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Abstract

Discovered over a hundred years ago, superconductivity has revolutionized physics by

opening a new door of understanding. Relying on the newly established theories of quantum

mechanics to explain the mechanisms and reasons behind conventional and unconventional

superconductors alike, superconductivity has sparked a wide interest in physicists in the pursuit

of the holy grail of superconductivity: a room temperature and pressure superconductor capable

of revolutionizing energy transport and more. This study takes a close look at the origins of

superconductivity, the theories behind it and the findings that the cutting edge research being

done on copper oxides and iron pnictides has unearthed. The final section of this study analyzes

real data, namely resistivity and magnetization, obtained from the iron pnictide SmFeAsO1−xFx .
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This is a custom map of superconductivity as the subject is understood by the authors.
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1. Introduction

We begin our senior study with a historical review and a timeline of superconductivity. Its

first discovery was in 1911 with mercury; however, the prerequisite for this discovery came in

1908 when Heike Kamerlingh Onnes was able to liquify helium at 4.5 K [1]. He recorded the

phenomenon of zero resistivity in his first experiment.

Fig 1 [2]. Onnes’s original plot detailing mercury’s abrupt resistivity drop as a function of temperature

After that, a formal definition of superconductivity is given: when a material enters its

superconducting phase (which occurs below a critical temperature, magnetic field strength, and

electric current density denoted by Tc, Bc, and Jc, respectively), it acts like a perfect diamagnet

and exhibits zero resistance to electric current. Classical (as opposed to high-temperature)
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superconductors are classified into two categories: Type 1 and Type 2 superconductors. Type 1

superconductors have a clear separation between their superconducting and non-superconducting

phases. The two factors that can destroy superconductivity are high temperatures above the

critical temperature and a strong external magnetic field applied to the superconductor. Type 2

superconductors do not have a fixed separation between their superconducting phase and

non-superconducting phase. Instead, they have a mixed phase in between where they act as both

normal conductors and superconductors simultaneously. We note that for Type 2

superconductors, there is only one critical temperature (same with Type 1 superconductors), Tc,

but they have two critical magnetic fields, Bc1 and Bc2. For any magnetic field strength below Bc1,

the superconductor is in its superconducting phase. For a field strength between BC1 and BC2, we

have the mixed phase, and for a field strength greater than BC2, we have the normal phase of

conduction. As aforementioned, resistivity (ρ) being 0 is not the only fundamental characteristic

of a superconductor. The fundamental proof that superconductivity occurs in a given material,

apart from zero resistivity, is the demonstration of the Meissner-Ochsenfeld effect. We examine

the first property of superconductors, namely perfect diamagnetism, by diving into the Meissner

Effect, which states that a superconductor will always expel a weakly externally applied

magnetic field so long as it is below the critical magnetic field threshold. First, the distinction

between perfect conductors and superconductors is important to understand. The former is a very

good conductor but cannot superconduct; like gold for example, whereas a superconductor

exhibits different characteristics that we will discuss shortly. If initially the superconductor is not

in its superconducting phase and no external magnetic field is applied, we can expect that after

cooling the material to below Tc, the superconductor will completely expel the applied magnetic
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field. If the same case is taken, but instead of having no externally applied magnetic field before

cooling and then a field is applied, it is observed that after cooling that field is also expelled. The

former case is called zero field cooled because there was no initial magnetic field applied before

cooling, while the latter case is called field cooled, meaning that there was an externally applied

field before cooling. In either case, the magnetic field is totally expelled out of the

superconductor. Taking the case of the perfect conductor, we also examine both cases of field

cooling and zero field cooling. In the zero-field-cooled case of a perfect conductor, after cooling,

there is no magnetic field observed, just like with superconductors. The difference arises in the

field-cooled case, where after cooling, magnetic flux changes are observed in the perfect

conductor.

Fig 2 [3]. Behavior of magnetic field lines in zero field cooled and field cooled superconductors versus

their behavior in a perfect conductor
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So the conclusion is that superconductors expel any externally applied magnetic field

when cooled down, regardless of whether the field was applied before or after cooling, whereas

perfect conductors preserve some sort of magnetic field variations in the case where the magnetic

field is applied before cooling. Even though superconductors expel magnetic fields, there is still

some penetration of the field into the material. This penetration decays exponentially as the

distance traveled into the material increases.

Fig 3 [4]. Flux vortices in type 2 superconductors

This explains why we have a mixed phase in Type 2 superconductors. The mixed phase

arises from flux vortices on the surface of the superconductor that penetrate the material and

create an area of normal conduction and lock the superconductor in place when hovering over a
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magnet; however, if the total material is considered, we can still say that the material is

superconducting. Also, these flux vortices are in motion and move on the surface of the material

rather than being static points of normal conduction. [5]

Fig 4 [6]. Phase diagram for Type 1 and Type 2 superconductors

2. Theoretical Background

a. London’s Equations

London’s theory describes a maximum penetration depth and mathematically predicts

Meissner’s effect. The first London equation states that , where js is the
∂𝑗

𝑠

∂𝑡 = 𝑛
𝑠
𝑒2( 𝐸

𝑚 )

superconducting current density and ns is the density of cooper pairs in the superconductor, while

the second London equation says that . Applying , then we ∇ × 𝑗
𝑠

=− 𝑛
𝑠
𝑒2( 𝐵

𝑚 ) ∇ × 𝐵 = μ
0
𝐽

get ,where is the London penetration depth, which is a measure of∇2 × 𝐵 = 𝐵

𝜆
𝑆
2 𝜆

𝑆
= 𝑚

(μ
0
𝑛

𝑠
𝑒2)

how far the magnetic field can penetrate the superconductor. Knowing that and∇ × 𝐸 =− ∂𝐵
∂𝑡  
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substituting it in the second London equation, we get, which∂
∂𝑡 [( 𝑚

𝑛
𝑠
𝑒2 × ∇ × 𝑗

𝑠
) + 𝐵] = 0

shows that the flux created by the currents is equal to the flux created by the external magnetic

fields, thus achieving a screening of the external magnetic field and mathematically proving

Meissner’s effect.

b. Ginzburg-Landau Theory

Ginzburg and Landau were also among the first to tackle the issue of superconductivity

with what is known as the Ginzburg-Landau (GL) theory, which was first developed to describe

phase transitions. Since the transition from the normal to the superconducting state is a phase

transition, it can be used to describe superconductivity. In GL theory there exists the concept of

an order parameter, which is a measure of how ordered the new system is and which we will

denote as ψ. Above the phase transition temperature (Tc), while below it . Thus, Ѱ = 0 Ѱ ≠ 0

the actual free energy expansion becomes …, where F is the total free𝐹 = 𝐹
𝑛

+ αѰ2 + 𝛃Ѱ4 +

energy, Fn is the total free energy of the normal state, and α and 𝛃 are coefficients, where

