
 

 

1 

 

 
 

 

 

 

 

Mathematical and                      

Numerical 

Simulations of the 

Lotka-Volterra 

Equations 

 

 

 
Senior project report submitted in partial fulfillment of the 

requirements for the degree of 

 
                    BS in Applied Physics 

 

 
Under the guidance of  

Doctor Omar El Deeb 

 

 

Lebanese American University 

December 15th, 2022 

 

 

 

 

 

 



 

 

 

2 

 

 

 
 

Mathematical and 

Numerical 

Simulations of the 

Lotka-Volterra 

Equations 

Nour Hilal 

 

Contents 
Abstract ........................................................................................ 3 

1. Introduction ............................................................................. 3 

2. Methods ................................................................................... 3 

3. Results ..................................................................................... 9 

4. Discussion .............................................................................. 17 

5. Conclusion ............................................................................. 18 

Acknowledgements .................................................................... 19 

References .................................................................................. 20 

APPENDIX 

 ..................................................................................................... 21 
 

 

 

 

 

 



 

 

 

3 

 

 

 

 
 

Abstract 
In this study, we perform several Mathematical and numerical simulations of the classic Lotka-

Volterra equations and their extensions. We first study the classic Lotka Volterra equations in the 

context of a two species Predator-Prey model. We then extend the classic two species model into a 

three-species Lotka Volterra Food chain with a top predator species, a mid-level Predator/Prey 

species and a lower-level prey. In our two species classic model, we find the critical points of our 

system, model the phase plot of the two species to understand their behavior around their critical 

point and then plot the variation of the two species with respect to time. As for our three species 

Lotka Volterra food chain, we take extreme cases of our system by assuming each of the species 

to be absent discretely and model the behavior of the two remaining species. We also study the 

behavior of our three species system around its critical points and vary the constants to understand 

the fate of each of our species in different contexts. Lastly, we plot, the variation of our three 

species through time, given varying assumptions. Our two species Lotka-Volterra System shows 

oscillatory behavior through time, where the predator and prey both persist, and their population 

oscillates over time. As for our Three species Lotka-Volterra food chain, the destiny of each of our 

species is dictated by the values of 4 constants in our system. 

 

 

1. Introduction 

 

In 1926, Vito Volterra, a physicist and mathematician, had taken interest in mathematical biology, 

and published a system of differential equations to model the interaction of two species population, 

where one is the prey and the other is the predator [1]. In 1910, Alfred Lotka independently 

suggested the same equations throughout his work on autocatalytic chemical reactions, where 

chemical concentrations exhibit oscillatory behavior [2]. Lotka Later extended the usage of these 

equations in 1920, to include organic system such as a plant species and an herbivorous animal 

species [3].In 1925, Lotka then published a book on biomathematics where he clearly used this 

model to analyze predator-prey phenomena [4].This model was extended by Chauvet, Paullet, 

Previte and Walls (2002) , who proposed an advanced three species Lotka-Volterra food chain, 

where a prey species 𝑥 is predated upon by a predator species y, which in turn is predated upon by a 

predator species z [5]. 

 

2. Methods 

 

2.1. Two Species Lotka-Volterra equations 

 

In the study of Population dynamics for two species, we study the growth and decline of a 
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population considering its interaction with the other. The Lotka-Volterra equations, propose a 

simplistic method of interactions between two species where one is the predator and the other is the 

prey. The equations are two first order non-linear differential equations defined as follows: 

                                                            {

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦       

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 + 𝑝𝑥𝑦      

                                                            (1) 

 

Where 𝑥 represents the population of prey, y the population of predators and a, c, b, and p are 

positive constants. a represents the natural growth rate of the prey when the predator is absent. b 

represents the effect of the predation on the prey. c represents the natural death of the predator 

when the prey is absent, and no predation exists. p represents the reproduction rate of the predator 

when the prey exists and is being consumed by the predator. 

