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ABSTRACT 

 

 

In this era, the magnitude of data shared is enormous and raised the bar for the quality of service and 

maintenance it requires. This paved the road for the integration of Fog Computing, which is an 

extension of the Cloud. Fog Computing’s main advantage is the increased quantity in which it can be 

deployed while in close vicinity of the end-users, thus enhancing their Quality of Experience (QoE). 

The connected vehicles domain is one of many domains that can benefit from Fog Computing. 

Moreover, caching has been an area of study for many years by researchers that aim to increase cache 

hit rate and decrease request delays affecting Connected Vehicles networks. Many studies 

implemented Machine Learning models to enhance cache hit rate and request delays. In this thesis, we 

implemented cooperation between a Deep Reinforcement Learning (DRL) model and Federated 

Learning to improve caching in Connected Vehicles connected to fog nodes. Furthermore, the results 

showed the proposed model's effectiveness compared to traditional algorithms. 

 

Keywords: Fog Computing, Caching, Connected Vehicles, Machine Learning, Deep Reinforcement 

Learning, Federated Learning. 
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CHAPTER ONE 

INTRODUCTION 

 In today’s day and age, the reliance on technology increased exponentially, and it is 

somehow become a dependency in multiple aspects, for example, automation, medicine, 

banking, gaming, video streaming, etc. One of the key similarities between these is data 

management, and here is where cloud computing came into play. 

 Cloud computing offers services and data management. Even if the data is not on the 

end user’s personal computer [1], cloud computing allows the user to access his/her data from 

anywhere in the world with only an internet connection. 

 Moreover, fog computing generally extends the services of the cloud but with less 

power. Unlike the cloud, fog nodes can be deployed in many numbers and at the network’s 

edge. They will be physically close to the end-users, increasing the quality of service, as well 

as offering high bandwidth and low latency. 

 Fog computing can enhance several aspects required daily such as QoS or Quality of 

Service. One of many fields that require high QoS would be connected vehicles or smart cars, 

and since they are connected to the internet, they are considered IoT devices. They are 

connected to the internet, which means they are communicating with other devices, and these 

communications require low latency, which the fog can provide. 

 Caching can be one of many services that can be integrated into the fog layer to 

optimize the communications and performance of connected vehicles. In other words, caching 

will allow these vehicles to perform tasks much faster, given that high-rate content retrieval is 

provided through the fog layer. 
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1.1 Overview 

This section will address essential information that allows us to proceed with this thesis. 

1.1.1 IoT Devices 

 In the past few decades, technological progress has been exponentially increasing in 

all fields, and communications are one of the many things that have progressed along the 

way. The inception of the Internet of Things or IoT devices has allowed for machine-to-

machine M2M communications [2][3]. In other words, everything around us connected 

and communicated through the internet can be considered an IoT device [4]. 

 To better understand the importance of IoT devices in the modern world, the authors 

of [3] compiled a list of applications that can integrate the functionalities of an IoT 

device, such as: 

i- Healthcare: the integration of IoT in the healthcare systems has been growing 

over the years even though it has not yet reached the majority of people, which 

means it still has growth potential in the coming decades. IoT has encouraged 

people to use their devices to monitor their health and share some data with 

authorized personnel such as doctors or lab operators. 

ii- Smart Livings: IoT has also been integrated into numerous fields essential for 

human beings. For example, IoT is used in agriculture to accelerate several 

stages of food production, which is essential for the increasing world 

population. Also, we can find that IoT had its way into our homes in what so-

called Smart Home System [2], where almost everything in a house can be 

automated and connected to the internet. An example of where IoT can be 

valuable could be fire alarm systems, CCTV cameras, etc. 
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iii- Wearables: people can also wear devices such as watches, rings, etc., that can 

monitor their health. These include heartbeat sensors, sleep trackers, or 

oximeters, and all these devices help people look closer at their health daily. 

iv- Connected vehicles: the driving industry also took part in integrating IoT in the 

production of vehicles which allows it to be fully automated with lots of 

capabilities such as platooning, merging, lane changing, and even self-parking 

[5]. Furthermore, it is expected that the production of autonomous vehicles 

will increase drastically in the coming years, and the major brands in the 

automobile industry are revolutionizing the sector accordingly [3]. In addition, 

autonomous vehicles require many sensors where their data can be given to an 

AI system that analyzes and learns to provide an optimized decision in 

different scenarios. Vehicles can also be connected to communicate and 

exchange data, meaning these IoT devices will be connected to RSUs or 

roadside units. RSUs store traffic data and can act as a cache system for 

connected vehicles. Also, RSUs can optimize the retrieval time of the 

requested content by these vehicles using modern caching algorithms with the 

integration of machine learning or artificial intelligence, resulting in a high 

cache hit ratio and reducing retrieval time. 
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1.1.2 Cloud Computing 

Cloud computing is introduced to the world to facilitate the use of computer systems 

and data management, merging them into a one-centric system. Eventually, a user can 

store his/her data, access programs, develop applications, etc., over the web instead of 

his/her local computer [6]. 

In addition to that, to understand more about cloud services, the following represent 

four distinct service models that the cloud provides: 

i- Software as a Service (SaaS): this service allows the user to access software in 

the cloud with extreme ease as if it were on his/her computer such as using 

Google sheets [7]. Some of the benefits of this service might be an increase in 

scalability, an unelevated concern for infrastructure since it is on the internet 

(from the user’s standpoint), and the accessibility of its services from 

anywhere and anytime [1]. 

ii- Platform as a Service (PaaS): this is a more complex service since on SaaS, the 

user can access already integrated software such as Google sheets, whereas 

PaaS allows the user to develop his/her cloud services by offering a 

development platform functioning as Google AppEngine, Microsoft Azure, 

etc. [6][7]. This type of service reduces the development cost for companies 

since they are investing less in infrastructure because it is all managed by the 

cloud provider. In extension, PaaS provides a simplified deployment so 

companies can focus more on the development process rather than on 

upgrading their infrastructure which the cloud providers already maintain [1]. 

iii- Infrastructure as a Service (IaaS): clients can use this service as a substitute for 

purchasing servers or acquiring more space to place these servers, data centers, 

etc., which is all provided by the cloud such as Amazon EC2 [7]. IaaS offers 
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more flexibility to users by reducing their costs on hardware, land, 

maintenance, etc. [1]. 

iv- Container as a Service (CaaS): this service is based on virtualization. It is 

introduced to tackle development issues presented in PaaS, which means that 

CaaS eliminates the development boundaries set by the PaaS environment [7]. 

Furthermore, the cloud also offers deployment services that divide the cloud as 

follows [1]: 

i- Public Cloud: these types of clouds are readily available for thousands of 

people and offered by several cloud providers such as Google, Amazon, 

Microsoft, etc. 

ii- Private Cloud: this type of cloud is restricted to a specific organization or a 

business and managed by this organization. A private cloud maximizes 

resource utilization, achieves high security, and gives organizations complete 

control over their data [7]. 

iii- Community Cloud: this type of cloud offers the same infrastructure and 

services for organizations with the same interests. 

iv- Hybrid Cloud: this type of cloud is used most of the time by organizations to 

allow them to have a combination of the previous two types. Hybrid clouds 

enable organizations to optimize their resources and use the services of both 

entities [7]. 

To this day, several cloud service providers (CSPs) offer all kinds of the previously 

mentioned services to different types of people and organizations. Most of these CSPs are 

well known such as: 
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i- Google: this provider offers a wide variety of services, from data management and 

databases to online apps such as Google docs/sheets/slides [1], all of which 

facilitate a user’s needs at the present time. 

ii- Amazon Cloud Services: an example of this provider’s services is Amazon Prime 

which is a video streaming platform [1]. Amazon cloud services also offer an 

infrastructure for deploying and managing websites, apps, databases, storage 

spaces, etc. 

iii- Microsoft Azure: similar to what Amazon Cloud Services provide, Azure offers a 

set of services and infrastructure for data management. 

iv- Apple iCloud: this is mainly used for online storage, which means uploading 

images, videos, and data backups [1]. 

1.1.3 Fog Computing 

Fog computing is introduced to extend the capabilities of the cloud, and it is placed at 

the edge of the network, making it available and physically near the end users [8][9]. 