(A is a non-zero coefficient), and 𝛃 is also temperature dependent. For theα = 𝐴(𝑇 − 𝑇
𝐶
)

purposes of this study, we shall only consider up to the fourth power of ψ. Below the transition

temperature, any ordered phase that develops in the system is an equilibrium phase, which is

defined by the minimization of the free energy . After differentiating F with respect to[ ∂𝐹
∂Ѱ = 0]

ψ and equating that to 0 to find the minima and substituting the roots of the equation back into

the original one, we obtain [7]. Having discussed the general GL theory, it𝐹 = 𝐹
𝑛

−
𝐴2(𝑇−𝑇

𝐶
)2

2𝛃

is time to turn our attention to applying it on a superconductor. Here, ,where is theѰ= Ѱ
0
𝑒𝑖ɸ Ѱ

0
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amplitude, ɸ is the superconducting phase, and =|ns|, where ns is the density of cooper pairs.Ѱ
0

The free energy of a superconductor is given by

𝐹
𝑠

=  𝐹
𝑛
 +  𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 +  𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 +  𝐹𝑖𝑒𝑙𝑑 𝐸𝑛𝑒𝑟𝑔𝑦

Substituting into the equation, we obtain

.𝐹
𝐺𝐿

= 𝐹
𝑛

+ ∫ 𝑑3𝑟[α Ѱ2| | + 𝛃
2 Ѱ4| | + 1

2𝑚* (− 𝑖ℏ∇ − 𝑒*𝐴
𝑐 )Ѱ|||

|||
2
] + (∇𝑥𝐴2)/8𝜋]

Differentiating this expression with respect to , *, and A and manipulating the resultingѰ Ѱ

equations yields the standard GL equations of superconductivity, which are:

1) . where =2m and =2eαѰ +  𝝱|Ѱ|2Ѱ +  (1/2𝑚*)(− 𝑖ℏ∇ − (𝑒*𝐴)/𝑐)2Ѱ = 0 𝑚* 𝑒*

2) [8]𝐽
𝑠

= ((𝑒*ħ)/(2𝑚*𝑖))(Ѱ*∇Ѱ − Ѱ*∇Ѱ*) − (𝑒*2| Ѱ|2𝐴)/(𝑐𝑚*)

An important parameter to note in the GL theory is the Ginzburg-Landau parameter, defined as κ

= λ/ε , where ε, as we will later show, is the coherence length of the cooper pair. When κ is less

than 1/√2 , the material is a type 1 superconductor; otherwise, it’s a type 2 superconductor.

The GL theory has several limitations, like not considering the effects of interactions between

electrons, which can be important in high-temperature superconductors, and only describing the

behavior of the order parameter and not other properties of the system such as entropy, heat

capacity, etc.

c. BCS Theory

In 1957, John Bardeen, Leon Cooper, and John Schrieffer developed the BCS theory,

which was the first successful quantum mechanical theory of superconductivity. The theory is

based on the idea that at very low temperatures, electrons in a material can pair up and move
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through the material without resistance. The theory proposes that at low temperatures, the

electrons can interact with each other through vibrations in the material’s lattice. These

vibrations, called phonons, cause the electrons to attract each other, forming what is known as

Cooper pairs.

Fig 5 [9]. Lattice deformation and Cooper pair formation

Cooper pairs have unique properties that allow them to move through the material

without resistance. Cooper pairs bind together by an attractive force that arises from the

exchange of phonons, which are vibrations in the crystal lattice of the material. This pairing is a

quantum mechanical effect that occurs only at low temperatures. In addition, the pairing of

Cooper pairs results in a total spin of zero. This means that the pair is in a spin-singlet state and

is not affected by magnetic fields. Because magnetic fields can cause electrons to scatter and lose

energy, the zero spin property of Cooper pairs helps them move through the material with very

little resistance. Also, Cooper pairs are typically much larger than individual electrons, since the

attractive force between the electrons is spread out over a large region of the crystal lattice,

causing the electrons to move in a coordinated way. The length of the Cooper pair, i.e the

distance after which the Cooper pair breaks, is known as the coherence length, and is denoted by
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ε. Lastly, Cooper pairs have a finite lifetime, which is related to the energy gap that forms in

superconductors. At low temperatures, the energy gap prevents individual electrons from moving

through the material but allows Cooper pairs to move freely. [9,10]

The lattice vibrations supply the electrons with an energy of the order of ℏwd. This

explains why only electrons near the fermi surface participate in superconductivity, since

electrons occupying states well below the fermi surface, when supplied with an energy of ℏwd,

would have to jump to an occupied state, which is impossible. Thus, only electrons occupying

states with an energy difference of less than ℏwd between them and the fermi surface’s energy

can participate in superconductivity, and they can only reach states with a maximum of ℏwd

above the fermi surface energy. Electrons in that special region form cooper pairs, and no single

electron states exist there anymore, creating the aforementioned energy gap in the density of

states of the order of . [5]2ℏ𝑤
𝑑

Any arbitrarily weak potential is enough to cause cooper pairing, since this potential will

cause a minimization in the energy of the 2 electron state, now given by:

where is the density of states at the fermi level, is the energy𝐸 = 2𝐸
𝑓

− 2ℏ𝑤
𝑑
𝑒

−2
𝑣

0
𝑔(𝐸

𝑓
)

𝑔(𝐸
𝐹
) 𝐸

𝑓

of the fermi level, and Vo is the arbitrarily weak potential. Using second quantization and the

anti-commutation laws, Bardeen, Cooper, and Schrieffer showed that the BCS hamiltonian is

given by , where -Vo is the BCS potential, ck↑† and c−k↓† are the creation𝐻 = 2Σ𝑘ε𝑘𝑐𝑘↑

operators for a particle with momentum k↑ and −k↓ respectively, and c−k’↓ and ck’↑ are the

annihilation operators for a particle with momentum −k’↓ and k’↑ respectively.
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Fig 6 [11]. Feynman diagram depicting the pairing of two electrons with opposite spins and momenta

These represent the scattering of the 2 electrons initially at k’↑ and -k’↓, one from a lower to a

higher energy to a lower energy state and the other from a lower to a higher energy state. From

there, they then showed that the energy is expressed as , 2Σ(ε
𝑘

𝑣
𝑘| |2) + Σ(𝑉

𝑘𝑘'
𝑣

𝑘
* 𝑢

𝑘
𝑣

𝑘'
𝑢

𝑘'
* )

where is the probability that the 2 electron state characterized by is occupied and𝑣
𝑘| |2 (𝑘 ↑, 𝑘 ↓)

that that state is empty, and is the BCS potential. They simplified this equation𝑢
𝑘| |2 𝑉

𝑘𝑘'
=− 𝑉

0

further to show that the energy gap is , which is what the binding energy for 2Δ = 2ℏ𝑤
𝑑
𝑒

−2
𝑣

0
𝑔(𝐸

𝐹
)

electrons is for any arbitrarily weak potential (as shown previously). Numerically, it is given by

,where k is Boltzmann's constant, and Tc is the critical temperature at which theΔ = 1. 76𝑘𝑇
𝐶

material becomes a superconductor [5,12,13]. This formula applies to conventional
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superconductors. When one supplies an energy greater than the binding energy, the cooper pair

separates, and the above formula relates the size of the gap to the thermal energy required to

break it.