The above equations also presuppose the following assumptions: 

-The prey is provided with an unlimited food source. 

-The only threat to the growth of the prey is the specific predator species. 

-The predator has the prey as its only source of food and growth. 

-Any interaction (xy) between the predator and the prey will result in the predator eating the prey. 

 

2.1.1.  Studying equilibrium and stability 

When studying our system (1), It is useful to study its behavior and its stability around its critical 

points. If a solution that starts close enough to one of our critical points, tends to it, it is said to be a 

stable critical point. Thus, we take the equations as follows: 

                                                            {

𝑑𝑥

𝑑𝑡
= 0 = 𝑎𝑥 − 𝑏𝑥𝑦       

𝑑𝑦

𝑑𝑡
= 0 = −𝑐𝑦 + 𝑝𝑥𝑦      

                                                    (2) 

 

It can be found from the above equation that the critical points are (0,0) and (
𝑐

𝑝
,
𝑎

𝑏
) . To test the 

stability around the following critical points, we first Linearize system (1) according to the 

following equations: 

 

                 𝑓(𝑥, 𝑦) = 𝑓(𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) + (𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (
𝜕𝑓

𝜕𝑦
) + (𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (

𝜕𝑓

𝜕𝑥
)                    (3) 

 

            𝑔(𝑥, 𝑦) = 𝑔(𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) + (𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (
𝜕𝑔

𝜕𝑦
) + (𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (

𝜕𝑔

𝜕𝑥
)                    (4) 

 

We Therefore get: 

{
𝑓(𝑥, 𝑦) =

𝑑𝑥

𝑑𝑡
= 𝑎𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 − 𝑏𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  − (𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)𝑏𝑥 + (𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (𝑎 − 𝑏𝑦)

𝑔(𝑥, 𝑦) =
𝑑𝑦

𝑑𝑡
= −𝑐𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + 𝑝𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + (𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)(−c + p𝑥) + (𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)𝑝𝑦

      

(5) 
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If we set the first derivatives in a matrix called the Jacobian Matrix, and multiply it by a 2x1 matrix 

containing (𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) as element 1x1 and (𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) as element 2x1we obtain the 

following: 

 

 

                                                             
𝑑

𝑑𝑡
[
𝑥
𝑦] = 𝐽 [

𝑦 − 𝑦𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝑥 − 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

]                                                       (6) 

 

Given that the Jacobian J is: 

 

                                                     𝐽 = [

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕y

] = [
𝑎 − 𝑏𝑦 −𝑏𝑥
𝑝𝑦 −𝑐 + 𝑝𝑥

]                                          (7)                                   

 

 

  

The Jacobian at point (0,0) is: 

 

                                                                              J= [
𝑎 0
0 −𝑐

]                                                         (8)                                                                 

 

The eigenvalues of the following matrix are λ1 = 𝑎 and λ2 = −c which are of opposite signs, 

meaning that the point (0,0) is a saddle point and thus unstable. 

 

As for point (
𝑐

𝑝
,
𝑎

𝑏
), its associated Jacobian matrix is: 

 

                                                                            J=[
0

−𝑏𝑐

𝑝
𝑝

𝑎𝑏
0
]                                                          (9)                                                                

 

 

The eigenvalues of this matrix are λ1,2 = (± √ca i), which are complex and do not have a real part, 

meaning that the point (
𝑐

𝑝
,
𝑎

𝑏
) is a center point of neutral stability. 

. 

2.2. Three Species Lotka-Volterra food chain equations 

If we now consider a three species food chain model, where a prey x is predated upon by a 

predator y, which in turn is predated upon by a predator z. Examples of the following model in 
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nature are abundant such as mouse-snake-owl, vegetation-hare-lynx, and worm-robin-falcon. 

This model consists of three first order non-linear differential equations defined as follows: 

 

                                                  

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦  

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 + 𝑝𝑥𝑦 − 𝑒𝑦z    

𝑑z

𝑑𝑡
= − f z +  gyz 

                                                   (10) 

 

Where a, b, c, p, e, f and g are positive constants and: 

• e is the effect of predation on y by species z. 