This fog layer thus provides the services that the cloud has, but at a reduced scale to 

deploy more fog nodes that can serve more users considering the quality of service 

(QoS), availability, connectivity, reliability, etc. 

There are several reasons behind introducing the fog layer, which also serves as the 

difference between cloud computing and fog computing. An intuitive example might be 

latency-sensitive applications such as video streaming. As mentioned earlier, fog nodes 

are placed at a close distance from the end user, making QoS for such applications highly 

satisfactory [10]. Also, in terms of hardware and power utilization, fog nodes require less 

hardware and can provide services that require low power consumption, whereas the 

cloud can be used for large data centers, for instance [10]. 
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Since it is in close vicinity to the end user, fog nodes can be integrated with mobile 

technologies to form a RAN or radio access network [9]. A fog-RAN can be used for data 

retrieval at the edge of networks, which ensures a faster retrieval rate and low power 

consumption in the process. 

Furthermore, many applications for fog computing can be witnessed on a day-to-day 

basis such as: 

i- Autonomous vehicles: fog computing can be used as a medium of 

communication between autonomous or self-driving vehicles that require data 

from their surroundings and in a short amount of time to perform on a high 

level [8][9][10]. 

ii- Augmented reality: AR services need real-time video processing, which in turn 

requires high computational power leading to the introduction of fog 

computing to support AR systems to maximize the user experience [9][11]. 

iii- Health data: since health data are considered essential and should not be 

altered, fog computing offers a secure space that allows the user to upload or 

update his/her records and share them with authorized people such as a doctor 

or test lab operator [9]. 

iv- Content delivery and caching: fog computing offers high QoS, which means 

the content retrieval rate is dynamically optimized [11] to meet the end user’s 

needs. 

v- Detection algorithms: fog computing enhances the ability to design and 

integrate applications that can aid in day-to-day routines with increased 

security. For instance, face detection algorithms can run on fog nodes instead 

of locally on the client side. The original photo will be compared with the one 
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provided by the user and then allows the user’s device to be unlocked instantly, 

given the low latency nature given by the fog [9]. 

Along with its many advantages, fog computing has several challenges. The following 

are some of the challenges that face fog computing and can be considered a future 

research area: 

i- Mobile fog computing: according to [10], fog computing is considered fixed 

not mobile, whereas mobility is applied for its connected end devices. 

Although mobilizing fog nodes can be challenging, it could enhance its 

services by achieving improved QoS, reduced costs, and optimized energy 

consumption. The dynamicity of this mobilization can allow the fog nodes to 

form new networks [10]. 

ii- Green fog computing: the authors in [10] argued that energy consumption 

relating to fog computing has yet to be fully explored. In addition to that, 

energy harvesters can be implemented on IoT devices generally and fog nodes 

specifically to generate their power. This can be a new challenge that can 

benefit and enhance the fog computing paradigm in the future. 

iii- Security and privacy: providing security and privacy has always been 

challenging in this era. To mitigate attacks on fog nodes, the addition of 

intrusion detection systems along with authentication and access control can 

significantly benefit fog nodes’ security [10]. But this does not eliminate the 

need to explore more ways to strengthen the security of the fog layer. Privacy 

is always a client’s concern, and the authors in [11] acknowledged this risk and 

proposed the need for privacy-preserving algorithms on the links between the 

cloud and the fog, and between the fog and the end user to prevent data 

leakage. 
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iv- Fog node site selection: the authors in [10] argued that site selection for 

deploying fog nodes can be an exciting area of research, taking into 

consideration several factors such as storage space, communications, power 

consumption, and computing. 

1.1.4 Caching 

Caching is used to store data for future requests. In other words, if a user 

requests a webpage from a particular website, for example, it will be stored in his/her 

cache. Whenever the user re-requests the same webpage, it can be fetched from the 

cache and returned directly in case the webpage is not updated. However, if the 

webpage is updated, it has to be requested from its originated server, then the updated 

webpage will be stored in the user’s cache. 

In addition to that, the authors in [12] compiled a list of caching algorithms 

that have been traditionally used over the years, for instance: 

i- Least Recently Used (LRU): in this algorithm, the content that was requested 

the least in a predetermined set time interval is evicted to make space for 

another content since the cache memory is generally finite. This, in turn, might 

increase the cache hit rate, which also increases the users' QoS. 

ii- LRU-Threshold: it has the same algorithm as LRU, but the difference is that 

the algorithm predefines a threshold to the content size in the cache memory 

where the content should not be exceeded for it to be stored. 

iii- Least Frequently Used (LFU): this algorithm checks the frequency of the 

requested content, and if it is least frequently requested, it should be removed. 

However, the difference between this algorithm and the LRU is that if a 
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content, for example, has a high request frequency but did not get requested in 

the time interval that is set by the LRU algorithm, it cannot be discarded. 

iv- Lowest Latency First (LLF): to minimize the request latency, this algorithm 

discards the content whose download latency is the lowest. 

Given the above, caching algorithms are being updated more often to satisfy 

the requirements that are set by today’s technological advancement. Caching 

algorithms are being implemented in fog nodes as well as in the cloud to enhance the 

QoS for the users. Several research aims in the direction of integrating machine 

learning and artificial intelligence in the implementation and enhancement of caching 

algorithms. 

1.2 Problem Statement 

With the growing need for better QoS and requirements to achieve such a high 

benchmark, the field of connected vehicles requires low response time and high content 

retrieval rate to achieve optimal communications between the vehicles and their 

corresponding RSUs (i.e., Road Side Units). 

Consequently, the traditional caching algorithms can be limited and adaptive to what 

is required to achieve this better QoS in general. For instance, the authors in [13] 

suggested a simple update on the LCE or Leave Copy Everywhere caching algorithm by 

making RSUs send content to every connected vehicle according to the probability of this 

vehicle being near the RSU. 

Based on the above, this thesis will suggest a model by applying a cooperative 

federated deep reinforcement learning algorithm [14] for content retrieval. The algorithm 

will be composed of two parts: the fog layer will use a Q-network algorithm to achieve 

optimal cache management, and the cloud will run HFL or Horizontal Federated Learning 

algorithm that updates the global model according to the fog nodes’ local models. 
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Moreover, this thesis will be comparing the suggested model with what is available in the 

literature [13][14] concerning connected vehicles on different metrics, such as cache 

hit/miss ratio, response time, etc. 

1.3 Thesis Contribution 

The power of fog computing cannot be unhinged, and it can offer limitless advantages 

just by being on the edge of the network, in close vicinity to the end-users. Applying a 

caching policy algorithm would increase QoS for the end-users and provide a global 

model that can be referred to by different fog nodes. 

Having said that, the contribution of the thesis will be: 

• Adding a fog layer between RSUs and the cloud. 

• Applying a cooperative caching algorithm at the fog level to achieve a high cache 

hit ratio accompanied by a low response time, which generally improves QoS. 

• Offering a comparative study between existing work and the proposed model in 

the thesis. 

1.4 Thesis Organization 

The thesis will proceed as follows: Chapter 2 will discuss the literature review that is 

related to the topic. Then, Chapter 3 will suggest the system model for a cooperative 

caching policy in applied in fog nodes for connected vehicles. In Chapter 4, 

experimentation results will be shown and analyzed. Ultimately, Chapter 5 will include 

the conclusion of the thesis and suggest future work. 
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CHAPTER TWO 

RELATED WORK 

In this chapter, the thesis will tackle relevant studies that focus firstly on the 

challenges of vehicular networks and their proposed solutions—secondly on implementing 

state-of-the-art caching strategies where IoT devices, generally, and connected vehicles 

specifically, where the connected vehicles are communicating with the server running the 

caching strategies. 

2.1 Vehicular networks 

 This section will dive more into the challenges and possible solutions for vehicular 

networks. Vehicular networks are complex, thus, making their requirements different such as 

reduced delay for communication, stable connection with an RSU (Road Side Unit) or a BS 

(Base Station), high security and increased privacy due to the volume of vehicles involved. 

 To tackle the challenges that face vehicular networks, different solutions were 

presented. One of these solutions is AI generally and Machine Learning (ML) specifically. 