The predictions that the theory offered were experimentally proven numerous times, some of

which were mentioned above like zero resistance and the meissner effect. Other such

experimentally proven predictions are:

● The Isotope Effect:

If electrical conduction in mercury were purely electronic, there should be no dependence

upon the nuclear masses. However, experiments have shown that there’s a dependance of Tc on

isotopic mass. The reason for this effect is that when a phonon is created in the lattice, it can be

absorbed by an electron, which then moves through the lattice with no resistance. However, the

mass of the ions in the lattice can affect the energy of the phonons and their interactions with the

electrons. An increase in mass leads to a smaller debye frequency, which in turn yields smaller

values of Tc. This dependence of the critical temperature for superconductivity upon isotopic

mass was the first direct evidence for interaction between the electrons and the lattice. This

supported the BCS theory of lattice coupling of electron pairs. [14]



15

Fig 7 [6]. Plot of Tc versus different isotopes of mercury showing a clear linear relationship between Tc and isotopic

mass

● Energy Gap:

The reduction of the energy gap as you approach the critical temperature can be taken as

an indication that the charge carriers have some sort of collective nature. That is, the charge

carriers must consist of at least two things which are bound together, and the binding energy is

weakening as you approach the critical temperature. Above the critical temperature, such

collections do not exist, and normal resistivity prevails. This evidence, along with the isotope

effect, which showed that the crystal lattice was involved, helped paint the picture of paired
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electrons bound together by phonon interactions with the lattice [14].

Fig 8(a),(b) [6]. Comparison between BCS theory predictions and experimental observations

of band gap strength and the behavior of the band gap with increasing temperature

● Heat capacity:

The vanadium heat capacity experiment showed that superconducting vanadium is very

different from vanadium kept in the normal state by imposing a magnetic field on the sample.

The exponential increase in the heat capacity of the superconducting vanadium near Tc suggests

an abrupt change in the density of states when the material transitions from the superconducting

state to the normal state. This exponential increase suggests an energy gap which must be

bridged by thermal energy.
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Fig 9 [6]. Experimental data proving a phase transition occurs at Tc

● BCS Tc upper limit :

The Macmillan Rowlan limit describes the maximum temperature at which

superconductivity can exist, and it is, as aforementioned, related to the lattice’s debye frequency .

The relationship is:

,𝑇
𝐶𝑚𝑎𝑥

≈ 𝜽𝐷
1.45 × 𝑒

−1.04( 1+𝜆
𝜆−𝞭 )

where θD is the Debye temperature (a measure of the average frequency of the phonons

in the material), λ is the dimensionless electron-phonon coupling constant, and δ is a parameter

that accounts for the effects of the electronic band structure.

The key factor limiting Tc in this equation is the exponential term, which depends on the ratio of

the electron-phonon coupling strength to the phonon frequency. As the frequency of the phonons

increases, this ratio becomes smaller and the exponential term becomes larger, leading to a

decrease in Tc.

For most conventional superconductors, the Debye temperature is typically around 400 K, which

sets an upper limit of around 40 K for Tc based on the McMillan-Rowell limit.

However, unconventional superconductivity is a different phenomenon altogether.

Superconductivity isn’t formed according to the BCS model [phonon-electron interactions aren’t

alone in forming the Cooper pairs, and superconductivity in these materials can be exhibited at

above 40 K (the maximum temperature that can be theoretically reached according to the BCS

theory)]. [15]
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3. High-Temperature Superconductors

a. Introduction to High Tc Superconductors

After stating theories, we then define what a high-temperature superconductor is. These

compounds are called high Tc superconductors because they can exhibit their superconducting

state, meaning perfect diamagnetism and zero resistivity, above a temperature of 77K, which is

the boiling point of liquid nitrogen, a coolant significantly cheaper than liquid helium. Prior to

the discovery of these compounds, liquid helium was the only coolant able to reach sufficiently

low temperatures for the emergence of superconductivity. Moreover, the superconducting

mechanism for these compounds can’t be explained by the BCS theory, which has additionally

earned them the name of unconventional superconductors [16]. Also, it was predicted by the

BCS theory that the maximum critical temperature that a superconductor can reach while still

existing in its superconducting phase is 40K. High Tc superconductors exceed this limit, marking

a shift into newer, previously undiscovered physics.

b. Types of High Tc Superconductors

i. Cuprates

The first type of high-Tc superconductor to be discovered was the copper oxide superconductor,

also known as cuprates. Cuprates are complex compounds characterized by layers of CuO planes

and require doping in order to exhibit superconductivity, as we shall discuss later on in this

chapter. The first discovery of cuprate superconductivity was in 1986, when Bednorz and Muller

discovered in Ba-doped La2CuO4 that the current density affects the temperature dependence of

the conductivity in the transition region from the normal to the superconducting state, which they

declared might point to high Tc superconductivity. Later in the same year, Tanaka, Kitazawa,
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Uchida, and Takagi confirmed that the transition temperature for that compound was 30 K. In

February of 1987, Chu et al. reported a transition temperature of above 90K in YBa2Cu3O7,

which ignited a fervor in the scientific community. [16]

ii. Iron Pnictides

Iron pnictides are compounds containing iron and a pnictide (a group 15 element), and

they too require doping in order to exhibit superconductivity. Superconductivity in iron pnictides

was first discovered by Hideo Hosono et al. in 2006 in LaFePO with a transition temperature of

approximately 4K. Subsequently, superconductivity was found in 2007 in LaNiAsO with a

transition temperature of 2.4K and in 2008 in LaFeAsO1-xFx with a transition temperature of 26K.