• f is the natural death rate of the predator z when the prey y is absent. 

• g is the reproduction rate of the predator z when prey y exists and is being consumed by the 

predator z. 

2.2.1. Studying Extreme cases 

 

We study extreme cases of our systems through taking simplifications of two coordinate system 

rather than three. This is performed through taking three discrete cases where z=0, y=0 and 

x=0.First, if we take z=0, our model reduces to our previously established two species predator-

prey model. Secondly, if we take y=0, we obtain the following system of differential equations: 

 

                                                         

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 

𝑑𝑦

𝑑𝑡
= 0 

𝑑z

𝑑𝑡
= − f z  

                                                                           (11) 

 

The solution of the above system (11) can be determined through dividing its first equation by its 

third which renders the following: 

                                                   
𝑑𝑥

𝑑z
= −

𝑎𝑥

 f z
                                                                              (12) 

 

 When (12) is reorganized and integrated on both sides, it produces an equation: 

                                                  ln(𝑥) + 𝐾 = −
𝑎

 f 
ln(z) + 𝐿                                                   (13) 

 

We reorganize (13) and set K-L=S to obtain: 

                                                  −
f

𝑎 
ln(𝑥) + 𝑆 = ln(z)                                                           (14) 

 

Solving for z, the following equation is found: 

                                                        z =  Q x−
f

𝑎                                                                        (15) 

 

for Q=𝑒𝑆. 
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For solution in the yz-plane we take x=0 and thus our system will have the following form: 

 

 

 

                                                 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 0

𝑑𝑦

𝑑𝑡
= −cy −  eyz

𝑑z

𝑑𝑡
= − f z +  gyz

                                                                 (16) 

 

 

The solution of (16) can be found through dividing the second equation of the aforementioned system 

by its third. The solution is therefore of the form: 

                                         −𝑓𝑙𝑛(y) + gy = −c𝑙𝑛(z) − ez + 𝐾                                                      (17) 

 

2.2.2.  Studying equilibrium and stability 

 

As done with our two species predator prey model, we are to study the behavior of our function 

around its critical point, to better understand its variations. Setting  
𝑑𝑥

𝑑𝑡
= 0,

𝑑𝑦

𝑑𝑡
= 0 𝑎𝑛𝑑 

𝑑z

𝑑𝑡
=0, we 

find that our function admits two critical points (0,0,0) and (
𝑐

𝑑
,
𝑎

𝑏
, 0).Analogous to our previous 

model, we first linearize (10) according to the following equations: 

 

                                                   

{
 
 

 
 
𝑑𝑥

𝑑𝑡
=   

𝜕𝑓

𝜕𝑥
𝑥 +

𝜕𝑓

𝜕𝑦
𝑦 +

𝜕𝑓

𝜕z
z

𝑑𝑦

𝑑𝑡
=

𝜕𝑔

𝜕𝑥
𝑥 +

𝜕𝑔

𝜕𝑦
𝑦 +

𝜕𝑔

𝜕z
z

𝑑z

𝑑𝑡
=

𝜕ℎ

𝜕𝑥
𝑥 +

𝜕ℎ

𝜕𝑦
𝑦 +

𝜕ℎ

𝜕z
z

                                                           (18) 

Which gives us: 

                                                  

{
 
 

 
 

𝑑𝑥

𝑑𝑡
=   (𝑎 − 𝑏𝑦)𝑥 + (−𝑏𝑥)𝑦 + 0

𝑑𝑦

𝑑𝑡
= 𝑑𝑦𝑥 + (−c + 𝑑𝑥 − 𝑒z)𝑦 + (−𝑒𝑦)z

𝑑z

𝑑𝑡
= 0 + 𝑔z𝑦 + (−𝑓 + 𝑔𝑦)z

                                  (19) 

 