But first, we will discuss some of the challenges that are presented in [15]: 

i- Resource allocation: in order to deploy a wireless network for vehicular networks, 

several aspects are to be considered first, such as quick response, precise 

environment modeling, and self-adaptivity. But the high mobility of vehicles 

makes these aspects challenging to achieve. 

ii- Network traffic control: this includes routing, congestion avoidance, and 

offloading. And in vehicular networks, the challenges for these aspects can be 

future state prediction and correlation recovery, where gathering global 
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information of the whole network is hard in real time. Also, there is proactive 

exploration and self-learning due to the interference of human touch in order to 

update strategies. 

iii- Network security: security has always been a challenge in the network’s paradigm, 

which also extended this challenge to vehicular networks. Vehicular networks’ 

challenges have different branches such as mobility and heterogenous structure, 

where several aspects (e.g., computational power, storage, etc.) need to have a 

balanced resource allocation to increase security in case of breaches. These 

networks should also be large-scale, provide privacy, and meet real-time 

requirements. 

However, machine learning has been an integral part and a step forward in solving 

most of the challenges mentioned before, targeting the following challenges respectively as 

mentioned in [15]: 

i- Resource allocation: ML aided by introducing a reinforcement learning model. 

This model helped by focusing on multiple criteria in order to optimize 

resource allocation instead of focusing on a single criterion. Thus, allowing the 

model to focus on traffic distributions, whether homogeneous or 

inhomogeneous, time-varying traffic patterns, and channel failures. 

ii- Traffic control: Different ML-based solutions for network traffic control such 

as predicting network traffic control and information recovering from 

incomplete data. In other words, vehicles’ connections are always susceptible 

to being broken due to the high mobility of vehicles. As a result, machine 

learning allows us to predict vehicles’ locations, which helps predict network 

traffic and minimize broken connections. Moreover, by implementing a deep 
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learning approach, data can be retrieved from disrupted connections by 

recovering the routing information from previous network traffic. 

iii- Network Security: ML-based approaches can also be integrated to address 

security issues that vehicular networks face. Some techniques include misuse 

detection; misuse attacks are classical attacks where an attacker detects 

previously known attacks using their signatures and exploits them. Another 

approach is anomaly and hybrid detection algorithms; the types of attacks that 

fall under the governance of anomaly detection algorithms do not have records 

similar to misuse-based attacks. Thus, anomaly detection algorithms identify 

benchmark network traffic, and if anything is out of the ordinary, it gets 

recognized as an anomaly. 

 Moreover, the introduction of federated learning can tackle the security and privacy 

issues that vehicular networks pose. The authors in [16] suggested a new vehicular network 

concept called Federated Vehicular Network (FVN), leading to a more stable connection that 

enables the integration of federated learning. And by allowing the integration of FL, model 

training will occur at the node level without making the data known to the whole network, 

thus increasing privacy. And to improve security, each transaction will be recorded and 

validated by the blockchain model. 

2.2 Caching 

 This section will tackle the studies that focus on optimizing caching strategies used in 

different paradigms such as fog computing, edge computing, cloud, etc. Moreover, some of 

these studies are also conducted aiming to enhance vehicular networks. 

 An efficient in-network caching scheme for connected vehicles-based networks is 

suggested by the authors of [13]. This proposed strategy consists of a forwarding scheme and 
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a cache replacement scheme. In other words, the authors aimed to optimize cache utilization 

while considering the mobility of vehicles. The forwarding scheme proposed is Enhanced-

LCE (Leave Copy Everywhere) which is based on the traditional LCE. This forwarding 

scheme allows a specific RSU to broadcast messages to every connected vehicle. The 

enhanced version of LCE will depend on the vehicle’s direction on the highway and to be 

near an RSU that will be broadcasting the message. TBE (Time Based Eviction) is 

implemented as a cache replacement strategy where each content available in the cache of an 

RSU will have a time limit. When the time limit is exceeded, the content stored will be 

evicted, allowing other content to replace it. Simulation results for the forwarding scheme and 

the cache replacement scheme showed an increased cache hit ratio and reduced cache 

redundancy, as shown in Fig. 1 and 2, respectively. 

 

Figure 1-  Forwarding scheme results [13]. 
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Figure 2- Cache replacement results [13]. 

The authors in [14] proposed a caching strategy that is different from the conventional 

algorithms such as FIFO (First In First Out), LRU (Least Recently Used), LFU (Least 

Frequently Used), etc. The proposed strategy is a cooperative FDRL (Federated Deep 

Reinforcement Learning) algorithm combining reinforcement and federated learning. 

Reinforcement learning is part of machine learning, which is based on a reward system, where 

a learning agent gets a reward for choosing an action depending on the state of the 

environment it’s running on, which eventually alters this environment [17]. This reward can 

be of positive or negative value, allowing the agent to learn from the state of the environment 

and the reward depending on its actions. On the other hand, federated learning incorporates 

several IoT devices that are running a machine learning model, which is being trained on 

different datasets from each other. However, these devices collaborate with a central server 

that aggregates the models from each connected device and re-distributes a new global model 

to be used by all devices [18]. 
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Figure 3- Model illustration [14]. 

The proposed FDRL caching strategy works as shown in Fig. 3; each F-AP (i.e., Fog 

Access Point) runs a DDQN or Deep Dueling Q-Network, a reinforcement learning algorithm. 

Each F-AP agent learns according to the data provided by its environment. When a user 

requests content, which in turn can be returned in three ways [14]: 

i- F-AP returns from its cache. 

ii- F-AP asks neighboring F-APs for the requested content. 

iii- F-AP asks the cloud server for the requested content. 

The learning agent has three actions to choose from in order to maximize the reward, which is 

based on content availability and request delay. In case the F-AP elects to request the content 

from the server, the cloud server then aggregates all the connected F-APs models using HFL 

or Horizontal Federated Learning into one global model and sends it back to the F-APs to use 

[14]. 
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Figure 4- Cache hit rate as a function of time [14]. 

 

Figure 5- Request delay as a function of time [14]. 

As a result, the proposed FDRL by the authors of [14] maximizes cache hit rate and 

minimizes request delay compared to traditional caching algorithms, as shown in Fig. 4 and 5. 

Another caching approach proposed by the authors in [19] included a cooperation 

scheme between federated learning and a machine learning model to increase privacy for the 

end users. The proposed scheme is called FLCH or Federated Learning-based Cooperative 

Hierarchical caching scheme. The scheme incorporates both horizontal and vertical federated 

learning. According to [19], the horizontal federated learning part H-FLCH is applied 

between neighboring F-APs, whereas the vertical part V-FLCH occurs between F-APs and 

BBU pool (i.e., Base Band Unit), which is used to connect the F-APs to the cloud layer as 

shown in Fig. 6. 
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Furthermore, the authors in [19] applied OCC-VAE (i.e., One-Class Collaborative 

Variational Autoencoder) prediction model as a machine learning model. An AE or 

Autoencoder is an algorithm that takes an input and tries to reconstruct this input data to 

output data. 

The proposed model displayed in Fig. 6 will be applied to each connected device and 

trained on its private data, thus the concept of federated learning. After each model trains on 

separate data, the models are then horizontally aggregated on the F-AP level using H-FLCH 

to generate a new global model. When the results of the model training become stable, 

vertical aggregation of the data (V- 

 

Figure 6- Model Illustration [19]. 
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Figure 7- FLCH scheme flow [19]. 

FLCH) can be executed [19] as shown in Fig. 7. The content that is now cached on the cloud 

layer using V-FLCH is considered the popular requested content from each F-AP. 

 The results provided by the study show that the proposed scheme performed better 

than the conventional caching algorithms such as LRU, LFU, Random, etc. 

 In addition to that, the authors in [20] proposed a CAEC or Capacity Aware Edge 

Caching framework in order to achieve low ADT (i.e., Average Download Time) from the 

fog layer. The model provided by the authors is an ADMM-based algorithm or Alternating 

Direction Method Multipliers. The purpose of this algorithm is to generate an optimized 

global solution that aids in determining the best CAEC strategy while taking into 

consideration fog cache capacity and last-mile connectivity capacities of BSs (Base Stations) 

[20]. These BSs will be placed as an intermediary between the users and the fog nodes, acting 

as a relay. 

