
Lebanese American University 

 

 

 

ELE 594: Undergraduate Research Project 

 

A MODIFIED HYBRID MULTI-OBJECTIVE GA AND LSF ALGORITHM FOR OPTIMAL 

SITING AND SIZING OF PV-BASED DISTRIBUTED GENERATION IN DISTRIBUTION 

NETWORKS CONSIDERING DIFFERENT TYPES OF LOADS 

 

 

Advisor: Dr. Raymond Ghajar 

Preparation: Jessica Korkmaz - 201801005 

Final Report 

        

        

 

 

 

Fall 2022 



1 
 

 Abstract 

Many methodologies have been developed for the problem of optimal siting and sizing of 

photovoltaic (PV) distributed generation in distribution networks.  However, clear solar potential 

assessment and variability of load constitutions at buses are aspects that are still missing in 

current optimization formulations.  In this paper, a new methodology that uses the Multi-

Objective Genetic Algorithm (MOGA) is proposed for the optimal allocation of PV-based 

distributed generation units (PV-DGs) in distribution networks.  The method aims at minimizing 

active power losses, voltage deviations, and energy costs using a practical model that considers 

both the solar potential of each bus and variable load classifications.  For this purpose, a modified 

MOGA algorithm that incorporates a Loss Sensitivity Factor (LSF) of solar potential in the optimal 

allocation problem at peak load is developed and compared to the traditional MOGA algorithm.  

The hybrid MOGA-LSF algorithm involves a two-step optimization problem.  In the first step, the 

candidate buses for optimal allocation of PV DGs are specified using the LSF algorithm and in the 

second step, the radial power flow nested within the MOGA formulation is used to determine 

the sizes of the DGs to be installed.  The time variations of loads are modeled by dividing a typical 

summer day into six intervals, each having different solar irradiance levels.  Loads profiles of 

different classifications are also modeled for each candidate bus.  The proposed technique is 

applied to the IEEE-15 bus radial distribution network to illustrate its effectiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Table of contents 

 

I. INTRODUCTION ....................................................................................................................... 5 

II. Literature review ..................................................................................................................... 6 

1. Allocation of dispatchable DG units in distribution networks ............................................. 6 

2. Allocation of wind-based DG units in distribution networks............................................... 7 

3. Allocation of wind and PV-based DG units in distribution networks .................................. 8 

4. Allocation of dispatchable and non-dispatchable DG units in distribution networks ......... 8 

5. Allocation of solar PV DG units in distribution networks .................................................... 9 

6. Gaps in the literature and the need for the study ............................................................. 11 

III. Problem formulation and system modeling ......................................................................... 12 

1. Objective functions ............................................................................................................ 12 

A. Active power losses .................................................................................................... 12 

B. Voltage deviation index .............................................................................................. 14 

C. Total energy cost ........................................................................................................ 14 

2. System modeling ................................................................................................................ 14 

A. Modeling of daily output of the PV system ................................................................ 14 

B. Solar PV output calculation for each configuration ................................................... 15 

C. Maximum solar PV capacity at each bus .................................................................... 17 

3. IEEE 15-bus test feeder ...................................................................................................... 18 

4. Load modeling .................................................................................................................... 19 

5. Optimization ...................................................................................................................... 23 

A. MOGA algorithm ......................................................................................................... 23 

B. Hybrid MOGA-LSF algorithm ...................................................................................... 26 

C. Modified MOGA-LSF algorithm .................................................................................. 27 

IV. Results and discussion .......................................................................................................... 29 

1. Optimization results for each configuration ...................................................................... 29 

A. Configuration C2 ......................................................................................................... 29 

B. Configuration C3 ......................................................................................................... 33 

C. Configuration C4 ......................................................................................................... 35 



3 
 

2. Hybrid MOGA-LSF and modified MOGA-LSF results on configuration C4 ......................... 38 

3. Choice of the optimal solution ........................................................................................... 42 

V. Conclusion and future works ................................................................................................ 46 

References .................................................................................................................................... 48 

 

 

Table of figures 

FIGURE 1: SINGLE-LINE DIAGRAM FOR IEEE 15-BUS DISTRIBUTION NETWORK .......................................................... 18 
FIGURE 2: DAILY LOAD PROFILES OF RESIDENTIAL, COMMERCIAL AND INDUSTRIAL CUSTOMERS............................ 20 
FIGURE 3: MOGA OPTIMIZATION METHODOLOGY ..................................................................................................... 25 
FIGURE 4: OPTIMIZATION PROCESS APPLIED ON CONFIGURATION C2 ...................................................................... 26 
FIGURE 5: MODIFIED MOGA-LSF ALGORITHM METHODOLOGY ................................................................................. 28 
FIGURE 6: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C2 CONSIDERING VOLTAGE DEVIATION 

AND POWER LOSSES .......................................................................................................................................... 30 
FIGURE 7: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C2 CONSIDERING ENERGY COST AND 

POWER LOSSES................................................................................................................................................... 30 
FIGURE 8: VOLTAGE PROFILES BEFORE AND AFTER OPTIMIZATION FOR C2 .............................................................. 32 
FIGURE 9: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C3 CONSIDERING VOLTAGE DEVIATION 

AND POWER LOSSES .......................................................................................................................................... 33 
FIGURE 10: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C3 CONSIDERING ENERGY COST AND 

POWER LOSSES................................................................................................................................................... 33 
FIGURE 11: VOLTAGE PROFILES BEFORE AND AFTER OPTIMIZATION FOR C3 ............................................................ 35 
FIGURE 12: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C4 CONSIDERING VOLTAGE DEVIATION 

AND POWER LOSSES .......................................................................................................................................... 35 
FIGURE 13: PARETO OPTIMAL SOLUTION SET FOR PV DGS PLACEMENT IN C4 CONSIDERING ENERGY COST  AND 

POWER LOSSES................................................................................................................................................... 36 
FIGURE 14: VOLTAGE PROFILES BEFORE AND AFTER OPTIMIZATION FOR C4 ............................................................ 37 
FIGURE 15: SENSITIVITY ANALYSIS CONDUCTED ON THE 15-BUS DISTRIBUTION SYSTEM ......................................... 39 
FIGURE 16: VOLTAGE PROFILE OF CONFIGURATION C4 FOR THE THREE OPTIMIZATION ALGORITHMS .................... 41 
FIGURE 17: PERCENTAGE OF POWER LOSSES AND ENERGY COST REDUCTIONS FOR EACH OF THE THREE ADOPTED 

SOLUTIONS ......................................................................................................................................................... 45 

 

 

 

 

 

 

 



4 
 

Table of tables 

TABLE 1: SOLAR IRRADIANCE AND AMBIENT TEMPERATURE FOR THE SIX CONFIGURATIONS .................................. 15 
TABLE 2: ELECTRICAL PROPERTIES AND TEMPERATURE CHARACTERISTICS OF THE LG 365 W PANEL ....................... 16 
TABLE 3: AREA AVAILABLE AND MAXIMUM PV CAPACITY FOR EACH BUS IN KW ...................................................... 17 
TABLE 4: BRANCH AND LOAD DATA FOR THE IEEE 15-BUS DISTRIBUTION NETWORK ............................................... 18 
TABLE 5: CUSTOMER DISTRIBUTION BY CLASSIFICATION AS INSTALLED AT EACH BUS .............................................. 19 
TABLE 6: COMPUTATION OF THE TOTAL LOAD DEMAND OF EACH BUS IN PERIOD C1 .............................................. 21 
TABLE 7: CALCULATED ACTIVE AND REACTIVE POWER OF EACH BUS FOR ALL SIX CONFIGURATIONS OF THE MODEL

 ........................................................................................................................................................................... 22 
TABLE 8: OPTIMAL NUMBER AND CAPACITY OF ALLOCATED PV DGS FOR CONFIGURATION C2 ............................... 31 
TABLE 9: OPTIMIZATION RESULTS FOR CONFIGURATION C2 AND BASE CASE ........................................................... 32 
TABLE 10: OPTIMAL NUMBER AND CAPACITY OF ALLOCATED PV DGS FOR CONFIGURATION C3 ............................. 34 
TABLE 11: OPTIMIZATION RESULTS FOR CONFIGURATION C3 AND BASE CASE ......................................................... 34 
TABLE 12: OPTIMAL NUMBER AND CAPACITY OF ALLOCATED PV DGS FOR CONFIGURATION C4 ............................. 36 
TABLE 13: OPTIMIZATION RESULTS FOR CONFIGURATION C4 AND BASE CASE ......................................................... 37 
TABLE 14: BUSES RANKED IN DESCENDING ORDER BASED ON THEIR CALCULATED LSF VALUES ............................... 38 
TABLE 15: OPTIMAL NUMBER AND CAPACITY OF ALLOCATED PV DGS FOR CONFIGURATION C4 USING MOGA-LSF 39 
TABLE 16: BUSES RANKED IN DESCENDING ORDER BASED ON THEIR SCORE VALUES................................................ 40 
TABLE 17: OPTIMAL NUMBER AND CAPACITY OF ALLOCATED PV DGS FOR CONFIGURATION C4 USING MODIFIED 

MOGA-LSF .......................................................................................................................................................... 40 
TABLE 18: OPTIMIZATION RESULTS FOR CONFIGURATION C4 USING MOGA, MOGA-LSF, AND MODIFIED MOGA-LSF

 ........................................................................................................................................................................... 41 
TABLE 19: TOTAL AVERAGE LOSSES AND TOTAL AVERAGE COST FOR THE BASE CASE ............................................... 43 
TABLE 20: TOTAL AVERAGE LOSSES AND TOTAL AVERAGE COST USING THE SOLUTION OF C2 ................................. 43 
TABLE 21: TOTAL AVERAGE LOSSES AND TOTAL AVERAGE COST USING THE SOLUTION OF C3 ................................. 43 
TABLE 22: TOTAL AVERAGE LOSSES AND TOTAL AVERAGE COST USING THE SOLUTION OF C4 ................................. 44 

 

 

 
 

 

 

 

 

 

 

 



5 
 

I. INTRODUCTION 
 

The distribution network is the final stage of an electric power supply system where the power 

is distributed to customers. The main problem of distribution systems is the power losses created 

by the current flow ( I2R losses) which can account for 70 % of the total losses in the power system 

network. One of the solutions to decrease these losses is the connection of local power supply 

sources also known as distributed generation (DG) sources [2]. 

Distributed generators are small power units that can be either powered by renewable or 

nonrenewable sources and located near customer sites in distribution networks. Distributed 

power generation models that are mainly encountered in the literature can be divided into two 

types: Deterministic DG models and stochastic DG models. On the one hand, deterministic 

models mainly include DGs that can be dispatchable, which means that their power output can 

be controlled by increasing or decreasing the energy supply sources. Some common examples of 

deterministic DGs include gas turbines and fuel cells. On the other hand, stochastic DG models 

consider the intermittent and unpredictability of the supply sources. This is the case of renewable 

DGs such as wind energy and solar photovoltaic (PV) units that are characterized by a variable 

input supply of power that depends essentially on the local weather conditions [1].  