[17]

c. Crystal Structure

i. Cuprates

The crystal structure of copper oxides consists of crystallized, layered, two-dimensional

planes of CuO2 with antiferromagnetically aligned spins. The material therefore has a net

magnetic moment of zero because the magnetic moments of the neighboring spins cancel one

another out. This antiferromagnetism, as we shall shortly discuss, is imperative in the formation

of superconductivity in these materials. The crystal-layered planes also have room for doping,

which is the controlled addition or subtraction of impurities [18]. These extra spaces are called

interstitials, which are where the doping occurs. The level of doping plays a crucial role in the

analysis of the phase diagram, which we will discuss later.
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Fig 10 [18]. Cuprate Superconductor crystal structure

ii. Iron Pnictides

The crystal structure of the pnictides, however, is completely different. Iron pnictides are

generally described as superconductors containing at least iron and a pnictide (an element in

group 15 of the periodic table) organized in multiple three-dimensional layers. However, iron

pnictides are subcategorized into many different families, each having a unique crystal structure.

Here are some of the most notable subclasses and their key differences:

1111: The 1111 subclass of iron pnictide superconductors contains one iron atom and one

pnictide atom per unit cell. The crystal structure of 1111 compounds is tetragonal, and perhaps

the most well-known 1111 compound in this family is LaFeAsO, whose unit cell contains 2

molecules and whose chemical formula is (La2O2Fe2As2). La2O2Fe2As has a Tc of around 26 K

[Fig. a] [19-20]



21

122: The 122 subclass of iron pnictide superconductors contains one iron atom and two pnictide

atoms per unit cell. The crystal structure of 122 compounds is orthorhombic, with each unit cell

having eight formula units. The most well-known 122 compound is BaFe2As2, which has a Tc of

around 38 K. Fig.b. [20- 21]

111: The 111 subclass of iron pnictide superconductors contains one iron atom and one pnictide

atom per unit cell, similar to the 1111 subclass. However, the crystal structure of 111 compounds

is hexagonal, with each unit cell having two formula units. The most well-known 111 compound

is LiFeAs, which has a Tc of around 18 K. [Fig.c.] [20-22]

11: The 11 subclass of iron pnictide superconductors contains one iron atom and one pnictide

atom per unit cell, similar to the 111 and 1111 subclasses. However, the crystal structure of 11

compounds is simple and monoclinic, with each unit cell having two formula units. The

best-known 11-compound is FeSe, which has a Tc of around 8 K. These different subclasses of

iron pnictide superconductors have different crystal structures, which affect their electronic and

magnetic properties. For example, the 122 subclass tends to have stronger electron correlations

than the 1111 subclass, which can lead to different types of superconductivity. Additionally, the

doping behavior of each subclass can vary, with some being more sensitive to doping than

others. [Fig.d] [20-23]

One of the main differences between iron pnictide superconductors and copper oxide

superconductors is their crystal structure. Copper oxide superconductors have a layered crystal

structure, with the superconducting properties arising from the two-dimensional copper-oxide

planes. In contrast, iron pnictide superconductors have a more complex crystal structure, with the



22

superconducting properties arising from the interaction between multiple layers of iron and

pnictide atoms.

Fig 11 [20]. Different structures of the iron pnictide family

Fig 12 [24]. Iron pnictide layers
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d. Phase Diagrams

i. Cuprates

Fig 13 [25]. Typical phase diagram for high Tc superconductors

The phase diagram for cuprates is studied by noting the different regions, phase

transitions, and d-order parameter changes , ranging from the antiferromagnetic phase to the

superconducting dome and more. The x-axis represents the level of hole doping, which is also

referred to as P doping, while the y-axis represents the temperature of the superconductor.

Between the origin and P minimum, the copper oxide superconductor is characterized by its

antiferromagnetic order. This is true between some high temperatures and the temperature slowly

marking a change in the ordered parameter from the antiferromagnetic to the pseudogap region.

This means that above this temperature, the superconductor is in its antiferromagnetic state and

is not capable of superconducting. Once the temperature is reached, the pseudogap region
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appears. It is characterized by a reduction in the density of states as well as the early formation of

cooper pairs. This second feature is notable because it was originally thought that Cooper pairs

only form at low temperatures, which turned out to be true for conventional superconductors,

but not for high-temperature superconductors. These newly formed cooper pairs are unstable and

have a short coherence length due to perturbations that prevent the superconducting phase from

beginning; however, they allow for the pseudogap region to appear under a high temperature

called . After further increasing the temperature and doping level, the superconductor enters its𝑇*

superconducting phase, which on the phase diagram is in a dome shape. This phase is

characterized by the classic features of superconductivity, namely zero resistivity and perfect

diamagnetism. Another major phase is the strange metal phase, where superconductivity is

destroyed and new properties appear. The strange metal phase is characterized by several unusual

properties that distinguish it from ordinary metals. One of the most striking features is the linear

dependence of electrical resistivity on temperature, which is in contrast to the quadratic

dependence observed in normal metals. This means that as the temperature increases, the

resistivity of the material increases linearly, indicating a breakdown of the usual Fermi liquid

behavior. In addition, the strange metal phase is also characterized by non-Fermi liquid behavior,

such as a violation of the so-called Luttinger theorem and a breakdown of the Landau

quasiparticle picture. The origin of the strange metal phase is still not fully understood, but it is

believed to be related to the complex interplay between electronic interactions, disorder, and

fluctuations in the system. In particular, it has been suggested that the strange metal phase may

be related to the presence of quantum critical points, which are special points in the phase

diagram of a material where the behavior undergoes a dramatic change. [25]



25

ii. Iron Pnictides

Fig 14 [26]. Phase diagram for 𝐶𝑎
1−𝑦

𝐿𝑎
𝑦
𝐹𝑒

1−𝑥
𝑁𝑖

𝑥
𝐴𝑠

2

Fig. 15 [27]. Another phase diagram for iron pnictides, Quantum In Complex Matter 2013, Antonio Bianconi

The phase diagram for some iron pnictides is similar to that of cuprates in that the parent

compound must exhibit an antiferromagnetic order that is slowly destroyed. However, unlike the

cuprates, the superconducting dome can coexist with the antiferromagnetic order for some
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doping levels. Moreover, both isovalent doping (replacing atoms with others having an equal

number of valence electrons) and charge carrier doping (hole or electron doping), as opposed to

uniquely charge carrier doping in cuprates, are effective in the establishment of

superconductivity in iron pnictides. In some cases, the antiferromagnetic order parameter is

closely accompanied by changes in the nematic order along with nematic fluctuations (a

fluctuation in the orientation of the particles due to thermal energy), where the nematic order

consists in the spontaneous breaking of the electronic symmetry between the x and y directions

in the Fe-plane but not of the underlying lattice. In some iron pnictides, however, a spin density

wave (SDW) region (a region with the periodic alignment of the electrons’ spins) can coexist

with or completely replace the antiferromagnetic region. [28-29]

e. Mechanism of Superconductivity

i. Cuprates

According to the most popular explanation, known as the resonating valence bond

(RVB) theory, the high-temperature superconductivity of copper oxides results from the pairing

of electrons through the exchange of bosonic excitations, such as spin or charge fluctuations

