

LEBANESE AMERICAN UNIVERSITY

Cooperative Caching Policy in Fog Computing for

Connected Vehicles

By

Ali Ghazleh

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

School of Arts and Sciences

May 2023

© 2023

Ali Ghazleh

All Rights Reserve

v

DEDICATION

This work is dedicated to my family and friends, who supported me during the different

stages of this accomplishment.

vi

ACKNOWLEDGMENT

I want to express my heartful gratitude to Dr. Ramzi Haraty for his advice and assistance

throughout this journey. I would also like to thank my committee members, Dr. Samer Haber

and Dr. Sanaa Kaddoura, for their support and cooperation.

vii

Cooperative Caching Policy in Fog Computing for Connected

Vehicles

Ali Ghazleh

ABSTRACT

In this era, the magnitude of data shared is enormous and raised the bar for the quality of service and

maintenance it requires. This paved the road for the integration of Fog Computing, which is an

extension of the Cloud. Fog Computing’s main advantage is the increased quantity in which it can be

deployed while in close vicinity of the end-users, thus enhancing their Quality of Experience (QoE).

The connected vehicles domain is one of many domains that can benefit from Fog Computing.

Moreover, caching has been an area of study for many years by researchers that aim to increase cache

hit rate and decrease request delays affecting Connected Vehicles networks. Many studies

implemented Machine Learning models to enhance cache hit rate and request delays. In this thesis, we

implemented cooperation between a Deep Reinforcement Learning (DRL) model and Federated

Learning to improve caching in Connected Vehicles connected to fog nodes. Furthermore, the results

showed the proposed model's effectiveness compared to traditional algorithms.

Keywords: Fog Computing, Caching, Connected Vehicles, Machine Learning, Deep Reinforcement

Learning, Federated Learning.

viii

TABLE OF CONTENTS

DEDICATION .. v

ACKNOWLEDGMENT ... vi

ABSTRACT .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

Introduction .. 1

1.1 Overview .. 2

1.1.1 IoT Devices ... 2

1.1.2 Cloud Computing ... 4

1.1.3 Fog Computing ... 6

1.1.4 Caching ... 9

1.2 Problem Statement ... 10

1.3 Thesis Contribution .. 11

1.4 Thesis Organization .. 11

Related Work .. 12

2.2 Caching .. 14

The Suggested System Model .. 31

3.1 Model overview ... 32

3.2 Dueling Deep Q-Network (DDQN) ... 34

3.3 Horizontal Federated Learning (HFL) ... 37

3.4 An Example ... 38

Experimental Results ... 41

4.1 Simulation Environment .. 41

4.2 Data .. 41

4.3 Model Performance .. 42

Conclusion and Future Work.. 48

References ... 49

ix

LIST OF TABLES

Table 1- Cloud cache at t=0. ... 38

Table 2- Fog node cache at t=0. .. 38

Table 3- RSU cache at t=0. ... 39

Table 4- Cloud cache at t=1. ... 39

Table 5- Fog node cache at t=1. .. 39

Table 6- RSU cache at t=1. ... 40

x

LIST OF FIGURES

Figure 1- Forwarding scheme results [13].. 15

Figure 2- Cache replacement results [13]. ... 16

Figure 3- Model illustration [14]. .. 17

Figure 4- Cache hit rate as a function of time [14]. ... 18

Figure 5- Request delay as a function of time [14]. .. 18

Figure 6- Model Illustration [19]. .. 19

Figure 7- FLCH scheme flow [19]. ... 20

Figure 8- LSTM and collaborative caching model flow [21]. ... 22

Figure 9- FADE System model [29]. .. 25

Figure 10- Simulation results for FADE [29].. 26

Figure 11- Example of cache replacement flow adopted in [30]. ... 27

Figure 12- The Suggested Model. ... 33

Figure 13- Model workflow pseudo code. .. 34

Figure 14- Architecture comparison between DQN (top) and DDQN (Bottom) as provided in [34]. .. 35

Figure 15- Experimental results DQN vs. DDQN in [34]. .. 36

Figure 16- HFL architecture as represented in [35]. ... 37

Figure 17- Cache hit rate versus time, where s=0.8, N=m=1000. .. 43

Figure 18- Cache hit rate versus time, where s=1, N=m=1000. .. 44

Figure 19- Cache chit rate versus time, where s=1, N=m=2000. .. 45

Figure 20- Cache chit rate versus time, where s=1, N=m=5000. .. 46

Figure 21- Request delay (ms x 1000) versus time T. ... 47

1

CHAPTER ONE

INTRODUCTION

 In today’s day and age, the reliance on technology increased exponentially, and it is

somehow become a dependency in multiple aspects, for example, automation, medicine,

banking, gaming, video streaming, etc. One of the key similarities between these is data

management, and here is where cloud computing came into play.

 Cloud computing offers services and data management. Even if the data is not on the

end user’s personal computer [1], cloud computing allows the user to access his/her data from

anywhere in the world with only an internet connection.

 Moreover, fog computing generally extends the services of the cloud but with less

power. Unlike the cloud, fog nodes can be deployed in many numbers and at the network’s

edge. They will be physically close to the end-users, increasing the quality of service, as well

as offering high bandwidth and low latency.

 Fog computing can enhance several aspects required daily such as QoS or Quality of

Service. One of many fields that require high QoS would be connected vehicles or smart cars,

and since they are connected to the internet, they are considered IoT devices. They are

connected to the internet, which means they are communicating with other devices, and these

communications require low latency, which the fog can provide.

 Caching can be one of many services that can be integrated into the fog layer to

optimize the communications and performance of connected vehicles. In other words, caching

will allow these vehicles to perform tasks much faster, given that high-rate content retrieval is

provided through the fog layer.

2

1.1 Overview

This section will address essential information that allows us to proceed with this thesis.

1.1.1 IoT Devices

 In the past few decades, technological progress has been exponentially increasing in

all fields, and communications are one of the many things that have progressed along the

way. The inception of the Internet of Things or IoT devices has allowed for machine-to-

machine M2M communications [2][3]. In other words, everything around us connected

and communicated through the internet can be considered an IoT device [4].

 To better understand the importance of IoT devices in the modern world, the authors

of [3] compiled a list of applications that can integrate the functionalities of an IoT

device, such as:

i- Healthcare: the integration of IoT in the healthcare systems has been growing

over the years even though it has not yet reached the majority of people, which

means it still has growth potential in the coming decades. IoT has encouraged

people to use their devices to monitor their health and share some data with

authorized personnel such as doctors or lab operators.

ii- Smart Livings: IoT has also been integrated into numerous fields essential for

human beings. For example, IoT is used in agriculture to accelerate several

stages of food production, which is essential for the increasing world

population. Also, we can find that IoT had its way into our homes in what so-

called Smart Home System [2], where almost everything in a house can be

automated and connected to the internet. An example of where IoT can be

valuable could be fire alarm systems, CCTV cameras, etc.

3

iii- Wearables: people can also wear devices such as watches, rings, etc., that can

monitor their health. These include heartbeat sensors, sleep trackers, or

oximeters, and all these devices help people look closer at their health daily.

iv- Connected vehicles: the driving industry also took part in integrating IoT in the

production of vehicles which allows it to be fully automated with lots of

capabilities such as platooning, merging, lane changing, and even self-parking

[5]. Furthermore, it is expected that the production of autonomous vehicles

will increase drastically in the coming years, and the major brands in the

automobile industry are revolutionizing the sector accordingly [3]. In addition,

autonomous vehicles require many sensors where their data can be given to an

AI system that analyzes and learns to provide an optimized decision in

different scenarios. Vehicles can also be connected to communicate and

exchange data, meaning these IoT devices will be connected to RSUs or

roadside units. RSUs store traffic data and can act as a cache system for

connected vehicles. Also, RSUs can optimize the retrieval time of the

requested content by these vehicles using modern caching algorithms with the

integration of machine learning or artificial intelligence, resulting in a high

cache hit ratio and reducing retrieval time.

4

1.1.2 Cloud Computing

Cloud computing is introduced to the world to facilitate the use of computer systems

and data management, merging them into a one-centric system. Eventually, a user can

store his/her data, access programs, develop applications, etc., over the web instead of

his/her local computer [6].