Over the last decade, the installation of DGs has become more popular with the advancement in 

the use of renewable sources of energy [15]. Apart from reducing costs as the initial investment 

of building new power plants is replaced by smaller and distributed investments [1], the 

difficulties in building new transmission lines and the technological progress in small-scale power 

generation units [16], the integration of renewable energy resources (RESs) in distribution 

networks have increased rapidly with the growing interests to reduce the emission of greenhouse 

gases from fossil fuel sources and the growing environmental concerns of air pollution and global 

warming [1]. Among renewable resources, wind and solar photovoltaic (PV) sources are currently 

widely used as they are being designed for small-scale installations which makes them suitable 

to integrate into distribution systems [23]. This is why research has been primarily focusing on 

finding methods to make this integration more reliable and economically feasible. Furthermore, 

renewable DGs present lots of advantages in distribution networks such as minimization of power 

losses, improvement in voltage profiles, enhanced system reliability [1], peak shaving, and 

relieving overloaded distributed lines [13]. However, these benefits can only be observed if the 

renewable-based DGs are properly placed and sized. In fact, the main challenges of renewable 

resources lie in their intermittent nature which can be the cause of economic and technical issues 

for network operators. Hence, if the installation of these DGs is not well planned, undesirable 

effects might occur such as bidirectional power flow, stability issues, harmonic instability, and 

voltage fluctuations that can threaten the quality of the power delivered to consumers [11]. 

Consequently, regarding what was stated above, the problem of optimal allocation of DGs in 

distribution networks is of crucial importance and has been studied extensively in the literature. 
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The optimal DG placement problem consists of finding two parameters: the location of DGs in 

the network and their size or capacity that can theoretically vary from 0 to 100 % of the total 

demand that needs to be met [2].  

II. Literature review 
 

This literature review presents an overview of the research work that has been done on the 

optimal allocation of DGs in distribution networks. The literature will be divided based on the 

types of DGs that were to be allocated for each paper: References [3-4] focus on dispatchable 

DGs alone, references [5-10] examine wind-based DGs only, references [11-12] include both PV 

and wind-based DGs, references [13-16] consider both dispatchable and non-dispatchable DG 

types and the remaining research (references [17-27]) targets solar PV units only. For each type 

of DG being allocated, different types of optimization techniques are used. They can be classified 

into analytical techniques such as loss sensitivity factor (LSF) and the improved analytical method 

(IA), classical techniques including linear programming (LP) and mixed-integer nonlinear 

programming (MINLP), metaheuristic techniques such as genetic algorithm (GA), particle swarm 

optimization (PSO), Ant lion optimization (ALO), artificial bee colony optimization (ABC) and ant 

colony optimization (ACO), artificial intelligence techniques that integrate fuzzy decision-making 

tools and hybrid techniques which combine two analytical techniques, two metaheuristic 

techniques (for example GA-PSO) or analytic and metaheuristic techniques (LSF-ALO for 

instance).  Since the integration of renewable sources in distribution networks is not an easy task 

as most of the allocation problems are formulated as MINLP problems, there is no guarantee that 

the optimal solution can be found using exact optimization techniques. This is why most of the 

literature has been relying on metaheuristic techniques through algorithms to solve problems of 

optimal sizing and allocation of PV DGs (PSO and GA being the most popular techniques for this 

purpose[13]). Even though metaheuristic techniques may trap the solution in a local minimum 

[4], these algorithms have lots of advantages in terms of adaptation to all types of problems and 

finding solutions in a wide search space without having to dive into the complexity of the problem 

[21].  

1. Allocation of dispatchable DG units in distribution networks 

The early works on the problem of optimal allocation of distributed generation considered only 

dispatchable DGs mainly fuel cells. For instance, the authors in [3] use a hybrid GA and OPF 

algorithm to determine the best sites to connect DGs and their respective capacities. The hybrid 

implementation is required because the GA used alone, will find the optimal locations but for 

predefined sizes, and the OPF alone would provide continuous capacities but at pre-specified 

locations. The single objective function considers the loss target where DNOs are rewarded if the 

losses are below a certain target and penalized if the losses are above this target. In [4], a hybrid 

analytical and metaheuristic optimization technique is proposed to optimally allocate DGs in the 

distribution network to reduce the network power losses: the candidate buses are chosen using 
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an extended LSF method and a fussy logic controller (FLC). The results obtained are then used as 

initial values to the sine-cosine algorithm (SCA) to specify the optimal sizes and locations. The 

paper also considers a new categorization of DGs. Effectively, it considers three types of DGs 

based on their ability to inject or consume reactive power. Both [3] and [4] show that the optimal 

allocation achieves huge decreases in power losses and an enhanced voltage profile. However, 

both works included deterministic DGs only and further showed the need to consider 

probabilistic energy sources under network constraints. 

2. Allocation of wind-based DG units in distribution networks 

With the increase in carbon-dioxide emissions and the growing concerns regarding global 

warming, wind energy became one of the most important types of renewable energies and a lot 

of European countries are currently working on increasing its penetration mainly in distribution 

networks. However, wind energy integration into the grid comes with challenges regarding 

voltage deviation and stability as well as power losses. This is why a proper allocation of DGs is 

of crucial importance to increase the benefits of integrating distributed generation into 

distribution networks on the operators [9]. Reference [5] models the uncertainty in the power 

supply by using a probabilistic-based planning technique to build all possible scenarios of 

operation of the distribution system. This model is then incorporated within an OPF formulation 

to compute the total energy losses. The authors showed that probabilistic planning achieves 

better results in terms of losses since the optimization considers all the possible combinations of 

load and supply and is a good representation of the actual network. Reference [6] considers the 

minimization of total expected active power losses of the system by controlling the wind turbines' 

power factor. The optimal power factor angles for wind turbines are determined from a 

stochastic optimization and the autocorrelation and cross-correlation of the wind power are 

modeled using the bivariate LARIMA model. The paper concludes that once the optimal power 

factor setting for wind power is determined, significant loss minimization can be achieved. In [7], 

the optimal allocation of wind turbines in distribution networks is carried out by combining multi-

objective GA and the market based OPF to jointly minimize the total energy losses and maximize 

the net present value of wind turbines' investments. To evaluate both objective functions 

simultaneously, the nondominated sorting GA II (NSGA II) procedure is applied to find multiple 

Pareto-optimal solutions. The main results showed that the dispatched power of WTs increases 

proportionally to the increase in load demand. The authors in [8] propose a hybrid PSO and 

optimal power flow to maximize the net present value of the investment done on WT- based 

generations. Modeling of generation and load is also done based on the joint probability of 

occurrence of wind and demand to come up with several wind/demand scenarios and 

contingencies constraints are incorporated in the model. The outcomes revealed that the total 

dispatched active power of DGs decreases when contingency constraints are considered, and 

higher DG capacities are installed in locations that are close to the substation. A new optimization 

algorithm, the multi-objective artificial electric field algorithm (MOAEFA) was presented in [10] 

aiming to optimally allocate wind turbines in radial networks. The algorithm includes a fuzzy logic 

decision-making method to reduce power losses and minimize voltage deviations. The algorithm 
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is then compared to the PSO, GWO (grey wolf optimizer), and BSO (backtracking search 

optimization) search methods and the paper shows its superiority in achieving lower amounts of 

power loss and voltage deviation for both the single-objective and multi-objective placement of 

wind turbines.  

3. Allocation of wind and PV-based DG units in distribution networks 

Furthermore, the authors in [11] and [12] considered the allocation of both PV and wind-based 

DGs into distribution networks. In [11], a simple and flexible decision-making algorithm to 

optimally size and place renewable DGs of two types (wind and PV-based DGs ) in distribution 

networks is suggested, and it is implemented on MATLAB and NEPLAN software. The optimal 

allocation is defined as the location and capacity of DG that will result in the smallest amount of 

power losses. The implemented algorithm achieved results comparable to those found by other 

methodologies in the literature. Moreover, [12] proposes a hybrid fuzzy logic controller (FLC) and 

ant lion optimization (ALO) algorithm to optimally allocate PV and wind-based DGs with different 

power factors. The problem assumes a multi-objective formulation where power losses, 

operational costs, voltage deviation index, and voltage stability index are all minimized. The 

technique achieves better power loss reduction and enhanced voltage profile as compared to the 

ALO-PSO and ALO methods in all three cases of unity, leading, and lagging pF for the DGs. 

4. Allocation of dispatchable and non-dispatchable DG units in distribution networks 

The following group of papers [13-16] considers that the diversification of types of DGs that are 

optimally placed may have various impacts on the stability and operation of the network. For 

instance, the authors in [13] focused on the simultaneous integration of both dispatchable (gas 

turbines) and non-dispatchable DGs (wind-based DGs) in distribution networks. The optimal 

location of wind and gas turbines DG units has been solved using the GA approach. The objective 

function is a cost function that includes annual DG capital costs, DG operation and maintenance 

costs, energy loss costs, and emission costs. The results showed that the DG allocation 

considering costs of emission resulted in better performance of the network than the case where 

the costs of emissions weren’t considered. Similarly, in [14], the ant colony optimization (ACO) 

and artificial bee colony (ABC) optimization are combined to optimally allocate dispatchable and 

non-dispatchable DGs in distribution networks considering both load and wind uncertainties. 

ACO algorithm solves for optimal solutions and ABC makes sure that the ACO isn’t trapped in a 

local optimum solution and converges to the global optimum solution. A probabilistic power flow 

based on the point estimate method (PEM) is also used to model the stochastic nature of both 

wind generation and load demand. The proposed hybrid technique achieved better loss 

reduction and better performance compared to PSO-CFA and ABC methods. Moreover, a new 

methodology based on the Water, energy, and food algorithm (WEFA) to determine the best size 

and location of DGs, was presented in [15] to minimize power losses that arise from a non-

optimal placement of DG sources and emissions. The Dragonfly algorithm (DFA) was developed 

to solve for the best locations and sizes of the renewable DG sources and revealed noticeable 

improvements in both power losses and voltage profiles with low computation time. Reference 

[16] discussed the optimization of a distribution system that contains wind, PV, fuel cell, and 
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battery storage using PSO, to reduce the total costs of DGs, improve the voltage profile and 

decrease the usage of gas from the grid to reduce emissions, and this is done by considering 

different types of loads such as electrical, heating and cooling loads and their variation in time 

over a year. The observed results pointed toward improved voltage profiles following the optimal 

sizing and placement of DGs. Also, the installation of solar and wind-based DGs considerably 

decreased the amount of gas emitted.  

5. Allocation of solar PV DG units in distribution networks 

The optimal allocation of PV-based DG units was further discussed in [17-27]. As a matter of fact, 

for countries with high solar potential such as Lebanon, solar PV appears to be the most suitable 

technology as the PV generation output is strongly dependent on solar irradiation. Also, it doesn’t 

require large areas of development such as wind energy [23]. Furthermore, research suggests 

that investments in building new distribution lines and feeders can be avoided if PV-based DG 

units are optimally placed and sized in regions of high concentration of load and can hence 

contribute to reducing the environmental impacts of fuel-based power generation. Nevertheless, 

the allocation of PV units into distribution networks displays some technical challenges mainly 

due to the intermittent nature of solar irradiance levels. So, to mitigate adverse effects such as 

rising voltages and reversal power flows, there is a need for analytical models to relate solar 

irradiance and PV injection into the network so that the integration of PV-based DGs happens as 

smoothly as possible [19].  