 Due to the applicability of the proposed algorithm for convex optimization problems 

in distributed deployment scenarios [20], the authors then used this algorithm to converge 

faster. Moreover, the proposed algorithm is compared with two other methods; the first 

method is Interior Point Method or IPM, and the second one is the Subgradient method. These 

methods (IPM and Subgradient method) specialize in solving convex optimization problems. 
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The results showed that the proposed algorithm converges faster compared to IPM and 

Subgradient method, leading to a lower ADT. However, after several iterations, all three 

methods reach a similar time. 

 Furthermore, other studies explored the area of enhancing fog-RANs or Random-

Access-Networks by integrating AI [21]. This integration included a traffic prediction system 

alongside a cognitive caching algorithm to improve QoE and request delay time. According to 

the authors in [21], the caching policy is based on LSTM (i.e., Long Short-Term Memory) 

and a collaborative filtering scheme. LSTM is a branch of recurrent neural networks but does 

not suffer from problems in optimization that face SRNs or Simple Recurrent Networks [22]. 

The idea behind this concept is a memory that stores its state and can regulate the input flow 

in and out of the memory state. LSTM has been used in many advanced problems such as 

language modeling, protein secondary structure prediction, audio/video analysis, etc. [22]. On 

the other hand, the collaborative filtering model used first in [23] is part of 3 models 

combined in the Smart-Edge-CoCaCo algorithm that aims to enhance communications, cache 

hit ratio, and computational offloading. The collaborative filtering model considers features 

from both the user and the content, leading to more accurate and systematic caching [23]. 

 Thus, the authors in [21] combined LSTM and collaborative caching by making 

LSTM predict the requested content type. In other words, it sorts out the content types first, 

and then the collaborative filtering algorithm can match each content with the requesting user, 

as shown in Fig. 8. 
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Figure 8- LSTM and collaborative caching model flow [21]. 

In [24], the authors explored machine learning schemes that can be applied to caching 

to enhance the cache hit ratio and decrease request delay. These schemes benefited the entity 

running the caching strategy in different ways depending on the features of each scheme. For 

example, classification algorithms are used for predicting traffic levels and content popularity, 

clustering is used to identify patterns in data and sort them out accordingly, and reinforcement 

learning’s reward feedback feature allows the agent to learn with each iteration and choose 

actions that are rewarding according to the environment such as Q-learning which what the 

proposed algorithm in this thesis is based upon, also there is deep learning which aids in 

content delivery while reducing the complexity of the operation due to its nature in extracting 

features in the data provided. 

 New research has explored the integration of machine learning schemes for caching. 

The authors in [25] proposed a machine-learning scheme for one-time image caching based 

on decision trees. In other words, the authors wanted to implement a one-time-access-
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exclusion policy, meaning that if an image is not to be accessed for a specific amount of time, 

it should not be cached [25]. Since the authors wanted to have a balance between high 

precision and low complexity algorithms, they went with the decision trees model. Compared 

to their initial results without the proposed classifier, the proposed model showed a slight 

enhancement in cache hit rate in algorithms such as LRU, FIFO, S3LRU, etc. [25]. 

 Furthermore, in vehicular networks, the mobility of vehicles poses a problem with 

data transmission since these vehicles are connecting and disconnecting leading to data 

retransmission which affects the user’s QoE. Thus, the authors in [26] proposed a cluster-

based cooperative caching approach with mobility prediction (COMP). The clustering factors 

include the vehicle’s mobility, the distance between a specific vehicle and its neighbors, and 

the total number of vehicles [26]. Each cluster of vehicles will be connected to a caching 

node, where this node, which in this study is an RSU, runs the cache placement according to 

Most Popular Data (MPD) and Least Popular Data (LPD). COMP will allow MPD to be 

stored in different nodes due to high demand, while LPD will be stored and distributed among 

different RSUs. The experimental results showed lower request delay and higher cache hit 

ratio. 

 More research focused on caching related to multimedia traffic dominated by video 

streaming, for example. For this reason, the researchers in [27] proposed D2D caching using 

reinforcement learning. Each agent can learn independently from its data or jointly from its 

data alongside the learning of other devices. Moreover, the RL model that is being used is the 

Multi-Armed Bandit problem (MAB), which is a classical problem in probability theory and 

machine learning where an agent has several arms, each with an unknown distribution of 

rewards and an unknown mean, the agent explores accordingly in order to maximize the 

reward system [27]. Both proposed approaches JAL (Joint Action Learners) and IL 

(Independent learners), are tested against classical algorithms IUB (Informed Upper Bound), 
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LFU, and LRU. IUB was superior in cache hit rate and average download latency than all four 

algorithms, but the proposed approaches performed better than LFU and LRU. However, it 

should be noted that JAL was better than IL because its agent can learn more from global 

values than local ones. 

 Additionally, the authors in [28] proposed a content caching scheme based on 

permissioned blockchain and deep reinforcement learning. Because vehicular edge computing 

requires the data to be cached in proximity to vehicles, the integration of permissioned 

blockchain helps secure the overall communications in the vehicular network. In other words, 

if a vehicle can’t cache locally, it can request a caching resource from a neighboring vehicle 

[28]. However, this transaction should be secure, thus blockchain technology, where the 

content would be encrypted using a public key of the owner and can’t be decrypted unless 

with the private key of the same owner, which leads to an increase in privacy and security. 

Additionally, each vehicle will send the caching request to the nearest BS, which will manage 

the caching placement. And to record the caching event, a transaction should be issued, and 

the BS verifies it, encrypts it, and sends it to the whole blockchain network to be validated 

[28]. But the challenge of vehicle mobility would still be solved with DRL. The DRL 

algorithm adopted in this study is Deep Deterministic Policy Gradient (DDPG). The main 

difference compared to other classical DRL algorithms such as Q-learning and Deep Q-

Network is that they can learn policies in high-dimensional observational and action spaces 

[28]. Simulation results showed that the proposed DRL algorithm had more average reward 

when compared to 2 benchmark algorithms; the first one is Greedy Content Caching, where a 

cache requester delivers its content to the cache provider having a high wireless connection, 

while the second algorithm is Random Content Caching where a cache provider is chosen 

randomly but taking into consideration that the distance between the requester and provider 

should not pass a certain threshold [28]. In addition, the proposed DRL showed superiority in 
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other comparison criteria, such as the percentage of successful content caching, with a rate 

nearing 90%. 

 Similar to the study in [14], the authors in [29] tackled the issue of highly dynamic 

environments posed by IoT services and applications. This led to proposing a federated deep-

reinforcement-learning-based cooperative edge caching (FADE) to optimize edge caching of 

such environments. The framework aims to reduce performance loss, improve hit rate, and 

decrease average delay time. The model, as shown in Fig. 9, consists of three layers; (1) IoT 

devices, (2) edge layer, and (3) cloud layer. 

 

Figure 9- FADE System model [29]. 

 Double Deep Q-Network (DDQN) is adopted as the reinforcement learning algorithm 

to address the issue of huge data sampling. Furthermore, the algorithm has three actions to 

perform and each with a specific reward: 

i- Local action: the requested content can be processed locally. 

ii- Cooperative action: if the requested content is not cached in the local BS of the 

requesting UE, then the request should be redirected to a neighboring BS. 

iii- Remote action: if the requested content is unavailable locally or in a neighboring 

BS, the request should be redirected to the cloud. 
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Moreover, in each iteration, the algorithm’s weights of each BS should be aggregated to get a 

more optimal global model. The global model is then sent to every BS [29]. 

 The proposed decentralized framework is then compared with several benchmark 

algorithms such as FIFO, LRU, LFU, Oracle, and Centralized, on hit rate and average delay. 

As shown in Fig. 10, the proposed framework showed better results when compared to 

classical methods. 

 

Figure 10- Simulation results for FADE [29]. 

