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Abstract
This study investigates the multidimensional connectedness between various Fourth Industrial Revolution assets and global commodities to
analyze their role in portfolio diversification. Using dynamic conditional correlation-generalized autoregressive conditional heteroskedasticity
(DCC-GARCH), Baruník and Křehlík (BK) frequency connectedness, and quantile connectedness, we estimate the time-frequency connectedness
involved in the transmission mechanism at the upper, middle, and lower quantiles, using empirical data from April 30, 2018, to January 9, 2023,
which incorporates data before and during the pandemic and consider the impact of the Russia-Ukraine conflict. Our findings reveal that Fourth
Industrial Revolution assets are highly correlated, especially during periods of stress and crisis, which necessitates portfolio diversification during
such periods. We also find that holding these assets over the long run is better than holding them in the short run. Our results indicate that the
connectedness network assessed at the conditional median quantile is not reflective of the level of connectedness associated with substantial
positive or negative shocks. This study is of high importance to investors in Fourth Industrial Revolution assets.
Copyright © 2023 Borsa İstanbul Anonim Şirketi. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The integration of financial markets has increased the need
for portfolio diversification. Recently, periods of stress and
turbulence have renewed the role of crises in fueling further
integration, making it important for investors to consider the
correlation, spillover, and connectedness dynamics over
various time horizons and between different asset classes
(BenSaïda & Litimi, 2021; Cagliesi & Guidi, 2021).
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The Fourth Industrial Revolution (FIR) is fundamentally
changing every aspect of our lives, with the emergence of
many alternative investment opportunities for achieving port-
folio diversification and hedging, such as artificial intelligence
(AI) and robotics companies, financial (fintech) technology
stocks, and technology, blockchain, and cybersecurity com-
panies. At present, AI and robotics are being adopted all over
the world, with industrial robots infiltrating not only
manufacturing but also other economic activities, including
trading on financial markets, transportation via autonomous
vehicles, customer relationship management via chatbots, legal
services, and medical diagnostics and operations (Webster &
Ivanov, 2020). Intuitively, AI and robotics technology busi-
nesses have grown in prominence, making them an appealing
investment alternative for portfolio diversification. Blockchain
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and cryptocurrencies have also grown in popularity as invest-
ment vehicles and are sometimes regarded as superior cur-
rencies or even digital gold (Selmi et al., 2018). The
application of blockchain technology has been viewed as a
significant financial disruptor and manifestation of the FIR
(White et al., 2020).

In this study, we examine the multidimensional connect-
edness between FIR assets and global commodities, with a
specific focus on their potential role in portfolio diversification.
The FIR assets investigated have emerged because of techno-
logical advancements in areas such as AI, blockchain, and the
Internet of Things. We employ various methods, including
dynamic conditional correlation-generalized autoregressive
conditional heteroskedasticity (DCC-GARCH), BK frequency
connectedness, and quantile connectedness to estimate the
time-frequency connectedness and transmission mechanisms.
Our empirical sample is from April 30, 2018, to January 9,
2023, and incorporates the periods before and during the
COVID-19 pandemic, as well as the impact of the Russia-
Ukraine conflict. By analyzing the connectedness between
these assets and global commodities, we offer insights into the
potential benefit of including these assets in diversified port-
folios. Our insights are valuable for investors seeking to
manage risk and maximize returns in the context of the rapidly
changing global economic landscape.

We find that, first, because of the increase in connectedness,
constructing a portfolio comprising FIR assets is not prudent,
especially during periods of stress, which is in line with Le,
Abakah, and Tiwari (2021), and thus investors should modify
their portfolios during crises. Second, the high connectedness
between these asset classes, especially in the short run, sug-
gests that holding them is more likely to reduce risk over the
long run. Third, the interlinkages between these assets are time
and frequency dependent, suggesting that the diversification
benefits vary with frequency. Thus, it is important to consider
the level of volatility spillovers among the assets in the short,
medium, and long term for diversification strategies. Impor-
tantly, the impact of level of connectedness due to the
pandemic differs from that of the Russia-Ukraine conflict. The
war in Ukraine is a transitory factor, but the pandemic signif-
icantly altered fundamental factors. Finally, total spillover is
greater at the extremes than at the median quantile, suggesting
the use of the tail connectedness approach, instead of
concentrating only on median-/average-based connectedness.

This study makes several important contributions to the
existing literature. First, it is the first study to specifically
investigate the role of FIR assets in portfolio diversification.
Previous studies have only considered technology-intensive
companies in general (Ahmad & Rais, 2018; Kumar et al.,
2012a, 2012b) or clean energy technologies (Jawadi et al.,
2013; Ortas et al., 2013) or have examined only the connec-
tion between one of these assets and other asset classes
(Adekoya et al., 2022; Chen et al., 2021; Huynh, Hille, &
Nasir, 2020). This study builds on the existing literature by
examining a similar set of assets over different time periods.
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Second, as blockchain technology has been called a major
financial disruptor, this study supplements the rapidly growing
empirical literature on cryptocurrency (Bouri et al., 2018;
Lundgren et al., 2018) by including the Blockchain index. This
adds an important dimension to the study of FIR assets. Lastly,
this study employs three distinct methodologies—DCC-
GARCH, BK frequency connectedness, and quantile con-
nectedness—to assess the time, frequency, and tail connect-
edness between FIR assets and global commodities. This offers
significant advantages over traditional linear and Granger-
causality tests and offers a more comprehensive understand-
ing of the dynamics among these assets.

The paper is organized as follows. Section 2 presents the
theoretical framework and relevant literature that inform the
research questions. Section 3 provides an overview of the data,
while Section 4 describes the econometric models. Section 5
presents the study's key findings, and in Section 6, we
conduct robustness tests to confirm the reliability of our results.
Finally, Section 7 concludes the paper by summarizing our
main contributions and discussing their implications for future
research and practice.

2. Theoretical framework and literature review
2.1. Theoretical framework exploring the spillover
phenomenon among financial markets
In recent years, the globalization, financial liberalization,
and increasing international integration of financial markets
have intensified information transmission and caused spillover
effects (Patel et al., 2022). Financial market integration has
broken down regional boundaries and promoted the integration
of economies around the world, deepening the interdependence
of international financial markets while also exacerbating their
vulnerability and risk contagion effect.

Spillovers are associated with two main theories: the eco-
nomic fundamentals–based hypothesis and the risk contagion
hypothesis. The economic fundamentals–based hypothesis
posits that macroeconomic variables that are common across
countries can affect financial markets in other countries.
Because of interconnection of economic fundamentals, asset
prices tend to move in a consistent trend, and interdependence
gradually increases among financial markets. Common mac-
roeconomic variables include the degree of openness of the
stock market, bilateral trade volume, foreign direct investment
(FDI), macroeconomic policies, and exchange rate fluctuations.
For example, the degree of openness of the stock market re-
flects the extent to which a country's economy is integrated into
that of the global economy, and a higher degree of openness
can lead to greater spillover effects. Similarly, an increase in
FDI can increase the spillover effects due to the greater inte-
gration of the global financial system. Baek et al. (2005) find
that standard economic fundamentals are important de-
terminants of market-assessed sovereign risk. Kaminsky and
Reinhart (2000) determine that economic crises in one
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country can affect the economies of countries with which they
trade, suggesting that trade channels play a crucial role in the
linkage and spillover effects between the financial markets of
various countries (regions). Similarly, the literature on financial
contagion suggests that the degree of financial integration and
trade ties between countries can increase the likelihood of
contagion (Forbes & Rigobon, 2002). However, the economic
fundamentals–based hypothesis does not explain sudden drops
in financial markets, which occur over short periods. Therefore,
King and Wadhwani (1990) propose the market contagion
hypothesis to explain risk linkage and spillover effects caused
by extreme risk events, such as the global financial crisis. This
hypothesis posits that extreme risk events can significantly
affect the returns and risks of global financial markets, which
can drive investors to change their investment strategies for
global asset allocation. As a result, the risk linkage among
financial markets is enhanced, and irrational trading behavior
can lead to transmission of negative impacts to other financial
markets. For example, during the 2008 financial crisis, the
collapse of Lehman Brothers triggered a chain reaction of
financial distress, which spread rapidly across the financial
system, causing widespread market panic and financial insta-
bility. Investors are heterogeneous in their investment prefer-
ences, risk acceptance, and ability to accept and process market
information. As a result, many investors may not make rational
judgments about the information obtained and are inclined to
follow the trend by referring to the trading operations of others
in the market when making decisions. This phenomenon,
known as herding, is a type of irrational trading behavior.
Herding can have risk contagion effects, as many investors
follow the same investment strategies and cause asset prices to
deviate from their fundamental value.

Several studies have found that herding behavior is a sig-
nificant source of risk contagion effects (Boyer et al., 2006). In
addition to herding, other irrational trading behaviors, such as
momentum trading and overconfidence, can also contribute to
risk contagion effects. In addition, technological advancements
have led to the emergence of a Fourth Industrial Revolution
(FIR), which introduced a new era of digitization, automation,
and interconnectivity among various assets. The integration of
these FIR assets has created new challenges and opportunities
for financial markets, including spillover effects. For instance,
the integration of artificial intelligence (AI) and machine
learning (ML) algorithms into financial trading has led to
increased efficiency and accuracy in decision-making, but it
has also introduced new risks, such as the potential that algo-
rithmic trading will amplify market volatility and exacerbate
spillover effects (Gomber et al., 2018).
2.2. Literature review
The performance of technology stocks has been of interest
to scholars since the dot-com crisis in the early 2000s (Ahmed
& Alhadab, 2020). Whereas some studies suggest greater po-
tential for future earnings in technology stocks, others indicate
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almost equivalent returns with nontechnology companies
(Mason & Harrison, 2004). One stream of the literature notes
the higher volatility of high-tech stock returns compared to
non-tech equities, which might indicate that investors perceive
uncertainty in the profitability of high-tech companies because
of the complexity of implementing innovative technologies
(Jiang et al., 2011).