The above system can also be expressed as follows: 

                                                              
𝑑

𝑑𝑡
[
𝑥
𝑦
z
] = 𝐽 [

𝑦
𝑥
z
]                                                                    (20) 

 

Where J is the Jacobian matrix: 
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                                                             𝐽 =

[
 
 
 
 
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕z

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕z

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕𝑦

𝜕z]
 
 
 
 

                                                               (21) 

 

When we substitute the Jacobian matrix with its proper values, we obtain the following: 

 

                                       𝐽 = [

a −  by −xb 0
yd −c +  dx −  ez −ye
0 zg − f +  gy

]                                          (22) 

 

The eigenvalues of the above Jacobian matrix at the critical points provide us with information 

regarding the stability of the system near these equilibrium points. To understand the meaning of 

the Jacobian matrix eigenvalues, we will utilize the center manifold theorem, which states that each 

equilibrium point possibly has a unique stable manifold, a unique unstable manifold and a center 

manifold which is not necessarily unique. The dimensions of the manifolds are determined by the 

number of eigenvalues with negative, positive and zero real parts. For instance, if a system has two 

positive eigenvalues, it admits a two-dimensional unstable manifold. Moreover, each of the 

aforementioned eigenvalues is associated with an eigenvector which is tangents to the 

corresponding manifold. For an extensive explanation of the center manifold theorem, check 

Chapter 3 of Guckenheimer and Holmes [6]. 

 

Given the following theorem, lets us examine the Jacobian matrix of our critical point (0,0,0): 

 

                                                     𝐽 = [
a 0 0
0 −c 0
0 0 − f 

]                                                                   (23) 

The eigenvalues of the following matrix are a, - c, and -f. Based on the aforementioned theorem, 

the two negative eigenvalues admit a two-dimensional stable manifold. This two-dimensional 

manifold is tangent to eigenvectors (0,1,0) and (0,0,1) corresponding to eigenvalues λ2 =- c and 

λ3=-f respectively. Therefore, this two-dimensional stable manifold is the yz-plane. Moreover, 

corresponding to eigenvalue λ1=a is a one-dimensional unstable manifold, which is tangent to 

eigenvector (1,0,0). It is apparent that this one-dimensional unstable manifold is the x-axis. Given 

that the eigenvalues of Jacobian (23) are of different signs, we say that the critical point (0,0,0) is 

unstable. 

 

As for the point (
𝑐

𝑑
,
𝑎

𝑏
, 0),The Jacobian matrix of this critical point is: 

                                               𝐽 =

[
 
 
 
 0 −

𝑐𝑏

𝑑
0

𝑎𝑑

𝑏
0 −

𝑎𝑒

𝑏

0 0 − f +
𝑔𝑎

𝑏 ]
 
 
 
 

                                                               (24) 
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 This critical point admits an eigenvalue λ1= 
𝑔𝑎−𝑓𝑏

𝑏
, along with two complex eigenvalues  λ2,3 =

(± √ca i) having their real part equals to zero. 

 

Assuming ga≠fb, means that essentially this critical point admits a one-dimensional manifold. This 

one-dimensional manifold is stable if fb>ga, and unstable if ga>fb. Moreover, there exists two 

complex eigenvalues with zero real parts, which indicates that this equilibrium point also admits a 

two-dimensional center manifold.  

 

If we take ga=fb, The obtained Jacobian matrix will be the following 

                                                  𝐽 = [

0 −
𝑐𝑏

𝑑
0

𝑎𝑑

𝑏
0 −

𝑎𝑒

𝑏

0 0 0

]                                                                   (25) 

Then the equilibrium point will admit three eigenvalues with their real part equals to zero. This 

indicates the existence of a three-dimensional center manifold around our critical point. 

 

3. Results 

We solve system (1) using the MATLAB ode45 function and plot the variation of predator with 

respect to prey using to obtain following phase diagram: 
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Figure (1) shows the variation of Predator Population with respect to Prey Population for b=0.01, 

p=0.02, a=1, c=1 and (𝑥0,𝑦0)=(
1

2
, 
1

2
). 