 Another machine learning model proposed by [30] for content caching in vehicular 

networks is based on federated learning. The proposed model is called Mobility-aware 

Proactive Edge Caching (MPCF) and is adopted to tackle the known issues that caching in 

vehicular networks faces. As discussed previously in other studies, these challenges orbit 

around vehicles' mobility and the content being quickly out-of-date due to their high mobility 

[30]. The MPCF scheme has five stages: 

i- Vehicle selection: to perform the FL training, the vehicle to be selected depends on 

it being available in the coverage area of the RSU, having enough training data, 

and having a good connection. 

ii- Model download: if the vehicle is selected, they should download the global model 

from the RSU to train their local model. 
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iii- Model training: after the download, the vehicle will use the global model to train 

its local model with the available data it possesses. 

iv- Upload local model: once the training is finished, the vehicle uploads its trained 

local model to the RSU. 

v- Model weight aggregation: the RSU gets the weights of all models from its 

connected vehicles and aggregates them to generate a new global model. 

Furthermore, the FL model trained is called Contextual-Aware Adversarial Autoencoder (C-

AAE) and is used to predict content popularity [30]. And for optimizing the caching strategy, 

the authors integrated a cache replacement method to replace the cached data for a 

disconnected vehicle from an RSU, as shown in Fig. 11. 

 

Figure 11- Example of cache replacement flow adopted in [30]. 

Different benchmark algorithms such as LRU, LFU, Oracle, etc., are used to view the 

viability of the proposed framework on cache hit rate. Only the Oracle algorithm performed 

better than MPCF, proving that the authors’ approach is better than the different existing 

methods for content-caching. 

 In addition, a federated learning scheme using a blockchain-assisted compression 

algorithm for content caching in edge computing called CREAT is proposed by the authors of 

[31] to address security and privacy problems posed by data transmission. According to [31], 

the blockchain’s model uses four contracts, each required whenever a transaction is made: 
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i-  Identity authentication: this contract’s responsibility is to validate each entity, 

whether it is an IoT device or an edge node. 

ii- Submission contract: this contract allows the edge nodes to submit their training 

model’s weights and save them in the blockchain. 

iii- Verification contract: this contract is responsible for electing supervisory 

consortiums and transaction verification. 

iv- Credit contract: this contract takes care of the networks’ participants’ token reward 

and punishment. 

Moreover, the FL-based caching algorithm is an autoencoder known as FPCC [31]. 

This autoencoder will be used to determine the features of the input it receives. The outputs of 

two of these autoencoders are used to determine the characteristics of the users and files. 

Then, each edge node will upload its own trained model to the cloud, satisfying the core 

principles of federated learning where data is not to be shared and training only happens 

locally. Since minimizing communications costs is a problem to be tackled in IoT, the authors 

in [31] implemented and integrated a compression algorithm that speeds up the model’s 

training process. The compression algorithm considers gradients that affect the model heavily 

as necessary, and their values should stay the same compared to gradients with less 

importance.  

Furthermore, the essential gradients are then clustered using K-means clustering, and 

each cluster is given a centroid value that is then used to estimate the exact values of the 

gradients. Simulation results showed that FPCC and CREAT have similar cache efficiency 

and are higher than the two other algorithms that are being compared. The first benchmark 

algorithm is the Random algorithm, where caching does not have any consideration to cache 

upon; content is cached randomly without considering content popularity. Whereas the second 

benchmark algorithm is called Thompson Sampling, which is based on beta distribution, and 



29 
 

whenever the cache file is updated, the beta distribution is updated accordingly. Furthermore, 

CREAT showed reduced update time compared to FPCC, which does not run the compression 

algorithm [31]. 

The researchers in [32] formulated a caching framework deployed in MBS (Macro 

Base Station). The framework is based on ICRP or Individual Content Request Probability 

estimation, which reflects the personal preference of the requesting user. Moreover, the 

authors in [32] designed a Bayesian learning model to accurately predict users' personal 

preferences. The proposed Bayesian learning model is based on CBPMF (Constraint Bayesian 

Probabilistic Matrix Factorization), which is based on BPMF. BPMF is derived from PMF, a 

model heavily used in collaborative filtering [33]. 

 With the usage of CBPMF, the authors in [32] can now evaluate the ICRP estimation 

that will be used in a DCA (Deterministic Caching Algorithm). The DCA algorithm is a DLA 

or Discrete Learning Automata reinforcement learning model. DLA aims to optimize action 

selection from a set of finite actions, with each action having a specific reward [32]. In 

addition, the authors in [32] implemented a D2D (Device 2 Device) method that minimizes 

the request delay. 

 Simulation results showed that the proposed CBPMF, when compared with another 

two prediction methods (BPMF and MF-SGD) on RMSE Root Mean Square Error, both 

CBPMF and BPMF outperformed MF-SGD. However, the proposed prediction method 

scored better than the traditional BPMF. Furthermore, the proposed framework DCA-ICRP is 

compared with the following methods: DCA-GCRP, where GCRP stands for Global Content 

Request Probability, PC-ICRP (Probabilistic Caching-ICRP), PC-GCRP, and RC or Random 

Caching strategy on cache hit rate and outperforming them. Also, enabling D2D connections 

alongside DCA-BPMF lowered the request delay for the proposed caching method [32]. 
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 In the studies mentioned above, the researchers aimed to suggest strategies to enhance 

vehicular networks and improve caching algorithms. Vehicular networks have several 

requirements: low response time, continuous connection, high privacy, and security. Thus, the 

studies discussed in this section targeted most issues that vehicular networks suffer from. On 

the other hand, most of the caching strategies presented integrated Machine Learning to target 

several aspects that limit the traditional caching strategy (i.e., FIFO, LRU, LFU, etc.). 

 This thesis will continue addressing the issues that most of the discussed studies aimed 

at addressing. Our work will present a cooperative federated learning scheme that seeks to 

increase the cache hit rate and reduce response time in vehicular networks. 
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CHAPTER THREE 

THE SUGGESTED SYSTEM MODEL 

 In this chapter, the thesis will dive into the model that is adopted in this work. As 

previously mentioned, the vehicular network is an emerging paradigm that is posing several 

challenges on different levels (i.e., communications, resource allocation, security, etc.). 

Moreover, several studies addressed the vehicular networks’ challenges using various 

methods, generally, specifically machine learning. In addition, this thesis addresses caching 

strategies related to vehicular networks to enhance QoE by increasing the hit rate and 

reducing delay time. Furthermore, integrating machine learning strategies in caching allows 

the exploration of new methods to strengthen caching generally, compared to the classical 

techniques (i.e., FIFO, LRU, LFU, etc.). 

 The integration of machine learning in this work is divided into two fronts: the first 

front is where the fog layer would run a deep reinforcement learning strategy in a federated 

architecture, and on the second front, the cloud layer would be aggregating the several models 

provided by different fog nodes to produce a new optimized global model. The fog nodes will 

use this new global model later, and these strategies will be discussed thoroughly in this 

chapter. 
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3.1 Model overview 

 The suggested model is divided into three layers, as shown in Fig. 12: 

i- RSU layer: the Road-Side Unit (RSU) layer is the direct communication link with 

the connected vehicles on the road. The RSU relays the request of the vehicles to 

the fog layer. 

ii- Fog layer: the fog layer receives the relayed request from the RSU and chooses an 

action according to the deep reinforcement learning algorithm used to handle 

vehicles’ requests; DDQN (Dueling Deep Q-Network). 

iii- Cloud layer: the cloud layer is a central server for all fog nodes. The cloud has two 

main jobs: 

a- Model aggregation: the suggested model will be using an aggregator according 

to HFL or Horizontal Federated learning in order to generate a new global 

model to be used by the fog nodes, thus, ensuring optimized decision-making 

algorithms for all of the nodes. 

b- Cache: besides acting as a model aggregator for the fog nodes, the cloud also 

caches the requested content from connected vehicles. In other words, if the 

fog node chooses to retrieve the requested content from the cloud, then the 

cloud fulfills the request and caches the content if it is not available. Once the 

request is fulfilled, the cloud triggers model aggregation to globalize the DRL 

(Deep Reinforcement Learning) model and sends it back to the connected fog 

nodes. 
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Figure 12- The Suggested Model. 

In this work, we created a custom caching environment that the DDQN agent uses to 

learn according to the criteria we imposed on the model. Also, we added an RSU layer 

between the end-users, in this case, the connected vehicles and the fog layer to help better 

communicate with the fog nodes, thus decreasing the overall response time.  