(variations in the material’s magnetic moment and charge density respectively). The RVB theory

states that the copper oxides' highly correlated electrons result in the production of singlet pairs,

which can then condense into a superconducting state. Although there is still much to learn about

the precise nature of the bosonic excitations that mediate the pairing of electrons in copper

oxides, it is believed that the doped holes in the copper oxide lattice play a significant role. As
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these doped holes interact with the copper oxide lattice's electrons, a superconducting state is

created. [30]

ii. Iron Pnictides

Several theories have been put forth regarding the method by which iron pnictides

superconduct. One of the most popular hypotheses is based on the idea of "nesting" between

various Fermi surface regions, which is the surface that divides the material's occupied and

unoccupied states. While cuprates have a single Fermi surface sheet, in in iron pnictides, nesting

between various Fermi surface regions causes magnetic fluctuations to occur, which later act as a

mediator in the pairing of electrons. A superconducting state is created as a result of electron

pairing. The interaction between superconductivity and magnetism is a crucial aspect of iron

pnictide superconductivity. Magnetic ordering in iron pnictides happens at a temperature greater

than the superconducting transition point, which distinguishes them from other materials.

Although it is yet unclear how superconductivity and magnetism interact in iron pnictides, this

interaction is expected to be crucial in determining the characteristics of the superconducting

state. Also, there is evidence that the pairing of electrons in iron pnictides is influenced in part by

the existence of spin fluctuations.[31]
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Fig 16 [32]. Experimental data and its respective schematic on the Fermi surface sheets in an iron pnictide

f. Superconducting Gap Symmetry

i. Cuprates

Cuprates exhibit d-wave pairing symmetry, meaning the wave function of the Cooper pair

moving along the x-axis has a positive sign while the one moving along the y-axis has a negative

sign [33]. This effect is argued to be universal for all cuprate-based superconductors. [34]

ii. Iron Pnictides

For the iron pnictides, we need to introduce the idea of p-wave superconductivity/triplet

superconductivity/ odd parity superconductivity. It is characterized by any compound that has its

angular momentum quantum number S=1, with the allowed values for spin therefore being ms=

-1, 0, 1 hence triplet. In fact, iron pnictides exhibit p-wave pairing. This is done by analyzing the

temperature dependence of the superfluid density,
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ρ
𝑠
(𝑇) = 1

λ2(𝑇)
   

where λ is the London penetration depth.

We have two cases of p wave pairing, one where the vector potential (A) is parallel to the

gap axis (l), and the other where (A) is perpendicular to (l). However, Knight shift ( a relative

shift in the nuclear magnetic resonance frequency for atoms in a metal compared with the same

atoms that are in a non-metallic environment) experiments showed that p-wave pairing should be

prohibited. Note that Knight shift consideration in superconductors started in the early 1960s,

when it was believed that ferromagnetism is antagonistic to superconductivity. However, a

simple extrapolation of theoretical results in regards to the Knight shift obtained for classical

BCS superconductors probably is not valid for the newly discovered class of iron-based

superconductors. Also, p-wave superconductivity can be uniquely determined from the

temperature dependence of the polar A⊥l case of ρs(T), and thus the lack of experimental studies

for confidently detecting p-wave pairing is related not just to the fabrication of samples but also

to choosing an experimental technique for which the polar A⊥l orientation can be studied. The

case considered was with A⊥l. 𝐽
𝑐

= (𝑙𝑛(κ) + 0. 5) + ρ
𝑠
1.5(𝑇) 

, where is the Ginzburg-Landau parameter.𝜿 = 𝜆
ξ  

Analysis of self-field critical current data and superfluid density data obtained on a wide variety

of iron-based superconductors using p-wave models finds superconducting parameters that are

more consistent under a p-wave model compared with the generally accepted s-wave model.

Also, observation of the polar A⊥l model in both the self-field critical current data and superfluid

density data strongly indicates the existence of p-wave pairing in the iron pnictides. [35]



30

g. Room Temperature Superconductors

Close to and at room temperature, superconductors have been theoretically and experimentally

verified, which means that they can be used practically as long as cooling isn't an issue.

Unfortunately, room-temperature superconductors come at a cost of high pressures (reaching

500 GPa), making their applicability in everyday life much more difficult. Researchers have

achieved ever higher transition temperatures, such as 164 K under 31 GPa in the

HgBa2Ca2Cu3O8+δ (Hg1223) cuprate high-temperature superconductor (HTS) in 1994 by Chu et

al. and 203 K under 155 GPa in the H3S hydride in 2015 by Eremets et al.. After successfully

synthesizing hydrides inside a diamond anvil cell (DAC) through laser heating, a Tc up to 260 K

was obtained by Hemley et al. in LaH10 under 180–200 GPa in 2019. Most recently, Dias et al.

achieved a Tc of 287 K under 267 GPa in a C-S-H, which is the highest Tc ever recorded. A Tc of

287 K is very close to 300 K, which is loosely assigned as room temperature [36]. However, we

need to keep in mind that for a superconductor to work efficiently, it must be well below its

critical temperature, meaning that if we needed a superconductor to operate at temperatures close

to 300K, we would need a material with a Tc of 450K.≈

h. Applications

There are several potential applications for high-temperature superconductors currently

being investigated. Superconducting generators are a major potential application. It offers better

system stability than conventional generators and is able to operate at higher magnetic fields.