In addition to that, to understand more about cloud services, the following represent

four distinct service models that the cloud provides:

i- Software as a Service (SaaS): this service allows the user to access software in

the cloud with extreme ease as if it were on his/her computer such as using

Google sheets [7]. Some of the benefits of this service might be an increase in

scalability, an unelevated concern for infrastructure since it is on the internet

(from the user’s standpoint), and the accessibility of its services from

anywhere and anytime [1].

ii- Platform as a Service (PaaS): this is a more complex service since on SaaS, the

user can access already integrated software such as Google sheets, whereas

PaaS allows the user to develop his/her cloud services by offering a

development platform functioning as Google AppEngine, Microsoft Azure,

etc. [6][7]. This type of service reduces the development cost for companies

since they are investing less in infrastructure because it is all managed by the

cloud provider. In extension, PaaS provides a simplified deployment so

companies can focus more on the development process rather than on

upgrading their infrastructure which the cloud providers already maintain [1].

iii- Infrastructure as a Service (IaaS): clients can use this service as a substitute for

purchasing servers or acquiring more space to place these servers, data centers,

etc., which is all provided by the cloud such as Amazon EC2 [7]. IaaS offers

5

more flexibility to users by reducing their costs on hardware, land,

maintenance, etc. [1].

iv- Container as a Service (CaaS): this service is based on virtualization. It is

introduced to tackle development issues presented in PaaS, which means that

CaaS eliminates the development boundaries set by the PaaS environment [7].

Furthermore, the cloud also offers deployment services that divide the cloud as

follows [1]:

i- Public Cloud: these types of clouds are readily available for thousands of

people and offered by several cloud providers such as Google, Amazon,

Microsoft, etc.

ii- Private Cloud: this type of cloud is restricted to a specific organization or a

business and managed by this organization. A private cloud maximizes

resource utilization, achieves high security, and gives organizations complete

control over their data [7].

iii- Community Cloud: this type of cloud offers the same infrastructure and

services for organizations with the same interests.

iv- Hybrid Cloud: this type of cloud is used most of the time by organizations to

allow them to have a combination of the previous two types. Hybrid clouds

enable organizations to optimize their resources and use the services of both

entities [7].

To this day, several cloud service providers (CSPs) offer all kinds of the previously

mentioned services to different types of people and organizations. Most of these CSPs are

well known such as:

6

i- Google: this provider offers a wide variety of services, from data management and

databases to online apps such as Google docs/sheets/slides [1], all of which

facilitate a user’s needs at the present time.

ii- Amazon Cloud Services: an example of this provider’s services is Amazon Prime

which is a video streaming platform [1]. Amazon cloud services also offer an

infrastructure for deploying and managing websites, apps, databases, storage

spaces, etc.

iii- Microsoft Azure: similar to what Amazon Cloud Services provide, Azure offers a

set of services and infrastructure for data management.

iv- Apple iCloud: this is mainly used for online storage, which means uploading

images, videos, and data backups [1].

1.1.3 Fog Computing

Fog computing is introduced to extend the capabilities of the cloud, and it is placed at

the edge of the network, making it available and physically near the end users [8][9].

This fog layer thus provides the services that the cloud has, but at a reduced scale to

deploy more fog nodes that can serve more users considering the quality of service

(QoS), availability, connectivity, reliability, etc.

There are several reasons behind introducing the fog layer, which also serves as the

difference between cloud computing and fog computing. An intuitive example might be

latency-sensitive applications such as video streaming. As mentioned earlier, fog nodes

are placed at a close distance from the end user, making QoS for such applications highly

satisfactory [10]. Also, in terms of hardware and power utilization, fog nodes require less

hardware and can provide services that require low power consumption, whereas the

cloud can be used for large data centers, for instance [10].

7

Since it is in close vicinity to the end user, fog nodes can be integrated with mobile

technologies to form a RAN or radio access network [9]. A fog-RAN can be used for data

retrieval at the edge of networks, which ensures a faster retrieval rate and low power

consumption in the process.

Furthermore, many applications for fog computing can be witnessed on a day-to-day

basis such as:

i- Autonomous vehicles: fog computing can be used as a medium of

communication between autonomous or self-driving vehicles that require data

from their surroundings and in a short amount of time to perform on a high

level [8][9][10].

ii- Augmented reality: AR services need real-time video processing, which in turn

requires high computational power leading to the introduction of fog

computing to support AR systems to maximize the user experience [9][11].

iii- Health data: since health data are considered essential and should not be

altered, fog computing offers a secure space that allows the user to upload or

update his/her records and share them with authorized people such as a doctor

or test lab operator [9].

iv- Content delivery and caching: fog computing offers high QoS, which means

the content retrieval rate is dynamically optimized [11] to meet the end user’s

needs.

v- Detection algorithms: fog computing enhances the ability to design and

integrate applications that can aid in day-to-day routines with increased

security. For instance, face detection algorithms can run on fog nodes instead

of locally on the client side. The original photo will be compared with the one

8

provided by the user and then allows the user’s device to be unlocked instantly,

given the low latency nature given by the fog [9].

Along with its many advantages, fog computing has several challenges. The following

are some of the challenges that face fog computing and can be considered a future

research area:

i- Mobile fog computing: according to [10], fog computing is considered fixed

not mobile, whereas mobility is applied for its connected end devices.

Although mobilizing fog nodes can be challenging, it could enhance its

services by achieving improved QoS, reduced costs, and optimized energy

consumption. The dynamicity of this mobilization can allow the fog nodes to

form new networks [10].

ii- Green fog computing: the authors in [10] argued that energy consumption

relating to fog computing has yet to be fully explored. In addition to that,

energy harvesters can be implemented on IoT devices generally and fog nodes

specifically to generate their power. This can be a new challenge that can

benefit and enhance the fog computing paradigm in the future.

iii- Security and privacy: providing security and privacy has always been

challenging in this era. To mitigate attacks on fog nodes, the addition of

intrusion detection systems along with authentication and access control can

significantly benefit fog nodes’ security [10]. But this does not eliminate the

need to explore more ways to strengthen the security of the fog layer. Privacy

is always a client’s concern, and the authors in [11] acknowledged this risk and

proposed the need for privacy-preserving algorithms on the links between the

cloud and the fog, and between the fog and the end user to prevent data

leakage.

9

iv- Fog node site selection: the authors in [10] argued that site selection for

deploying fog nodes can be an exciting area of research, taking into

consideration several factors such as storage space, communications, power

consumption, and computing.

1.1.4 Caching

Caching is used to store data for future requests. In other words, if a user

requests a webpage from a particular website, for example, it will be stored in his/her

cache. Whenever the user re-requests the same webpage, it can be fetched from the

cache and returned directly in case the webpage is not updated. However, if the

webpage is updated, it has to be requested from its originated server, then the updated

webpage will be stored in the user’s cache.

In addition to that, the authors in [12] compiled a list of caching algorithms

that have been traditionally used over the years, for instance:

i- Least Recently Used (LRU): in this algorithm, the content that was requested

the least in a predetermined set time interval is evicted to make space for

another content since the cache memory is generally finite. This, in turn, might

increase the cache hit rate, which also increases the users' QoS.

ii- LRU-Threshold: it has the same algorithm as LRU, but the difference is that

the algorithm predefines a threshold to the content size in the cache memory

where the content should not be exceeded for it to be stored.

iii- Least Frequently Used (LFU): this algorithm checks the frequency of the

requested content, and if it is least frequently requested, it should be removed.

However, the difference between this algorithm and the LRU is that if a

10

content, for example, has a high request frequency but did not get requested in

the time interval that is set by the LRU algorithm, it cannot be discarded.

iv- Lowest Latency First (LLF): to minimize the request latency, this algorithm

discards the content whose download latency is the lowest.

Given the above, caching algorithms are being updated more often to satisfy

the requirements that are set by today’s technological advancement. Caching

algorithms are being implemented in fog nodes as well as in the cloud to enhance the

QoS for the users. Several research aims in the direction of integrating machine

learning and artificial intelligence in the implementation and enhancement of caching

algorithms.

1.2 Problem Statement

With the growing need for better QoS and requirements to achieve such a high

benchmark, the field of connected vehicles requires low response time and high content

retrieval rate to achieve optimal communications between the vehicles and their

corresponding RSUs (i.e., Road Side Units).