In the era of the FIR, the foundation of blockchain tech-
nologies paved the way for cryptocurrency, leading to a new
economic order and disruption of standard financial trans-
actions. Cryptocurrency facilitates the application of block-
chain technologies, closing the gap between technological
advancements and payment procedures. A huge number of
papers has investigated the connectedness of cryptocurrency
(especially Bitcoin) by revealing its intra-connectedness using
different methods and time frames (Balli et al., 2020; Bouri
et al., 2021; Fousekis & Tzaferi, 2021; Hasan et al., 2021; Ji
et al., 2019; Koutmos, 2018; Kumar et al., 2022; Polat &
Kabakçı Günay, 2021; Xu et al., 2021), its connectedness
with various asset classes, such as traditional currencies
(Andrada-Félix et al., 2020; Hsu et al., 2021), commodities
(Fasanya et al., 2022; Ha & Nham, 2022; Hassan et al., 2022;
Mo et al., 2022), major equities and financial markets (Cao &
Xie, 2022; Hanif et al., 2022; Milunovich, 2018), decentralised
finance (Defis), non-fungible tokens, or technology sector
(Charfeddine et al., 2022; Karim et al., 2022; Umar et al.,
2021), or other asset classes. Considerably fewer papers
investigate other technological indexes despite the irrefutable
evidence on the importance of AI, blockchain, and other in-
dustrial revolution assets in different aspects of the economy
and financial sector, and their use in portfolio diversification as
hedges is underexplored (Demiralay et al., 2021; Huynh, Hille,
& Nasir, 2020).

Some studies have investigated fintech's connectedness with
various asset classes, primarily with traditional finance
(Adekoya et al., 2022; Chen et al., 2021; Le et al., 2021a,
2021b; Li et al., 2020). Among those studies, Le, Abakah, and
Tiwari (2021) provide evidence on the poor hedging benefits of
fintech company shares in a portfolio with common stocks, as
they note the high connectedness between technology stocks
and traditional equities. Furthermore, the relationship between
technology stocks and energy prices has been studied, con-
firming linkages in returns and volatility (Bondia et al., 2016;
Kumar et al., 2012a, 2012b). Huynh, Nasir, et al. (2020) find
that portfolios consisting of AI, robotics stocks, and green
bonds exhibit heavy tail dependence, implying a high proba-
bility of large joint losses in times of economic turbulence.
Demiralay et al. (2021) investigate the interdependence be-
tween AI and robotics stocks and traditional (including stocks
and bonds) and alternative (commodities and cryptocurrency)
assets and find that co-movements significantly depend on the
wavelet decomposition levels, suggesting time-scale-dependent
investment benefits. However, they also observed substantially
higher co-movements of AI stocks with the composite stock
index, corporate bonds, and commodities at all scales after



Fig. 1. Return series.

1 Following Ashraf (2020), we assume that the period of COVID-19 begins
on January 23, 2020, when it first came to public attention and databases started
to report COVID-19-related information.
2 Volatility is calculated based on the GARCH (1,1) model.
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March 2020, implying that the inclusion of these assets in AI
and robotics stock portfolios may not enhance risk-adjusted
portfolio performance in times of market turbulence. These
studies highlight the importance of considering various FIR
assets when diversifying portfolios and carefully considering
the risks associated with heavy tail dependence and the time-
varying nature of co-movements (Demiralay et al., 2021;
Huynh, Hille, & Nasir, 2020).

This study fills this gap by analyzing the spillover effect
among several FIR indexes to understand their role in portfolio
diversification (Demiralay et al., 2021; Huynh, Hille, & Nasir,
2020). Some investors would benefit by understanding the co-
movement between the FIR assets and whether it would be
wise to invest collectively in those asset classes or diversify the
portfolio with other asset classes.

3. Data

To evaluate the connectedness among the FIR innovative
assets, this study considers six global indexes: the Internet
Index (QNET), Cybersecurity Index (NQCYBR), Artificial
Intelligence and Robotics Index (NQROBO), Disruptive
Technologies Index (NYDTB), FinTech (STXFTV) and
Blockchain Index (RSBLCN). Appendix Table A1 describes
all the indexes selected and their abbreviations. Most of the
indexes selected are used for the first time. Our dataset is ob-
tained from the DataStream database and covers the period
from April 30, 2018, to January 9, 2023 (the time of writing).
For this purpose, we obtain daily closing prices on all the in-
dexes and calculate the continuously compounded daily returns
by taking the difference in the log value of two consecutive
prices. The dataset is divided into pre-COVID, during COVID,
and since the Russian invasion of Ukraine. The cutoff dates are
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January 23, 2020,1 when COVID-19 broke out, and February
24, 2022, when Russia invaded Ukraine. Fig. 1 illustrates the
time-varying returns of all the series, showing similar patterns
and trends. Large declines were observed at the end of
December and the beginning of January, coinciding with the
outbreak of the pandemic. The impact of RUI is not immedi-
ately apparent. Fig. 2, which illustrates the volatility series,2

shows similar results. A jump is seen in volatility, coinciding
with the pandemic. Therefore, investors are advised to keep an
eye on major global events.

Table 1 presents the summary statistics of the volatility series
for the FIR assets in Panel A and global factors in Panel B. The
mean volatility of all the indexes is positive during the sample
period. In Panel A, the highest and lowest average daily volatility
is observed for QNET (0.014%) and NYDTB (0.008%), respec-
tively. QNET has not only the highest average but also the highest
standard deviation. NYDTB, however, has the lowest average
with the lowest risk, which is suitable for risk-averse investors. In
Panel B, VIX has the highest return (0.058%) and the highest
standard deviation (0.056%), whereas Bond has the lowest
average and the lowest risk. All volatility series depart from the
Gaussian distribution, with a high level of kurtosis and nonzero
skewness. The skewness is positive in all markets, while kurtosis
ismuch higher than 3. The significant Jarque-Bera statistics reveal
the nonnormal distributed series in these markets.

The results of the augmented Dickey-Fuller (ADF) unit-root
stationarity tests provide evidence of stationarity in all series.
Finally, the results of the Ljung-Box test for the autocorrelation



Fig. 2. Volatility series.
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of the residual returns series reject the null hypothesis of no
autocorrelation. The combination of a leptokurtic distribution
and stationarity makes the series ideal candidates for quantile-
based interconnectedness analysis.

4. Econometric models

To investigate the existence of spillovers among different
segments of the FIR market, we first estimate the time
connectedness using DCC-GARCH connectedness and the
frequency connectedness by Baruník and Křehlík (2018). The
next step is to investigate asymmetrical connectedness by
running the quantile connectedness.
4.1. DCC-GARCH connectedness
This paper employs the DCC-GARCH connectedness
approach developed by Gabauer (2020), which is based on the
volatility impulse response function (VIRF), representing the
impact of a shock in variable i on variable j's conditional
volatility. This approach offers several key advantages over
traditional methods. First, it allows us to overcome the limi-
tations of rolling-window analysis, such as the arbitrary choice
of window size and loss of observations. Second, it enables us
to examine the time-varying nature of the propagation mech-
anism between financial markets. This study represents a sig-
nificant contribution to the field as it is the first to use Gabauer's
DCC-GARCH connectedness approach in investigating the
connectedness between the FIR assets, while controlling for
global variables. The VIRF can be written as:

Ψg=VIRF(J,δj,t,Ft−1)=E(Ht+J
⃒⃒
εj,t=δj,t,Ft−1)

−E (Ht+J
⃒⃒
εj,t=0,Ft−1) (1)
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where δj,t is a selection vector with a 1 in the jth position and
0 otherwise.

An important step in VIRF is the forecasting of the condi-
tional variance-covariance, in three steps. In the first step, the
conditional volatilities (Dt+h|Ft) are predicted using GARCH
(1,1):

E(hii,t+1|Ft)=ω+αδ21,t+βhii,th=1 (2)

E(hii,t+h|Ft)= ∑h−1
i=0

ω(α+ β)i+(α+ β)h−1E(hii,t+h|Ft)h > 1 (3)

In the second step, E(Qt+1|Ft) is predicted according to:

E(Qt+1|Ft)= (1−a−b)Q+autut
′ +bQth=1 (4)

E(Qt+1|Ft)= (1−a−b)Q+aE(ut+h−1u′t+h−1 ⃒⃒Ft)
+ bE(Qt+h−1|Ft)h > 1

(5)

where E(ut+h−1u′t+h−1
⃒⃒
Ft) ≈ E(Qt+h−1|Ft) helps in forecasting

the dynamic conditional correlations (Engle & Sheppard,
2001), and finally the conditional variance-covariances.

In the third step, the dynamic conditional variance-
covariances are estimated by:

E(Rt+h\Ft) ≈ diag[E(q−1/2iit+h)⃒⃒Ft ,…,E(q−1/2iit+h)
× ⃒⃒

Ft]E(Qt+h)diag[E(q−1/2iit+h)⃒⃒Ft,…,E(q−1/2iit+h)⃒⃒Ft]
(6)

E(Ht+h|Ft) ≈ E(Dt+h|Ft)E(Rt+h|Ft)E(Dt+h|Ft) (7)
Subsequently, the generalized forecast error variance

decomposition (GFEVD) is calculated using the VIRF:

mailto:Image of Fig. 2|tif
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GIRFt(h,δj,t ,Ft−1) = E(Yt+h
⃒⃒
εj,t = δj,t,Ft−1)−E(Yt+h|Ft−1)

Ψg
j,t(h) = Ah,tStεj,t̅̅̅̅̅̅̅

Sjj,t
√ δj,t̅̅̅̅̅̅̅

Sjj,t
√

δj,t =
̅̅̅̅̅̅̅
Sjj,t

√

Ψg
j,t(h) = S

−1
2

jj,tAh,tStεj,t

(8)
In GFEVD, several connectedness measures can be con-
structed, such as the total connectedness index (TCI ), which
measures the overall degree of network connectedness.

Cg
t (h)=

∑N
i,j=1,i∕=j

φ̃g
ij,t(h)

∑N
i,j=1

φ̃g
ij,t(h)

*100 (9)

The directional connectedness, TO, represents the impact of
variable i on all other variables j.

Cg
i→j,t(h)=

∑N
j=1,i∕=j

φ̃g
ji,t(h)

∑N
j=1

φ̃g
ji,t(h)

*100 (10)

The directional connectedness, FROM, measures the impact
of other variables j on variable i.

