic Concepts in Computer Science, pages 171–183. Springer, 2010.

[31] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter

algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–

217, 2010.

[32] L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche. The pace 2021 parame-

terized algorithms and computational experiments challenge: Cluster editing. In

16th International Symposium on Parameterized and Exact Computation (IPEC

2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[33] kittobi1992. Kittobi1992/clusterediting: Kapoce is a framework for solving the

cluster editing problem.

[34] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifi-

cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

[35] J. Leskovec and A. Krevl. Snap datasets: Stanford large network dataset collec-

tion, 2014.

[36] H. Liu, P. Zhang, and D. Zhu. On editing graphs into 2-club clusters. In Frontiers

in Algorithmics and Algorithmic Aspects in Information and Management, pages

235–246. Springer, 2012.

[37] D. Lokshtanov and D. Marx. Clustering with local restrictions. Information and

Computation, 222:278–292, 2013.

45

[38] N. Misra, F. Panolan, and S. Saurabh. Subexponential algorithm for d-cluster

edge deletion: Exception or rule? In International Symposium on Mathematical

Foundations of Computer Science, pages 679–690. Springer, 2013.

[39] R. J. Mokken et al. Cliques, clubs and clans. Quality & Quantity, 13(2):161–173,

1979.

[40] S. Pasupuleti. Detection of protein complexes in protein interaction networks

using n-clubs. In European Conference on Evolutionary Computation, Machine

Learning and Data Mining in Bioinformatics, pages 153–164. Springer, 2008.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[42] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and S. Böcker. Exact

and heuristic algorithms for weighted cluster editing. In Computational Systems

Bioinformatics: (Volume 6), pages 391–401. World Scientific, 2007.

[43] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete

Applied Mathematics, 144(1-2):173–182, 2004.

[44] R. Sharan. Graph modification problems and their applications to genomic re-

search. PhD thesis, Tel-Aviv University, 2002.

[45] D. Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of

Computing Systems, 65(2):323–343, 2021.

[46] E. Ulitzsch, Q. He, V. Ulitzsch, H. Molter, A. Nichterlein, R. Niedermeier, and

S. Pohl. Combining clickstream analyses and graph-modeled data clustering for

identifying common response processes. psychometrika, 86(1):190–214, 2021.

[47] A. Veremyev, V. Boginski, E. L. Pasiliao, and O. A. Prokopyev. On integer pro-

gramming models for the maximum 2-club problem and its robust generalizations

46

in sparse graphs. European Journal of Operational Research, 297(1):86–101,

2022.

[48] D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper

Saddle River, 2001.

[49] T. Wittkop, D. Emig, S. Lange, S. Rahmann, M. Albrecht, J. H. Morris, S. Böcker,

J. Stoye, and J. Baumbach. Partitioning biological data with transitivity cluster-

ing. Nature methods, 7(6):419–420, 2010.