The authors in [17] propose a clustering technique to optimally allocate PV DGs in distribution 

networks. To represent the fluctuating nature of the output power of PV modules and the 

variable nature of the load, the simulation must be run on the entire days of a full year hour by 

hour. As this approach is highly time-consuming and costly, the clustering technique finds the 

days that would be most representative of the yearly profile and run the simulation on these days 

only. The simulation is run over all seasonal levels of loads and for all clusters using the PSAT 

software. Then, the total power losses are calculated, and the best sizes and locations are 

deduced from the perspective of minimizing power losses. Furthermore, the authors in [18] 

consider the modeling of harmonics that were ignored in the literature under the assumption 

that the connection of DGs will affect total harmonic distortions (THDs) and individual harmonic 

distortions (IHD). The biography-based optimization (BBO) method is implemented to optimally 

allocate PVDGs to solve a multi-objective function that is composed of power loss reduction and 

voltage profile improvement while maintaining THD and IHD indices within their limits. The paper 

concluded that, although GA, PSO, and ABC can meet the harmonic constraints, their results are 

not as good as the BBO algorithm. In [19], a two-stage stochastic optimization model to optimally 

site and size PV DG units in distribution networks is implemented to minimize the costs incurred 

by the installation of PVs and the thermal loss they generate. Based on the allowed number of 

PV installations at each bus, the average panel area and inverter capacity of the PV DGs are 

determined. Moreover, a new optimization technique, the Modified Jaya Algorithm is presented 

in [20] aiming to find the optimal capacities and location of PV-based DG units under very high 

penetration levels. The algorithm indicated better performance than other existing methods in 
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minimizing power losses and improving the voltage profile in both low penetration levels and 

high penetration levels of PV DGs (around 300 %). In [21], the authors address the problem of 

minimization of losses by optimal placement and sizing of PV DGs units by using the MINLP model 

and the hybrid discrete-continuous modification of the vortex search algorithm (DCVSA) 

metaheuristic solution method. The paper considers 24 hours simulation where both demand 

and PV generation vary hour by hour and the analysis considers both the power losses in the 

peak hour and the overall losses over the full period considered. The DCVSA technique achieved 

a reduction in power losses that is 1.3% greater than the GAMS-BONMIN method.  

As deduced from the above, the literature shows the need to find new optimization techniques 

with better numerical performance that can guarantee that the global optimum can be reached. 

Hence, [22] suggests a new hybrid algorithm: the modified arithmetic optimization algorithm 

(MAOA), that can be used to solve different MINLP problems. The objective function considers 

three types of costs: investment costs, energy purchase costs, and maintenance costs associated 

with PV units. The original AOA algorithm is enhanced by including a Gaussian distribution 

operator that can generate new candidate solutions. The results demonstrated that the 

implemented algorithm reaches the best optimal solution compared to the BONMIN in GAMS 

and metaheuristic techniques such as CBGA, NMA, and the original version of the AOA. Similarly, 

the authors in [23] develop a generalized normal distribution optimizer (DNDO) with a discrete-

continuous codification to solve the problem of optimal PV allocation and sizing in the first stage. 

Then, in the second stage, the MINLP model is transformed into a simple power flow plow for 

distribution networks using the successive approximation power flow (SAPF) method. The 

objective of this optimal allocation is to reduce the investment and maintenance costs of the PV 

generators and the energy acquisition costs of the substation node. 

Additionally, the genetic algorithm (GA) was extensively used for the problems of siting and sizing 

of PV-based DGs. Multi-objective GA has the advantage of simultaneously finding the Pareto-

optimal solutions in a single run since it simultaneously searches for multiple solutions [7]. 

Therefore, the optimal placement and sizing of PV systems in distribution networks to minimize 

losses and improve the voltage profile is further discussed in [25] by using GA and Monte Carlo 

simulation to obtain the probability of irradiation and consumption in each hour of the day. The 

method considers the case where the solar potential is not the same at all buses of the network 

and can vary on four parts of the feeder from 0.95 to 1. Still the results showed that when the 

solar potential isn’t the same in all the buses, the power losses are almost similar to the original 

scenario of equal solar potential at all buses. In [26], the real distribution network of the city of 

Kabul is studied and based on the GA optimization technique with the objective function of 

reducing power losses, the optimal placement and sizing of rooftop PV-based DG units is 

determined. The NR power flow is run over 24 hours to compute the fitness function. However, 

since only power losses are considered in a single objective problem, the results show that the 

optimal capacities of the PV DGs are very close to or equal to their maximum capacity. This shows 

that more constraints and objectives must be included to limit the integration of PVs and have 

more meaningful results. In [27], a two-step optimization approach is suggested to evaluate the 
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impacts of adding a battery energy storage system (BESS) into a distribution network that 

integrates renewable energy resources. In the first optimization step, the optimal size and 

location of the PV-based DG units are determined to achieve three objectives: minimization of 

active power losses, improvement of the voltage profile, and minimization of cost. In the second 

optimization step, the optimal size and placement of the BESS are determined to further reduce 

the objective functions. The problem is formulated as a multi-objective optimization and solved 

using the genetic algorithm technique and uses the time domain power flow to compute the 

fitness functions.  

6. Gaps in the literature and the need for the study 

Despite the work done on the optimal allocation of DG units in distribution networks, there is still 
a gap in the literature. Firstly, few works focus on the integration of both dispatchable and non-
dispatchable DG into distribution networks [13]. This integration may have various impacts on 
the stability and operation of the network as highlighted in [14].  
Secondly, most of the cited work [17-27] addressed the optimal allocation of PV DGs based on 
an optimization problem formulation. This problem is generally divided into two levels: the first 
level concerns the location of the DGs, and the second level concerns the problem of sizing. The 
first level is solved using sensitivity analyses or metaheuristic algorithms and the second level is 
solved by running several power flow simulations. However, as suggested in [24], it is not enough 
to only consider the optimization problem of allocation without performing a solar PV potential 
assessment at each bus. The locations that achieve the best objective functions may not have a 
high PV potential and vice versa. Hence, future work should consider both PV potential 
assessment (from geographic, economic, and technical perspectives) and the optimization 
algorithm integration simultaneously to solve the problem of optimal siting and sizing of PV DG 
units in distribution networks. It includes developing strategies for optimal allocation of PV DGs 
that also consider the feedback of the PV energy resource potentials alongside the power 
system's higher performance (classical optimization approach to reduce power losses and 
improve the voltage profile for example). This approach of assessing PV potential in different 
geographical locations will result in having more accurate DG limits and will save effort and time.  
Thirdly, most of the cited literature assumed that there is a fixed type of load at each bus in a 
sense that the load could be considered fixed or variable and modeled stochastically as seen in 
references [5] and [6] for instance; however, none of the research considered the different types 
of customers at each bus such as industrial, commercial and residential consumers mainly. As a 
matter of fact, in [17] and [27], different types of loads were considered and residential, 
commercial, agricultural, and industrial customers were assigned randomly at buses. 
Nevertheless, each bus is modeled as having one type of load attached to it and the variability in 
the load constitution that is generally present in actual distribution networks is not considered. 
It is important to note that considering different types of loads may not lead to major differences 
in terms of power losses and voltage profile, but it will affect the allocation of PV units to buses 
and hence lead to different sizes and location values. Therefore, the development of more 
practical and closer to real distribution network models for both loads and DGs and new 
optimization problems that include both technical and economic objective functions, needs 
further attention.  
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Finally, as it was established by most research work that hybrid metaheuristic techniques may 

have higher chances of finding the optimal solutions [14] [24], new combinations of optimization 

techniques should be tried on the problem of optimal allocation of DGs in distribution networks 

to test their performance and explore their potential in finding better solutions than the existing 

techniques.  

III. Problem formulation and system modeling 
 

In this research, a new methodology for the optimal siting and sizing of PV-based distributed 

generation units (PV-DGs) in distribution networks will be developed. The method aims at 

minimizing active power losses, voltage deviations, and energy costs using a practical model that 

considers both the solar potential of each bus and variable load classifications. The multi-

objective genetic algorithm (MOGA) and the radial power flow nested within this algorithm will 

be used to determine the sizes and locations of the PV DGs to be installed. The load profile of a 

typical summer day will be divided into six configurations and different load classifications will 

be considered. To show the importance of solar potential assessment at buses in the optimization 

problem, a modified hybrid MOGA-LSF algorithm will be proposed for the optimal allocation of 

PV DGs at peak load. It will also be compared to the traditional MOGA algorithm and the hybrid 

MOGA-LSF that do not incorporate any solar potential evaluation. 

1. Objective functions 

In this report, the optimal allocation of PV DGs is done based on three objective functions: total 

active power losses, voltage deviation, and total energy cost. Each of these objective functions 

along with its respective set of constraints will be explained in what follows. 

A. Active power losses 

The first important objective function to consider is the power losses in distribution lines that can 

be very high due to feeders being far away from load centers. The amount of power loss will 

depend on the location and size of the DGs because it varies with the squared magnitude of the 

traveling current and the resistance of the branch [15]. Therefore, minimization of power losses 

can be achieved by optimal placement and sizing of the DGs. 

The distribution networks that are targeted in the proposed methodology may be radial or 

meshed even though the radial configuration is the most common one for distribution networks 

because of its simplicity and the fact that it achieves lower costs. In this configuration, the main 

feeder supply various areas or loads through a common radial line [2]. If the distribution system 

is radial, the power flow becomes easier to solve as the power summation or backward-forward 

sweep algorithms can be used instead of Newton's power flow. In the proposed methodology, 
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the system considered is radial. Hence, the power summation algorithm of the MATPOWER 

package is used to solve the power flow problem with less computation time. 

To compute the total active power losses after the installation of the PV DGs at each bus, the PV-

based DGs are treated as PQ nodes where both P and Q can be controlled independently. In the 

case of the PQ node, the PV-DG will act as a negative load as explained in [27] and the new load 

at each bus can be computed as follows: 

𝑃𝐷
′ (𝑖) = 𝑃𝐷(𝑖) − 𝑃𝑃𝑉−𝑔𝑒𝑛(𝑖)     (1) 

Where 𝑃𝑃𝑉−𝑔𝑒𝑛(𝑖) is the installed PV capacity at bus number i based on the number of PV panels 

that is allocated at this bus, and 𝑃𝐷
′ (𝑖) is the new active power demand at bus i.  

Also, the PV DGs are modeled as supplying reactive power at a constant power factor of 0.9. Note 

that this model will be compared to the case where PV DGs are set at unity power factor later in 

the report, to investigate the benefits of DG power factor regulation in distribution networks. 

Therefore, the reactive power at each bus will be computed in a similar way to the active power 

using the following equation: 

𝑄𝐷
′ (𝑖) = 𝑄𝐷(𝑖) − 𝑃𝑃𝑉−𝑔𝑒𝑛(𝑖) ∗ tan(𝑎𝑐𝑜𝑠(0.9))   (2) 

Where 𝑄𝐷
′ (𝑖) is the new reactive power demand at bus i.  