Cg
i←j,t(h)=

∑N
j=1,i∕=j

φ̃g
ij,t(h)

∑N
i=1

φ̃g
ij,t(h)

*100 (11)

The NET connectedness is the difference between TO and
FROM, in which a positive (negative) value indicates the role
of a transmitter (receiver):

Cg
i,t=Cg

i→j,t(h) −Cg
i←j,t(h) (12)
4.3. BK frequency connectedness
Baruník and Křehlík (BK; 2018) developed a technique that
measures connectedness in the frequency domain framework,
such as long-, medium-, and short-term cycles. Their contribution
is the identification of aggregate connectedness at various fre-
quency domains to ascertain the frequency at which spillover is
the highest. By determining this frequency, investors can decide
whether to invest in the long or short run, considering that in-
vestors have different investment horizons. More specifically, the
BK method decomposes spillover at several frequencies. The
formulation is based on the use of a spectral formulation of the
decomposition variance. In other words, the significant charac-
teristic of the BK method is that it can measure the dynamics of
connectedness among a set of variables over time and across
various frequencies simultaneously. In this way, the BK
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framework transforms connectedness into different components
that in turn yield the original connectedness measure.

Specifically, the scaled GFEVD on a frequency band d =
(a, b) : a, b ∈ (− π, π), a< b can be defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̃d)j,k = (θd)j,k/∑
k

(θ∞)j,k

(θd)j,k = 1
2π

∫
d

Γj(ω)(f (ω))j,kdω

(θ∞)j,k =∑
ds

(θds)j,k
(13)

where (θd)j,k denotes generalized variance decompositions on
frequency band d; Γj(ω) denotes the frequency share of the
variance of the jth variable; (f (ω))j,k represents the portion of
the spectrum of the jth variable at frequency ω due to shocks to
the kth variable; ds denotes an interval in the real line from the
set of intervals D.

The frequency connectedness on the frequency band d can
be obtained by:

CF
d =100× (∑ θ̃d∑ θ̃∞

−Tr{θ̃d}∑ θ̃∞
) (14)

where Tr( ⋅) is the trace operator. This frequency connected-
ness framework enables us to identify the short-, medium-, and
long-term connectedness when frequency band d is set at
different intervals.
4.4. Quantile connectedness
To examine the quantile transmission mechanism among
these assets at upper, middle, and lower quantiles, we employ
the quantile connectedness approach proposed by Ando et al.
(2018).

First, we define the quantile vector autoregression,
QVAR(p):

yt= γ(τ) +∑p
j=1

Φj(τ)yt−j + μ(τ) (15)

where τ ∈ (0, 1) denotes the quantile index, yt and yt−j are n-
vectors of endogenous variables, p denotes the lag length of the
QVAR model, γ(τ) and μ(τ) represent the n-vector of intercepts
and residuals at quantile τ, respectively, and Φj(τ) is the
parameter matrix of the jth lagged coefficients at quantile τ.
Next, the population τ − th conditional quantile of response y is
as follows:

Qτ(yt)= γ(τ) +∑p
j=1

Φj(τ)yt−j (16)

Second, QVAR(p) is transformed into an infinite order vector
moving average representation (QVMA (∞)) using Wold's
theorem:
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yt= κ(τ) +∑∞
i=1

Aj(τ)μt−1 (17)

where

κ(τ)= (In +Φ1(τ) +…+Φp(τ))−1γ(τ) (18)

Aj(τ)=
⎧⎨⎩0, j<0
In, j = 0
Φ1(τ)Aj−1 +…+Φp(τ)Ap−1, j>0

(19)

Third, the GFEVD with a forecast horizon H is calculated
following Koop et al. (1996) and Pesaran and Shin (1998). It
illustrates the impact that a shock to variable j has on variable i.
Following Diebold and Yilmaz (2012, 2014), we calculate the
five connectedness measures at each quantile τ based on
normalized GFEVD, which comprises TCI(τ), TO(τ),
FROM(τ), NET(τ), and NPDC(τ).
5. Results

To thoroughly examine the role of these assets in a portfolio,
we take a three-pronged approach. First, we consider time
connectedness using the DCC-GARCH connectedness
approach, which analyzes the degree to which these assets in a
portfolio comove over time. The DCC-GARCH approach is
particularly useful in capturing the dynamic and time-varying
nature of connectedness among assets. Second, we focus on
the BK frequency connectedness, as it is critical to evaluate the
level of volatility spillovers between assets in the short, medium,
and long term when considering diversification strategies. This
helps to clarify how different frequencies of financial market
movements can affect the performance of a portfolio. Third, we
examine quantile connectedness, which assesses the presence of
asymmetric spillovers and tail dependence. The quantile
connectedness approach is particularly useful in capturing the
asymmetrical nature of connectedness among assets, which is
important for understanding how the relationship between assets
changes under different market conditions, including economic
downturns and upturns. The purpose of this multifaceted
approach is to provide a comprehensive understanding of the
volatility connectedness and portfolio diversification opportu-
nities across FIR assets. This information can then be used to
make informed decisions about diversification strategies, which
are crucial for managing risk and maximizing portfolio returns.
5.1. Time connectedness

5.1.1. Static connectedness
Table 2 shows the average connectedness measures among

the six indexes studied in the time domain. The elements on the
main diagonal of Table 2 correspond to own-variable (i.e.,
idiosyncratic) shocks whereas off-diagonal elements represent
interaction among the variables in the network. The sum of off-
diagonal elements in the columns denoted “contribution to”
measures the volatility spillovers transmitted from a specific
market to all other markets, whereas the sum of off-row



Table 2
Volatility spillovers in the time domain.

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN CONTRIBUTION FROM

QNET 25.94 13.55 15.31 15.76 15.15 14.29 74.06

NQCYBR 15.28 28.43 14.82 14.1 14.73 12.63 71.57

NQROBO 13.28 11.37 25.24 18.42 15.14 16.55 74.76

NYDTB 13.07 10.07 17.71 25.62 17.28 16.24 74.38

STXFTV 13.53 11.54 15.86 18.46 25.74 14.86 74.26

RSBLCN 13 9.98 17.21 17.69 15.06 27.05 72.95

CONTRIBUTION TO 68.17 56.51 80.91 84.44 77.36 74.58 441.98

NET −5.89 −15.05 6.15 10.06 3.1 1.63 TCI = 73.66

Notes: This table presents the volatility spillover results among six FIR indexes using DCC-GARCH Connectedness approach. Values in the i-th row of the j-th
column indicate the strength of the spill-over effect from the i-th market to the j-th market. Net denotes the net spillover for each individual market.

Fig. 3. Net pairwise directional network of volatility spillovers in the time
domain.
Notes: This figure presents the net pairwise directional volatility spillovers
among six FIR indices during different periods in the time domain. The node
size reflects the overall magnitude of transmission/reception for each product.
The edge size indicates the magnitude of the net pairwise volatility spillovers
between two products. Besides, the magnitude is also reflected by whether the
color of node/edges is dark (strong) or light (weak). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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elements denoted “contribution from” measures the volatility
spillovers received from a given market. Finally, the sum of
off-row elements divided by the sum of columns (off-diagonal
and main diagonal) yields the TC index, and the difference
between the sum of each off-diagonal column and the sum of
each off-diagonal row demonstrates net connectedness.

The results show that the TCI is 73.66%, indicating that the
indexes studied are highly interconnected. More specifically,
74% of the total variance of forecast errors is explained by
spillover shocks across the indexes studied, while only 26% is
explained by idiosyncratic industry-specific shocks. Looking at
“contribution to,” we find that disruptive technologies are the
highest transmitters of spillover (84.44%) followed by AI and
robotics (80.91%). The transmitter of the fewest shocks is
cybersecurity with 56.51%. In the “from” column, fintech and
AI and robotics are the largest recipients of spillover from the
other markets in the system, 74.26%, and the recipient of the
least spillover is cybersecurity, with 71.57%. The net spillovers
(last line of Table 2) are positive for all indexes, except QNET
and NQCYBR, suggesting that these two indexes are net re-
ceivers of spillovers, being influenced more than they influence
other markets, whereas the rest are net transmitters of spill-
overs. NYDTB is the major net transmitter (10.06%), trans-
mitting spillovers to all indexes, followed by NQROBO
(6.15%), while NQCYBR is a major net receiver (−15.05%).
Interestingly, fintech is a transmitter whereas blockchain plays
only a minor role (1.63%).

5.1.2. Network visualization
To understand the impact of turbulent events and how a

market can play different roles in Vto account for the
pandemic, and February 24, 2022, to account for the Russia-
Ukraine conflict). Thus, the sample is divided into periods
before COVID, during COVID, and during the conflict in
Ukraine. In the network plot, the direction and thickness of the
arrows represent spillover direction and strength, respectively.
Fig. 3 shows that, in the pre-COVID period, NYDTB,
NQROBO, and STXFTV are the main transmitters of shocks,
mainly to NQCYBR. The latter receives shocks from all in-
dexes. During the pandemic, NYDTB maintains its main role
as a transmitter mainly to NQCYBR, QNET, and RSBLCN.
The role of TXFTV as a transmitter increases during the
pandemic, whereas NQROBO's role declines. However, all
three indexes transmit shocks to NQCYBR, QNET, and
960
RSBLCN. During the Russian-Ukraine conflict, network
connectedness is different. Although NYDTB remains the main
transmitter, the role of STXTV increases and that of RSBLCN
reverses, becoming a main transmitter during the war in
Ukraine. Moreover, the war creates a strong pairwise connec-
tion between QNET and NQCYBR.

The results show that during stressful periods the role of the
disruptive technologies index (NYDTB) and cybersecurity
index (NQCYBR) remains the same, but other relationships
changed. However, the pandemic and the war have different
impacts on connectedness, indicating that connectedness de-
pends not only on the crisis but on the nature of the crisis.
Whereas the pandemic was a health crisis before turning into
an unprecedented economic crisis, which created higher

mailto:Image of Fig. 3|tif
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uncertainty and ambiguity and increased dependence on tech-
nology, the war in Ukraine is mainly a geopolitical risk, pre-
senting a unique challenge. The conflict could have a more
pronounced effect on energy and global financial markets,
given Russia's significant role in the energy market and the
global economy.