Also, this generator is more efficient, meaning it can save more fuel, covering the capital costs of

the generator. Its requirements, however, are quite difficult to reach, making the idea of a
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superconducting generator out of reach for the moment. Other applications include power

transmission lines. Conventional power lines are limited when it comes to current capacity, due

to heat dissipation issues and impedance problems. Superconducting power lines, on the other

hand, offer a higher current capacity because there is no impedance. So in theory a

superconducting cable can carry an infinite current with low voltage. On average, 4 percent of

power is lost due to current impedance in conventional wires. This loss will be eliminated by the

use of superconducting power lines. This is why there is a huge interest in the iron pnictide

family of high-temperature superconductors because they are more malleable than copper oxides,

which are brittle, meaning they can be used in fashioning power lines. Finally, a large potential

area of application is in the medical field. There are already superconductors being used in the

medical field, most notably in the MRI (medical resonance imaging) machine. The

superconductors in use are conventional superconductors (albeit ones with a high Bc) that require

very low temperatures to operate and thus need a cold environment (which ramps up costs). In

this regard, high-temperature superconductors offer a lucrative solution. Other areas of

application include communication systems, MAGLEV trains, digital devices, and magnetic

energy storage units. [37]

4. Results and Discussion

Resistivity

i. Experimental Data

In order to analyze and interpret resistivity data, we should introduce the concept

of the four-point probe method. This is a technique that was first introduced by Frank
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Wenner over 100 years ago in 1915 to accurately measure resistance, and subsequently,

resistivity. The problem with measuring resistance with only two probes that allow a

current to flow through one probe into the material and out the other probe is that this is

an inaccurate technique. The measurement intrinsically includes the contact resistance Rc

at the probes’ position, which is in series with the resistance of the material. The basic

idea of the 4P probe method is to measure the voltage drop between the two inner probes

while a current passes through the two outer probes. However this concept changes a lot

when considering different geometries, materials (isotropic vs anisotropic, bulk vs. thin

films), and spacing between the probes. The simplest cases of an isotropic semi-infinite

3D bulk and an infinite 2D sheet are considered first. Four probes are placed collinearly,

with equal spacing between adjacent probes. The current injected from one of the outer

probes is assumed to spread spherically in the material. In the case of a semi-infinite 3D

bulk material, its resistivity is given by:

ρ
3𝐷
𝑙𝑖𝑛𝑒 = 2π𝑠 𝑉

𝐼

In the case where the thickness (t) of the material is much smaller than the spacing

between the probes (s), we can consider this a 2D infinite sheet. The main difference is

that in this case, the current spreads cylindrically, not spherically, in the material. This

affects the expression of the current density and hence the resistivity, which is given by:

ρ
2𝐷
𝑙𝑖𝑛𝑒 = π𝑡

𝑙𝑛2
𝑉
𝐼

Sometimes, instead of arranging the probes in a straight line, they are arranged in a

square configuration. The advantage to this setup is that the area is reduced because the
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maximum distance between two probes is instead of 3s. It is clear that the measured2𝑠 

resistance R does not depend on the spacing of the probes in the case of the infinite 2D

sheet, whereas in the 3D case, resistance R decreases with increasing probe spacing. This

result is somewhat shocking seeing that as distance increases the resistance is decreasing.

This is because in a 2D sheet, the resistance is directly compensated by moving in a

perpendicular direction to the probes, so there is no dependence on spacing, whereas in a

3D material, there is an overcompensation for the resistance by spreading into the

material, which causes this inverse relationship between distance and resistance. Usually,

for macroscopic 4P probe setups, the separation between the probes is in the millimeter

range, which is comparable to the dimensions of the material being probed. [38]

Fig 17 [38]. Schematics of (a)
a two-point probe and (b) a
collinear 4P probe array with
equidistant contact spacing

Fig 18 [38]. Schematic of a
square 4P probe configuration with s1 =

s4 = s and s2 = s3 = √2s.
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Fig 19 [38]. Diagrams of the current flow pattern in (a) an infinite 2D sheet and (b) a semi-infinite 3D material.

ii. Results

Fig 20. Raw data plotted. Resistivity measured in (milliOhm.cm) vs Temperature measured in (K). (Appendix 1)
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Fig 21. Zoomed in version of the initial plot indicating different critical temperatures. (Appendix 2)

We need first to define the different types of critical temperatures that can be extracted

from the resistivity vs. temperature graph. In our data’s case, there is only one doping level, so

there can’t be comparisons of the different types of critical temperatures and whether those

temperatures increase with increased doping levels (or vice versa); however, it is still possible to

extract these temperatures directly from the graphs.

a) Tc
onset is regarded as the cross point of the fitting lines for resistivity in the normal

state near transition and in the drop area during the transition. Tc
onset = 54.3K
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b) Tc
zero is also regarded as the cross point of the line for zero resistivity and the ρ –T

curve. Tc
zero = 51.4K

It is also useful for us to plot the derivative of resistivity with respect to temperature. The

width of the peak indicates how much Tc
onset and Tc

zero are far apart. The width is taken at half its

maximum.

Fig 22. The derivative of resistivity with respect to temperature. The width at half maximum is 4K, as calculated by

code indicated by the red line. (Appendix 3)

As for the residual resistivity, it was calculated purely through MATLAB (Appendix 4),

by the extrapolation method, where a linear extrapolation of the data before the onset of

superconductivity intersects the y-axis. The final result is .ρ
0
 = 0. 060688 𝑚𝑖𝑙𝑙𝑖𝑂ℎ𝑚. 𝑐𝑚
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All the values of the critical temperatures are summarized in the following table ( according to

our data):

Tc=
𝑇𝑐 𝑜𝑛𝑠𝑒𝑡 +𝑇𝑐 𝑧𝑒𝑟𝑜 

2
Tc

onset Tc
zero ΔTc = Tc

onset - Tc
zero

52.85K 54.3K 51.4K 2.9K

Fig 23. Summarized data extracted from plots.

Fig24 [39]. Different critical temperatures for the same compound at different doping levels obtained from literature.

It is important to compare our results with those found in literature. The doping level

targeted in our data analysis is 0.14. This resulted in Tc
onset = 54.3K and Tc

zero = 51.4K are shown

in Fig23. We can see that these results match up closely with those in Fig24 which has at a

doping level of 0.14 a Tc
onset = 55.9K and Tc

zero = 51.3K. This is further confirmation in the

accuracy of our data and its analysis.
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iii. Discussion

The above data allowed us to gain information about the sample’s critical temperatures

from the plot of the resistivity versus temperature. Also, it is worth noting that typically before

measuring resistivity, an XRD investigation takes place so that the crystallographic planes and

different peaks are known. The idea behind this is to know the maximum intensity peaks at

different doping levels. Without knowing the different doping levels, it isn’t possible to draw the

phase diagram. For our data, however, the temperature variations are fully understood. The fact

that the residual resistivity is very small as well as the fact that the drop in resistance to 0 is a

sharp drop rather than a gradual decrease tells us that the sample is a good pure sample. This

demonstrates that Sm-1111 is a good homogeneous superconductor with few impurities that

would hinder this effect.