The constraints for the power flow that will be considered are as follows: 

 

1. For the safe operation of the power system, the magnitude of the voltage at each bus must lie 

within the lower and upper bounds of the bus voltage: 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥      (3) 

2. The thermal capacity, defined as the thermal capacity limit of each line or transformer in MVA 

[3], sets a limit on the maximum amount of power transfer in each line as follows: 

𝑆𝑡 ≤ 𝑆𝑡
𝑚𝑎𝑥    (4) 

3. The power flow balance equations are given by: 

 

𝑃𝑔𝑟𝑖𝑑 + 𝑃𝑔𝑒𝑛−𝑃𝑉 = 𝑃𝐷 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠         (5) 

     
𝑄𝑔𝑟𝑖𝑑 + 𝑄𝑔𝑒𝑛−𝑃𝑉 = 𝑄𝐷 + 𝑄𝑙𝑜𝑠𝑠𝑒𝑠     (6) 

The first objective function can therefore be defined as: 

min 𝑃𝑙𝑜𝑠𝑠(𝑃𝑉)    (7) 
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B. Voltage deviation index  

Another important objective function to consider is the voltage deviation which is defined as the 

deviation in the bus voltages from the reference voltage of 1 per unit. These deviations occur due 

to the current flowing in the network lines and the voltage drop that will result [10]. Therefore, 

minimizing voltage deviations will contribute to an enhanced voltage profile. The objective 

function is formulated as defined in [27]: 

min 𝑉𝐷𝑖 = ∑ |1 − 𝑉𝑖|
2

𝑛

𝑖=1

     (8) 

Where n is the total number of buses.  

 

C. Total energy cost 

The third objective function is a cost function that is defined as: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐿𝐶𝑂𝐸𝑠𝑙𝑎𝑐𝑘 ∗ 𝐸𝑠𝑙𝑎𝑐𝑘 + 𝐿𝐶𝑂𝐸𝑃𝑉 ∗ 𝐸𝑃𝑉       (9) 

Where 𝐸𝑠𝑙𝑎𝑐𝑘 is the total energy generated by the slack and 𝐸𝑃𝑉 is the total energy generated 

by the PV DGs. Note that in the model, the total cost will be computed for each configuration. 

So, the energy will be computed for a one-hour interval at each iteration. 

 

2. System modeling 

 

A. Modeling of daily output of the PV system 

To account for the intermittency of the solar PV resource, the model considers a typical day in 

September in Lebanon. The first 6 hours of the day (1 AM to 7 AM) constitute the first 

configuration. During this time interval, the hourly solar irradiance and the ambient temperature 

in Beirut are both recorded, and average solar irradiation and ambient temperature are 

computed for the entire configuration. Note that solar irradiance defines the amount of solar 

power that reaches the surface of the earth and is given in Watts per meter square of area. 

Depending on the location of the PV panel, the position of the earth relative to the sun, and the 

current climatic conditions, the solar irradiation amounts will vary on an hourly basis [1]. The 

second configuration will account for the next four hours of the day, from 8 AM to 12 PM, and 

the same procedure will be followed for the remaining configurations. All the configurations with 

the computed solar irradiance and ambient temperature are shown table 1 below: 
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Table 1: Solar irradiance and ambient temperature for the six configurations 

Time t  Solar 
irradiation s 
(in kW/m2) 

Ambient 
temperature 

Ta 

Configuration Average 
irradiation 

Average 
ambient 

temperature 

1 0 26 Configuration 1 
 

0.00843 
 

25.57 

2 0 26 

3 0 25 

4 0 25 

5 0 25 

6 0 26 

7 0.059 26 

8 0.266 28  
 

Configuration 2 

0.503 
 

27.75 

9 0.451 28 

10 0.601 27 

11 0.694 28 

12 0.76 28 Configuration 3 0.742 
 

28 

13 0.761 28 

14 0.705 28 

15 0.596 28 Configuration 4 0.33675 
 

28 

16 0.444 28 

17 0.257 28 

18 0.05 28 

19 0 27 Configuration 5 0 26.25 

20 0 26 

21 0 26 

22 0 26 

23 0 26 Configuration 6 0 26 

24 0 26 

As expected, configurations 1, 5, and 6 are characterized by a solar irradiance of zero since they 

are associated with the hours of the day characterized by the absence of the sun.  

B. Solar PV output calculation for each configuration 

The optimal allocation of PV DGs presented in this report consists of determining the number of 

PV panels to be placed at each bus. The type of PV panel considered for this analysis is the LG 

NEONR 365 W panel [29] whose electrical properties and temperature characteristics are 

summarized in the first column table 2 below: 
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 Table 2: Electrical properties and temperature characteristics of the LG 365 W panel 

 

Based on the above table , we define the following constants and their respective values:  

𝑃𝐷𝐶,𝑆𝑇𝐶 = 𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒 𝑢𝑛𝑑𝑒𝑟 𝑆𝑇𝐶 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 365 𝑊  

𝑁𝑂𝐶𝑇 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 44℃  

𝑃𝑚𝑝𝑝 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑝𝑜𝑤𝑒𝑟 𝑓𝑜𝑟 1℃ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.3% 

ŋ𝑚𝑖𝑠 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑎𝑓𝑡𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑙𝑜𝑠𝑠 = 0.97 

ŋ𝑑𝑖𝑟𝑡 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑎𝑓𝑡𝑒𝑟 𝑑𝑖𝑟𝑡 𝑙𝑜𝑠𝑠 = 0.96 

ŋ𝑖𝑛𝑣 = 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 0.9 

ŋ = 𝑝𝑎𝑛𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 21% 

The procedure to compute the AC power of each module is as follows: 

We define       𝑠𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑇𝑎𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑛 ℃ 

Step 1: Temperature adjustment 

We define 𝑇𝑐𝑒𝑙𝑙 = 𝐶𝑒𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝑎𝑖 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑖 +
𝑁𝑂𝐶𝑇 − 20

0.8
∗ 1         (10) 

Which is the cell temperature when exposed to the ambient temperature 𝑇𝑎𝑖 at 1-sun 

insolation (s=1 kW/m2). 

Step 2: Insolation adjustment 
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We define 𝑃𝐷𝐶,𝑃𝑇𝐶 = 𝐷𝐶 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙 𝑢𝑛𝑑𝑒𝑟 𝑃𝑇𝐶 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑃𝐷𝐶,𝑃𝑇𝐶 = 𝑃𝐷𝐶,𝑆𝑇𝐶 ∗
𝑠𝑖

1
∗ [1 −

𝑃𝑚𝑝𝑝

100
(𝑇𝑐𝑒𝑙𝑙 − 25)]         (11) 

Step 3: Derating from DC to AC 

We define 𝑃𝐴𝐶,𝑃𝑇𝐶 = 𝐴𝐶 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙 𝑢𝑛𝑑𝑒𝑟 𝑃𝑇𝐶 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑃𝐴𝐶,𝑃𝑇𝐶 = 𝑃𝐷𝐶,𝑃𝑇𝐶 ∗ ŋ𝑚𝑖𝑠 ∗ ŋ𝑑𝑖𝑟𝑡 ∗ ŋ𝑖𝑛𝑣            (12) 

This is the AC power that is provided by a PV panel rated at 365 W and will depend on both the 

solar irradiance and the ambient temperature in which the PV panel is placed. Based on these 

equations, the AC power delivered by each PV module in kW can be computed for each 

configuration.  

C. Maximum solar PV capacity at each bus 

Each bus is characterized by the area available for installing PV panels in meter squares. From 

this area, the maximum PV capacity that can be allocated at each bus in kW, defined by the 

variable 𝑃𝑉𝑚𝑎𝑥  , can be computed based on the following formula: 

𝑃𝑉𝑚𝑎𝑥 = 1 [
𝑘𝑊

𝑚2
] ∗ 𝐴𝑟𝑒𝑎 [𝑚2] ∗ ŋ           (13) 

 Table 3 below shows the area available for PV placement for each bus as well as the computed 

maximum PV capacity: 

      Table 3: Area available and maximum PV capacity for each bus in kW 

Bus number Area available (in m2) PV-max capacity (kW) 

2 200 42 

3 150 31.5 

4 150 31.5 

5 200 42 

6 100 21 

7 300 63 

8 150 31.5 

9 100 21 

10 200 42 

11 300 63 

12 200 42 

13 100 21 

14 100 21 

15 200 42 
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3. IEEE 15-bus test feeder 

The IEEE 15-bus distribution system is shown in figure 1 below: 

 

 

Figure 1: Single-line diagram for IEEE 15-bus distribution network 

This test feeder is small and makes it appropriate to test the methodology presented here. The 

transmission parameters of the network are summarized in the following table [30]: 

Table 4: Branch and load data for the IEEE 15-bus distribution network 

 

The active power demand in kW will be used in the model to represent the peak power load. 

However, for the reactive power Q, due to the sectoral and temporal divisions imposed in the 
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model, the reactive power values will differ at peak configuration 4 and hence in all other 

configurations.  

4. Load modeling 

To diversify the load profile, three load categories are considered: residential loads, commercial 

loads, and industrial loads. However, unlike most of the previous literature which considered 

each bus to have one type of load attached to it such as in [17] and [27], each bus will be 

composed of portions of different load categories as can be seen in table 5 below:  

Table 5: Customer distribution by classification as installed at each bus 

Bus # Load 
distribution 
at peak (kW) 

Customer distribution by classification as installed 
at each bus 

Residential Commercial Industrial 

2 44.1 70% 30% 0% 

3 70 0% 0% 100% 

4 140 50% 50% 0% 

5 44.1 50% 50% 0% 

6 140 50% 10% 40% 

7 140 20% 70% 10% 

8 70 100% 0% 0% 

9 70 100% 0% 0% 

10 44.1 50% 50% 0% 

11 140 0% 0% 100% 

12 70 75% 25% 0% 

13 44.1 80% 20% 0% 

14 70 0% 100% 0% 

15 140 100% 0% 0% 

Total 1226.4 
   

For example, 70 % of the load at bus 2 consists of industrial customers, and the remaining 30 % 

of it corresponds to commercial customers whereas bus 3 is a pure industrial load. In this way, 

the variability in the load constitution which is generally the case in buses of distribution 

networks is modeled.  

In addition to the customer distribution classification installed at each bus, the time variations of 

the load during the day are also considered. In each configuration (C1 to C6) corresponding to 

the different time intervals of the day, the load will be distributed differently between residential, 

industrial, and commercial customers. For example, at night, commercial customers are very low 

whereas industrial customers tend to have a constant demand throughout the day. The graph 

below shows the load distribution according to the type of loads available during different 

periods of the day:  
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Figure 2: Daily load profiles of residential, commercial and industrial customers 

Based on the daily peak load variation curves of the residential, consumer, and industrial sectors, 

industrial customers have a relatively flat load (a load factor of almost 1), while commercial and 

residential customers have a much lower load factor. Commercial customers have their peak 

early afternoon while residential customers have it in the later afternoon/early evening. For 

example, from 12 PM to 3 PM (configuration 3), residential customers are at 60% of their 

maximum demand and commercial customers are at 50% of their maximum demand. Note that 

in interval C4, the peak load of the system is achieved when all customer classifications have their 

peaks. 

At this point, both spatial and temporal load distributions are modeled: the customer distribution 

by classification (industrial, commercial or residential) as installed at each bus (table 3) and the 

temporal load distribution by classification for different time intervals of the day (fig. 2). Both 

parameters are then convoluted to compute the active power demand at each bus for the 

corresponding configuration. To evaluate the reactive power demand at each bus, a fixed power 

factor was chosen for each type of customer as follows: 

1. 0.9 PF lagging for industrial loads to comply with the requirements of the utility. Since 

industrial loads are highly inductive with PF between 0.7 and 0.8 lagging, they use PF 

correction to avoid paying penalties for high reactive power demand. The problem at 

hand focuses on small industrial loads because large industrial loads must maintain their 

power factor around 0.99 else a huge amount for penalty will have to be paid.  
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2. 0.85 PF lagging for residential loads to reflect the resistive nature of these loads. In fact, 

as opposed to industrial loads that are composed of rotating machines, residential loads 

are less inductive. 