5.1.3. Dynamic connectedness
The average connectedness results can obscure the impact of

a single incident or a big shock on connectedness. As a result, it
is important to employ dynamic or time-variant total connect-
edness to investigate the development of TCI over time, as
shown in Fig. 4. The figures for TCI between 2018 and the end
of 2019 can be regarded as relatively stable. A slightly changing
trend appeared when TCI was between approximately 65% and
78%. After the pandemic began, the index trended upward at the
end of 2019, hitting its apex (80%) around March 2020, indi-
cating that the pandemic significantly affected connectedness
between those indexes. The index started to rapidly decline until
the end of 2021, falling below 65%. These results are consistent
with previous studies by Chemka et al. (2021), Disli et al.
(2021), and Guo et al. (2021), which also find evidence of
increased volatility in times of crisis followed by a decline in
volatility over time. However, the Russian invasion of Ukraine
led to another increase in connectedness of approximately 75%
at the end of the period. Thus, the results support the crisis effect
and are consistent with market contagion, in which crisis gen-
erates large connectedness.
5.2. Net connectedness
Next, we investigate the dynamic patterns of net connect-
edness in the markets studied, in order to determine whether a
market's role as a net transmitter or receiver of shocks changes
over time in comparison to other markets. The findings are
Fig. 4. Dynamic total spillovers in the time domain.
Notes: This figure displays dynamic volatility connectedness among six FIR indice
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presented in Fig. 5, and the main results are as follows. First, the
cybersecurity index remains a receiver of shocks from the five
indexes throughout the full period studied. This suggests that the
cybersecurity index is more reactive than proactive in
responding to external shocks. Second, the disruptive technol-
ogies index is a transmitter of shocks throughout the period.
This implies that the disruptive technologies index is not only
affected by external shocks but also capable of transmitting
shocks to other markets, possibly due to its innovative nature.
The internet index is mostly a net receiver, except for a few
instances in which it is a net transmitter. However, during the
Russian-Ukraine war, it becomes a net transmitter perhaps due
to the potential impact of the war on the online and digital in-
dustries, which are closely related to the internet index. The AI
and robotics index is a net transmitter during most of the period.
This could be because AI and robotics are rapidly growing in-
dustries that may be disrupting other markets or because the
index represents companies with high-tech capabilities so they
can adapt quickly to changes in the market. The fintech index
plays an alternating role, switching between net transmitter and
net receiver in several instances. This may be due to the rela-
tively new and evolving nature of the fintech industry, which is
still adapting to changes in the market and may not have a well-
defined role as a transmitter or receiver of shocks. Finally, the
blockchain index shows no persistent role as a transmitter or
receiver of shocks, but in recent years it has become a net
transmitter, especially during the Russian-Ukraine war. This
may be due to the potential impact of the war on digital currency
and the use of blockchain technology in financial transactions.
Overall, our analysis suggests that the role of a market as a net
transmitter or receiver of shocks in the system is not fixed but,
rather, depends on the time interval and the nature of the market.
Our findings may be useful for investors and policy makers in
understanding the interconnectedness of markets and potential
risks and opportunities for investment.
s using DCC-GARCH approach.

mailto:Image of Fig. 4|tif


Fig. 5. Net spillovers in the time domain.
Notes: This figure illustrates the dynamic net spillovers for each FIR index over time, with positive values indicating net transmitters and negative values indicating
net receivers.
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5.3. Frequency connectedness

5.3.1. Static connectedness
We advance our analysis by investigating the spillover ef-

fects between the FIR assets at various frequencies. This
decomposition accounts for market participants’ diverse ex-
pectations and desires across different time horizons. To ach-
ieve this, we divide our analysis into three different timeframes.
First, we define the timeframe of short-term analysis as one to
five trading days. This timeframe is selected because conven-
tional trading typically takes place five days a week, which is a
reasonable time needed for investors to restructure or rebalance
their portfolios. By analyzing the short-term dynamics, we can
observe how the FIR assets are affected by shocks in the
market occur over several days. Second, we examine the
medium-term analysis, which covers a period from 5 to 20
trading days, corresponding to approximately one month, and
can be used to capture medium-term fluctuations in the market.
Finally, we examine the long-term analysis, which covers a
period of 20 or more trading days. This timeframe corresponds
to more than one month and can be used to capture long-term
trends in the market. By analyzing the long-term dynamics, we
can observe how the FIR assets are affected by fundamental
changes in the market, such as changes in government policy
or major technological advancements. Table 3 shows the
volatility connectedness for the short-, medium-, and long-term
horizons, respectively, following BK. By examining the spill-
over effects between the FIR assets at different frequencies, we
provide investors and policy makers with a more complete
understanding of the dynamics of the market and potential risks
and opportunities for investment.

The highest total volatility transmission is 37.68%. The re-
sults suggest that the FIR assets are not highly interconnected,
with limited transmission of volatility among them. This is
962
contrary to expectations, given significant technological overlap
among assets. However, the lower level of interconnectivity is
consistent with the notion that the assets have different value
drivers and market dynamics. Moreover, the spillover effects
among the FIR assets are not uniform across the different time
horizons. Specifically, volatility transmission is higher in the
short term than in the medium and long term, which indicates
that market participants' expectations and desires vary across
different time frames. For instance, volatility spillover in the first
band is 37.68%, which falls to 16.66% and 19.40% in the
second and third bands, respectively. Another key finding is that
the proportion of contribution or receipt of spillover declines in
the long term than in the short term. This indicates that shocks
are quickly absorbed into the market, and their effects tend to
dissipate over time. These results are consistent with the efficient
market hypothesis such that asset prices fully reflect all infor-
mation in the short term (Fama, 1998). Overall, our findings
highlight the importance of considering the time horizon in
monitoring market spillovers and optimizing portfolio allocation
and risk management strategies. The multihorizon approach can
offer a more comprehensive understanding of market dynamics,
which can help investors and policy makers make more
informed decisions about asset allocation, risk management, and
regulatory policies.

A closer look shows that certain indexes play a more
dominant role in terms of transmitting or receiving volatility
across different time horizons. In the short term, the disruptive
technologies and fintech indexes are net transmitters of vola-
tility, whereas the internet and cybersecurity indexes are net
receivers. The blockchain and AI and robotics indexes have a
relatively neutral role, transmitting and receiving a similar
number of shocks. However, we observe some changes in the
interconnection of indexes over time. For instance, the disrup-
tive technology index continues to be the main transmitter at all

mailto:Image of Fig. 5|tif


Table 3
Volatility spillovers in the frequency domain.

Panel A: Short term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 16.34 7.56 7.76 7.85 7.95 7.13 38.25

NQCYBR 8.35 19.1 7.47 6.43 7.44 5.92 35.61

NQROBO 7.34 6.31 15.08 9.79 8.15 8.65 40.23

NYDTB 6.93 5.03 9.15 14.18 8.98 8.6 38.69

STXFTV 6.88 5.86 7.47 8.72 14.31 7.06 35.99

RSBLCN 6.81 4.98 8.7 9.13 7.66 15.56 37.29

TO 36.31 29.74 40.55 41.93 40.18 37.36 226.06

Net −1.94 −5.87 0.31 3.23 4.19 0.07 TCI = 37.68

Panel B: Medium term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 4.92 2.75 3.49 3.68 3.43 3.35 16.69

NQCYBR 3.4 4.67 3.38 3.57 3.44 3.07 16.85

NQROBO 2.92 2.33 4.88 4.04 3.26 3.64 16.19

NYDTB 2.93 2.22 3.84 5.39 3.83 3.44 16.25

STXFTV 3.13 2.55 3.75 4.45 5.46 3.47 17.35

RSBLCN 3.07 2.23 3.88 3.95 3.49 5.59 16.62

TO 15.44 12.08 18.33 19.68 17.45 16.96 99.95

Net −1.25 −4.77 2.15 3.43 0.1 0.35 TCI = 16.66

Panel C: Long term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 4.58 3.04 4.06 4.39 3.9 3.83 19.22

NQCYBR 3.49 4.4 3.99 4.32 3.97 3.6 19.37

NQROBO 3.05 2.65 5.25 4.74 3.76 4.18 18.37

NYDTB 3.27 2.75 4.61 6.15 4.57 4.13 19.33

STXFTV 3.47 3.1 4.65 5.47 5.94 4.26 20.95

RSBLCN 3.21 2.63 4.58 4.75 3.97 5.81 19.14

TO 16.48 14.17 21.89 23.67 20.17 20 116.38

Net −2.74 −5.2 3.52 4.34 −0.78 0.87 TCI = 19.4

Notes: This table presents the results of static volatility spillovers among six FIR indexes in the frequency domain using Baruník and Křehlík's methodology (2018),
with three panels labeled A, B, and C. Panel A represents the short term (1–5 days), panel B represents the medium term (5–20 days), and panel C represents the long
term (20 days or more).
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frequencies, and its transmission increases in the long term from
3.23% to 4.34%. Disruptive technologies are typically charac-
terized by the potential to radically transform existing industries
and create new ones. These technologies often have the potential
to create significant volatility in the markets as investors assess
their potential impact on companies and industries. As a result,
the disruptive technology index is likely to continue to transmit
volatility to other assets in the short- and long-term investment
horizons. Additionally, as the underlying technologies and in-
dustries continue to evolve and mature, the potential for vola-
tility transmission may continue to increase, reinforcing the
index's role as a main transmitter of spillover. Similarly,
blockchain maintains its role as a minor transmitter at all fre-
quencies. Its impact on the overall transmission of volatility is
smaller than that of other assets, confirming the role of Bitcoin
as a hedging instrument (Arouri et al., 2015; Baur & Lucey,
2010; Selmi et al., 2018; Urquhart & Zhang, 2019). However,
fintech's role as the main transmitter declines over time because
the shocks transmitted by fintech tend to diminish, so in the long
run it becomes a net receiver, and the effects become less sig-
nificant as the market becomes more efficient and stable. This
result is somewhat consistent with the findings of Le, Yarovaya,
and Nasir (2021), which suggests that fintech assets consistently
963
transmit shocks to other assets. In addition, the fintech industry
is highly dynamic and innovative, with frequent changes in its
market structure, regulations, and technological advancements.
As a result, short-term spillovers from fintech may be more
pronounced, as market participants adjust to new information
and market developments. Additionally, as other sectors of the
economy, such as disruptive technologies, continue to evolve
and drive market dynamics, the relative importance of fintech
may decline, and it may become more of a net receiver of
spillovers.