Magnetization

i. Experimental Data

The magnetic property measurement system (MPMS) is an extremely sensitive

magnetometer capable of detecting magnetic fields of strength down to T. The main10−18

artifact used in the MPMS is the Superconducting Quantum Interference Device (SQUID). The

SQUID operates based on the phenomena of the Josephson junction and magnetic flux

quantization. A ring of superconducting wire is shaped, with a Josephson junction at the top and

bottom of the loop. Josephson junctions can carry current up to a critical value Ic without

registering voltage; as such, a current of value is made to flow through the ring; flows𝐼 = 2𝐼
𝑐

𝐼
𝑐
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through the upper part while flows through the lower part. We pass the sample through a𝐼
𝑐

superconducting coil to establish a phase difference between the two junctions (the induced

current flows opposite to the existing current in one half while it flows with the existing current

in the other half). The total current fluctuates in proportion to the magnetic flux (where the

magnetic flux quantum is ; as such when the total flux is a half integer multiple of the𝛟
0

= 𝑒
𝛑ℏ

magnetic flux quantum, I is at its minimum, while I is at its maximum at integer multiples of the

magnetic flux quantum. The current is extremely sensitive to any small changes in the flux, and

as such, so is the voltage. The voltage oscillates with respect to the magnetic flux, where when

the magnetic flux is an integer multiple of the magnetic flux quantum, it’s at its minimum, while

it’s at its maximum when the magnetic flux is a half-integer multiple of the magnetic flux.

Therefore, measuring the voltage allows us to sense small changes in the current, flux, and

ultimately, the magnetic field. [40]

Fig 25 [41].MPMS Quantum design
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ii. Results

Fig 26. Raw data plotted. Magnetism measured in (emu) vs Temperature measured in (K). (Appendix 5)

We can draw many conclusions from the long moment vs temperature’s plot. We realize

a sharp drop in the magnetic moment just after Tc was reached (51K), after which the magnetic

moment stabilizes and remains constant at -2.5 emu with a slight deviation downward with

decreasing temperature.
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Fig 27. The derivative of magnetism with respect to temperature. The width at half maximum is 4K, as calculated
by code indicated by the red line. (Appendix 6)

From plotting the slope of the derivative of the magnetization with respect to temperature vs

temperature, we observe with more precision where the drop in the magnetic field occurred and

when it stops fluctuation. A stop in fluctuation indicates we’ve reached our maximum magnetic

field generated. We can also determine ΔTc which tells us how sharp the drop was.

a) We note from the plot that Tc
onset is approximately 55K which represents the peak of the

plot for slope.

b) Tc
zero is shown to be around 47 K
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All the values of the critical temperatures are summarized in the following table:

Tc =
𝑇𝑐 𝑜𝑛𝑠𝑒𝑡 +𝑇𝑐 𝑧𝑒𝑟𝑜

2
Tc

onset Tc
zero

51K 55K 47K

Fig 28. Summarized data extracted from plots.

iii. Discussion

The sharp drop in the magnetic moment implies that the sample was zero field-cooled

(ZFC), since in field-cooled (FC) methods, the curve would show a wider transition width as the

external magnetic field “soothes” the drop. The stabilization of the magnetic moment represents

the upper critical field, where if that value is exceeded by imposing an external magnetic field

the superconducting state is destroyed. The slight increase in magnetic moment strength after Tc

can be interpreted as impurities. While the value of Tc for this material to have zero resistivity is

55K, the drop of magnetic field occurs at 54K, which indicates that in order to observe𝑇
𝑐
𝑜𝑛𝑠𝑒𝑡 =

perfect diamagnetism we need first to observe a drop in resistivity.

Lastly we observe that the magnetic moment produced by the sample is very weak, which can

limit its applications, as its critical current density would be weak as well.

Note that all these experimental data were taken by W. Malaeb et al at Keio University -

Japan and provided to us for the sake of demonstration.
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Appendix

1:

T = [4.2, 10, 20, 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60,

62, 63, 64, 70, 80, 90, 100, 150, 200, 250, 300];

resistivity = [0.00177432, 0.00331207, 0.00236576, 0.000118288, 0.00816187,

0.00118288, 0.000473151, 0.0133666, 0.00544124, 0.0117105, 0.0183347, 0.0427021,

0.139462, 0.302463, 0.41874, 0.449258, 0.479895, 0.511005, 0.537265, 0.551223,

0.57902, 0.594989, 0.602796, 0.694351, 0.852739, 0.993384, 1.14148, 1.87428, 2.48098,

2.94786, 3.37937];

% create a scatter plot with red curve

Figure;

hold on;

scatter(T, resistivity);

plot(T, resistivity, 'r');

hold off;

% add labels and title

xlabel('Temperature (K)');

ylabel('Resistivity (milliOhm.cm)');

title('Resistivity vs Temperature');

2:

% plot the data points with markers

plot(data(:, 1), data(:, 2), 'ko', 'MarkerFaceColor', 'k')

hold on

% interpolate the data points with a spline curve

x_interp = linspace(min(data(:, 1)), max(data(:, 1)), 1000);
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y_interp = interp1(data(:, 1), data(:, 2), x_interp, 'spline');

% plot the curve

plot(x_interp, y_interp, 'b', 'LineWidth', 0.5)

% extend the lines slightly beyond the data points

line1 = data(18:24, :);

line2 = data(1:10, :);

line3 = data(12:15, :);

p1 = polyfit(line1(:, 1), line1(:, 2), 1);

x1 = linspace(line1(1, 1) - 5, line1(end, 1) + 5, 100);

y1 = polyval(p1, x1);

p2 = polyfit(line2(:, 1), line2(:, 2), 1);

x2 = linspace(line2(1, 1) - 5, line2(end, 1) + 5, 100);

y2 = polyval(p2, x2);

p3 = polyfit(line3(:, 1), line3(:, 2), 1);

x3 = linspace(line3(1, 1) - 5, line3(end, 1) + 5, 100);

y3 = polyval(p3, x3);

% plot the lines

plot(x1, y1, 'r--', 'LineWidth', 1.5)

plot(x2, y2, 'k--', 'LineWidth', 1.5)

plot(x3, y3, 'm--', 'LineWidth', 1.5)

% add labels and legend

xlabel('Temperature (K)')

ylabel('Resistivity (milliOhm.cm)')

title('Resistivity vs Temperature')

legend('Data Points', 'Spline Curve', 'Line 1', 'Line 2', 'Line 3')