 

 

 

If we then plot the variation of Predator y Population as well as Prey x Population with respect to 

time, we obtain the following figure: 
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Figure (2) shows the variation of predator population and prey populations with respect to time for 

b=0.01, p=0.02, a=1, c=1 and (𝑥0,𝑦0)=(20,20). 

 

 

 

 

 

 

 

Plotting the solution of (15) in the xz-plane the following figure is obtained: 

 

 
Figure (3) represents the trajectory of our differential equations in the xz-plane, given that a = b = c 

= p = e = f = g = 1, y=0 and (𝑥0,𝑦0,z0)=(1,0,1). 

 

 

If we now take x=0,solve system (16), and plot the solutions in the yz-plane we obtain Figure(4). 
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Figure (4) shows the variation of Predator z with respect to Prey y for a = b = c = p= e = f = g = 1, 

x=0 and (𝑥0,𝑦0,z0)=(0,5,5). 

 

 

 

 

 

As for (10), if we take ga=fb, solve our system using the MATLAB Ode45 function and then plot 

the Trajectory in the xyz Space, the following three-dimensional plot is obtained: 
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Figure (5) represents the Trajectory of the solution of (10) in the xyz-Space Given that a = b = c = p 

= e = f = g = 1 and (𝑥0,𝑦0,z0)=(10,10,10). 

 

 

On the other hand, if we consider ga<fb, find the solution of our system and plot it in the space, we 

obtain Figure (6). 
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Figure (6) represents the Trajectory of the solution of (10) in the xyz-Space Given that a = b = c = 

p= e = f, g=0.88 and (𝑥0,𝑦0,z0)=(
1

2
 ,1,2). 

 

Taking ga>fb and plotting the solution will allow us to obtain Figure (7). 

 

 

 

 
Figure (7) represents the Trajectory of the solution of (10) in the xyz-Space Given that a = b = c = 

p = e = f, g=1.6 and (𝑥0,𝑦0,z0)=(
1

2
 ,1,2). 

 

 

 

 

Taking ga<fb, we plot the variation of our three species with respect to time, for us to obtain the 

following graph: 
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Figure (8) shows the variation of predator population z, predator/prey population y and prey 

populations x with respect to time, given that (𝑥0,𝑦0,z0)=(
1

2
 , 
1

2
, 2) with a = b = c = p = e = f = 1 and 

g = 0.88. 

 

 

 

 

Taking ga>fb and plotting the variation of our three species with respect to time allows us to obtain 

Figure (9). 
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Figure (9) shows the variation of predator population z, predator/prey population y and prey 

populations x with respect to time, given that (𝑥0,𝑦0,z0)=(
1

2
 , 1, 2) with a = b = c = p = e = f = 1 and 

g = 1.6. 

 

 

Lastly, In the case of ga=fb, the variation of our three species with respect to time is shown in 

Figure (10). 

 

 
 

Figure (10) shows the variation of predator population z, predator/prey population y and prey 
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populations x with respect to time, given that (𝑥0,𝑦0,z0)=(
1

2
 , 1, 2) with a = b = c = p = e = f = g=1. 

 

 

 

4. Discussion 

 

Figure (1) shows that around critical point (0,0) the population of Predator experiences natural 

declines while the Prey experiences natural growth. This makes sense as there are no Predators to 

consume the prey, which allows the population of prey to grow without limitations. There are also 

no Preys to be consumed by the Predators, which render the population of predator to decline at the 

natural rate. 

Moreover, if we start with some extra prey population beyond the critical point (x=
𝑐

𝑝
, 𝑦 =

𝑎

𝑏
), the 

prey population will decrease as they are being eaten while the predator population will increase as 

they are eating the prey. This will cause a decrease in the prey population and an increase in the 

predator population. This will persist until we have a low number of Prey Population and thus not 

all Predators will have Prey Population to eat so they number of predators will start to decrease. At 

the some point the number of predators will be low which will lead to an increase in the number of 

prey population and the cycle will repeat and the phase plot will have its circular form. 