Meanwhile, the role of the internet and cybersecurity as
main receivers remains consistent across all frequencies,
suggesting that they tend to be influenced by external factors
and events that can trigger uncertainty and risk in the market.
For example, cyberattacks and data breaches can affect the
performance and reputation of companies in the cybersecurity
sector, leading to a decline in their stock prices. Similarly,
changes in consumer behavior, such as increased online ac-
tivity or shifts in online shopping habits, can affect the per-
formance of companies in the internet sector. As a result,
these sectors tend to be more reactive to market shocks and
are more likely to receive spillover effects from other assets.
However, the importance of AI and robotics changes from a
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roughly neutral role in the short term to a net transmitter in
the medium and long term. In particular, its net transmission
increases from 0.31% in the short term to 2.15% and 3.52%
in the medium and long term, respectively. As AI and ro-
botics become more prevalent and integrated into various
industries, their impact on the broader market may become
more pronounced, leading to greater transmission of volatility
over time. Moreover, in the short term, although market
participants may be more focused on near-term factors, such
as earnings reports and other company-specific news, they
may begin to pay more attention to the broader macroeco-
nomic and technological trends as the time horizon lengthens.

These results suggest that investors and policy makers
should pay close attention to the specific characteristics of each
index, as they can significantly impact market dynamics and
transmission of volatility across different time horizons.
Additionally, it is important to regularly monitor and reassess
the role of each index, as it can change over time and affect
investment decisions and risk management strategies.
5.4. Network visualization
Appendix Figure A1 reports the network connectedness of
the sample by dividing it into three periods: pre-COVID,
during COVID, and the Russian-Ukraine war. In the pre-
COVID period, fintech was the main transmitter in the short
term, while disruptive technologies and AI and robotics were
the main transmitters in the medium and long term. During the
pandemic, the network connectedness slightly changes in the
short term with the disruptive technologies (AI and robotics)
index playing the role of the main transmitter in the short term
(medium and long term). However, during the Russian-Ukraine
war, network connectedness changed: fintech was the main
short-term transmitter, whereas internet and blockchain were
the main medium- and long-term transmitters. The results
suggest that connectedness is frequency dependent and support
the previous findings, showing that the pandemic and the
Russian-Ukraine war did not have the same impact on network
connectedness, indicating that the network's response to
different events can vary significantly.

The reasons for these findings include the changing business
and economic conditions associated with different events. For
example, before the COVID-19 pandemic, the fintech sector
was the main transmitter in the short term because it was
experiencing rapid growth and investment, and this led to
increased interconnectedness. Similarly, the disruptive tech-
nologies and AI and robotics sectors were the main transmitters
in the medium and long term because they were seen as having
long-term growth potential, and investors were willing to invest
in these areas. During the pandemic, short-term network
connectedness changed, so the disruptive technologies index
becomes the main transmitter. This could be because the
pandemic accelerated the adoption and development of tech-
nologies that could help people work and live remotely, such as
virtual meeting platforms and online collaboration tools. Then,
during the Russian-Ukraine war, network connectedness
changed again and in a different way. This is probably because
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the war disrupted global trade and supply chains, which led to
greater emphasis on digital and online technologies to facilitate
cross-border transactions and communication.
5.5. Dynamic frequency connectedness
Fig. 6 displays the frequency-based time-varying connect-
edness results, showing a high level of connectedness in the
short-run horizon but long-run connectedness for the majority of
the period. This observation reinforces our observation
regarding a higher level of connectedness in the short-run ho-
rizon in our network-based connectedness analysis (Table 3).
This is in line with previous research that suggests that market
shocks tend to have a more immediate and significant impact on
financial markets than on the longer term. This could be due to
the fact that market participants are more focused on short-term
horizons and react quickly to market news and events. However,
there are variations in the spillover, with a spike in long-term
connectedness to more than 70% during the pandemic, sug-
gesting an increase in market connectedness in periods of market
stress. The market conditions were particularly turbulent during
this period, which significantly changed the fundamental factors
that affect long-term connectedness. This could be due to
panicked decisions by investors, leading to a broader market
sell-off and higher volatility. However, the outbreak of the war
in Ukraine created a transitory factor, increasing connectedness
in the short term, consistent with Akhtaruzzaman et al. (2021),
Fassas (2020), Haddad et al. (2020), and Papadamou et al.
(2021), who found an upsurge in short-term connectedness
during periods of market stress. This suggests that the impact of
the conflict is more limited in scope and duration and does not
fundamentally alter the underlying factors that determine long-
term connectedness, indicating that the nature of volatility
spillovers is both time varying and frequency dependent, which
is consistent with the heterogeneous market hypothesis (Müller
et al., 1993). This hypothesis suggests that different market
participants have different trading strategies and time horizons,
which can result in heterogeneous responses to market shocks
and varying levels of connectedness over different time hori-
zons. Overall, the findings show that different events can create
both long-lasting and short-term effects on connectedness, and
the frequency of these events can impact the level of connect-
edness in the short and long run.

To further explain the spillover results, we estimate net
spillovers at various frequency levels (see Appendix
Figure A2). The spillover results show that the net trans-
mission and reception of volatility in the sample is highly
dependent on the frequency of the analysis. NYDTB (NQCYB)
is found to be a net transmitter (receiver) of volatility at all
frequencies, indicating consistent behavior across time hori-
zons. At the same time, STXFTX appears to be the primary
transmitter of volatility at shorter frequencies (1–4 days), but
its role varies at medium- and long-term frequencies. The
NQROBO index, however, is a net transmitter of volatility in
the medium and long term, but it becomes a net receiver after
the Russian invasion of Ukraine. These findings highlight the
time- and frequency-dependent role of each index in



Fig. 6. Dynamic total spillovers in the frequency domain.
Notes: This figure displays the dynamic TCI among six FIR indices in the frequency domain using Baruník and Křehlík's methodology (2018). The pink line
represents TCI at the short-term, and the blue and green lines represent TCI at the medium-term and long-term, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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transmitting volatility and indicate that the behavior of the
indexes is not uniform across different frequencies. The finding
that the role of each index is time and frequency dependent is
consistent with that of previous studies (Le, Abakah, & Tiwari,
2021). Thus, market participants need to be aware of the
changing nature of volatility spillovers and adjust their in-
vestment strategies accordingly. For example, during periods
of high short-term connectedness, it may be beneficial to focus
on high-frequency trading strategies that take advantage of
short-term price movements. Policy makers may implement
measures to reduce volatility and prevent panic selling. At the
same time, during periods of high long-term connectedness, it
may be more important to focus on long-term investment
strategies that take into account fundamental factors that affect
asset prices. Policy makers may need to focus on promoting
market transparency and ensuring that investors have access to
reliable information that allows them to make informed in-
vestment decisions.
5.6. Quantile connectedness

5.6.1. Average connectedness
Table 4 gives the results of the quantile vector autore-

gression (VAR)- based spillovers between the six indexes. It
reports the results for the transmissions for the median quantile
(τ = 0.5) in Panel A, which is used as a reference for
comparing the results of connectedness at the lower (τ = 0.05)
and upper (τ = 0.95) tails in Panels B and C, respectively.

The TCI at the median quantile, 77.76%, indicates significant
connectedness among the FIR assets. Disruptive technologies
(81.06%) and AI and robotics (79.66%) indexes are the highest
965
spillover transmitters, while cybersecurity (69.82%) is the lowest.
The “from” column shows high and close connectedness between
these assets, ranging from 77.17% to 79.16%. Disruptive tech-
nologies (81.82%) is the highest receiver, while cybersecurity
(75.42%) is the lowest. NQCYBR, NYDTB, QNET, and
RSBLCN are net recipients of spillovers, while NQROBO and
STXFTVare net transmitters of spillovers. Thesefindings suggest
thatfintech andAI and robotics can be used to forecast other assets
in the system. This analysis aligns with previous studies that also
find evidence of connectedness among technology-related assets
{Formatting Citation}. Our finding that fintech and AI and ro-
botics are net transmitters of spillovers is consistent with previous
research that identifies these sectors as sources of systemic risk.
The use of advanced technologies in thefinancial sector, including
fintech and AI, could lead to increased interconnectedness and
systemic risk (Li et al., 2020). The finding that cybersecurity is a
net receiver of spillovers is also consistent with previous research
that identifies this sector as vulnerable to systemic risk.

In Panels B and C, TCI is higher at extreme upper (81.69%)
and extreme lower (80.31%) tails that at the median (77.76%),
indicating a higher level of connectedness during extreme
market conditions. This highlights the importance of studying
connectedness at the tails for portfolio diversification. The “to”
connectedness varies across the extreme quantiles, and AI and
robotics (cybersecurity) have the highest (lowest) connected-
ness in the extreme lowest quantile, at 82.84% (77.78%), and
cybersecurity (blockchain) has the highest (lowest) connect-
edness in the extreme highest quantile, at 83.35% (79.66%).
The “from” connectedness also varies across the extreme
quantiles, in which cybersecurity has the lowest connectedness
in the extreme highest quantile (78.90%), and AI and robotics

mailto:Image of Fig. 6|tif


Table 4
Volatility spillovers based on the quantile VAR.