3. 0.8 PF lagging for commercial loads to reflect the air conditioning and heating loads of 

these loads. Usually, commercial loads are relatively small as compared to industrial loads 

and they are not subject to reactive power penalty by the electric utility. 

The table below shows how the active power is obtained in period C1: 

Table 6: Computation of the total load demand of each bus in period C1 

Bus # Load 
distribution 

at peak 

Customer distribution by 
classification as installed 

at each bus 

 
Load distribution by 

classification 
Load distribution by classification at 

each bus  
20.0% 5.0% 100.0% 

Res Com Ind 
 

Res Com Ind Res Com Ind Total demand in 
kW 

2 44.1 70% 30% 0% 
 

14.0% 1.5% 0.0% 6.17 0.66 0.00 6.84 

3 70 0% 0% 100% 
 

0.0% 0.0% 100.0% 0.00 0.00 70.00 70.00 

4 140 50% 50% 0% 
 

10.0% 2.5% 0.0% 14.00 3.50 0.00 17.50 

5 44.1 50% 50% 0% 
 

10.0% 2.5% 0.0% 4.41 1.10 0.00 5.51 

6 140 50% 10% 40% 
 

10.0% 0.5% 40.0% 14.00 0.70 56.00 70.70 

7 140 20% 70% 10% 
 

4.0% 3.5% 10.0% 5.60 4.90 14.00 24.50 

8 70 100% 0% 0% 
 

20.0% 0.0% 0.0% 14.00 0.00 0.00 14.00 

9 70 100% 0% 0% 
 

20.0% 0.0% 0.0% 14.00 0.00 0.00 14.00 

10 44.1 50% 50% 0% 
 

10.0% 2.5% 0.0% 4.41 1.10 0.00 5.51 

11 140 0% 0% 100% 
 

0.0% 0.0% 100.0% 0.00 0.00 140.00 140.00 

12 70 75% 25% 0% 
 

15.0% 1.3% 0.0% 10.50 0.88 0.00 11.38 

13 44.1 80% 20% 0% 
 

16.0% 1.0% 0.0% 7.06 0.44 0.00 7.50 

14 70 0% 100% 0% 
 

0.0% 5.0% 0.0% 0.00 3.50 0.00 3.50 

15 140 100% 0% 0% 
 

20.0% 0.0% 0.0% 28.00 0.00 0.00 28.00 

The same procedure will be followed for the other periods and the load profile for 24 hours can 

be deduced in the table below where Pd and Qd represent the active and reactive power demand 

in kW and kVAR respectively. 
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Table 7: Calculated active and reactive power of each bus for all six configurations of the model 

 

Bus  Customer 
distribution 

Conf. 1 Conf. 2 Conf. 3 Conf. 4 
 

Conf. 5 Conf. 6 

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd 

1 Slack 
=Feeder 

- - - - - - - - - - - - 

2 70 % RES 
30% COM 

6.84 4.32 15.66 10.13 25.14 16.44 44.1 29.05 31.31 20.27 9.92 6.24 

3 100% IND 70.00 33.90 70.00 33.90 70.00 33.90 70.0 33.90 70.00 33.90 70.00 33.90 

4 50 % RES 
50% COM 

17.50 11.30 45.50 30.48 77.00 52.28 140.0 95.88 91.00 60.96 24.50 15.64 

5 50 % RES 
50% COM 

5.51 3.56 14.33 9.60 24.26 16.47 44.1 30.20 28.67 19.20 7.72 4.93 

6 50 % RES 
10% COM 
40% IND 

70.70 36.32 87.50 47.10 105.0 58.40 140.0 81.00 119.0 67.08 77.70 40.66 

7 20 % RES 
70% C0M 
10% IND 

24.50 13.93 49.70 32.10 79.80 53.94 140.0 97.63 85.40 57.41 27.30 15.66 

8 100 % RES 14.00 8.68 28.00 17.35 42.00 26.03 70.0 43.38 56.00 34.71 21.00 13.01 

9 100 % RES 14.00 8.68 28.00 17.35 42.00 26.03 70.0 43.38 56.00 34.71 21.00 13.01 

10 50 % RES 
50% COM 

5.51 3.56 14.33 9.60 24.26 16.47 44.1 30.20 28.67 19.20 7.72 4.93 

11 100% IND 140.0 67.81 140.0 67.81 140.0 67.81 140 67.81 140.0 67.81 140.0 67.81 

12 75% RES 
25% COM 

11.38 7.16 25.38 16.30 40.25 26.08 70 45.66 50.75 32.59 16.63 10.42 

13 80 % RES 
20% COM 

7.50 4.70 16.32 10.40 25.58 16.43 44.1 28.48 32.63 20.80 11.03 6.89 

14 100% COM 3.50 2.63 17.50 13.13 35.00 26.25 70 52.50 35.00 26.25 3.50 2.63 

15 100% RES 28.00 17.35 56.00 34.71 84.00 52.06 140 86.76 112.0 69.41 42.00 26.03 

Total 50 % RES 
27% COM 
23% IND 

 
418.93 

 
223.9 

 
608.21 

 
349.95 

 
814.28 

 
488.58 

 
1226.4 

 
765.86 

 
936.43 

 
564.29 

 
480.01 

 
261.75 
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5. Optimization  

The optimization problem will be solved using the multi-objective genetic algorithm (MOGA) for 

all configurations. Furthermore, a hybrid MOGA-LSF algorithm and a modified MOGA-LSF 

algorithm will be also implemented on the peak load configuration C4. In what follows, each of 

these algorithms will be explained and the optimization constraints will be specified.  

A. MOGA algorithm 

The genetic algorithm (GA) is a metaheuristic search method inspired by the evolutionary theory 

of the origin of species. In nature, weak and unfit individuals are eliminated by the process of 

natural selection. The strongest ones possess the genes that will allow them to reproduce and 

pass these genes to future generations. As the individuals reproduce, genes might change 

through mutations and unsuccessful changes are again eliminated through natural selection. The 

solution vector x of the genetic algorithm is called a chromosome. The GA will operate with 

several chromosomes which form a population that is randomly initialized. As the search process 

advances, the population will start to include fitter individuals and will eventually converge to a 

single optimal solution. The GA uses two processes to generate new solutions: crossover and 

mutation. For the crossover, both parents are combined to form new individuals called offspring, 

that are expected to inherit the strongest features of their respective parents. By applying the 

crossover on several generations, the good genes are expected to remain and converge to the 

best solution. The mutation process is applied at the gene level. The mutation rate will be defined 

at the start of the genetic algorithm and is generally small so that new genes keep their 

resemblance to the original ones. In this way, the genetic diversity of the genes can be preserved. 

After those two operations are performed, a selection process is conducted to select the fittest 

chromosomes for the next generation based on their fitness value. Some selection processes 

include selection, ranking, tournament, and roulette wheel selection [31].  

The genetic algorithm formulation makes it suitable to solve multi-objective problems where 

several objective functions are expected to be solved in a single run. Effectively, finding the 

optimum solution based on a single objective function will result in unacceptable results for the 

other objective functions because objective functions have generally conflicting goals. This is why 

finding a single solution that is best suited for all the objectives is almost impossible to find. For 

this purpose, two approaches are generally possible: the weight sum approach and the Pareto 

set approach. For the first approach, a weight is attributed to each objective function based on 

its relevance in the problem formulation. However, the problem with this approach is that it may 

be difficult to accurately find the weights of the objectives [31], and research found that the 

weight coefficient method may not be able to reach the optimal global solution of the objective 

function very well [10]. The second approach consists of finding the set of Pareto optimal 

solutions. These solutions are nondominated with respect to each other, meaning that while 

moving from one solution to another, improving one of the objective functions will lead to the 

worsening of at least one of the other objectives. Therefore, instead of having single solutions, 
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the decision-maker can choose the best solutions based on a trade-off. The multi-objective GA 

searches different regions of a solution simultaneously to find a diverse set of solutions without 

having to define scales or weight factors. It is one of the most popular heuristic search methods 

to solve optimization problems and is known for its robustness [31]. This is why for the 

implemented methodology, the MOGA will be used to determine the Pareto set of optimal 

solutions. The optimization process will aim to find the best location and capacity of the PV DGs 

to be allocated in the distribution network at hand. Hence, for this methodology, the output of 

the optimization process will be a set of Pareto optimal solutions. Each solution will be a vector 

called 𝑋 represented as: 

𝑋 = [𝑥(1) 𝑥(2) 𝑥(3) … 𝑥(𝑖)]        (14) 

Where 𝑥(𝑖) is an integer that represent the number of panels to be installed at bus number i. So, 

𝑋 will be a vector containing 15 variables since the system is formed of 15 buses. All the panels 

have the same rated power of 365 W, but they will provide a different output based on the 

amount of solar insolation available. The optimization is performed in two steps. In the first step, 

the optimal vector 𝑋 is found for each of the six configurations found earlier. Then, in a second 

step, the solution vector 𝑋 obtained for each configuration, is tested on every other configuration 

to determine the final optimal solution. 

The problem formulation will require to set the following equality and inequality constraints: 

𝑥(1) = 0       (15)  

⌊
0.3 ∗ 𝑃𝑉𝑚𝑎𝑥

𝑃𝐴𝐶,𝑃𝑇𝐶
⌋ ≤ 𝑥(𝑖) ≤ ⌊

𝑃𝑉𝑚𝑎𝑥

𝑃𝐴𝐶,𝑃𝑇𝐶
⌋      (16) 

 

    (∑ 𝑥(𝑖)) ∗ 𝑃𝐴𝐶,𝑃𝑇𝐶 ≤ 0.3 ∗𝑛
𝑖=1 ∑ 𝑃𝐷(𝑖)   (17)𝑛

𝑖=1  

For the constraint of equation 16, every variable 𝑥(𝑖) has a lower bound defined as 30 % of the 

maximum PV capacity that can be installed at each bus (table ) divided by the power delivered 

by every panel considering both the insolation and ambient temperature adjustment as 

discussed in section III. 2 B. The upper bound will be the maximum PV capacity that can be 

installed at each bus divided by the power that can be delivered by each panel. Since 𝑥(𝑖) is an 

integer, a truncation to the nearest smaller integer is required. Note that the lower bound of 30% 

of the maximum PV capacity is chosen to avoid having very small PV capacities installed at certain 

buses. The last constraint (eq. 17) is related to the penetration of PV-based DGs in distribution 

networks. PV penetration is the quantity of PV power that can be injected into the feeder. It is 

calculated as the ratio of maximum PV power to the maximum apparent power of the load. 

However, high PV penetration levels can have negative effects on power quality mainly by 

increasing voltage fluctuations[20]. This is why the total amount of DG capacity that can be 
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installed must be limited to a certain percentage of the peak load in order not to violate system 

stability. Research on system stability has shown that the maximum penetration level of 

distributive generation, without violating the transient stability limit is 40 % of the total 

connected load [28]. So, for the current optimization problem, a maximum penetration level of 

30% was chosen. 