The solution of system (1) with respect to time is plotted in Figure (2) and the latter exhibits 

oscillatory behavior which is in line with Figure (1) phase plot. Figure (2) shows that the 

populations of predators and preys exhibit a phase-shifted periodic behavior, having the same 

period. 

As for our Three species Lotka-Volterra System, We first study extreme cases of (10) by taking z 

=0, where our System reduces to the previously plotted and studied two species Lotka-Volterra 

System in (1). 

If we then take y=0, we obtain system (11) which when plotted renders Figure (3). This plot shows 

that as time tends to infinity, z tends to zero while x tends to grow in an exponential manner. 

Therefore, In the absence of species y, species z will have no prey population y to consume and 

will thus reduce to zero, while there will be no predator population y to consume prey population x 

which will lead the latter to increase in an unbounded manner. 

  

Taking x=0 and plotting system (16) in the yz-plane, we obtain Figure (4). In this figure we can 

clearly see that population of prey/predator y is decreasing as it is being consumed by predator z 

and has no prey x to consume and increase in numbers. As for predator z, it temporarily grows 

while it consumes prey population y (until the population of Prey y becomes very low), but then 

tends to extinction rapidly. 

 

As with the two species Lotka-Volterra System, it is useful to study the behavior of our system around 

its critical point. Using the center manifold theorem to study the behavior of our system (10) around 

its critical points, we find out that around point (0,0,0) there firstly exists a one-dimensional unstable 
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manifold, which turns out to be the x-axis. Secondly, point (0,0,0) admits a two-dimensional stable 

manifold which turns out to be the yz-plane. Thus, we conclude that the critical point (0,0,0) is 

unstable. 

As for our second critical point (x=
𝑐

𝑝
, 𝑦 =

𝑎

𝑏
, z =

ga - f b

𝑏
), assuming ga=fb, our critical admits a three-

dimensional center manifold as shown in Figure (5). This means that if ga=fb, all species persist and 

very periodically over time. This is further reinforced by the solution plot with respect to time as 

shown in Figure (10) where all the three populations oscillate over time without any species going 

towards extinction. 

If we take ga<fb, then associated with the second critical point is a one-dimensional stable manifold 

as shown in Figure (6). This Figure indicates than when ga<fb, predator z goes extinct. This makes 

sense since if we take a=b for instance, then f is greater than g and thus the natural death rate of z is 

stronger than its propagation rate in the presence of prey y. It would then make sense that z goes 

extinct. Moreover, when assuming ga<fb, we have another two-dimensional center manifold which 

turns out to be the xy-plane as shown in Figure (6). This means that in the absence of predator z, x 

and y exhibit classic Lotka-Volterra two species behavior. If we plot the variation of Populations z, 

x, and y with respect to time, given ga<fb, we observe in Figure (8) similar behavior to the 

previously discussed Figure (6), where z tends to extinction and upon extinction the plot shows that 

x and y exhibit classic two species Lotka-Volterra behavior. 

 

 

Lastly, if we consider ga>fb, our critical point admits a one-dimensional unstable manifold, which 

is plotted in Figure (7). This figure shows that as time tends to infinity predator z and prey x tend to 

infinity, while predator-prey y experiences increasing fluctuations. Moreover, when ga>fb, the 

solution plot with respect to time (Figure (9)) is in line with the associated plot of Figure (7).  