Consequently, the traditional caching algorithms can be limited and adaptive to what

is required to achieve this better QoS in general. For instance, the authors in [13]

suggested a simple update on the LCE or Leave Copy Everywhere caching algorithm by

making RSUs send content to every connected vehicle according to the probability of this

vehicle being near the RSU.

Based on the above, this thesis will suggest a model by applying a cooperative

federated deep reinforcement learning algorithm [14] for content retrieval. The algorithm

will be composed of two parts: the fog layer will use a Q-network algorithm to achieve

optimal cache management, and the cloud will run HFL or Horizontal Federated Learning

algorithm that updates the global model according to the fog nodes’ local models.

11

Moreover, this thesis will be comparing the suggested model with what is available in the

literature [13][14] concerning connected vehicles on different metrics, such as cache

hit/miss ratio, response time, etc.

1.3 Thesis Contribution

The power of fog computing cannot be unhinged, and it can offer limitless advantages

just by being on the edge of the network, in close vicinity to the end-users. Applying a

caching policy algorithm would increase QoS for the end-users and provide a global

model that can be referred to by different fog nodes.

Having said that, the contribution of the thesis will be:

• Adding a fog layer between RSUs and the cloud.

• Applying a cooperative caching algorithm at the fog level to achieve a high cache

hit ratio accompanied by a low response time, which generally improves QoS.

• Offering a comparative study between existing work and the proposed model in

the thesis.

1.4 Thesis Organization

The thesis will proceed as follows: Chapter 2 will discuss the literature review that is

related to the topic. Then, Chapter 3 will suggest the system model for a cooperative

caching policy in applied in fog nodes for connected vehicles. In Chapter 4,

experimentation results will be shown and analyzed. Ultimately, Chapter 5 will include

the conclusion of the thesis and suggest future work.

12

CHAPTER TWO

RELATED WORK

In this chapter, the thesis will tackle relevant studies that focus firstly on the

challenges of vehicular networks and their proposed solutions—secondly on implementing

state-of-the-art caching strategies where IoT devices, generally, and connected vehicles

specifically, where the connected vehicles are communicating with the server running the

caching strategies.

2.1 Vehicular networks

 This section will dive more into the challenges and possible solutions for vehicular

networks. Vehicular networks are complex, thus, making their requirements different such as

reduced delay for communication, stable connection with an RSU (Road Side Unit) or a BS

(Base Station), high security and increased privacy due to the volume of vehicles involved.

 To tackle the challenges that face vehicular networks, different solutions were

presented. One of these solutions is AI generally and Machine Learning (ML) specifically.

But first, we will discuss some of the challenges that are presented in [15]:

i- Resource allocation: in order to deploy a wireless network for vehicular networks,

several aspects are to be considered first, such as quick response, precise

environment modeling, and self-adaptivity. But the high mobility of vehicles

makes these aspects challenging to achieve.

ii- Network traffic control: this includes routing, congestion avoidance, and

offloading. And in vehicular networks, the challenges for these aspects can be

future state prediction and correlation recovery, where gathering global

13

information of the whole network is hard in real time. Also, there is proactive

exploration and self-learning due to the interference of human touch in order to

update strategies.

iii- Network security: security has always been a challenge in the network’s paradigm,

which also extended this challenge to vehicular networks. Vehicular networks’

challenges have different branches such as mobility and heterogenous structure,

where several aspects (e.g., computational power, storage, etc.) need to have a

balanced resource allocation to increase security in case of breaches. These

networks should also be large-scale, provide privacy, and meet real-time

requirements.

However, machine learning has been an integral part and a step forward in solving

most of the challenges mentioned before, targeting the following challenges respectively as

mentioned in [15]:

i- Resource allocation: ML aided by introducing a reinforcement learning model.

This model helped by focusing on multiple criteria in order to optimize

resource allocation instead of focusing on a single criterion. Thus, allowing the

model to focus on traffic distributions, whether homogeneous or

inhomogeneous, time-varying traffic patterns, and channel failures.

ii- Traffic control: Different ML-based solutions for network traffic control such

as predicting network traffic control and information recovering from

incomplete data. In other words, vehicles’ connections are always susceptible

to being broken due to the high mobility of vehicles. As a result, machine

learning allows us to predict vehicles’ locations, which helps predict network

traffic and minimize broken connections. Moreover, by implementing a deep

14

learning approach, data can be retrieved from disrupted connections by

recovering the routing information from previous network traffic.

iii- Network Security: ML-based approaches can also be integrated to address

security issues that vehicular networks face. Some techniques include misuse

detection; misuse attacks are classical attacks where an attacker detects

previously known attacks using their signatures and exploits them. Another

approach is anomaly and hybrid detection algorithms; the types of attacks that

fall under the governance of anomaly detection algorithms do not have records

similar to misuse-based attacks. Thus, anomaly detection algorithms identify

benchmark network traffic, and if anything is out of the ordinary, it gets

recognized as an anomaly.

 Moreover, the introduction of federated learning can tackle the security and privacy

issues that vehicular networks pose. The authors in [16] suggested a new vehicular network

concept called Federated Vehicular Network (FVN), leading to a more stable connection that

enables the integration of federated learning. And by allowing the integration of FL, model

training will occur at the node level without making the data known to the whole network,

thus increasing privacy. And to improve security, each transaction will be recorded and

validated by the blockchain model.

2.2 Caching

 This section will tackle the studies that focus on optimizing caching strategies used in

different paradigms such as fog computing, edge computing, cloud, etc. Moreover, some of

these studies are also conducted aiming to enhance vehicular networks.

 An efficient in-network caching scheme for connected vehicles-based networks is

suggested by the authors of [13]. This proposed strategy consists of a forwarding scheme and

15

a cache replacement scheme. In other words, the authors aimed to optimize cache utilization

while considering the mobility of vehicles. The forwarding scheme proposed is Enhanced-

LCE (Leave Copy Everywhere) which is based on the traditional LCE. This forwarding

scheme allows a specific RSU to broadcast messages to every connected vehicle. The

enhanced version of LCE will depend on the vehicle’s direction on the highway and to be

near an RSU that will be broadcasting the message. TBE (Time Based Eviction) is

implemented as a cache replacement strategy where each content available in the cache of an

RSU will have a time limit. When the time limit is exceeded, the content stored will be

evicted, allowing other content to replace it. Simulation results for the forwarding scheme and

the cache replacement scheme showed an increased cache hit ratio and reduced cache

redundancy, as shown in Fig. 1 and 2, respectively.

Figure 1- Forwarding scheme results [13].

16

Figure 2- Cache replacement results [13].

The authors in [14] proposed a caching strategy that is different from the conventional

algorithms such as FIFO (First In First Out), LRU (Least Recently Used), LFU (Least

Frequently Used), etc. The proposed strategy is a cooperative FDRL (Federated Deep

Reinforcement Learning) algorithm combining reinforcement and federated learning.

Reinforcement learning is part of machine learning, which is based on a reward system, where

a learning agent gets a reward for choosing an action depending on the state of the

environment it’s running on, which eventually alters this environment [17]. This reward can

be of positive or negative value, allowing the agent to learn from the state of the environment

and the reward depending on its actions. On the other hand, federated learning incorporates

several IoT devices that are running a machine learning model, which is being trained on

different datasets from each other. However, these devices collaborate with a central server

that aggregates the models from each connected device and re-distributes a new global model

to be used by all devices [18].

17

Figure 3- Model illustration [14].

The proposed FDRL caching strategy works as shown in Fig. 3; each F-AP (i.e., Fog

Access Point) runs a DDQN or Deep Dueling Q-Network, a reinforcement learning algorithm.

Each F-AP agent learns according to the data provided by its environment. When a user

requests content, which in turn can be returned in three ways [14]:

i- F-AP returns from its cache.

ii- F-AP asks neighboring F-APs for the requested content.

iii- F-AP asks the cloud server for the requested content.

The learning agent has three actions to choose from in order to maximize the reward, which is

based on content availability and request delay. In case the F-AP elects to request the content

from the server, the cloud server then aggregates all the connected F-APs models using HFL

or Horizontal Federated Learning into one global model and sends it back to the F-APs to use

[14].

18

Figure 4- Cache hit rate as a function of time [14].

Figure 5- Request delay as a function of time [14].

As a result, the proposed FDRL by the authors of [14] maximizes cache hit rate and

minimizes request delay compared to traditional caching algorithms, as shown in Fig. 4 and 5.