The pseudo-code below represents the workflow of the suggested model, as shown in 

Fig. 13. When a user requests a particular content, the agent will choose from what layer the 

request should be served. If the RSU should serve the request, thus, the RSU checks the cache 

to see if the requested content is available, and if the content is available, then the content is 

retrieved. Otherwise, the fog layer would be checked for the same content and retrieved if the 

content is available in the fog layer’s cache. Otherwise, the cloud layer’s cache should be 

checked. When checking the cloud for the content if the content is available or not, the 

aggregation of all fog nodes’ models will occur and be sent back to train according to the new 

model. 
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Figure 13- Model workflow pseudo code. 

In addition, all three layers act as a cache environment for the requested content from 

the vehicles, which means that some of the content stored will be evicted to create a space for 

new content. But there is a criterion to evict content; for example, if the content has frequent 

requests, meaning it’s popular and stored at the end of the cache, it should not be evicted. As 

a result, the content with the least popularity will be evicted to create a space for new content. 

3.2 Dueling Deep Q-Network (DDQN) 

 First, to understand how the DDQN works, we will need to look at the algorithm from 

which it is derived; DQN or Deep Q-Network. Secondly, we must understand how DDQN 

provides more optimization and accuracy compared to its parent version DQN. 

 DQN (top) and DDQN (bottom), as shown in Fig. 14, have the same convolutional 

neural networks, which are two. However, DQN has only one output stream for the Q-values, 

representing the actions in a specific environment. On the other hand, DDQN has two streams 

before having the output stream (Q-values). The first stream represents the current state of the 

environment which is a single value, and the second stream represents the advantage stream 

for each of the actions available in the provided environment. In the end, the Q-values are 
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calculated by the values of the state and the advantages stream according to the following 

formula: 

𝑞 = 𝑣 + 𝑎 − 𝑎.𝑚𝑒𝑎𝑛() 

 The formula above represents the Q-values according to the state (v) and advantage of 

each action (a). The addition of those values is then deducted by the mean values of each 

action represented in the advantage stream. 

 However, the reason behind DDQN being more optimized and accurate than DQN is 

not created by only splitting the final stream into two streams. In other words, the two 

implementations provide the optimal Q-values at the end but using different methods. The 

real improvement can be seen in the training of the agents that are running each algorithm. In 

other words, introducing the state value in the DDQN approach allows the learning of the 

state value efficiently without a pre-update of the Q-values. Moreover, the advantage stream 

makes the neural network robust to action re-ordering. Thus, the values won’t be biased with 

each training sample. 

 

Figure 14- Architecture comparison between DQN (top) and DDQN (Bottom) as provided in [34]. 
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Figure 15- Experimental results DQN vs. DDQN in [34]. 

 The comparison between DQN and DDQN, as represented in Fig. 15, showed that 

DDQN outperformed DQN in three instances (5, 10, and 20 actions) regarding Squared Error 

(SE), thus, proving the superiority of DDQN. 

 Furthermore, we must add a reward system allowing the agent to learn and choose 

actions accordingly for the model to work and learn. Thus, the system we implemented has 

three rewards, as represented in the following: 

i- RSU: the agent chooses to check the RSU for the requested content, and if it is 

available in the RSU’s cache, then there will be a positive reward equaling 3; 

otherwise negative. 

ii- Fog node: the agent chooses to retrieve the content from the fog node; if it is 

available, a positive reward equals 2; otherwise negative. 

iii- Cloud: the agent chooses to retrieve the requested content from the cloud layer, 

and the reward is equal to 1. 

However, the three types of rewards indeed have the same logic, but the value of the 

reward is different. In other words, there are several aspects to consider while choosing to 

retrieve the content from the RSU can be highly rewarding since the delay would be minimal 

due to the close distance between the RSU and the connected vehicles. Still, the RSU’s cache 

size is finite and can’t store too much content. As a result, this reward system enables the 



37 
 

agent to learn what action to choose to maximize the cache hit rate and reduce the request 

delay to enhance QoE for the end-users. As a result, the request delay between the user and 

the cloud, fog node, or RSU would be set to 10ms, 20ms, and 200ms, respectively. 

3.3 Horizontal Federated Learning (HFL)  

 

Figure 16- HFL architecture as represented in [35]. 

 The introduction of federated learning enabled IoT networks to be more secure and 

private. Thus, we used this architecture in our model for the mentioned advantages that FL 

introduces to increase security and privacy. In order to understand how FL works, Fig. 16 

shows the steps as follows: 

i- Step 1: each fog node sends the encrypted gradients for the ML algorithm working 

in each fog node; DDQN in our case, to the central server; the cloud. 

ii- Step 2: the cloud then aggregates the gradients received from the connected fog 

nodes. 

iii- Step 3: the cloud re-sends the new global model to the fog nodes. 
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iv- Step 4: each fog node uses the new global model as the base model to learn using 

its data. 

However, in our suggested model, the cloud aggregates the model in case the fog node 

only chooses to retrieve the data from the cloud. 

As a result, the blend of these two methods, DDQN and HFL, will create a cooperative 

strategy that aids in enhancing QoE for end users (i.e., connected vehicles) by increasing the 

cache hit rate and reducing the response delay. 

3.4 An Example 

 In this section, we will show how the suggested model would work. The example will 

have content to be requested, and we will show what would happen if the suggested algorithm 

chose all three actions adopted. 

 The cache stream and the popularity of each content cached for each layer in the 

suggested model at t=0 (i.e., cloud, fog node, and RSU) are represented in Tables 1, 2, and 3. 

However, popularity is defined by how much a certain content is requested, and the number 

of columns available represents the cache size. 

Table 1- Cloud cache at t=0. 

Contents 8 2 4 1 4 77 47   

Popularity 2 1 1 1 3 5 1   

 

Table 2- Fog node cache at t=0. 

Contents 7 9 3 55 12  

Popularity 2 3 2 1 3  
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Table 3- RSU cache at t=0. 

Contents 11 99 67 

Popularity 5 2 4 

 

 At t=1, content having a value of “47” is being requested, and the workflow will go as 

follows: 

i- Cloud: the algorithm chooses the cloud to serve this request. Since the requested 

content is already in the cloud’s cache, the reward is positive, and because the 

cloud has the longest response time, which is 200ms, the reward will equal 1. As a 

result, the popularity of the requested content will increase now. 

Table 4- Cloud cache at t=1. 

Contents 8 2 4 1 4 77 47   

Popularity 2 1 1 1 3 5 2   

 

ii- Fog node: the action chosen by the DDQN agent makes the fog node serve the 

request. Since the content is unavailable in the cached stream, the reward will be 

negative, equaling -1. However, if the content were available in the cache, the 

reward would be 2 since the response time from the fog node equals 20ms, which 

is much lower than the cloud. 

Table 5- Fog node cache at t=1. 

Contents 7 9 3 55 12 47 

Popularity 2 3 2 1 3 1 

iii- RSU: the action now is to choose from the RSU, and since the RSU’s cache is full, 

the reward is -1. But now we must evict content to place the newly requested 
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content in the cache, and the dropped content will be the one with the least 

popular. 

Table 6- RSU cache at t=1. 

Contents 11 47 67 

Popularity 5 1 4 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS 

 In this chapter, we will discuss the experimental results of our suggested model. First, 

it will introduce the testing environment (i.e., software and hardware) in which we got the 

results. Second, it will review the data used to produce the results and how it was generated. 

Third, this chapter will present the performance of the suggested model. 

4.1 Simulation Environment  

 We adopted Python programming language to implement the algorithms mentioned in 

the suggested model. Python is widely used to program Machine Learning models. Moreover, 

we used the Tensorflow library by Google to implement our Reinforcement Learning model 

(DDQN). Also, to create the virtual environment used for the model, we adopted the Gym 

library created by OpenAi. The Gym library allows us to specify custom observation and 

action spaces to train the model efficiently. We used the Anaconda platform to integrate these 

libraries, allowing us to add the respective libraries, thus hosting our environment. 

 On the other hand, to produce the results, we used a 2.20 GHz computer with 16 GB 

of RAM, a core i7 processor, 1 TB HDD and 256 GB SSD, and a 64-bit Windows 11 

operating system. 