 

5. Conclusion 

 

We conclude that both the two species Lotka-Volterra system and the three species Lotka-Volterra 

food chain can be summarized by system (10). If z=0, Our model reduces to a two-species Lotka 

Volterra System as seen in (1), where both the predator and prey persist and vary periodically. As 

for our three species model where we do not take any of z=0, we observe that the fate of our top 

species z is dictated by the values a, b, f and g. If ga<fb, z dies out, and when it becomes extinct 

prey x and Predator/Prey y exhibit classical Lotka-Volterra two species behavior. When ga>fb, x 

and z grow unbounded, while y experiences increasing fluctuations. Finally, when ga=fb, all three 

populations persist and vary periodically. 

 

5.1.   Limitations  

 

The two models suggested in the above project contain several unrealistic assumptions which were 

supposed for the sake of simplicity. To begin with, the first unconsidered premise is that Prey 

Population is limited by its food source, not only by the predation upon it. Moreover, No predator 
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can consume unlimited quantities of prey. Lastly, it is quite rare to find real life scenarios where 

prey population can reach very low numbers and yet bounce back.  

 

5.2. Future Work  

Regarding future research, we intend to utilize the model proposed by Addison, Bhatt and Owen 

(2016) [7] to analyze stock behavior between predator and prey companies. This model suggests 

the following Lotka-Volterra modified equations: 

 

 

                       

{
 
 

 
 

dX1

dt
= 𝑠1X1(1 − 

X1

𝐾1
) − 𝑚12X1X2 − 𝑣1X1Y 𝑟1(X1,  X2,  Y )

dX2

dt
= 𝑠2X2(1 − 

X2

𝐾2
) − 𝑚21X1X2 − 𝑣2X2Y 𝑟2(X1,  X2,  Y )

dY

dt
= −µY + c1𝑣1X1Y 𝑟1(X1,  X2,  Y ) + c2𝑣2X2Y 𝑟2(X1,  X2,  Y )

                         (26) 

 

where 𝑟1(X1,  X2,  Y ) =   
1

1+(
𝑎2X2+𝑏2Y

X1
)𝑛

 ,𝑟2(X1,  X2,  Y ) =   
1

1+(
𝑎1X1+𝑏1Y

X2
)𝑛

 and: 

 

 si is the growth rate of the price of prey shares.  

 Ki is the carrying capacity of prey shares. 

 mij is the competition between prey companies X1and X2 where i, j = 1, 2. 

 Vi is the probability that predator Y invests in prey Xi. 

 ai is the harvesting rate of prey shares. 

 bi represents anti-predator behavior of prey shares.  

 ci: Rate of conversion of prey shares to predator shares. 

 µ: Rate of decline of predator share price. 

 𝑟𝑖(X1,  X2,  Y ) is the predation term where i, j = 1, 2. 

 

The covid-19 pandemic has demonstrated to be a catalyst which further deepened the monopoly of 

Big Tech, as the shares of the Big four Tech companies along with Netflix, Tesla and Microsoft 

increased by $291.66 billion during July 13,2020 only [8]. Our future work will focus on applying 

these equations in the context of understanding the increase in monopoly during the pandemic. 
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APPENDIX 

Codes: 

Figure (1): 

 function dxdt = f2(t,x)  
dxdt = [0;0];  
b=0.01; 
p=0.02; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2); 
 
end 

 y0 = [0.5;0.5]; 

t = linspace(0,50,100); 

[t,x] = ode45(@f2,t,y0); 

plot(x(:,1),x(:,2)) 

title('Phase Plane Plot') 

xlabel('Prey x') 

ylabel('Predator y') 

set(gcf,'color','w'); 

Figure (2): 

 y0 = [20;20]; 

t = linspace(0,50,100); 

[t,x] = ode45(@f2,t,y0); 

plot(t,x(:,1),t,x(:,2)) 

title('Predator and Prey Population over Time') 

xlabel('Time') 

ylabel('Population')  

set(gcf,'color','w'); 

legend('Prey x','Predator y','Location','North') 

Figure (3): 

 function dxdt = f3(t,x)  
dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
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dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 
 
end 

 y0 = [1;0;1]; 
t = linspace(0,50,100); 
x(2)=0; 
[t,x] = ode45(@f3,t,y0); 
plot(x(:,1),x(:,3)) 
 
title('Trajectory in the xz-Plane') 
xlabel('Prey x Population') 
ylabel('Predator y Population') 
 