Another caching approach proposed by the authors in [19] included a cooperation

scheme between federated learning and a machine learning model to increase privacy for the

end users. The proposed scheme is called FLCH or Federated Learning-based Cooperative

Hierarchical caching scheme. The scheme incorporates both horizontal and vertical federated

learning. According to [19], the horizontal federated learning part H-FLCH is applied

between neighboring F-APs, whereas the vertical part V-FLCH occurs between F-APs and

BBU pool (i.e., Base Band Unit), which is used to connect the F-APs to the cloud layer as

shown in Fig. 6.

19

Furthermore, the authors in [19] applied OCC-VAE (i.e., One-Class Collaborative

Variational Autoencoder) prediction model as a machine learning model. An AE or

Autoencoder is an algorithm that takes an input and tries to reconstruct this input data to

output data.

The proposed model displayed in Fig. 6 will be applied to each connected device and

trained on its private data, thus the concept of federated learning. After each model trains on

separate data, the models are then horizontally aggregated on the F-AP level using H-FLCH

to generate a new global model. When the results of the model training become stable,

vertical aggregation of the data (V-

Figure 6- Model Illustration [19].

20

Figure 7- FLCH scheme flow [19].

FLCH) can be executed [19] as shown in Fig. 7. The content that is now cached on the cloud

layer using V-FLCH is considered the popular requested content from each F-AP.

 The results provided by the study show that the proposed scheme performed better

than the conventional caching algorithms such as LRU, LFU, Random, etc.

 In addition to that, the authors in [20] proposed a CAEC or Capacity Aware Edge

Caching framework in order to achieve low ADT (i.e., Average Download Time) from the

fog layer. The model provided by the authors is an ADMM-based algorithm or Alternating

Direction Method Multipliers. The purpose of this algorithm is to generate an optimized

global solution that aids in determining the best CAEC strategy while taking into

consideration fog cache capacity and last-mile connectivity capacities of BSs (Base Stations)

[20]. These BSs will be placed as an intermediary between the users and the fog nodes, acting

as a relay.

 Due to the applicability of the proposed algorithm for convex optimization problems

in distributed deployment scenarios [20], the authors then used this algorithm to converge

faster. Moreover, the proposed algorithm is compared with two other methods; the first

method is Interior Point Method or IPM, and the second one is the Subgradient method. These

methods (IPM and Subgradient method) specialize in solving convex optimization problems.

21

The results showed that the proposed algorithm converges faster compared to IPM and

Subgradient method, leading to a lower ADT. However, after several iterations, all three

methods reach a similar time.

 Furthermore, other studies explored the area of enhancing fog-RANs or Random-

Access-Networks by integrating AI [21]. This integration included a traffic prediction system

alongside a cognitive caching algorithm to improve QoE and request delay time. According to

the authors in [21], the caching policy is based on LSTM (i.e., Long Short-Term Memory)

and a collaborative filtering scheme. LSTM is a branch of recurrent neural networks but does

not suffer from problems in optimization that face SRNs or Simple Recurrent Networks [22].

The idea behind this concept is a memory that stores its state and can regulate the input flow

in and out of the memory state. LSTM has been used in many advanced problems such as

language modeling, protein secondary structure prediction, audio/video analysis, etc. [22]. On

the other hand, the collaborative filtering model used first in [23] is part of 3 models

combined in the Smart-Edge-CoCaCo algorithm that aims to enhance communications, cache

hit ratio, and computational offloading. The collaborative filtering model considers features

from both the user and the content, leading to more accurate and systematic caching [23].

 Thus, the authors in [21] combined LSTM and collaborative caching by making

LSTM predict the requested content type. In other words, it sorts out the content types first,

and then the collaborative filtering algorithm can match each content with the requesting user,

as shown in Fig. 8.

22

Figure 8- LSTM and collaborative caching model flow [21].

In [24], the authors explored machine learning schemes that can be applied to caching

to enhance the cache hit ratio and decrease request delay. These schemes benefited the entity

running the caching strategy in different ways depending on the features of each scheme. For

example, classification algorithms are used for predicting traffic levels and content popularity,

clustering is used to identify patterns in data and sort them out accordingly, and reinforcement

learning’s reward feedback feature allows the agent to learn with each iteration and choose

actions that are rewarding according to the environment such as Q-learning which what the

proposed algorithm in this thesis is based upon, also there is deep learning which aids in

content delivery while reducing the complexity of the operation due to its nature in extracting

features in the data provided.

 New research has explored the integration of machine learning schemes for caching.

The authors in [25] proposed a machine-learning scheme for one-time image caching based

on decision trees. In other words, the authors wanted to implement a one-time-access-

23

exclusion policy, meaning that if an image is not to be accessed for a specific amount of time,

it should not be cached [25]. Since the authors wanted to have a balance between high

precision and low complexity algorithms, they went with the decision trees model. Compared

to their initial results without the proposed classifier, the proposed model showed a slight

enhancement in cache hit rate in algorithms such as LRU, FIFO, S3LRU, etc. [25].

 Furthermore, in vehicular networks, the mobility of vehicles poses a problem with

data transmission since these vehicles are connecting and disconnecting leading to data

retransmission which affects the user’s QoE. Thus, the authors in [26] proposed a cluster-

based cooperative caching approach with mobility prediction (COMP). The clustering factors

include the vehicle’s mobility, the distance between a specific vehicle and its neighbors, and

the total number of vehicles [26]. Each cluster of vehicles will be connected to a caching

node, where this node, which in this study is an RSU, runs the cache placement according to

Most Popular Data (MPD) and Least Popular Data (LPD). COMP will allow MPD to be

stored in different nodes due to high demand, while LPD will be stored and distributed among

different RSUs. The experimental results showed lower request delay and higher cache hit

ratio.

 More research focused on caching related to multimedia traffic dominated by video

streaming, for example. For this reason, the researchers in [27] proposed D2D caching using

reinforcement learning. Each agent can learn independently from its data or jointly from its

data alongside the learning of other devices. Moreover, the RL model that is being used is the

Multi-Armed Bandit problem (MAB), which is a classical problem in probability theory and

machine learning where an agent has several arms, each with an unknown distribution of

rewards and an unknown mean, the agent explores accordingly in order to maximize the

reward system [27]. Both proposed approaches JAL (Joint Action Learners) and IL

(Independent learners), are tested against classical algorithms IUB (Informed Upper Bound),

24

LFU, and LRU. IUB was superior in cache hit rate and average download latency than all four

algorithms, but the proposed approaches performed better than LFU and LRU. However, it

should be noted that JAL was better than IL because its agent can learn more from global

values than local ones.

 Additionally, the authors in [28] proposed a content caching scheme based on

permissioned blockchain and deep reinforcement learning. Because vehicular edge computing

requires the data to be cached in proximity to vehicles, the integration of permissioned

blockchain helps secure the overall communications in the vehicular network. In other words,

if a vehicle can’t cache locally, it can request a caching resource from a neighboring vehicle

[28]. However, this transaction should be secure, thus blockchain technology, where the

content would be encrypted using a public key of the owner and can’t be decrypted unless

with the private key of the same owner, which leads to an increase in privacy and security.

Additionally, each vehicle will send the caching request to the nearest BS, which will manage

the caching placement. And to record the caching event, a transaction should be issued, and

the BS verifies it, encrypts it, and sends it to the whole blockchain network to be validated

[28]. But the challenge of vehicle mobility would still be solved with DRL. The DRL

algorithm adopted in this study is Deep Deterministic Policy Gradient (DDPG). The main

difference compared to other classical DRL algorithms such as Q-learning and Deep Q-

Network is that they can learn policies in high-dimensional observational and action spaces

[28]. Simulation results showed that the proposed DRL algorithm had more average reward

when compared to 2 benchmark algorithms; the first one is Greedy Content Caching, where a

cache requester delivers its content to the cache provider having a high wireless connection,

while the second algorithm is Random Content Caching where a cache provider is chosen

randomly but taking into consideration that the distance between the requester and provider

should not pass a certain threshold [28]. In addition, the proposed DRL showed superiority in

25

other comparison criteria, such as the percentage of successful content caching, with a rate

nearing 90%.