4.2 Data 

 The data used for the simulation is generated using M-Zipf distribution [14]. M-Zipf 

distribution allows us to create data with popularity, where some data will be generated 

continuously according to the popularity assigned to it by the method. And throughout the 

testing phase, we updated the parameter that allows the data to be sparser to understand and 
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validate the efficiency of the proposed model. However, we will be manipulating specific 

parameters of the data generator, such as the sparsity of the data (s), how much content is 

requested (N), and the range of data (m), in each iteration for us to evaluate the suggested 

model. 

4.3 Model Performance 

 In this subsection, we will evaluate the suggested model using the simulation 

environment mentioned earlier. The metrics in which we are evaluating our model are “Cache 

Hit-Rate” and “Response Time.” In addition, a discussion of the results obtained will be 

presented with an analysis of what has been achieved. 

 For our first two tests, we compare our proposed algorithm with three traditional 

algorithms FIFO, LRU, and LFU. We have two reasons for choosing these algorithms. First, 

these algorithms are popular in the industry, and second, they perform differently. 

Furthermore, one of the algorithms might outperform the other depending on the 

environment, thus providing dynamicity to our testing phase. 

 In the first set of tests, we manipulated the sparsity of the content requested. In other 

words, we altered the probability of the data that is to be requested more often, which allows 

us to simulate real-world data where in some cases, there will be content that won’t be 

requested many often. In addition, as shown in Fig. 17, the sparsity parameter is set to 0.8, 

meaning less likelihood of a certain content being requested more often. Also, the number of 

contents requested here is set to 1000, and the range of content is set to 1000, meaning there 

will be up to 1000 different content eligible to be requested in an iteration. We notice that the 

proposed FDRL is superior in terms of cache hit rate compared to other traditional algorithms 

such as FIFO, LRU, and LFU. 
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 Furthermore, in Fig. 18, the traditional algorithms close the gap to the proposed FDRL 

approach. The reason behind this visualization is that decreasing the sparsity of the data 

allowed the traditional algorithms to enhance their performance. In other words, the 

probability of having the same content requested again increased, allowing the conventional 

algorithms to serve the requests accordingly. However, our proposed algorithm is still 

superior to those traditional ones since its hit rate remained higher than the other algorithms, 

and its performance is consistent. It is also worth mentioning that out of three traditional 

algorithms, only the LFU achieved similar results compared to our FDRL approach. 

 

Figure 17-  Cache hit rate versus time, where s=0.8, N=m=1000. 
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Figure 18- Cache hit rate versus time, where s=1, N=m=1000. 

 The first set of results showed that the proposed FDRL approach performs better than 

the traditional algorithms regarding cache hit rate. This is because the proposed algorithm had 

a higher cache hit rate in both tests, even with the manipulation of the sparsity parameter, 

showing consistency. Moreover, as we decrease the sparsity of the data, which means 

increasing the probability of having the same requested content more often, the traditional 

algorithms have an increase in their performance compared to when the data is sparse. 

 Moreover, in the second set of tests, we fixed the sparsity of the data and altered the 

number of requests in each iteration, in addition to the range of content. This type of test 

would allow us to test the model with different scenarios for content range, which sometimes 

would be more than other times. Furthermore, as shown in Fig. 19, the sparsity parameter s is 

set to 1, and the range of data is set to 2000 compared to 1000 in the first set of tests. Even 

with the fixation of (s) and altering (N) and (m), the proposed FDRL approach performs better 

compared to the traditional algorithms. Also, in Fig. 20, we notice the same results where we 

set s=1 and N=m=5000, thus increasing the range of data even more. But in the second test, 

the cache hit rate decreases slightly, and this decrease is relative due to the increased number 
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of different contents requested. In other words, when expanding the range of content 

available, the probability of having the same content getting requested decreases; thus, the 

likelihood of a requested content being available would decrease. 

 The second set of tests showed that even by fixing the sparsity parameter and altering 

the range of data available, the proposed FDRL approach is consistent with the results and 

performs better than traditional algorithms. This is shown when manipulating the range of 

content requested in both tests. The proposed approach had a higher cache hit rate than the 

conventional algorithms. 

 

Figure 19- Cache chit rate versus time, where s=1, N=m=2000. 
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Figure 20- Cache chit rate versus time, where s=1, N=m=5000.  

We also tested the proposed approach on a different metric: the request delay. We 

chose to compare the suggested model against other DL methods since comparing it against 

traditional algorithms such as FIFO, LRU, and LFU would not provide accurate visualization 

of the request delay because the value would be fixed. Moreover, the reason behind the 

request delay would be fixed for the traditional algorithms because when using these 

algorithms, we have only one way of communication: with the fog node. However, testing 

against other DRL (Deep Reinforcement Learning) models, especially models derived from 

each other with the same environment provided for our proposed model, would give a more 

accurate visualization of the performance of our proposed model. As shown in Fig. 21, our 

proposed method performs faster than DQN and Q-learning. Also, it is noticed that at the 

beginning of the training, all algorithms had relatively high request delay. Still, as training 

proceeded, only DQN and our proposed approach performed better with a significantly 

decreased request delay due to the similar nature of both algorithms since DDQN is our 

proposed algorithm derived from DQN.  
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In the second part of testing, we compared our proposed approach to other DL models 

to check whether our system had an enhancement in request delay. The results showed that 

the FDRL approach had decreased request delay compared to the other models. Furthermore, 

at the beginning of the training, the FDRL approach was faster, while the proposed FDRL and 

DQN had similar request delays as training proceeded. On the other hand, Q-learning slightly 

decreased the request delay. However, at the end of the training, all three models converged at 

the same value. 

 

Figure 21- Request delay (ms x 1000) versus time T. 

 All three sets of testing that we did, where we manipulated sparsity and content range 

to deduce the model's performance on cache hit rate and compared the proposed model 

against other DL models, showed enhanced performance and enhanced performance 

consistency. Moreover, these tests allowed us to put our model through real-world simulation, 

where sometimes content requested would have less or more probability of being requested 

again. Also, it will enable us to see how the model would perform in scenarios where the 

requested content volume can be low or high. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 Fog computing enhanced the performance of IoT networks. The capabilities of the 

fog, which is an extension of the cloud’s services, combined with being in close vicinity to 

end-users, paved the road for presenting solutions to existing problems. Vehicular networks’ 

emergence posed new requirements on the performance of the traditional network, such as 

increased privacy and security, better resource allocation, faster response time, etc. As a 

result, fog computing can be used to tackle this open problem. 

 In this thesis, we proposed a cooperative FDRL (Federated Deep Reinforcement 

Learning) scheme to tackle the response time and privacy/security issues accompanying 

vehicular networks. The introduction of Federated Learning in this work also allowed us to 

tackle the security/privacy issue by making each fog node train its Deep Reinforcement 

Learning model using its data. In addition, this DRL approach allowed dynamic cache 

management for the vehicular network. 

 The results of the tests showed the consistency and effectiveness of our proposed 

model in cache hit rate metric when compared with traditional algorithms such as FIFO, LRU, 

and LFU. Also, the proposed model performed better on the request delay metric when 

compared to other Deep Learning algorithms, such as Q-learning and DQN. 

 For future work, real data could be used to get more accurate, allowing the proposed 

model to be integrated into real-world applications. Real data may help uncover a problem 

that might not appear using synthetic data. In addition to that, we could implement different 

DL models and compare them with the suggested model. 