Panel A: Median quantile τ = 0.5

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 22.94 15.41 15.34 15.6 15.86 14.85 77.06

NQCYBR 16.3 24.58 15.3 14.35 15.84 13.63 75.42

NQROBO 14.96 14.04 22.25 17.18 15.45 16.13 77.75

NYDTB 14.94 16.97 16.92 22.18 16.25 16.74 81.82

STXFTV 15.51 14.62 15.56 16.62 22.47 15.23 77.53

RSBLCN 14.82 12.8 16.54 17.31 15.49 23.05 76.95

TO 76.52 69.82 79.66 81.06 78.89 76.59 466.53

NET −0.54 −1.6 1.9 −1.23 1.36 −0.36 TCI = 77.76

Panel B: Extreme lower quantile τ = 0.05

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 20 15.89 15.67 15.97 16.16 16.31 80

NQCYBR 16.45 19.44 15.8 15.84 16.25 16.22 80.56

NQROBO 14.54 15.55 18.63 16.36 16.13 16.79 79.37

NYDTB 16.17 15.36 16.38 18.92 16.05 17.12 81.08

STXFTV 16.24 15.6 18.85 16.33 19.28 12.7 79.72

RSBLCN 16.65 15.37 16.13 16.8 16.2 18.85 81.15

TO 80.04 77.78 82.84 81.3 80.79 79.14 481.88

NET 0.04 −2.79 3.46 0.21 1.08 −2.01 TCI = 80.31

Panel C: Extreme upper quantile τ = 0.95

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN FROM

QNET 19.66 16.87 14.97 16.46 16.17 15.88 80.34

NQCYBR 16.41 21.1 15.1 16.09 16.18 15.12 78.9

NQROBO 15.98 16.7 18.29 16.49 16.23 16.31 81.71

NYDTB 18.9 16.44 15.58 19.29 16.52 16.26 83.71

STXFTV 15.69 17.06 15.05 16.67 19.43 16.09 80.57

RSBLCN 15.9 16.28 19.41 16.8 16.52 19.08 84.92

TO 82.89 83.35 80.12 82.51 81.62 79.66 490.15

NET 2.55 4.45 −1.59 −2.79 1.05 −5.25 TCI = 81.69

Notes: This table presents the results of static volatility spillovers among six FIR indexes based on the quantile VAR, with three panels labeled A, B, and C. Panel A
represents the median quantile (τ = 0.5), panel B represents the extreme lower quantile (τ = 0.05), and panel represents the extreme upper quantile (τ = 0.95).
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have the lowest connectedness in the extreme lowest quantile
(79.37%). The net transmitters and receivers also vary across
the extreme quantiles, and fintech and internet are net trans-
mitters in both quantiles, AI and robotics and disruptive tech-
nologies in the lowest quantile, and cybersecurity in the highest
quantile. The net receivers are blockchain in both quantiles,
cybersecurity in the lowest quantile, and AI and robotics and
disruptive technologies in the highest quantile. Our study
suggests that the internet (fintech) has a more significant role as
a net transmitter in the highest quantile, whereas cybersecurity,
AI and robotics, and disruptive technologies change their role
depending on the tail distribution. Blockchain is a net receiver
with a higher magnitude at the highest quantile.

The finding that fintech is a net transmitter in all markets, and
hence an influential asset market, has implications for portfolio
management and risk diversification strategies. It suggests that
an allocation to fintech could provide a way to hedge against
risks in other FIR assets and that changes in fintech market
conditions may be a leading indicator of changes in other FIR
assets. This is consistent with previous research that highlights
the potential benefits of investing in fintech as a way of
accessing exposure to technology-driven innovation and
disruption (Feng et al., 2019; Li et al., 2020).
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Furthermore, the finding that net recipients and transmitters
differ across quantiles highlights the importance of studying
connectedness at different levels of market stress, such as
extreme upper and lower tails, to provide a more nuanced view
of risk and diversification (Baur & Lucey, 2010). This is
particularly relevant in the context of FIR assets, which are
likely to be subject to significant volatility and uncertainty as a
result of ongoing technological change and disruption.

The findings highlight the importance of considering tail risk
when analyzing market interconnectedness, consistent with pre-
vious research {Formatting Citation}, who found that tail risk, or
risk associated with extreme market movements, could be an
important indicator of systemic risk. This suggests that focusing
only on conditional mean-based estimators is not sufficient for
understanding spillovers associated with extreme events. More-
over, the time-varying nature of the connectedness measures in
the tails is different from that observed at the conditional mean or
median. Investors should consider the unique characteristics and
interconnectedness of FIR assets when constructing portfolios
and managing risks. By understanding the net spillovers and
transmission patterns among these assets, investors can better
diversify their portfolios and potentially identify leading in-
dicators of changes in market conditions.
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5.6.2. Dynamic connectedness
Given that the average connectedness findings are “static”

and may fail to portray the underlying dynamics and the impact
of some political, economic, or other events on network
connectedness, we turn to the “dynamic” total connectedness
results. Fig. 7 shows the evolution of TCI over time and in
response to events. The results demonstrate that TCI fluctuates
widely, ranging from 55% to almost 90%, and is time varying
and event dependent. Thus, significant events may have a sig-
nificant impact on the network's volatility dynamics and the
evolution of connectedness over time. The peaks in TCI are at
the end of 2018, the end of 2019, and May 2020, and the
troughs are in October 2019, December 2020, June 2021, and
November 2021. These fluctuations may be influenced by sig-
nificant events, such as the trade war between China and the US
in 2018, the COVID-19 pandemic in early 2020, and the Rus-
sia's invasion of Ukraine in February 2022. Regardless of the
circumstances, the primary goal is to depict the extent to which
these six markets comove over time. Dynamic connectedness
appears to be rather high, showing that these markets move in
proximity. In this context, there is a high likelihood that
contagion dynamics will develop in various markets.

An important finding can be obtained by comparing the
dynamic connectedness across various quantiles. First, the
dynamic total connectedness values are typically higher in the
middle quartile (50%) than in the first and third quartiles,
indicating that assets in this range tend to comove more closely
over time. Second, the green and pink lines do not move in
equal magnitude, suggesting the presence of an asymmetric
relationship. Thus, the impact of volatility shocks on total
connectedness depends on the type of shocks and the time
interval. For example, after the outbreak of the pandemic, the
Fig. 7. Dynamic Extreme Total Spillovers
Notes: This figure displays the dynamic extreme TCI. The blue line represents TCI
quantiles, respectively. (For interpretation of the references to colour in this figure
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green line shows higher levels of connectedness, whereas after
Russia initiated the war in Ukraine, the pink line is at a higher
level. The results support the findings by Bouri et al. (2021a,
2021b) that the time variation in TCI between the lower and
upper tails demonstrates asymmetric behavior. Overall, the
findings suggest a high likelihood that contagion dynamics
develop across various markets. Our results align with those in
other studies (Abakah et al., 2022; Adekoya et al., 2022; Bouri
et al., 2021a, 2021b), highlighting the importance of consid-
ering asymmetric relationships among markets when analyzing
market connectedness and spillover effects.

The net directional dynamic connectedness findings are re-
ported in Appendix Figure A3. As in the previous analysis, our
findings are presented for all three quantiles: the 5th quantile
(pink line), the 50th quantile (blue line), and the 95th quantile
(green line). Furthermore, positive values correspond to net
transmitters, whereas negative values correspond to net re-
cipients of volatility shocks. Two points are important to
analyze: (1) whether the role of assets shifts between net
transmitters and net receivers depending on the time interval;
and (2) whether the assets transmit (receive) more in some
quantiles than others and may switch roles across quantiles.
Our results show that at higher quantiles, the net transmission
mechanism is more pronounced. Irrespective of the quantile
under investigation, the results indicate a volatile transmission
mechanism. All indexes play both roles during this period. The
net connectedness of these indexes are dynamics (i.e., across
time and quantiles).

5.6.3. Network visualization
Network diagrams in the middle, lower, and upper quantiles

are used to determine the intensity, direction, and structure of
at the median, and the pink and green lines represent TCI at the 5th and 95th
legend, the reader is referred to the Web version of this article.)

mailto:Image of Fig. 7|tif
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the information spillover across the FIR assets (Appendix
Figure A4). They show the intensity and direction of infor-
mation spillover between the transmitters and receivers. At the
lowest quantile, the results show that the largest information
transmitters are AI and robotics and fintech, with a strong
connection from fintech to blockchain. At the highest quantile,
the main transmitters are AI and robotics at the lowest quantile
and cybersecurity, with a strong connection from AI and ro-
botics to blockchain. The results for spillovers at the middle
quantile are similar to those at the highest quantile, and
cybersecurity and AI and robotics are the main transmitters.
However, cybersecurity is strongly connected with disruptive
technologies.

The results of the study demonstrate asymmetrical spillover
dependence on quantiles, suggesting a structural change in the
network topology, with different behavior for positive and
negative shocks. The study also highlights the unsuitability of
using the conditional median quantile to assess the level of
connectedness associated with substantial positive or negative
shocks, which is consistent with prior research; Baumöhl
(2019) and Bouri et al. (2020) also emphasize the need for
regulatory surveillance to consider tail-based dependence.

6. Robustness tests

To confirm the robustness of our findings, we estimate
connectedness for different forecast horizons. Specifically, we
use a 20-day-ahead forecast error, instead of 10 days. The re-
sults, presented in Appendix Figures A5 and A.6, show that the
same findings regarding dynamic and net connectedness under
the three models (time, frequency, and quantile) still hold under
this alternative forecast horizon. This suggests that the results
are not sensitive to the choice of forecast horizon and are
robust.

Moreover, it is important to include global factors in a
connectedness study as a robustness test because financial
markets are highly interconnected and global in nature. The
transmission of shocks and risks across borders can have
significant impacts on asset returns and financial stability.
Therefore, the inclusion of global factors, such as overall
stock markets, commodity prices, and global risk indexes,
makes our examination of how shocks and risks are trans-
mitted across various asset classes and regions more
comprehensive. Therefore, we add five global variables: a
stock index proxied by Nasdaq, bonds, gold, oil, and the
Volatility Index. Appendix Table A2, A3, and A4 provide
robust results using the time, frequency, and quantile models,
even with the inclusion of global variables. The transmission
of volatility is greater in the short term than the medium and
long term, and the TCI is higher during extreme market
conditions than at the median. Notably, all global variables,
except for the stock index, are primary receivers, and
NQROB, NYDTB, STXFTV, and RSBLCN have positive net
spillovers. Additionally, Appendix Figure A7 confirms the
robustness of our dynamic connectedness findings under the
three models (time, frequency, and quantile) with the inclu-
sion of global variables.
968
7. Conclusion and implications

This paper builds on the existing literature on volatility
spillovers across financial markets and examines the degree of
connectedness across the FIR assets using time, frequency, and
quantile connectedness. In doing so, this groundbreaking study
adds to the rapidly expanding body of knowledge regarding AI,
fintech, and blockchain.

Our results show that, using DCC-GARCH, there is a high
degree of connectedness and increased contagion during crises. In
a turbulent period, these assets have a high probability of suffering
substantial losses, implying a lack of diversification among them.

The analysis of frequency-based connectedness reveals two
main findings: first, connectedness is stronger at higher fre-
quencies, supporting the efficient market theory, and, second,
the net transmitter of volatility depends on the frequency.
Interlinkages are thus dependent on time and frequency,
consistent with the heterogeneous market concept (Müller et al.,
1993). These results suggest that diversification benefits differ
across frequencies, with less diversification at higher fre-
quencies, meaning that holding these assets for a long time may
reduce risk, whereas trading them in the short term may increase
it because of their rising volatility. Moreover, the results show
that whereas the Russian-Ukraine conflict is a transient factor,
the pandemic significantly altered the fundamental factors.