Figure (4): 
 function dxdt = f3(t,x)  

dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 
 
end 
 

 y0 = [0;5;5]; 
t = linspace(0,5,5); 
x(1)=0; 
[t,x] = ode45(@f3,t,y0); 
plot(x(:,2),x(:,3)) 
 
title('Trajectory in the yz-Plane') 
xlabel('Prey y Population') 
ylabel('Predator z Population') 
 
 

Figure (5): 
 

 function dxdt = f3(t,x)  
dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 
 
end 
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 y0 = [10;10;10]; 
t = linspace(0,50,100); 
[t,x] = ode45(@f3,t,y0); 
plot3(x(:,1),x(:,2),x(:,3)) 
xlabel('Prey x Population') 
ylabel('Predator/Prey y Population') 
 
zlabel('Predator z Population') 
 
set(gcf,'color','w'); 
 
title('Trajectory in the xyz space') 
 

Figure (6): 
 function dxdt = f3(t,x)  

dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=0.88; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 
 
end 

 y0 = [0.5;1;2]; 
t = linspace(0,50,100); 
[t,x] = ode45(@f3,t,y0); 
plot3(x(:,1),x(:,2),x(:,3)) 
xlabel('Prey x Population') 
ylabel('Predator/Prey y Population') 
 
zlabel('Predator z Population') 
 
set(gcf,'color','w'); 
 
title('Trajectory in the xyz space') 
 

Figure (7): 
 function dxdt = f3(t,x)  

dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1.6; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 
 
end 

 y0 = [0.5;1;2]; 
t = linspace(0,50,100); 
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[t,x] = ode45(@f3,t,y0); 
plot3(x(:,1),x(:,2),x(:,3)) 
xlabel('Prey x Population') 
ylabel('Predator/Prey y Population') 
 
zlabel('Predator z Population') 
 
set(gcf,'color','w'); 
 
title('Trajectory in the xyz space') 

Figure (8): 
 function dxdt = f3(t,x)  

dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=0.88; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 

 y0 = [0.5;0.5;2]; 
t = linspace(0,50,100); 
[t,x] = ode45(@f3,t,y0); 
plot(t,x(:,1),t,x(:,2),t,x(:,3)) 
xlabel('Time') 
ylabel('Population') 
set(gcf,'color','w'); 
title('Three Species Food Chain Equation') 
legend('Prey x','Predator y','Predator z','Location','North') 

 

Figure (9): 
 function dxdt = f3(t,x)  

dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1.6; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 

 y0 = [0.5;1;2]; 
t = linspace(0,50,100); 
[t,x] = ode45(@f3,t,y0); 
plot3(t,x(:,1),t,x(:,2),t,x(:,3)) 
xlabel('Time') 
ylabel('Population') 
set(gcf,'color','w'); 
title('Three Species Food Chain Equation') 
legend('Prey x','Predator y','Predator z','Location','North') 
 

Figure (10): 
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 function dxdt = f3(t,x)  
dxdt = [0;0;0];  
alpha=1; 
beta =1; 
e=1; 
f=1; 
g=1; 
dxdt(1) = x(1) - alpha*x(1)*x(2); 
dxdt(2) = beta*x(1)*x(2) - x(2)-e*x(2)*x(3); 
dxdt(3)=-f*x(3)+g*x(2)*x(3); 

 y0 = [0.5;1;2]; 
t = linspace(0,50,100); 
[t,x] = ode45(@f3,t,y0); 
plot3(t,x(:,1),t,x(:,2),t,x(:,3)) 
xlabel('Time') 
ylabel('Population') 
set(gcf,'color','w'); 
title('Three Species Food Chain Equation') 
legend('Prey x','Predator y','Predator z','Location','North')
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