49 
 

REFERENCES 

[1] Rashid, A., & Chaturvedi, A. (2019). Cloud Computing Characteristics and Services A 

Brief Review. International Journal of Computer Sciences and Engineering, 7(2), 

421–426. https://doi.org/10.26438/ijcse/v7i2.421426 

[2] Farooq, M., Waseem, M., Mazhar, S., Khairi, A., & Kamal, T. (2015). A Review on 

Internet of Things (IoT). International Journal of Computer Applications, 113(1), 1–7. 

https://doi.org/10.5120/19787-1571 

[3] Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A Review and 

State of Art of Internet of Things (IoT). Archives of Computational Methods in 

Engineering, 29(3), 1395–1413. https://doi.org/10.1007/s11831-021-09622-6 

[4] Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A 

Literature Review. Journal of Computer and Communications, 03(05), 164–173. 

https://doi.org/10.4236/jcc.2015.35021 

[5] Faisal, A., Yigitcanlar, T., Kamruzzaman, M., & Currie, G. (2019). Understanding 

autonomous vehicles: A systematic literature review on capability, impact, planning 

and policy. Journal of Transport and Land Use, 12(1). 

https://doi.org/10.5198/jtlu.2019.1405 

[6] Dillon, T., Wu, C., & Chang, E. (2010). Cloud Computing: Issues and Challenges. 2010 

24th IEEE International Conference on Advanced Information Networking and 

Applications. https://doi.org/10.1109/aina.2010.187 

[7] Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W., Alyami, H., & Ayaz, M. (2021). A 

Systematic Literature Review on Cloud Computing Security: Threats and Mitigation 

Strategies. IEEE Access, 9, 57792–57807. 

https://doi.org/10.1109/access.2021.3073203 



50 
 

[8] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the 

internet of things. Proceedings of the First Edition of the MCC Workshop on Mobile 

Cloud Computing – MCC ’12. https://doi.org/10.1145/2342509.2342513 

[9] Sanketh, R., MohanaRoopa, Y., & Reddy, P. N. (2019). A Survey of Fog Computing: 

Fundamental, Architecture, Applications and Challenges. 2019 Third International 

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 

https://doi.org/10.1109/i-smac47947.2019.9032645 

[10] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., 

& Jue, J. P. (2019). All one needs to know about fog computing and related edge 

computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–

330. https://doi.org/10.1016/j.sysarc.2019.02.009 

[11] Yi, S., Li, C., & Li, Q. (2015). A Survey of Fog Computing. Proceedings of the 2015 

Workshop on Mobile Big Data. https://doi.org/10.1145/2757384.2757397 

[12] Cao, P., & Irani, S. (1997). Cost-aware WWW proxy caching algorithms. USENIX 

Symposium on Internet Technologies and Systems, 18. 

https://static.usenix.org/publications/library/proceedings/usits97/full papers/cao/cao.p

df 

[13] Khattak, H. A., Raja, F. Z., Aloqaily, M., & Bouachir, O. (2021). Efficient In-Network 

Caching in NDN-based Connected Vehicles. 2021 IEEE Global Communications 

Conference (GLOBECOM). https://doi.org/10.1109/globecom46510.2021.9685200 

[14] Zhang, M., Jiang, Y., Zheng, F. C., Bennis, M., & You, X. (2021). Cooperative Edge 

Caching via Federated Deep Reinforcement Learning in Fog-RANs. 2021 IEEE 

International Conference on Communications Workshops (ICC Workshops). 

https://doi.org/10.1109/iccworkshops50388.2021.9473609 



51 
 

[15] Tang, F., Kawamoto, Y., Kato, N., & Liu, J. (2020). Future Intelligent and Secure 

Vehicular Network Toward 6G: Machine-Learning Approaches. Proceedings of the 

IEEE, 108(2), 292–307. https://doi.org/10.1109/jproc.2019.2954595 

[16] Posner, J., Tseng, L., Aloqaily, M., & Jararweh, Y. (2021). Federated Learning in 

Vehicular Networks: Opportunities and Solutions. IEEE Network, 35(2), 152–159. 

https://doi.org/10.1109/mnet.011.2000430 

[17] Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., & 

Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. 

Neural Networks, 152, 267–275. https://doi.org/10.1016/j.neunet.2022.03.037 

[18] Nguyen, D. H., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Poor, H. V. (2021). 

Federated Learning for Internet of Things: A Comprehensive Survey. IEEE 

Communications Surveys and Tutorials, 23(3), 1622–1658. 

https://doi.org/10.1109/comst.2021.3075439 

[19] Yu, Z., Hu, J., Min, G., Wang, Z., Miao, W., & Li, S. (2021). Privacy-Preserving 

Federated Deep Learning for Cooperative Hierarchical Caching in Fog Computing. 

IEEE Internet of Things Journal, 9(22), 22246–22255. 

https://doi.org/10.1109/jiot.2021.3081480 

[20] Li, Q., Zhang, Y., Li, Y., Xiao, Y., & Ge, X. (2020b). Capacity-Aware Edge Caching in 

Fog Computing Networks. IEEE Transactions on Vehicular Technology, 69(8), 9244–

9248. https://doi.org/10.1109/tvt.2020.3001301 

[21] Hu, L., Miao, Y., Yang, J., Ghoneim, A., Hossain, M. S., & Alrashoud, M. (2020). IF-

RANs: Intelligent Traffic Prediction and Cognitive Caching toward Fog-Computing-

Based Radio Access Networks. IEEE Wireless Communications, 27(2), 29–35. 

https://doi.org/10.1109/mwc.001.1900368 



52 
 

[22] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). 

LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and 

Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/tnnls.2016.2582924 

[23] Hao, Y., Miao, Y., Hu, L., Hossain, M. S., & Muhammad, G. (2019). Smart-Edge-

CoCaCo: AI-Enabled Smart Edge with Joint Computation, Caching, and 

Communication in Heterogeneous IoT. IEEE Network, 33(2), 58–64. 

https://doi.org/10.1109/mnet.2019.1800235 

[24] Chang, Z., Lei, L., Zhou, Z., Mao, S., & Ristaniemi, T. (2018). Learn to Cache: Machine 

Learning for Network Edge Caching in the Big Data Era. IEEE Wireless 

Communications, 25(3), 28–35. https://doi.org/10.1109/mwc.2018.1700317 

[25] Wang, H., Yi, X., Huang, P., Cheng, B., & Zhou, K. (2018). Efficient SSD Caching by 

Avoiding Unnecessary Writes using Machine Learning. International Conference on 

Parallel Processing. https://doi.org/10.1145/3225058.3225126 

[26] Huang, W., Song, T., Yang, Y. C., & Zhang, Y. (2019). Cluster-Based Cooperative 

Caching With Mobility Prediction in Vehicular Named Data Networking. IEEE 

Access, 7, 23442–23458. https://doi.org/10.1109/access.2019.2897747 

[27] Jiang, W., Feng, G., Qin, S., Yum, T. P., & Cao, G. (2019). Multi-Agent Reinforcement 

Learning for Efficient Content Caching in Mobile D2D Networks. IEEE Transactions 

on Wireless Communications, 18(3), 1610–1622. 

https://doi.org/10.1109/twc.2019.2894403 

[28] Dai, Y., Xu, D., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Deep Reinforcement 

Learning and Permissioned Blockchain for Content Caching in Vehicular Edge 

Computing and Networks. IEEE Transactions on Vehicular Technology, 69(4), 4312–

4324. https://doi.org/10.1109/tvt.2020.2973705 



53 
 

[29] Wang, X., Wang, C., Li, X., Leung, V. C. M., & Taleb, T. (2020). Federated Deep 

Reinforcement Learning for Internet of Things With Decentralized Cooperative Edge 

Caching. IEEE Internet of Things Journal, 7(10), 9441–9455. 

https://doi.org/10.1109/jiot.2020.2986803 

[30] Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., & Hossain, M. S. (2021). Mobility-Aware 

Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE 

Transactions on Intelligent Transportation Systems, 22(8), 5341–5351. 

https://doi.org/10.1109/tits.2020.3017474 

[31] Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., & Hossain, M. S. (2021). Mobility-Aware 

Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE 

Transactions on Intelligent Transportation Systems, 22(8), 5341–5351. 

https://doi.org/10.1109/tits.2020.3017474 

[32] Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., & Vucetic, B. (2019). Localized 

Small Cell Caching: A Machine Learning Approach Based on Rating Data. IEEE 

Transactions on Communications, 67(2), 1663–1676. 

https://doi.org/10.1109/tcomm.2018.2878231 

[33] Salakhutdinov, R., & Mnih, A. (2008b). Bayesian probabilistic matrix factorization using 

Markov chain Monte Carlo. International Conference on Machine Learning. 

https://doi.org/10.1145/1390156.1390267 

[34] Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Freitas, N. (2016). 

Dueling network architectures for deep reinforcement learning. In International 

Conference on Machine Learning (pp. 1995–2003). 

http://proceedings.mlr.press/v48/wangf16.pdf 



54 
 

[35] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning. ACM 

Transactions on Intelligent Systems and Technology, 10(2), 1–19. 

https://doi.org/10.1145/3298981 

 

 

 

 

 

 

 

 

 

 

 

 

 