The flowchart below explains the proposed optimization process: 

 

Figure 3: MOGA optimization methodology 
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First, the network data for the corresponding configuration is entered and the parameters of the 

MOGA are set including the constraints on the variables mentioned earlier. For each iteration, 

the power flow nested within the MOGA is used to compute the three objective functions for 

each individual within the population. The values of the fitness functions are then fed back into 

the MOGA which will continue the search process. The loop will continue until one of the 

stopping criteria is met and convergence is achieved. A set of Pareto optimal solutions will be 

obtained. As mentioned earlier, this process will be repeated for configurations C2, C3, and C4 

(since there is no optimization in the other configurations as the solar irradiance is close to zero) 

to obtain the optimal solution for each of these configurations. Then, the optimal solution of each 

configuration is run on the other configurations to determine the best solution. The flowchart 

below shows the steps of the algorithm for configuration C2: 

 

 Figure 4: Optimization process applied on configuration C2 

B. Hybrid MOGA-LSF algorithm 

Hybrid optimization methods combine two algorithms that can be from the same type (ex: two 

heuristic techniques) or different types (classical and heuristic techniques). Hybrid optimization 

techniques make use of the strength of two optimization algorithms to come up with better 

results. Recent literature pointed out that combined hybrid methods may have higher 

probabilities of finding the optimal solution [4]. Here, the MOGA algorithm is combined with the 

LSF technique to solve the problem of optimal allocation of PV DGs in distribution networks. Note 

that to our knowledge, no research has combined these two algorithms for the problem of 

optimal allocation of PV-based DGs.  

Considering a number r of DGs that are to be located in an n-bus distribution network, the 

number of possible combinations of DGs will be equal to 𝐶𝑟
𝑛. Hence, even for a small distribution 

network, considering all possible combinations of locations is a demanding process mainly in 

terms of computation time. This is why, prior to allocation of PV DGs, a sensitivity analysis can be 
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performed on the distribution network to find the buses that are the most sensitive to power 

losses after the injection of active and reactive power. The sensitivity of active power loss 𝑃𝐿 with 

respect to active power injection is given in [13] as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑃𝐿 =
𝜕𝑃𝐿

𝜕𝑆
=

𝑃𝐿
𝑆+∆𝑆 − 𝑃𝐿 

𝑆

∆𝑆
         (18) 

Where 𝑆 is the active power injection, ∆𝑆 is the incremental change in 𝑆 and 𝑃𝐿
𝑆 is the power loss 

value after injection of power 𝑆. 

Therefore, for the optimization approach, the sensitivity of power loss 𝑃𝐿 with respect to a small 

change in active injected power is calculated for each bus. Then, the buses are arranged in 

descending order based on their loss sensitivity values obtained. Afterward, the buses that are 

the most sensitive to power losses are chosen to be the candidate locations for optimal 

placement of PV DGs. After these steps are performed, the MOGA will run with the new reduced 

search space similar to what was explained in section III. 5 A. 

 

C. Modified MOGA-LSF algorithm 

As discussed in previous parts of section III. 5, the MOGA and MOGA-LSF algorithms will 

determine the optimal placement of PV DGs in the distribution network. However, the problem 

with these methodologies and most of the methodologies implemented in the literature, is that 

the candidate bus locations that achieve the best objective functions may not have good PV 

potentials. However, it is not possible to size based on the PV potential of the buses without 

considering the optimal sitting and sizing provided by the optimization methods. Hence, a 

modified version of the MOGA-LSF algorithm is proposed here. In this approach, both the 

feedback of the PV energy resource potentials and the system's optimal performance (minimum 

losses, cost, and voltage deviation) are simultaneously considered to solve the problem of 

optimal sitting and sizing of PV DG units in distribution networks.  

After the sensitivity analysis is performed on all buses of the distribution network, each bus will 

have a corresponding sensitivity value. This value is combined with the maximum PV capacity of 

this bus using a 50% weight factor for each as shown in the equation below: 

𝑓(𝑖) = 0.5 ∗ 𝐿𝑆𝐹(𝑖) + 0.5 ∗ 𝑃𝑉𝑚𝑎𝑥(𝑖)        (19) 

Where 𝐿𝑆𝐹(𝑖) is the value of the loss sensitivity at bus i and 𝑃𝑉𝑚𝑎𝑥(𝑖) is the maximum PV capacity 

of the bus as defined in table 3.  The buses with the highest 𝑓 values will be selected first. In this 

way, the PV potential of each bus is accounted for along with the sensitivity to power loss.  

The flowchart below summarizes the optimization process of the modified MOGA-LSF: 



28 
 

 

Figure 5: Modified MOGA-LSF algorithm methodology 
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IV. Results and discussion 
 

The methodology was applied to the IEEE-15 bus distribution system whose detailed network 

data is given in section III. 3. The system is assumed to be operating under voltage limits of ± 10% 

with nominal thermal limits of 3 MVA for all the lines. All PV DG units are assumed to have a 

constant power factor of 0.9 lagging. The load profile of each configuration was deduced based 

on the load modeling methodology and the deduced active and reactive power demand of table 

7 will be used. To calculate the cost objective function, the following levelized costs of electricity 

(LCOE) were considered: 20 c/kWh for the grid tariff and 8.5 c/kWh for the PV cost of energy. The 

optimization is carried out using the MATLAB platform incorporating features of the MATPOWER 

suite to solve the power flow at each iteration.  

The results will be organized as follows; the first part is the optimization process carried out on 

each configuration on its own. The outcome of this part will be the optimal allocation of PV DGs 

for each of the six scenarios. In the second part, the optimal allocation of PV DGs on the 

configuration of the peak demand (C4) will be performed using the MOGA-LSF and the modified 

MOGA-LSF. The results of each algorithm will be compared to the optimal solution obtained using 

the traditional MOGA process. The third part will aim at determining the most optimum solution 

among the optimal solutions deduced in the first part by running each result on all the other 

configurations as detailed in section III. 5 A. 

1. Optimization results for each configuration 

In this part, the optimization algorithm will be applied to each configuration. However, since 

configurations C1, C5 and C6 are periods of zero solar irradiance, no optimization will be 

performed on them.  

A. Configuration C2 

 

The optimization process was run on configuration C2 where the total active and reactive 

power demand are 814 kW and 488 kVAR respectively. The figures below show the final 

population of obtained solutions or Pareto front considering power losses versus voltage 

deviation (fig. 6 ) and energy cost versus power losses (fig. 7 ):  
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             Figure 6: Pareto optimal solution set for PV DGs placement in C2 considering voltage deviation and power losses 

 

Figure 7: Pareto optimal solution set for PV DGs placement in C2 considering energy cost and power losses 

It can be seen that the cost and power loss objective functions are non-conflicting. So, the 

solution that minimizes both functions is chosen.  

Selected 

solution 
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The optimal number of PV panels to be placed at each bus along with the corresponding PV 

capacity to be installed are shown in the table below: 

         Table 8: Optimal number and capacity of allocated PV DGs for configuration C2 

 

The results of the optimization indicate that buses 12,11 and 7 are the buses with the highest PV 

capacity installed. Those three buses have the highest available area for PV placement (table 3 ) 

and are associated with moderate to high load demand. Hence, two conclusions can be drawn: 

- The dispatched PV capacity will increase with the increase in solar PV generation. Buses with 

higher areas available for PV installation will be privileged over other buses with lower allowed 

installed PV capacity.  

-The amount of PV power dispatched at each bus is dependent on the size of the load connected 

to it. Buses with higher loads connected to them will share more PV capacity, all other constraints 

being ignored. This is because, if a DG unit is placed near a large load, its contribution to 

minimizing network power losses will be high since a higher amount of load will be served. This 

is expected as the sole purpose of the optimal allocation is to decrease the power losses 

emanating from feeders being far away from load centers.   

 

To assess the benefits of this optimal placement, the power flow was run on the optimized 

configuration and compared to the base case corresponding to no DGs installed. The results are 

shown in table 9 below: 

Bus number Optimal number of 
panels (x) 

PV capacity installed  
(in kw) 

1 0 0 

2 90 12.49 

3 68 9.44 

4 68 9.44 

5 90 12.49 

6 45 6.24 

7 136 18.87 

8 68 9.44 

9 45 6.24 

10 90 12.49 

11 159 22.06 

12 275 38.16 

13 45 6.24 

14 45 6.24 

15 90 12.49 

Total capacity  182.32 kW 
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Table 9: Optimization results for configuration C2 and base case 

 Power losses (kW) Energy cost(dollars) Voltage deviation 

No DGs 9.51 123.55 0.0042 

With optimized PV DGs 
sizes and locations 

4.77 101.63 0.0021 

 

It is observed that the power losses of the system with PV-DGs are significantly reduced when 

compared to those of the system without PV (49.8 % decrease in losses from 9.51 kW to 4.77 

kW). The energy cost also decreases from 123.5 $ to 101.6 $ equivalent to a 17.7% cost 

reduction. It is also evident that there is a positive relationship between power losses and cost 

as was noted from the Pareto front in figure 7. On the one hand, since the cost function 

includes fixed levelized costs of electricity for both the grid and the PV units, and since the cost 

of PV units is much lower than the cost of the grid, maximizing the PV penetration into the 

system will reduce the cost. On the other hand, the bigger the size of the PV DGs installed in the 

system, the bigger the decrease in the total power losses will be (considering limits on 

penetration levels are respected). Hence, the optimal allocation of PV DGs will have both 

technical and economic benefits.  

Moreover, figure 8 shows the voltage profile of the system for both the base case associated with 

no DGs installed and the case of optimized PV DGs capacities installed: 

 

Figure 8: Voltage profiles before and after optimization for C2 

The figure indicates an enhancement of the voltage profile when PV DGs are optimally placed 

as compared to the no-DG case.  
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B. Configuration C3 

The optimization process was run on configuration C3 where the total active and reactive power 

demand are 608 kW and 350 kVAR respectively. Figures 9 and 10 show the final population of 

obtained solutions considering power losses and voltage deviation then power losses and energy 

cost: 

 

Figure 9: Pareto optimal solution set for PV DGs placement in C3 considering voltage deviation and power losses 

 

Figure 10: Pareto optimal solution set for PV DGs placement in C3 considering energy cost and power losses 
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The optimal number of PV panels to be placed at each bus along with the corresponding PV 

capacity to be installed are shown in the table below: 

     Table 10: Optimal number and capacity of allocated PV DGs for configuration C3 

 

Buses 11,7,13 and 4 have the largest PV capacity (94 kW) and buses 6 and 9 have the lowest ones 

(17.39 kW). It is noted that the installed PV capacity is most importantly limited by the PV 

penetration limit of 30% set as one of the optimization constraints. As it was deduced for 

configuration 2, buses associated with a high available area for PV installation and high demand, 

resulted in high installed PV capacity after the optimization algorithm was executed.  

To assess the benefits of this optimal placement, the power flow was run on the optimized 

configuration and compared to the base case corresponding to no DGs installed. The results are 

shown in 1table 11 below: 

Table 11: Optimization results for configuration C3 and base case 

 Power losses (kW) Energy cost(dollars) Voltage deviation 

No DGs 17.42 166.34   0.0079 

With optimization 8.84 136.66 0.0039 

 

Again, power losses decreased from 17.4 kW in the case of no DGs installed, to 8.84 kW after the 

optimal allocation of PV DGs. This corresponds to about a 49% loss reduction. The cost also 

decreased by 17.8 %.  The voltage deviation also improved from 0.0079 pu to 0.0039 pu.  