Using the quantile connectedness method by Ando et al.
(2022), total connectedness is found to be stronger during
extreme (bearish or bullish) market conditions than normal
market conditions. Fintech is a net transmitter in all markets,
suggesting that investors should keep an eye on its movements
to forecast the behavior of other FIR assets. Our analysis also
suggests that spillovers vary significantly over time, and tail-
based connectedness should be considered in addition to
median-based connectedness.

Our results offer potential implications and insights for
investors, portfolio managers, and policy makers regarding
portfolio allocation, forecasting, and risk management in
different market conditions. Investors and portfolio managers
are advised not to combine these assets because of the
prevalence of some risks. Such a portfolio is particularly
vulnerable to large joint losses during market turbulence.
The existence of time and frequency-dependent interactions
between the FIR assets emphasizes the significance of dy-
namic portfolio changes based on calendar time and invest-
ment horizons. Investors considering these assets should be
aware that the increased interconnectedness in the wake of
the outbreak of COVID-19 will reduce the benefits of
hedging and diversification. Contagion theory, which holds
that asset values experience sudden shifts when unexpected
exogenous shocks occur, is supported by increased cross-
market correlations during periods of turmoil. Therefore,
investors should modify their portfolios during crises
because connectedness rises, and the diversification benefits
decline. Our findings recommend a buy-and-hold investment
approach to reduce risks related to volatility spillovers
because long-term volatility transmission is lower. Investors
who are aware of tail spillovers should also keep an eye on
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them during bull and bear markets to develop the best
possible investment plans.

By understanding the interrelationship, policy makers and
regulators should develop policy measures to avoid contagion
risk in markets. They should take the necessary steps to reduce
the danger of market contagion. Market authorities could
implement measures to reduce shocks from other markets using
our findings on the propagation, intensity, and directions of
spillover during bearish and bullish market scenarios.
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Table A.1
Description of Indices.

Index Abbr. Coverage

Internet Index QNET The Nasdaq Internet Index is a modified market

and most liquid US-listed companies engaged in

New York Stock Exchange (NYSE), or the NY

services, including internet software, internet a

internet retail commerce.

Cybersecurity
Index

NQCYBR The Nasdaq CTA Cybersecurity IndexSM is de

segment of the technology and industrial sectors

and managing security protocols applied to priva

and network operations.

Artificial
Intelligence
(AI) and
Robotics Index

NQROBO The Nasdaq CTA Artificial Intelligence and Rob

artificial intelligence and robotics segment of th

includes companies in artificial intelligence or

Disruptive
Technologies
Index

NYDTB The Disruptive Technologies Index is designed

market and value network.

FinTech STXFTV The Global Fintech Index consists of companie

technology to change how financial services are

financial services providers by improving effici

progresses, and its support from governments an

long-term trend toward fintech, which may hav

Blockchain Index RSBLCN The Nasdaq Blockchain Economy Index is des

resources to developing, researching, supporting

by others.

Table A.2
Volatility spillovers in the time domain among FIR assets and global variables.

QNET NQCYBR NQROBO NYDTB STXFTV RSB

QNET 19.94 9.42 11.87 11.82 11.38 10.7

NQCYBR 11.85 22.68 11.94 11.15 11.5 9.4

NQROBO 10.77 8.61 20.17 14.42 11.78 12.5

NYDTB 10.01 7.1 13.15 18.86 12.56 11.7

STXFTV 10.95 8.39 12.37 13.92 19.95 11.2

RSBLCN 10.71 7.39 13.21 13.43 11.5 21.1

STOCK 13.54 8.7 11.97 14.71 11.6 10.4

GOLD 3.9 3.63 4.51 5.62 5.4 4.8

OIL 3.67 3.47 5.72 6.48 5.29 4.8

VIX 7.8 5.56 7.51 11.64 8.75 7.7

BOND 4.46 3.73 4.89 6.24 5.79 7.2

TO 87.67 66.01 97.13 109.42 95.55 90.9

NET 7.61 −11.32 17.3 28.28 15.5 12.0

Notes: This table presents the volatility spillover results among six FIR indices an
GARCH Connectedness approach. Values in the i-th row of the j-th column indica
Net denotes the net spillover for each individual market.
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Appendix
capitalization-weighted index designed to track the performance of the largest

internet-related businesses and that are listed on the Nasdaq Stock Market, the

SE Amex. It includes companies engaged in a broad range of internet-related

ccess providers, internet search engines, web hosting, website design, and

signed to track the performance of companies engaged in the cybersecurity

. The index includes companies primarily involved in building, implementing,

te and public networks, computers and mobile devices to protect data integrity

otics Index is designed to track the performance of companies engaged in the

e technology, industrial, medical, and other economic sectors. The index

robotics that are classified as either enablers, engagers, or enhancers.

to track the performance of companies that are likely to disrupt an existing

s associated with financial technology (fintech). These businesses use

offered to end customers, and/or to boost the competitive edge of traditional

encies and driving new products and solutions. As the evolution of fintech

d regulators increases, these companies are well positioned to benefit from the

e a substantial impact on their revenues in the future.

igned to measure the returns of companies that are committing material

, innovating, or using blockchain technology for their proprietary use or for use

LCN STOCK GOLD OIL VIX BOND FROM

5 15.29 1.07 1.38 5.14 1.94 80.06

5 12.59 1.17 1.82 3.93 1.91 77.32

5 12.26 1.11 1.63 4.68 2.02 79.83

7 14.25 1.5 1.97 6.47 2.38 81.14

8 12.07 1.46 1.73 5.45 2.44 80.05

6 11.45 1.43 1.6 5.01 3.1 78.84

3 18.12 1.31 1.58 6.22 1.82 81.88

2 4.55 58.49 2.94 1.91 4.23 41.51

4.8 2.32 56.16 2.43 4.85 43.84

7 11.2 0.68 1.86 33.32 3.91 66.68

8 4.79 3.02 4.14 5.59 50.06 49.94

103.25 15.08 20.65 46.83 28.6 761.1

6 21.37 −26.43 −23.18 −19.85 −21.33 TCI = 69.19

d five global variables, including stock, gold, oil, bond and VIX, using DCC-
te the strength of the spill-over effect from the i-th market to the j-th market.



Table A.3
Volatility spillovers in the frequency domain among FIR assets and global variables.

Panel A: Short-term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 12.45 5.22 6.09 5.96 5.94 5.53 8.9 0.61 0.72 2.8 0.75 42.5

NQCYBR 6.16 15.29 5.99 5.02 5.61 4.3 6.36 0.61 1.02 2.02 0.78 37.85

NQROBO 5.89 4.85 12.18 7.83 6.34 6.76 6.77 0.52 0.86 2.71 0.76 43.28

NYDTB 5.3 3.6 7.04 10.68 6.56 6.45 8.01 0.81 1.04 3.92 1 43.73

STXFTV 5.41 4.3 5.93 6.73 11.23 5.51 6.03 0.72 0.9 2.85 0.95 39.33

RSBLCN 5.64 3.76 7 7.32 6.16 12.66 6.14 0.68 0.97 2.96 1.64 42.29

STOCK 7.75 4.73 6.16 7.8 5.86 5.29 10.94 0.75 0.83 3.67 0.69 43.53

GOLD 2.09 1.95 2.14 2.76 2.46 1.88 2.57 44.46 1.78 1.19 2.48 21.29

OIL 1.19 1.13 1.86 2.13 1.77 1.43 1.58 1.41 41.93 1.33 2.5 16.31

VIX 5.35 3.59 5.14 8.16 6.17 5.72 8.07 0.5 1.2 23.63 2.57 46.48

BOND 1.81 1.58 2.1 2.69 2.47 3.72 1.98 2 2.41 3.42 35.07 24.18

TO 46.59 34.73 49.46 56.4 49.33 46.58 56.41 8.59 11.73 26.86 14.11 400.78

NET 4.09 −3.13 6.17 12.67 10 4.29 12.88 −12.71 −4.58 −19.62 −10.07 TCI = 36.43

Panel B: Medium-term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 3.75 1.88 2.66 2.67 2.47 2.33 3.03 0.2 0.32 1.14 0.52 17.22

NQCYBR 2.6 3.54 2.8 2.87 2.7 2.22 2.88 0.24 0.43 0.9 0.54 18.17

NQROBO 2.27 1.66 3.89 3.09 2.44 2.55 2.52 0.24 0.37 1 0.56 16.71

NYDTB 2.13 1.48 2.73 3.8 2.68 2.23 2.85 0.31 0.47 1.22 0.56 16.67

STXFTV 2.52 1.79 2.89 3.25 4 2.45 2.67 0.32 0.4 1.24 0.63 18.15

RSBLCN 2.33 1.54 2.77 2.71 2.37 3.91 2.37 0.32 0.3 0.96 0.56 16.22

STOCK 2.72 1.73 2.59 3.15 2.53 2.23 3.37 0.25 0.37 1.24 0.5 17.31

GOLD 0.77 0.72 1.03 1.24 1.27 1.15 0.85 7.65 0.63 0.27 0.73 8.66

OIL 1.04 1 1.73 1.85 1.42 1.35 1.32 0.41 8.03 0.55 1.2 11.9

VIX 1.37 1.04 1.26 1.93 1.4 1.12 1.73 0.09 0.43 5.92 0.76 11.13

BOND 1.08 0.94 1.16 1.47 1.35 1.44 1.14 0.42 0.87 1.05 7.63 10.91

TO 18.84 13.78 21.63 24.23 20.62 19.06 21.37 2.81 4.58 9.56 6.57 163.05

NET 1.61 −4.39 4.92 7.56 2.47 2.84 4.07 −5.85 −7.32 −1.57 −4.35 TCI = 14.82

Panel C: Long-term

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 3.72 2.19 3.16 3.25 3.04 2.8 3.36 0.3 0.4 1.12 0.74 20.36