 Similar to the study in [14], the authors in [29] tackled the issue of highly dynamic

environments posed by IoT services and applications. This led to proposing a federated deep-

reinforcement-learning-based cooperative edge caching (FADE) to optimize edge caching of

such environments. The framework aims to reduce performance loss, improve hit rate, and

decrease average delay time. The model, as shown in Fig. 9, consists of three layers; (1) IoT

devices, (2) edge layer, and (3) cloud layer.

Figure 9- FADE System model [29].

 Double Deep Q-Network (DDQN) is adopted as the reinforcement learning algorithm

to address the issue of huge data sampling. Furthermore, the algorithm has three actions to

perform and each with a specific reward:

i- Local action: the requested content can be processed locally.

ii- Cooperative action: if the requested content is not cached in the local BS of the

requesting UE, then the request should be redirected to a neighboring BS.

iii- Remote action: if the requested content is unavailable locally or in a neighboring

BS, the request should be redirected to the cloud.

26

Moreover, in each iteration, the algorithm’s weights of each BS should be aggregated to get a

more optimal global model. The global model is then sent to every BS [29].

 The proposed decentralized framework is then compared with several benchmark

algorithms such as FIFO, LRU, LFU, Oracle, and Centralized, on hit rate and average delay.

As shown in Fig. 10, the proposed framework showed better results when compared to

classical methods.

Figure 10- Simulation results for FADE [29].

 Another machine learning model proposed by [30] for content caching in vehicular

networks is based on federated learning. The proposed model is called Mobility-aware

Proactive Edge Caching (MPCF) and is adopted to tackle the known issues that caching in

vehicular networks faces. As discussed previously in other studies, these challenges orbit

around vehicles' mobility and the content being quickly out-of-date due to their high mobility

[30]. The MPCF scheme has five stages:

i- Vehicle selection: to perform the FL training, the vehicle to be selected depends on

it being available in the coverage area of the RSU, having enough training data,

and having a good connection.

ii- Model download: if the vehicle is selected, they should download the global model

from the RSU to train their local model.

27

iii- Model training: after the download, the vehicle will use the global model to train

its local model with the available data it possesses.

iv- Upload local model: once the training is finished, the vehicle uploads its trained

local model to the RSU.

v- Model weight aggregation: the RSU gets the weights of all models from its

connected vehicles and aggregates them to generate a new global model.

Furthermore, the FL model trained is called Contextual-Aware Adversarial Autoencoder (C-

AAE) and is used to predict content popularity [30]. And for optimizing the caching strategy,

the authors integrated a cache replacement method to replace the cached data for a

disconnected vehicle from an RSU, as shown in Fig. 11.

Figure 11- Example of cache replacement flow adopted in [30].

Different benchmark algorithms such as LRU, LFU, Oracle, etc., are used to view the

viability of the proposed framework on cache hit rate. Only the Oracle algorithm performed

better than MPCF, proving that the authors’ approach is better than the different existing

methods for content-caching.

 In addition, a federated learning scheme using a blockchain-assisted compression

algorithm for content caching in edge computing called CREAT is proposed by the authors of

[31] to address security and privacy problems posed by data transmission. According to [31],

the blockchain’s model uses four contracts, each required whenever a transaction is made:

28

i- Identity authentication: this contract’s responsibility is to validate each entity,

whether it is an IoT device or an edge node.

ii- Submission contract: this contract allows the edge nodes to submit their training

model’s weights and save them in the blockchain.

iii- Verification contract: this contract is responsible for electing supervisory

consortiums and transaction verification.

iv- Credit contract: this contract takes care of the networks’ participants’ token reward

and punishment.

Moreover, the FL-based caching algorithm is an autoencoder known as FPCC [31].

This autoencoder will be used to determine the features of the input it receives. The outputs of

two of these autoencoders are used to determine the characteristics of the users and files.

Then, each edge node will upload its own trained model to the cloud, satisfying the core

principles of federated learning where data is not to be shared and training only happens

locally. Since minimizing communications costs is a problem to be tackled in IoT, the authors

in [31] implemented and integrated a compression algorithm that speeds up the model’s

training process. The compression algorithm considers gradients that affect the model heavily

as necessary, and their values should stay the same compared to gradients with less

importance.

Furthermore, the essential gradients are then clustered using K-means clustering, and

each cluster is given a centroid value that is then used to estimate the exact values of the

gradients. Simulation results showed that FPCC and CREAT have similar cache efficiency

and are higher than the two other algorithms that are being compared. The first benchmark

algorithm is the Random algorithm, where caching does not have any consideration to cache

upon; content is cached randomly without considering content popularity. Whereas the second

benchmark algorithm is called Thompson Sampling, which is based on beta distribution, and

29

whenever the cache file is updated, the beta distribution is updated accordingly. Furthermore,

CREAT showed reduced update time compared to FPCC, which does not run the compression

algorithm [31].

The researchers in [32] formulated a caching framework deployed in MBS (Macro

Base Station). The framework is based on ICRP or Individual Content Request Probability

estimation, which reflects the personal preference of the requesting user. Moreover, the

authors in [32] designed a Bayesian learning model to accurately predict users' personal

preferences. The proposed Bayesian learning model is based on CBPMF (Constraint Bayesian

Probabilistic Matrix Factorization), which is based on BPMF. BPMF is derived from PMF, a

model heavily used in collaborative filtering [33].

 With the usage of CBPMF, the authors in [32] can now evaluate the ICRP estimation

that will be used in a DCA (Deterministic Caching Algorithm). The DCA algorithm is a DLA

or Discrete Learning Automata reinforcement learning model. DLA aims to optimize action

selection from a set of finite actions, with each action having a specific reward [32]. In

addition, the authors in [32] implemented a D2D (Device 2 Device) method that minimizes

the request delay.

 Simulation results showed that the proposed CBPMF, when compared with another

two prediction methods (BPMF and MF-SGD) on RMSE Root Mean Square Error, both

CBPMF and BPMF outperformed MF-SGD. However, the proposed prediction method

scored better than the traditional BPMF. Furthermore, the proposed framework DCA-ICRP is

compared with the following methods: DCA-GCRP, where GCRP stands for Global Content

Request Probability, PC-ICRP (Probabilistic Caching-ICRP), PC-GCRP, and RC or Random

Caching strategy on cache hit rate and outperforming them. Also, enabling D2D connections

alongside DCA-BPMF lowered the request delay for the proposed caching method [32].

30

 In the studies mentioned above, the researchers aimed to suggest strategies to enhance

vehicular networks and improve caching algorithms. Vehicular networks have several

requirements: low response time, continuous connection, high privacy, and security. Thus, the

studies discussed in this section targeted most issues that vehicular networks suffer from. On

the other hand, most of the caching strategies presented integrated Machine Learning to target

several aspects that limit the traditional caching strategy (i.e., FIFO, LRU, LFU, etc.).

 This thesis will continue addressing the issues that most of the discussed studies aimed

at addressing. Our work will present a cooperative federated learning scheme that seeks to

increase the cache hit rate and reduce response time in vehicular networks.

31

CHAPTER THREE

THE SUGGESTED SYSTEM MODEL

 In this chapter, the thesis will dive into the model that is adopted in this work. As

previously mentioned, the vehicular network is an emerging paradigm that is posing several

challenges on different levels (i.e., communications, resource allocation, security, etc.).

Moreover, several studies addressed the vehicular networks’ challenges using various

methods, generally, specifically machine learning. In addition, this thesis addresses caching

strategies related to vehicular networks to enhance QoE by increasing the hit rate and

reducing delay time. Furthermore, integrating machine learning strategies in caching allows

the exploration of new methods to strengthen caching generally, compared to the classical

techniques (i.e., FIFO, LRU, LFU, etc.).

 The integration of machine learning in this work is divided into two fronts: the first

front is where the fog layer would run a deep reinforcement learning strategy in a federated

architecture, and on the second front, the cloud layer would be aggregating the several models

provided by different fog nodes to produce a new optimized global model. The fog nodes will

use this new global model later, and these strategies will be discussed thoroughly in this

chapter.