Bus number Optimal number of panels 
(x) 

PV capacity installed 
(in kw) 

1 0 0 

2 75 15.34 

3 77 15.75 

4 104 21.27 

5 80 16.36 

6 39 7.98 

7 105 21.47 

8 54 11.04 

9 46 9.41 

10 81 16.57 

11 154 31.49 

12 97 19.84 

13 99 20.25 

14 94 19.22 

15 84 17.18 

Total capacity  243.16 kW 
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Figure 11 shows the enhancement in the voltage profile achieved after the optimal allocation of 

the PV DGs.  

 

   Figure 11: Voltage profiles before and after optimization for C3 

C. Configuration C4 

The optimization process was run on configuration C4 where the total active and reactive 

power demand are their peak value of 1226 kW and 766 kVAR respectively. Figures 12 and 13 

below show the Pareto fronts obtained for the three objective functions: 

 

Figure 12: Pareto optimal solution set for PV DGs placement in C4 considering voltage deviation and power losses 
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Figure 13: Pareto optimal solution set for PV DGs placement in C4 considering energy cost  and power losses 

The optimal number of PV panels to be placed at each bus along with the corresponding PV 

capacity to be installed are shown in the table below: 

         Table 12: Optimal number and capacity of allocated PV DGs for configuration C4 

Bus number Optimal number of panels 
(x) 

PV capacity installed 
(in kw) 

1 0 0 

2 236 21.90 

3 290 26.92 

4 323 29.98 

5 378 35.08 

6 187 17.36 

7 404 37.50 

8 262 24.32 

9 182 16.89 

10 262 24.32 

11 405 37.59 

12 327 30.35 

13 187 17.36 

14 176 16.34 

15 340 31.56 

Total capacity  367.45 kW 
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The largest PV capacity (142 kW) has been installed at buses 7,11,5 and 15. Again for this 

configuration, the buses with the highest installed capacity are associated with the highest 

available PV capacity and the highest demand. This is again caused by the dispatched PV power 

increasing with both load demand and solar potential. 

To assess the benefits of this optimal placement, the power flow was run on the optimized 

configuration and compared to the base case corresponding to no DGs installed. The results are 

shown in table 13 below: 

Table 13: Optimization results for configuration C4 and base case 

    

The power losses decreased from 41.3 kW in the case of no DGs installed to 21 kW when PV-DGs 

were optimally placed which is equivalent to a 48.9 % loss reduction. The energy cost also 

decreased by about 18.3 %. Again here, minimizing cost is tightly related to minimizing losses. 

The voltage profile after optimal siting and sizing of the PV DGs is also improved as deduced 

from figure 14:  

 

         Figure 14: Voltage profiles before and after optimization for C4 

 Power losses (kW) Energy cost(dollars) Voltage deviation 

No DGs 41.3 253.54      0.0188 

With optimization 21.097 207.24 0.0096 
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Comparing the three individual configurations, two important conclusions can be drawn: 

-Buses 11 and 7 have the largest installed PV capacity for all three configurations. This can be 

explained by the fact that no matter the configuration, these buses have a high area available for 

PV installation.  

-The size and location of PV DGs differ between the three considered configurations. This 

indicates that the time-varying load model plays a critical role in the optimal allocation problem 

since each load profile will result in different dispatched PV capacities. This further shows that 

both peak load and fixed load optimizations, done extensively in the literature, would not provide 

accurate results.  

2. Hybrid MOGA-LSF and modified MOGA-LSF results on configuration C4 

As mentioned in section III. 5, a sensitivity analysis is conducted on the buses to reduce the search 

space and choose between a set of candidate locations. The results of the LSF are shown in the 

table below: 

     Table 14: Buses ranked in descending order based on their calculated LSF values  

Bus Number LSF PV max capacity 
(kW) 

7 -0.0621 63 

8 -0.0558 31.5 

6 -0.0549 21 

3 -0.0538 31.5 

4 -0.0498 31.5 

2 -0.0461 42 

14 -0.0376 21 

15 -0.0358 42 

5 -0.0343 42 

10 -0.0335 42 

12 -0.0309 42 

11 -0.0299 63 

13 -0.0229 21 

9 -0.0193 21 

1 0.0000 0 

 

From table 14, only buses 7,8,6,3,4,2,14, and 15 were considered for optimal allocation of PV 

DGs as being the most sensitive to changes in injected power. Figure 15 shows  the real power 

loss sensitivity with respect to real power injection: 
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           Figure 15: Sensitivity analysis conducted on the 15-bus distribution system 

Running the optimization with the candidate buses resulted in one optimal solution. The optimal 

number of PV panels to be placed at each bus along with the corresponding PV capacity to be 

installed are shown in the table below:  

                                Table 15: Optimal number and capacity of allocated PV DGs for configuration C4 using MOGA-LSF 

 

 

 

 

 

 

 

 

 

 

 

 

Bus number Optimal number of 
panels (x) 

PV capacity installed 
(in kw) 

1 0 0 
2 345 32.02 
3 236 21.90 
4 301 27.94 
5 0 0 
6 180 16.71 
7 629 58.38 
8 314 29.14 
9 0 0 

10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 166 15.41 
15 379 35.18 

Total capacity  236.67 kW 
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For the modified MOGA-LSF, solar PV assessment was included when choosing the candidate 

buses for optimal allocation. The table below shows the combined scores of LSF, and capacity 

computed for each bus: 

   Table 16: Buses ranked in descending order based on their score values 

Bus number LSF Max capacity 0.5*LSF+0.5*capacity 

1 0 0 0.00 

6 -0.0549 21 10.47 

14 -0.0376 21 10.48 

13 -0.0229 21 10.49 

9 -0.0193 21 10.49 

8 -0.0558 31.5 15.72 

3 -0.0538 31.5 15.72 

4 -0.0498 31.5 15.73 

2 -0.0461 42 20.98 

15 -0.0358 42 20.98 

5 -0.0343 42 20.98 

10 -0.0335 42 20.98 

12 -0.0309 42 20.98 

7 -0.0621 63 31.47 

11 -0.0299 63 31.49 

 

From table 16,  buses 6,14,13,9,8 and 3 were discarded having the lowest LSF/PV capacity. Two 

optimal solutions were found. The one that achieved the lower power losses was privileged over 

the other. The optimal number of PV panels to be placed at each bus along with the 

corresponding PV capacity to be installed are shown in the table below: 

Table 17: Optimal number and capacity of allocated PV DGs for configuration C4 using modified MOGA-LSF 

Bus number Optimal number of 
panels (x) 

PV capacity installed 
(in kw) 

1 0 0 
2 392 36.38 
3 0 0 
4 312 28.96 
5 403 37.40 
6 0 0 
7 586 54.39 
8 0 0 
9 0 0 

10 397 36.85 
11 458 42.51 
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To assess the efficiency of the two implemented algorithms, the power losses, energy cost, and 

voltage deviation obtained with each of these two algorithms were compared to the results 

obtained using the traditional MOGA. The outcomes of each algorithm are summarized in the 

table below: 

 Table 18: Optimization results for configuration C4 using MOGA, MOGA-LSF, and modified MOGA-LSF 

 

First, it can be observed that the MOGA provides better results than both hybrid techniques for 

all the objective functions. The MOGA-LSF achieves the highest amount of power losses and cost 

(28 kW and 224 $ respectively) followed by the modified MOGA-LSF with 23.7 kW of losses and 

214$ for energy cost.  

Figure 16 shows the voltage profiles obtained for each of the three algorithms, again showing 

the superiority of the MOGA over the two implemented algorithms: 

 

Figure 16: Voltage profile of configuration C4 for the three optimization algorithms 

12 427 39.63 
13 0 0 
14 0 0 
15 415 38.52 

Total capacity  314.64 kW 

 Power losses (kW) Energy cost(dollars) Voltage deviation 

MOGA 21.097 207.24 0.0096 

MOGA-LSF 28.003 223.66      0.01301 

Modified MOGA-LSF 23.76   213.85 0.0108 
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Even though the results of the newly implemented algorithms (MOGA-LSF and modified MOGA-

LSF) were deceiving, important conclusions can be drawn: 

1. The modified MOGA-LSF achieved better results than the MOGA-LSF with a 42.5% loss 

reduction compared to a 32% loss reduction only for the MOGA-LSF algorithm. This confirms the 

initial hypothesis that the PV assessment of buses is of primary importance when the optimal 

allocation of PV DGs is concerned. Choosing the buses with the highest PV potential as candidates 

improved the results and confirms that solar potential has a big influence on the installation of 

PV units in distribution networks.  

2. The superiority of the MOGA over the implemented algorithms is caused by the direct 

relationship between the size of DGs and the power losses. As it was established from the 

individual optimizations performed on configurations 2,3 and 4 in section IV. 1, the bigger the 

dispatched capacity of the PV DGs installed, the bigger the benefits will be on the total power 

losses and consequently the energy cost. Since both the MOGA-LSF and the modified MOGA-LSF 

restrict the allocation to a reduced number of buses, the total installed DG capacity will be less 

resulting in lower loss percentages and cost reductions.   

Moreover, this raises a question already highlighted by the authors in [3]. For the two hybrid 

techniques, the PV DGs were placed in a restricted number of locations (8 allowed locations), but 

they had high capacities (reaching 54 kW at bus 7 for the modified MOGA-LSF), whereas, for the 

MOGA, more locations were considered for the DGs (14 locations as the slack bus is excluded ) 

with lower capacities (maximum capacity of 37 kW installed at bus 7). This shows that spreading 

the DG capacities by connecting DGs of smaller sizes in more locations resulted in higher 

improvements in losses and costs. So, the results reveal what was yet unclear in the findings of 

[3]: the improvements done by optimal allocation of PV DGs increase by considering more 

locations. Hence, as suggested in [3], distribution network operators should promote micro-

generation for customers that are far away from main feeders because spreading DG capacity 

further improves the benefits of their installation in the network. 

3. Choice of the optimal solution 

Now that the optimal locations and sizes were found for each of configurations C2, C3, and C4 

(tables 8, 9, and 12), the next step will aim to find the optimum solution among the three 

solutions obtained. For this purpose, the total average power losses and total average energy 

cost were calculated as the weighted sum of all hourly power losses or hourly energy costs 

obtained in each configuration considering one of the three optimal solutions as fixed.  