NQCYBR 3.02 3.49 3.25 3.44 3.33 2.88 3.34 0.36 0.44 0.96 0.65 21.66

NQROBO 2.63 2 4.1 3.58 3.01 3.13 2.94 0.36 0.45 0.99 0.73 19.83

NYDTB 2.64 1.98 3.31 4.35 3.36 2.95 3.39 0.43 0.57 1.28 0.87 20.77

STXFTV 3.03 2.29 3.57 4.01 4.61 3.22 3.33 0.46 0.52 1.3 0.93 22.67

RSBLCN 2.85 1.97 3.41 3.43 3.02 4.43 2.94 0.46 0.41 1.07 0.92 20.49

STOCK 3.06 2.16 3.2 3.81 3.23 2.81 3.76 0.38 0.48 1.25 0.73 21.1

GOLD 1.22 1.01 1.54 1.84 1.86 1.93 1.35 5.09 0.64 0.38 1.06 12.85

OIL 1.55 1.39 2.22 2.5 2.13 2.04 1.91 0.48 5.6 0.62 1.4 16.24

VIX 1.04 0.88 1.04 1.56 1.18 0.88 1.38 0.09 0.31 3.78 0.72 9.07

BOND 1.71 1.29 1.78 2.26 2.12 2.19 1.85 0.45 0.86 1.24 6.45 15.76

TO 22.75 17.18 26.48 29.68 26.28 24.82 25.79 3.78 5.07 10.21 8.75 200.8

NET 2.39 −4.49 6.65 8.92 3.61 4.34 4.69 −9.07 −11.17 1.13 −7.01 TCI = 18.25

Notes: This table presents the results of static volatility spillovers among six FIR indexes and five global variables, including stock, gold, oil, bond and VIX in the
frequency domain using Baruník and Křehlík's methodology (2018), with three panels labeled A, B, and C. Panel A represents the short term (1–5 days), panel B
represents the medium term (5–20 days), and panel C represents the long term (20 days or more).
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Table A.4
Volatility spillovers based on the quantile VAR among FIR assets and global variables.

Panel A: Median quantile τ = 0.5

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 21.23 9.08 8.97 9.64 9.22 9.04 13.18 4.36 4.16 6.75 4.36 78.77

NQCYBR 10.09 24.85 8.58 7.92 9.28 7.78 10.07 4.68 4.69 7.03 5.02 75.15

NQROBO 9.22 7.99 20.98 11.41 9.04 10.75 10.8 4.36 4.04 6.9 4.49 79.02

NYDTB 8.64 6.56 10.81 19.98 9.28 10.55 12.16 4.41 4.41 8.62 4.58 80.02

STXFTV 9.5 8.3 9.14 10.51 21.34 9.46 10.66 4.47 4.07 7.66 4.88 78.66

RSBLCN 8.85 6.97 10.48 11.19 9.3 22.63 10.1 4.69 4.14 7.06 4.59 77.37

STOCK 11.67 8.27 9.73 12.13 9.21 9.18 19.15 4.17 4.08 8.14 4.27 80.85

GOLD 6.01 5.64 5.66 6.41 5.65 6.39 6.16 39.23 5.95 5.9 7.01 60.77

OIL 5.62 6.05 6.08 6.97 5.68 6.33 6.42 6.14 36.11 7.04 7.58 63.89

VIX 7.56 6.63 7.19 10.51 8.62 7.82 9.94 4.57 4.76 27.24 5.18 72.76

BOND 6.34 6.38 6.25 7.16 6.27 6.62 6.8 6.72 6.97 7.35 33.15 66.85

TO 83.5 71.86 82.89 93.85 81.57 83.92 96.29 48.56 47.27 72.45 51.97 814.13

NET 4.73 −3.29 3.87 13.83 2.9 6.55 15.44 −12.21 −16.62 −0.31 −14.88 TCI = 74.01

Panel B: Extreme lower quantile τ = 0.05

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 14.63 10.37 10.47 10.52 10.25 10 12.26 4.58 4.1 7.4 5.43 85.37

NQCYBR 11 15.69 10.48 10 10.43 9.46 11.32 4.63 4.25 7.31 5.45 84.31

NQROBO 10.22 9.7 14.42 11.6 10.31 10.82 11 4.56 4.66 7.15 5.55 85.58

NYDTB 9.94 8.88 11.16 13.89 10.77 10.57 11.72 4.51 4.91 8.29 5.36 86.11

STXFTV 10.25 9.76 10.51 11.37 14.65 10.05 10.84 4.83 4.39 7.86 5.48 85.35

RSBLCN 10.14 9.06 11.18 11.34 10.23 15.08 10.71 4.73 4.52 7.36 5.64 84.92

STOCK 11.64 10.07 10.62 11.73 10.31 9.99 13.86 4.18 4.3 8.17 5.12 86.14

GOLD 7.64 7.27 7.73 8.01 8.15 7.8 7.37 24.83 6.62 5.33 9.25 75.17

OIL 6.69 6.7 7.89 8.67 7.5 7.44 7.56 6.78 25.29 6.75 8.71 74.71

VIX 9.18 8.47 8.88 10.77 9.63 8.91 10.65 3.92 4.95 18.11 6.54 81.89

BOND 7.87 7.47 8.13 8.26 7.99 7.98 7.84 8.02 7.42 7.72 21.3 78.7

TO 94.58 87.74 97.05 102.27 95.56 93.02 101.28 50.73 50.13 73.34 62.54 908.24

NET 9.21 3.43 11.48 16.16 10.21 8.1 15.14 −24.43 −24.58 −8.55 −16.17 TCI = 82.57

Panel C: Extreme upper quantile τ = 0.95

QNET NQCYBR NQROBO NYDTB STXFTV RSBLCN STOCK GOLD OIL VIX BOND FROM

QNET 13.74 9.15 9.36 9.44 9.16 9.09 11.05 6.84 7.19 7.94 7.05 86.26

NQCYBR 9.9 14.63 9.23 9.04 9.35 8.5 10.02 6.92 7.36 8.02 7.04 85.37

NQROBO 9.36 8.8 13.43 10.07 9.01 9.62 10.26 6.83 7.23 8.29 7.09 86.57

NYDTB 9.39 8.24 10.01 13.07 9.02 9.8 10.85 6.84 7.14 8.56 7.07 86.93

STXFTV 9.71 8.93 9.31 9.61 13.54 9.25 10.04 6.83 7.15 8.31 7.3 86.46

RSBLCN 9.52 8.39 9.79 10.19 9.15 13.53 9.85 6.97 7.17 8.17 7.27 86.47

STOCK 10.49 8.81 9.52 10.23 9.14 9.21 13.51 6.82 7.02 8.46 6.8 86.49

GOLD 8.66 7.98 8.03 8.34 8.03 8.14 8.88 18.17 7.88 7.48 8.42 81.83

OIL 8.34 8.09 8.33 8.77 8.12 8.4 8.92 7.8 16.59 8.35 8.29 83.41

VIX 8.71 8.33 8.57 9.67 9.13 8.94 10.01 6.77 7.26 14.73 7.87 85.27

BOND 8.54 8.01 8.34 8.77 8.33 8.39 8.73 8.23 8.21 8.66 15.78 84.22

TO 92.62 84.74 90.52 94.13 88.44 89.35 98.59 70.84 73.61 82.24 74.18 939.28

NET 6.36 −0.63 3.95 7.21 1.98 2.89 12.11 −10.99 −9.81 −3.03 −10.03 TCI = 85.39

Notes: This table presents the results of static volatility spillovers among six FIR indexes and five global variables, including stock, gold, oil, bond and VIX based on
the quantile VAR, with three panels labeled A, B, and C. Panel A represents the median quantile (τ = 0.5), panel B represents the extreme lower quantile (τ = 0.05),
and panel represents the extreme upper quantile (τ = 0.95).
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Fig. A.1. Net pairwise directional network of volatility spillovers in the frequency domain.
Notes: This figure presents the net pairwise directional volatility spillovers among six FIR indices in the frequency domain, by dividing it into three periods: pre-
COVID, during COVID, and the Russian-Ukraine war. The node size reflects the overall magnitude of transmission/reception for each product. The edge size
indicates the magnitude of the net pairwise volatility spillovers between two products. Besides, the magnitude is also reflected through the color types of node/edge,
dark (strong) versus light (weak) colors.
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Fig. A.2. Net spillovers in the frequency domain.
Notes: This figure displays dynamic net spillover for each FIR asset over time in the frequency domain using Baruník and Křehlík's methodology (2018), with
positive values indicating net transmitters and negative values indicating net receivers. The pink line represents TCI at the short-term, and the blue and green lines
represent TCI at the medium-term and long-term, respectively.

Fig. A.3. Net spillovers Based on Quantile VAR.
Notes: This figure displays dynamic net spillover for each FIR asset over time based on the quantile VAR, with positive values indicating net transmitters and
negative values indicating net receivers. The blue line represents TCI at the median, and the pink and green lines represent TCI at the 5th and 95th quantiles,
respectively.
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Fig. A.4. Net pairwise directional network of volatility spillovers based on quantile VAR.
Notes: This figure presents the net pairwise directional volatility spillovers among six FIR indices at median, lower, and upper quantiles. The node size reflects the
overall magnitude of transmission/reception for each product. The edge size indicates the magnitude of the net pairwise volatility spillovers between two products.
The magnitude is also reflected through the color types of node/edge, dark (strong) versus light (weak) colors.
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Fig. A.5. Dynamic Connectedness Using a 20-day (Robustness tests).
Notes: This figure displays dynamic volatility connectedness among six FIR indices using a 20-day-ahead forecast error. Panel A reports the dynamic TCI in the time
domain, Panel B displays it in the frequency domain using Baruník and Křehlík's methodology (2018), while Panel C reports the dynamic extreme TCI.
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Fig. A.6. Net Connectedness Using a 20-day (Robustness tests).
Notes: This figure displays the dynamic net spillovers for each FIR index over time, with positive values indicating net transmitters and negative values indicating
net receivers, using a 20-day-ahead forecast error. Panel A reports the dynamic TCI in the time domain, Panel B displays it in the frequency domain using Baruník
and Křehlík’s methodology (2018), while Panel C reports the dynamic extreme TCI.
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Fig. A.7. Dynamic Connectedness with the Inclusion of Global Variables (Robustness tests).
Notes: This figure displays dynamic volatility connectedness among six FIR indices and five global variables including stock, gold, oil, bond and VIX. Panel A
reports the dynamic TCI in the time domain, Panel B displays it in the frequency domain using Baruník and Křehlík's methodology (2018), while Panel C reports the
dynamic extreme TCI.
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