32

3.1 Model overview

 The suggested model is divided into three layers, as shown in Fig. 12:

i- RSU layer: the Road-Side Unit (RSU) layer is the direct communication link with

the connected vehicles on the road. The RSU relays the request of the vehicles to

the fog layer.

ii- Fog layer: the fog layer receives the relayed request from the RSU and chooses an

action according to the deep reinforcement learning algorithm used to handle

vehicles’ requests; DDQN (Dueling Deep Q-Network).

iii- Cloud layer: the cloud layer is a central server for all fog nodes. The cloud has two

main jobs:

a- Model aggregation: the suggested model will be using an aggregator according

to HFL or Horizontal Federated learning in order to generate a new global

model to be used by the fog nodes, thus, ensuring optimized decision-making

algorithms for all of the nodes.

b- Cache: besides acting as a model aggregator for the fog nodes, the cloud also

caches the requested content from connected vehicles. In other words, if the

fog node chooses to retrieve the requested content from the cloud, then the

cloud fulfills the request and caches the content if it is not available. Once the

request is fulfilled, the cloud triggers model aggregation to globalize the DRL

(Deep Reinforcement Learning) model and sends it back to the connected fog

nodes.

33

Figure 12- The Suggested Model.

In this work, we created a custom caching environment that the DDQN agent uses to

learn according to the criteria we imposed on the model. Also, we added an RSU layer

between the end-users, in this case, the connected vehicles and the fog layer to help better

communicate with the fog nodes, thus decreasing the overall response time.

The pseudo-code below represents the workflow of the suggested model, as shown in

Fig. 13. When a user requests a particular content, the agent will choose from what layer the

request should be served. If the RSU should serve the request, thus, the RSU checks the cache

to see if the requested content is available, and if the content is available, then the content is

retrieved. Otherwise, the fog layer would be checked for the same content and retrieved if the

content is available in the fog layer’s cache. Otherwise, the cloud layer’s cache should be

checked. When checking the cloud for the content if the content is available or not, the

aggregation of all fog nodes’ models will occur and be sent back to train according to the new

model.

34

Figure 13- Model workflow pseudo code.

In addition, all three layers act as a cache environment for the requested content from

the vehicles, which means that some of the content stored will be evicted to create a space for

new content. But there is a criterion to evict content; for example, if the content has frequent

requests, meaning it’s popular and stored at the end of the cache, it should not be evicted. As

a result, the content with the least popularity will be evicted to create a space for new content.

3.2 Dueling Deep Q-Network (DDQN)

 First, to understand how the DDQN works, we will need to look at the algorithm from

which it is derived; DQN or Deep Q-Network. Secondly, we must understand how DDQN

provides more optimization and accuracy compared to its parent version DQN.

 DQN (top) and DDQN (bottom), as shown in Fig. 14, have the same convolutional

neural networks, which are two. However, DQN has only one output stream for the Q-values,

representing the actions in a specific environment. On the other hand, DDQN has two streams

before having the output stream (Q-values). The first stream represents the current state of the

environment which is a single value, and the second stream represents the advantage stream

for each of the actions available in the provided environment. In the end, the Q-values are

35

calculated by the values of the state and the advantages stream according to the following

formula:

𝑞 = 𝑣 + 𝑎 − 𝑎.𝑚𝑒𝑎𝑛()

 The formula above represents the Q-values according to the state (v) and advantage of

each action (a). The addition of those values is then deducted by the mean values of each

action represented in the advantage stream.

 However, the reason behind DDQN being more optimized and accurate than DQN is

not created by only splitting the final stream into two streams. In other words, the two

implementations provide the optimal Q-values at the end but using different methods. The

real improvement can be seen in the training of the agents that are running each algorithm. In

other words, introducing the state value in the DDQN approach allows the learning of the

state value efficiently without a pre-update of the Q-values. Moreover, the advantage stream

makes the neural network robust to action re-ordering. Thus, the values won’t be biased with

each training sample.

Figure 14- Architecture comparison between DQN (top) and DDQN (Bottom) as provided in [34].

36

Figure 15- Experimental results DQN vs. DDQN in [34].

 The comparison between DQN and DDQN, as represented in Fig. 15, showed that

DDQN outperformed DQN in three instances (5, 10, and 20 actions) regarding Squared Error

(SE), thus, proving the superiority of DDQN.

 Furthermore, we must add a reward system allowing the agent to learn and choose

actions accordingly for the model to work and learn. Thus, the system we implemented has

three rewards, as represented in the following:

i- RSU: the agent chooses to check the RSU for the requested content, and if it is

available in the RSU’s cache, then there will be a positive reward equaling 3;

otherwise negative.

ii- Fog node: the agent chooses to retrieve the content from the fog node; if it is

available, a positive reward equals 2; otherwise negative.

iii- Cloud: the agent chooses to retrieve the requested content from the cloud layer,

and the reward is equal to 1.

However, the three types of rewards indeed have the same logic, but the value of the

reward is different. In other words, there are several aspects to consider while choosing to

retrieve the content from the RSU can be highly rewarding since the delay would be minimal

due to the close distance between the RSU and the connected vehicles. Still, the RSU’s cache

size is finite and can’t store too much content. As a result, this reward system enables the

37

agent to learn what action to choose to maximize the cache hit rate and reduce the request

delay to enhance QoE for the end-users. As a result, the request delay between the user and

the cloud, fog node, or RSU would be set to 10ms, 20ms, and 200ms, respectively.

3.3 Horizontal Federated Learning (HFL)

Figure 16- HFL architecture as represented in [35].

 The introduction of federated learning enabled IoT networks to be more secure and

private. Thus, we used this architecture in our model for the mentioned advantages that FL

introduces to increase security and privacy. In order to understand how FL works, Fig. 16

shows the steps as follows:

i- Step 1: each fog node sends the encrypted gradients for the ML algorithm working

in each fog node; DDQN in our case, to the central server; the cloud.

ii- Step 2: the cloud then aggregates the gradients received from the connected fog

nodes.

iii- Step 3: the cloud re-sends the new global model to the fog nodes.

38

iv- Step 4: each fog node uses the new global model as the base model to learn using

its data.

However, in our suggested model, the cloud aggregates the model in case the fog node

only chooses to retrieve the data from the cloud.

As a result, the blend of these two methods, DDQN and HFL, will create a cooperative

strategy that aids in enhancing QoE for end users (i.e., connected vehicles) by increasing the

cache hit rate and reducing the response delay.

3.4 An Example

 In this section, we will show how the suggested model would work. The example will

have content to be requested, and we will show what would happen if the suggested algorithm

chose all three actions adopted.

 The cache stream and the popularity of each content cached for each layer in the

suggested model at t=0 (i.e., cloud, fog node, and RSU) are represented in Tables 1, 2, and 3.

However, popularity is defined by how much a certain content is requested, and the number

of columns available represents the cache size.

Table 1- Cloud cache at t=0.

Contents 8 2 4 1 4 77 47

Popularity 2 1 1 1 3 5 1

Table 2- Fog node cache at t=0.

Contents 7 9 3 55 12

Popularity 2 3 2 1 3

39

Table 3- RSU cache at t=0.

Contents 11 99 67

Popularity 5 2 4

 At t=1, content having a value of “47” is being requested, and the workflow will go as

follows:

i- Cloud: the algorithm chooses the cloud to serve this request. Since the requested

content is already in the cloud’s cache, the reward is positive, and because the

cloud has the longest response time, which is 200ms, the reward will equal 1. As a

result, the popularity of the requested content will increase now.

Table 4- Cloud cache at t=1.

Contents 8 2 4 1 4 77 47

Popularity 2 1 1 1 3 5 2

ii- Fog node: the action chosen by the DDQN agent makes the fog node serve the

request. Since the content is unavailable in the cached stream, the reward will be

negative, equaling -1. However, if the content were available in the cache, the

reward would be 2 since the response time from the fog node equals 20ms, which

is much lower than the cloud.

Table 5- Fog node cache at t=1.

Contents 7 9 3 55 12 47

Popularity 2 3 2 1 3 1

iii- RSU: the action now is to choose from the RSU, and since the RSU’s cache is full,

the reward is -1. But now we must evict content to place the newly requested

40

content in the cache, and the dropped content will be the one with the least

popular.

Table 6- RSU cache at t=1.

Contents 11 47 67

Popularity 5 1 4

41

CHAPTER FOUR

EXPERIMENTAL RESULTS

 In this chapter, we will discuss the experimental results of our suggested model. First,

it will introduce the testing environment (i.e., software and hardware) in which we got the

results. Second, it will review the data used to produce the results and how it was generated.

Third, this chapter will present the performance of the suggested model.