3:
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% Resistivity data

temperature = [4.2, 10, 20, 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 53, 54, 55, 56,
58, 59, 60, 62, 63, 64, 70, 80, 90, 100, 150, 200, 250, 300];

resistivity = [0.00177432, 0.00331207, 0.00236576, 0.000118288, 0.00816187,
0.00118288, 0.000473151, 0.0133666, 0.00544124, 0.0117105, 0.0183347, 0.0427021,
0.139462, 0.302463, 0.41874, 0.449258, 0.479895, 0.511005, 0.537265, 0.551223,
0.57902, 0.594989, 0.602796, 0.694351, 0.852739, 0.993384, 1.14148, 1.87428, 2.48098,
2.94786, 3.37937];

% Calculate derivative of resistivity divided by temperature

dRdT = diff(resistivity)./diff(temperature);

dRdT_over_T = dRdT./temperature(1:end-1);

% Find the index and value of the maximum peak

[max_peak, max_peak_index] = max(dRdT_over_T);

% Find the width of the peak by finding the two temperatures where the

% derivative is half of the maximum value

half_peak = max_peak/2;

left_index = find(dRdT_over_T(1:max_peak_index) < half_peak, 1, 'last');

right_index = max_peak_index + find(dRdT_over_T(max_peak_index:end) < half_peak, 1) -
1;

width = temperature(right_index) - temperature(left_index);

% Plot the derivative of resistivity divided by temperature versus temperature

figure;

plot(temperature(1:end-1), dRdT_over_T, 'LineWidth', 2);

hold on;

plot([temperature(left_index), temperature(right_index)], [half_peak, half_peak],
'r', 'LineWidth', 2);

text(temperature(left_index) + width/2, half_peak + 0.001, sprintf('width = %0.2f K',
width), 'HorizontalAlignment', 'center', 'BackgroundColor', 'w');

xlabel('Temperature (K)', 'FontSize', 20);

ylabel('dR/dT(milliOhm.cm/K^2)', 'FontSize', 20);
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title('Derivative of Resistivity with Respect to Temperature', 'FontSize', 25);

set(gca,'fontsize', 20);

grid on;

4:

% Define the temperature and resistivity arrays

T = [4.2, 10, 20, 36, 38, 40, 42, 44, 46, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60,
62, 63, 64, 70, 80, 90, 100, 150, 200, 250, 300];

R = [0.00177432, 0.00331207, 0.00236576, 0.000118288, 0.00816187, 0.00118288,
0.000473151, 0.0133666, 0.00544124, 0.0117105, 0.0183347, 0.0427021, 0.139462,
0.302463, 0.41874, 0.449258, 0.479895, 0.511005, 0.537265, 0.551223, 0.57902,
0.594989, 0.602796, 0.694351, 0.852739, 0.993384, 1.14148, 1.87428, 2.48098, 2.94786,
3.37937];

% Define the temperature range for the extrapolation

extrapolation_T = [200, 250, 300];

% Find the index of the temperature where the sharp drop in resistivity occurs

sharp_drop_T_index = find(T == 51);

% Take the data points up to the temperature just before the sharp drop in
resistivity

T_for_extrapolation = T(1:sharp_drop_T_index-1);

R_for_extrapolation = R(1:sharp_drop_T_index-1);

% Perform a linear fit on the selected data points

p = polyfit(T_for_extrapolation, R_for_extrapolation, 1);

% Extrapolate the fit to the desired temperature range

extrapolated_R = polyval(p, extrapolation_T);

% Calculate the residual resistivity by taking the y-intercept of the extrapolated
line

residual_resistivity = extrapolated_R(end);

% Display the result

fprintf('The residual resistivity is %f milliOhm.cm.\n', residual_resistivity);
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5:

Temperature=[300,236,194,137,100,90,73,63,60,58,54.7,51.5,49,47,45.4,44,42.6,40.9,40,
30,19.2,10];

Magnetization=[7.85*10^-6,-3.69*10^-5,-4.75*10^-5,4.35*10^-5,2.25*10^-5,2.46*10^-5,2.
39*10^-5,3.22*10^-5,9.56*10^-6,9.51*10^-6,1.89*10^-5,-1.87*10^-4,-1.01*10^-3,-1.71*10
^-3,-2.08*10^-3,-2.29*10^-3,-2.38*10^-3,-2.5*10^(-3),-2.49*10^(-3),-2.51*10^(-3),-2.5
3*10^(-3),-2.5301*10^(-3)];

%create a scatter plot with blue curve

hold on;

scatter (Temperature,Magnetization);

plot(Temperature,Magnetization,'b');

hold off;

%add labels and title

xlabel('Temperature(K)');

ylabel('Magnetization(emu)');

title('Magnetization vs Temperature');

6:

% Magnetization data

temperature = [10, 19.2, 30, 40, 40.9, 42.6, 44, 45.4, 47, 49, 51.5, 54.7, 58, 60,
63, 73, 90, 100, 137, 194, 236, 300];

magnetization = [-2.53*10^-3, -2.53*10^-3, -2.51*10^-3, -2.49*10^-3, -2.5*10^-3,
-2.38*10^-3, -2.29*10^-3, -2.08*10^-3, -1.71*10^-3, -1.01*10^-3, -1.87*10^-4,
1.89*10^-5, 9.51*10^-6, 9.56*10^-6, 3.22*10^-5, 2.39*10^-5, 2.46*10^-5, 2.25*10^-5,
4.35*10^-5, -4.75*10^-5, -3.69*10^-5, 7.85*10^-6];

% Calculate derivative of magnetization divided by temperature

dMdT = diff(magnetization)./diff(temperature);

dMdT_over_T = dMdT./temperature(1:end-1);

% Find the index and value of the maximum peak

[max_peak, max_peak_index] = max(dMdT_over_T);
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% Find the width of the peak by finding the two temperatures where the

% derivative is half of the maximum value

half_peak = max_peak/2;

left_index = find(dMdT_over_T(1:max_peak_index) < half_peak, 1, 'last');

right_index = max_peak_index + find(dMdT_over_T(max_peak_index:end) < half_peak, 1) -
1;

width = temperature(right_index) - temperature(left_index);

% Plot the derivative of magnetization divided by temperature versus temperature

figure;

plot(temperature(1:end-1), dMdT_over_T, 'LineWidth', 2);

hold on;

plot([temperature(left_index), temperature(right_index)], [half_peak, half_peak],
'r', 'LineWidth', 2);

text(temperature(left_index) + width/2, half_peak + 0.001, sprintf('width = %0.2f K',
width), 'HorizontalAlignment', 'center', 'BackgroundColor', 'w');

xlabel('Temperature (K)', 'FontSize', 20);

ylabel('dM/dT (emu x10^-3)', 'FontSize', 20);

title('Derivative of magnetization with Respect to Temperature', 'FontSize',25);

set(gca,'fontsize',20);

grid on;
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