4.1 Simulation Environment

 We adopted Python programming language to implement the algorithms mentioned in

the suggested model. Python is widely used to program Machine Learning models. Moreover,

we used the Tensorflow library by Google to implement our Reinforcement Learning model

(DDQN). Also, to create the virtual environment used for the model, we adopted the Gym

library created by OpenAi. The Gym library allows us to specify custom observation and

action spaces to train the model efficiently. We used the Anaconda platform to integrate these

libraries, allowing us to add the respective libraries, thus hosting our environment.

 On the other hand, to produce the results, we used a 2.20 GHz computer with 16 GB

of RAM, a core i7 processor, 1 TB HDD and 256 GB SSD, and a 64-bit Windows 11

operating system.

4.2 Data

 The data used for the simulation is generated using M-Zipf distribution [14]. M-Zipf

distribution allows us to create data with popularity, where some data will be generated

continuously according to the popularity assigned to it by the method. And throughout the

testing phase, we updated the parameter that allows the data to be sparser to understand and

42

validate the efficiency of the proposed model. However, we will be manipulating specific

parameters of the data generator, such as the sparsity of the data (s), how much content is

requested (N), and the range of data (m), in each iteration for us to evaluate the suggested

model.

4.3 Model Performance

 In this subsection, we will evaluate the suggested model using the simulation

environment mentioned earlier. The metrics in which we are evaluating our model are “Cache

Hit-Rate” and “Response Time.” In addition, a discussion of the results obtained will be

presented with an analysis of what has been achieved.

 For our first two tests, we compare our proposed algorithm with three traditional

algorithms FIFO, LRU, and LFU. We have two reasons for choosing these algorithms. First,

these algorithms are popular in the industry, and second, they perform differently.

Furthermore, one of the algorithms might outperform the other depending on the

environment, thus providing dynamicity to our testing phase.

 In the first set of tests, we manipulated the sparsity of the content requested. In other

words, we altered the probability of the data that is to be requested more often, which allows

us to simulate real-world data where in some cases, there will be content that won’t be

requested many often. In addition, as shown in Fig. 17, the sparsity parameter is set to 0.8,

meaning less likelihood of a certain content being requested more often. Also, the number of

contents requested here is set to 1000, and the range of content is set to 1000, meaning there

will be up to 1000 different content eligible to be requested in an iteration. We notice that the

proposed FDRL is superior in terms of cache hit rate compared to other traditional algorithms

such as FIFO, LRU, and LFU.

43

 Furthermore, in Fig. 18, the traditional algorithms close the gap to the proposed FDRL

approach. The reason behind this visualization is that decreasing the sparsity of the data

allowed the traditional algorithms to enhance their performance. In other words, the

probability of having the same content requested again increased, allowing the conventional

algorithms to serve the requests accordingly. However, our proposed algorithm is still

superior to those traditional ones since its hit rate remained higher than the other algorithms,

and its performance is consistent. It is also worth mentioning that out of three traditional

algorithms, only the LFU achieved similar results compared to our FDRL approach.

Figure 17- Cache hit rate versus time, where s=0.8, N=m=1000.

44

Figure 18- Cache hit rate versus time, where s=1, N=m=1000.

 The first set of results showed that the proposed FDRL approach performs better than

the traditional algorithms regarding cache hit rate. This is because the proposed algorithm had

a higher cache hit rate in both tests, even with the manipulation of the sparsity parameter,

showing consistency. Moreover, as we decrease the sparsity of the data, which means

increasing the probability of having the same requested content more often, the traditional

algorithms have an increase in their performance compared to when the data is sparse.

 Moreover, in the second set of tests, we fixed the sparsity of the data and altered the

number of requests in each iteration, in addition to the range of content. This type of test

would allow us to test the model with different scenarios for content range, which sometimes

would be more than other times. Furthermore, as shown in Fig. 19, the sparsity parameter s is

set to 1, and the range of data is set to 2000 compared to 1000 in the first set of tests. Even

with the fixation of (s) and altering (N) and (m), the proposed FDRL approach performs better

compared to the traditional algorithms. Also, in Fig. 20, we notice the same results where we

set s=1 and N=m=5000, thus increasing the range of data even more. But in the second test,

the cache hit rate decreases slightly, and this decrease is relative due to the increased number

45

of different contents requested. In other words, when expanding the range of content

available, the probability of having the same content getting requested decreases; thus, the

likelihood of a requested content being available would decrease.

 The second set of tests showed that even by fixing the sparsity parameter and altering

the range of data available, the proposed FDRL approach is consistent with the results and

performs better than traditional algorithms. This is shown when manipulating the range of

content requested in both tests. The proposed approach had a higher cache hit rate than the

conventional algorithms.

Figure 19- Cache chit rate versus time, where s=1, N=m=2000.

46

Figure 20- Cache chit rate versus time, where s=1, N=m=5000.

We also tested the proposed approach on a different metric: the request delay. We

chose to compare the suggested model against other DL methods since comparing it against

traditional algorithms such as FIFO, LRU, and LFU would not provide accurate visualization

of the request delay because the value would be fixed. Moreover, the reason behind the

request delay would be fixed for the traditional algorithms because when using these

algorithms, we have only one way of communication: with the fog node. However, testing

against other DRL (Deep Reinforcement Learning) models, especially models derived from

each other with the same environment provided for our proposed model, would give a more

accurate visualization of the performance of our proposed model. As shown in Fig. 21, our

proposed method performs faster than DQN and Q-learning. Also, it is noticed that at the

beginning of the training, all algorithms had relatively high request delay. Still, as training

proceeded, only DQN and our proposed approach performed better with a significantly

decreased request delay due to the similar nature of both algorithms since DDQN is our

proposed algorithm derived from DQN.

47

In the second part of testing, we compared our proposed approach to other DL models

to check whether our system had an enhancement in request delay. The results showed that

the FDRL approach had decreased request delay compared to the other models. Furthermore,

at the beginning of the training, the FDRL approach was faster, while the proposed FDRL and

DQN had similar request delays as training proceeded. On the other hand, Q-learning slightly

decreased the request delay. However, at the end of the training, all three models converged at

the same value.

Figure 21- Request delay (ms x 1000) versus time T.

 All three sets of testing that we did, where we manipulated sparsity and content range

to deduce the model's performance on cache hit rate and compared the proposed model

against other DL models, showed enhanced performance and enhanced performance

consistency. Moreover, these tests allowed us to put our model through real-world simulation,

where sometimes content requested would have less or more probability of being requested

again. Also, it will enable us to see how the model would perform in scenarios where the

requested content volume can be low or high.

48

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

 Fog computing enhanced the performance of IoT networks. The capabilities of the

fog, which is an extension of the cloud’s services, combined with being in close vicinity to

end-users, paved the road for presenting solutions to existing problems. Vehicular networks’

emergence posed new requirements on the performance of the traditional network, such as

increased privacy and security, better resource allocation, faster response time, etc. As a

result, fog computing can be used to tackle this open problem.

 In this thesis, we proposed a cooperative FDRL (Federated Deep Reinforcement

Learning) scheme to tackle the response time and privacy/security issues accompanying

vehicular networks. The introduction of Federated Learning in this work also allowed us to

tackle the security/privacy issue by making each fog node train its Deep Reinforcement

Learning model using its data. In addition, this DRL approach allowed dynamic cache

management for the vehicular network.

 The results of the tests showed the consistency and effectiveness of our proposed

model in cache hit rate metric when compared with traditional algorithms such as FIFO, LRU,

and LFU. Also, the proposed model performed better on the request delay metric when

compared to other Deep Learning algorithms, such as Q-learning and DQN.

 For future work, real data could be used to get more accurate, allowing the proposed

model to be integrated into real-world applications. Real data may help uncover a problem

that might not appear using synthetic data. In addition to that, we could implement different

DL models and compare them with the suggested model.

49

REFERENCES

[1] Rashid, A., & Chaturvedi, A. (2019). Cloud Computing Characteristics and Services A

Brief Review. International Journal of Computer Sciences and Engineering, 7(2),

421–426. https://doi.org/10.26438/ijcse/v7i2.421426

[2] Farooq, M., Waseem, M., Mazhar, S., Khairi, A., & Kamal, T. (2015). A Review on

Internet of Things (IoT). International Journal of Computer Applications, 113(1), 1–7.

https://doi.org/10.5120/19787-1571

[3] Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A Review and

State of Art of Internet of Things (IoT). Archives of Computational Methods in

Engineering, 29(3), 1395–1413. https://doi.org/10.1007/s11831-021-09622-6

[4] Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A

Literature Review. Journal of Computer and Communications, 03(05), 164–173.

https://doi.org/10.4236/jcc.2015.35021

[5] Faisal, A., Yigitcanlar, T., Kamruzzaman, M., & Currie, G. (2019). Understanding

autonomous vehicles: A systematic literature review on capability, impact, planning

and policy. Journal of Transport and Land Use, 12(1).

https://doi.org/10.5198/jtlu.2019.1405

[6] Dillon, T., Wu, C., & Chang, E. (2010). Cloud Computing: Issues and Challenges. 2010

24th IEEE International Conference on Advanced Information Networking and

Applications. https://doi.org/10.1109/aina.2010.187

[7] Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W., Alyami, H., & Ayaz, M. (2021). A

Systematic Literature Review on Cloud Computing Security: Threats and Mitigation

Strategies. IEEE Access, 9, 57792–57807.

https://doi.org/10.1109/access.2021.3073203

50

[8] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the

internet of things. Proceedings of the First Edition of the MCC Workshop on Mobile

Cloud Computing – MCC ’12. https://doi.org/10.1145/2342509.2342513

[9] Sanketh, R., MohanaRoopa, Y., & Reddy, P. N. (2019). A Survey of Fog Computing:

Fundamental, Architecture, Applications and Challenges. 2019 Third International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC).

https://doi.org/10.1109/i-smac47947.2019.9032645

[10] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J.,

& Jue, J. P. (2019). All one needs to know about fog computing and related edge

computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–

330. https://doi.org/10.1016/j.sysarc.2019.02.009

[11] Yi, S., Li, C., & Li, Q. (2015). A Survey of Fog Computing. Proceedings of the 2015

Workshop on Mobile Big Data. https://doi.org/10.1145/2757384.2757397

[12] Cao, P., & Irani, S. (1997). Cost-aware WWW proxy caching algorithms. USENIX

Symposium on Internet Technologies and Systems, 18.

https://static.usenix.org/publications/library/proceedings/usits97/full papers/cao/cao.p

df

[13] Khattak, H. A., Raja, F. Z., Aloqaily, M., & Bouachir, O. (2021). Efficient In-Network

Caching in NDN-based Connected Vehicles. 2021 IEEE Global Communications

Conference (GLOBECOM). https://doi.org/10.1109/globecom46510.2021.9685200

[14] Zhang, M., Jiang, Y., Zheng, F. C., Bennis, M., & You, X. (2021). Cooperative Edge

Caching via Federated Deep Reinforcement Learning in Fog-RANs. 2021 IEEE

International Conference on Communications Workshops (ICC Workshops).

https://doi.org/10.1109/iccworkshops50388.2021.9473609

51

[15] Tang, F., Kawamoto, Y., Kato, N., & Liu, J. (2020). Future Intelligent and Secure

Vehicular Network Toward 6G: Machine-Learning Approaches. Proceedings of the

IEEE, 108(2), 292–307. https://doi.org/10.1109/jproc.2019.2954595

[16] Posner, J., Tseng, L., Aloqaily, M., & Jararweh, Y. (2021). Federated Learning in

Vehicular Networks: Opportunities and Solutions. IEEE Network, 35(2), 152–159.

https://doi.org/10.1109/mnet.011.2000430

[17] Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., &

Morimoto, J. (2022). Deep learning, reinforcement learning, and world models.

Neural Networks, 152, 267–275. https://doi.org/10.1016/j.neunet.2022.03.037

[18] Nguyen, D. H., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Poor, H. V. (2021).

Federated Learning for Internet of Things: A Comprehensive Survey. IEEE

Communications Surveys and Tutorials, 23(3), 1622–1658.

https://doi.org/10.1109/comst.2021.3075439

[19] Yu, Z., Hu, J., Min, G., Wang, Z., Miao, W., & Li, S. (2021). Privacy-Preserving

Federated Deep Learning for Cooperative Hierarchical Caching in Fog Computing.

IEEE Internet of Things Journal, 9(22), 22246–22255.

https://doi.org/10.1109/jiot.2021.3081480

[20] Li, Q., Zhang, Y., Li, Y., Xiao, Y., & Ge, X. (2020b). Capacity-Aware Edge Caching in

Fog Computing Networks. IEEE Transactions on Vehicular Technology, 69(8), 9244–

9248. https://doi.org/10.1109/tvt.2020.3001301

[21] Hu, L., Miao, Y., Yang, J., Ghoneim, A., Hossain, M. S., & Alrashoud, M. (2020). IF-

RANs: Intelligent Traffic Prediction and Cognitive Caching toward Fog-Computing-

Based Radio Access Networks. IEEE Wireless Communications, 27(2), 29–35.

https://doi.org/10.1109/mwc.001.1900368

52

[22] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017).

LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/tnnls.2016.2582924

[23] Hao, Y., Miao, Y., Hu, L., Hossain, M. S., & Muhammad, G. (2019). Smart-Edge-

CoCaCo: AI-Enabled Smart Edge with Joint Computation, Caching, and

Communication in Heterogeneous IoT. IEEE Network, 33(2), 58–64.

https://doi.org/10.1109/mnet.2019.1800235

[24] Chang, Z., Lei, L., Zhou, Z., Mao, S., & Ristaniemi, T. (2018). Learn to Cache: Machine

Learning for Network Edge Caching in the Big Data Era. IEEE Wireless

Communications, 25(3), 28–35. https://doi.org/10.1109/mwc.2018.1700317

[25] Wang, H., Yi, X., Huang, P., Cheng, B., & Zhou, K. (2018). Efficient SSD Caching by

Avoiding Unnecessary Writes using Machine Learning. International Conference on

Parallel Processing. https://doi.org/10.1145/3225058.3225126

[26] Huang, W., Song, T., Yang, Y. C., & Zhang, Y. (2019). Cluster-Based Cooperative

Caching With Mobility Prediction in Vehicular Named Data Networking. IEEE

Access, 7, 23442–23458. https://doi.org/10.1109/access.2019.2897747

[27] Jiang, W., Feng, G., Qin, S., Yum, T. P., & Cao, G. (2019). Multi-Agent Reinforcement

Learning for Efficient Content Caching in Mobile D2D Networks. IEEE Transactions

on Wireless Communications, 18(3), 1610–1622.

https://doi.org/10.1109/twc.2019.2894403

[28] Dai, Y., Xu, D., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Deep Reinforcement

Learning and Permissioned Blockchain for Content Caching in Vehicular Edge

Computing and Networks. IEEE Transactions on Vehicular Technology, 69(4), 4312–

4324. https://doi.org/10.1109/tvt.2020.2973705

53

[29] Wang, X., Wang, C., Li, X., Leung, V. C. M., & Taleb, T. (2020). Federated Deep

Reinforcement Learning for Internet of Things With Decentralized Cooperative Edge

Caching. IEEE Internet of Things Journal, 7(10), 9441–9455.

https://doi.org/10.1109/jiot.2020.2986803

[30] Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., & Hossain, M. S. (2021). Mobility-Aware

Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE

Transactions on Intelligent Transportation Systems, 22(8), 5341–5351.

https://doi.org/10.1109/tits.2020.3017474

[31] Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., & Hossain, M. S. (2021). Mobility-Aware

Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE

Transactions on Intelligent Transportation Systems, 22(8), 5341–5351.

https://doi.org/10.1109/tits.2020.3017474

[32] Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., & Vucetic, B. (2019). Localized

Small Cell Caching: A Machine Learning Approach Based on Rating Data. IEEE

Transactions on Communications, 67(2), 1663–1676.

https://doi.org/10.1109/tcomm.2018.2878231

[33] Salakhutdinov, R., & Mnih, A. (2008b). Bayesian probabilistic matrix factorization using

Markov chain Monte Carlo. International Conference on Machine Learning.

https://doi.org/10.1145/1390156.1390267

[34] Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Freitas, N. (2016).

Dueling network architectures for deep reinforcement learning. In International

Conference on Machine Learning (pp. 1995–2003).

http://proceedings.mlr.press/v48/wangf16.pdf

54

[35] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning. ACM

Transactions on Intelligent Systems and Technology, 10(2), 1–19.

https://doi.org/10.1145/3298981