Table 19 shows the results obtained for the base case when no PV DGs were installed. The total 

average losses were 16.3 kW, and the total average energy cost was 148.42 dollars. As expected, 

as the load demand increases, the power losses increase as distribution lines become heavily 

loaded. Hence, it’s during configuration C4 of the peak that the highest amount of power losses 

(165 kW) and the highest energy cost (1014$) are observed.   
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Tables 20-22 indicate the total average losses, total average cost, and the percentage PV 

penetration obtained when considering the result of siting and sizing in configuration C2, then 

C3 then C4 as optimal: 

Table 19: Total average losses and total average cost for the base case 

 

Table 20: Total average losses and total average cost using the solution of C2 

 

Table 21: Total average losses and total average cost using the solution of C3 

  

Base case Total losses 
(in kW) 

Cost (in 
dollars) 

Hours Total average  
losses (in kW)  

Total 

average 
cost (in $) 

% PV 
penetration 

Configuration C01 4.49 84.69 7.00 31.44 592.80 0 

Configuration C02 9.51 123.55 4.00 38.03 494.20 0 

Configuration C03 17.42 166.34 3.00 52.26 499.02 0 

Configuration C04 41.29 253.54 4.00 165.18 1014.16 0 

Configuration C05 23.15 191.92 4.00 92.60 767.68 0 

Configuration C06 5.84 97.08 2.00 11.69 194.17 0 

Total    16.30 148.42  

Optimum 
configuration C2 

Total losses 
(in kW) 

Cost (in 
dollars) 

Hours Total average 

Losses (in kW) 

Total 

average 
cost (in $) 

% PV 
penetration 

Configuration C21 4.43 84.32 7 30.99 590.24 0.73 

Configuration C22 4.77 101.63 4 19.08 406.52 29.98 

Configuration C23 8.08 133.57 3 24.25* 400.71* 33.00 

Configuration C24 33.65 237.98 4 134.59* 951.92* 9.94 

Configuration C25 23.15 191.92 4 92.60 767.68 0 

Configuration C26 5.84 97.08 2 11.69 194.17 0 

Total 
   

13.05 137.97 
 

Optimum 
configuration C3 

Total losses 
(in kW) 

Cost (in 
dollars) 

Hours Total average 
losses (in kW) 

Total 

average 
cost (in $) 

% PV 
penetration 

Configuration C31 4.43 84.36 7 31.04 590.49 0.66 

Configuration C32 5.18 103.71 4 20.72 414.84 27.12 

Configuration C33 8.84 136.66 3 26.51* 409.98* 29.86 

Configuration C34 34.37 239.46 4 137.46* 957.84* 9 

Configuration C35 23.15 191.92 4 92.60 767.68 0 

Configuration C36 5.84 97.08 2 11.69 194.17 0 

Total 
   

13.33 138.96 
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Table 22: Total average losses and total average cost using the solution of C4 

 

First, the results reveal that regardless of the solution chosen to allocate the PV DGs for all the 

configurations, there is a significant reduction in both the average power losses and the average 

energy losses. 

Second, the optimal number and capacity of the allocated PV DGs for configuration C2 provide 

better results in configuration C3 than its optimal solution (C23 compared to C33). For instance, 

for scenario C23, the power losses are 24.25 kW compared to 26.51 kW for scenario C33 which 

corresponds to an 8.5 % improvement in losses. The cost also improved by 2.3%. The fact that 

the solution of configuration C2 achieves better results on configuration C3 is caused by the 

higher amount of solar irradiance in configuration C3. During this period, the highest solar output 

is obtained. So, the panels that are installed will provide a higher output. Hence, even though the 

number of panels installed in C2 is lower than in C3, it will be compensated by a higher solar 

irradiance that will increase the capacity of the PV installed.  

Third, at first sight, the optimal solution obtained in configuration C4 of the peak appears to 

achieve the lowest total average losses of 9.23 kW and the lowest average cost of 117.48 dollars. 

This is caused by the fact that the number of panels installed in configuration C4 is the highest 

since the load during this period is the highest. So, a higher PV DG capacity will be installed in 

both configurations C3 and C4. Since it was already established that the bigger the capacity of PV 

DGs installed in the system, the bigger the impact on total power losses and cost will be, these 

results are expected. Figure 17 reveals that the adopted solution of configuration C4 achieves 

43% power loss reduction and 20.84% energy cost reduction from the base case of no DGs 

installed compared to only 18.19% loss reduction and 6.4% cost reduction if the solution of 

configuration C3 is adopted.   

Optimum 
configuration C4 

Total losses 
(in kW) 

Cost (in 
dollars) 

Hours Total average 
losses (in kW) 

Total 

average 
cost (in $) 

% PV 
penetration 

Configuration C41 4.31 83.58 7.00 30.15 585.08 2.21 

Configuration C42 0.38 58.55 4.00 1.51 234.20 90.32 

Configuration C43 0.38 69.83 3.00 1.14 209.48 99.43 

Configuration C44 21.10 207.24 4.00 84.39 828.96 29.96 

Configuration C45 23.15 191.92 4.00 92.60 767.68 0 

Configuration C46 5.84 97.08 2.00 11.69 194.17 0 

Total 
   

9.23 117.48 
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                   Figure 17: Percentage of power losses and energy cost reductions for each of the three adopted solutions 

However, adopting the solution of configuration C4 is not practically possible. The detailed results 

of configuration C4 provided in table 22 reveal that the 30% PV penetration level constraint is by 

far exceeded in both scenarios C42 and C43 ( PV penetration of 90% for C42 and 99% for C43) 

rendering the solution of C4 unacceptable. The solution of the peak is oversized for hours 

corresponding to periods C2 and C3 where the demands are much lower (1.5 times lower for C3 

and 2 times lower for C4). This may not be beneficial because stability issues will start to appear, 

and losses could increase beyond expected if the surplus in generation becomes more 

pronounced.  

The alternative would be to select the solution of configuration C2 as the second-best solution in 

terms of loss reduction and cost. Note that the PV penetration level in scenario C23 is 33% which 

is slightly higher than 30%. If there is a strict limitation on the PV penetration level, then this 

solution should also be discarded and the solution of configuration C3 will be selected. However, 

since this penetration level is still below the 40% stability limit, then the solution of C2 will be the 

most optimal solution to be adopted on all the configurations as it achieves power losses and 

energy cost reductions while not breaching the technical constraints of the network.  

Based on these results, an important conclusion can be drawn concerning the siting and sizing at 

peak load. Trying to search for the optimal solution during the peak load hour as it was done 

extensively in the literature, will lead to an overestimation of the benefits of the optimal 
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allocation of PV DGs.  What appeared to be a 43% reduction in power losses based on peak load 

optimization turned out to be a 20% reduction in losses only when technical constraints are 

considered. Therefore, even though the peak power approach requires low computation time, it 

is not precise enough in two aspects: 

-First, as discussed in section IV. 1, this approach fails to represent the time-varying nature of the 

load which will affect the siting and sizing solution.  

-Second, it overestimates the benefits of finding the optimal sizes of the PV DGs by oversizing in 

periods where the demand is lower and consequently increasing the risks of technical issues 

arising from the surplus of generation and the high penetration levels.  

 

V. Conclusion and future works 
 

In this work, a new methodology that uses the Multi-Objective Genetic Algorithm (MOGA) is 

proposed for the optimal allocation of PV-based distributed generation units (PV-DGs) in 

distribution networks.  The method aims at minimizing active power losses, voltage deviations, 

and energy costs using a practical model that considers both the solar potential of each bus and 

variable load classifications.  The major findings of this paper are: 

-The larger the installed PV DGs capacity, the higher the benefits in terms of minimization of 

power losses and energy costs and improvement of the voltage profile.  

-Solar PV assessment plays a major role in the siting and sizing of PV DGs justified by the results 

of the modified MOGA-LSF being better compared to the MOGA-LSF results. 

-The MOGA-LSF and the modified MOGA-LSF are less efficient than the MOGA in terms of finding 

the optimal solution but highlight the advantages of spreading DG capacity.  

-The work shows the weakness of the peak hour optimization mainly since it fails to capture the 

time variations of the load that affect the optimization results and it overestimates the benefits 

of the optimal allocation of the PV units in distribution networks.  

The contributions of the proposed PV DGs planning technique are: 

-The proposed methodology succeeds in reducing the power losses, energy costs, and voltage 

deviations of the distribution system at hand while guaranteeing no violation of any system 

constraints under all load configurations. Even though lower benefits are achieved, the results 

are more realistic and more considerate of the technical constraints of the system by keeping PV 

penetration levels and voltage profile levels within acceptable limits.  

-The method proposes a practical load model that captures the time-varying nature of the loads 

and their mixed types (residential, commercial, and industrial) for each bus of the network. 
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Considering different types of loads will affect the allocation of PV units in the distribution system 

and contribute to more realistic results.  

-To our knowledge, the MOGA-LSF hybrid algorithm was not implemented on the problem of 

optimal allocation of PV DGs in distribution networks in any of the surveyed literature.  

Future works will include: 

-Modeling the seasonal variations of the load. Currently, the work at hand models only one 

summer day in the year. Representing the three other seasons would contribute to more realistic 

results and the load profile will be more accurate.  

-Expanding the cost optimization function. Currently, constant levelized costs of energy are 

considered for the PV DGs regardless of the energy produced. A major improvement will be to 

use a variable PV DG cost at each bus of the distribution system calculated based on the energy 

generated per year. Moreover, the cost function can accommodate additional terms such as 

system reinforcement costs and incentive/penalty factors for reducing/increasing losses.  

3. Include storage mainly in configurations C1, C5 and C6 where no solar irradiance is available.  

4. Include non-renewable DG sources to further highlight the benefits of renewable DGs.  

5. Implementing more powerful optimization techniques than the MOGA such as the particle-

swarm optimization (PSO) and the ant-lion optimization (ALO) to reach yet better optimal results 

with lower computation time.  

 

   

 

 

 

 

 

 

 

 

 

 



48 
 

References 
[1] A. Arabali, M. Ghofrani, J. B. Bassett, My Pham, and M. Moeini-Aghtaei, “Chap 7: Optimum 

sizing and siting of renewable-energy-based DG units in distribution systems,” in Optimization 

in renewable energy systems: Recent perspectives, Oxford: Butterworth-Heinemann, 2017, pp. 

233–277.  

[2] O. Badran, S. Mekhilef, H. Mokhlis, and W. Dahalan, “Optimal reconfiguration of distribution 

system connected with Distributed Generations: A Review of different methodologies,” 

Renewable and Sustainable Energy Reviews, vol. 73, pp. 854–867, 2017.  

[3] Harrison, G, Piccolo, A, Siano, P & Wallace, R 2008, 'Hybrid GA and OPF evaluation of 

network capacity for distributed generation connections', Electric Power Systems Research, vol. 

78, no. 3, pp. 392–398 

[4] A. Selim, S. Kamel, A. A. Mohamed, and E. E. Elattar, “Optimal allocation of multiple types of 

distributed generations in radial distribution systems using a hybrid technique,” Sustainability, 

vol. 13, no. 12, p. 6644, 2021.  

[5] Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based 

distributed generation in Distribution Systems,” IET Renewable Power Generation, vol. 5, no. 1, 

pp. 79-88, 2011.  

[6] P. Chen, P. Siano, B. Bak-Jensen, and Z. Chen, “Stochastic optimization of wind turbine 

power factor using stochastic model of wind power,” IEEE Transactions on Sustainable Energy, 

vol. 1, no. 1, pp. 19–29, 2010.  

[7] P. Siano and G. Mokryani, “Evaluating the benefits of optimal allocation of wind turbines for 

distribution network operators,” IEEE Systems Journal, vol. 9, no. 2, pp. 629–638, 2015.  

[8] P. Siano and G. Mokryani, “Assessing wind turbines placement in a distribution market 

environment by using particle swarm optimization,” IEEE Transactions on Power Systems, vol. 

28, no. 4, pp. 3852–3864, 2013.  

[9] G. Mokryani and P. Siano, “Strategic placement of distribution network operator owned 

wind turbines by using market‐based Optimal Power Flow,” IET Generation, Transmission & 

Distribution, vol. 8, no. 2, pp. 281–289, 2014.  

[10] A. Naderipour, Z. Abdul-Malek, M. W. Mustafa, and J. M. Guerrero, “A multi-objective 

artificial electric field optimization algorithm for allocation of wind turbines in Distribution 

Systems,” Applied Soft Computing, vol. 105, p. 107278, 2021.  

[11] V. Vita, “Development of a decision-making algorithm for the optimum size and placement 

of distributed generation units in Distribution Networks,” Energies, vol. 10, no. 9, p. 1433, 2017.  



49 
 

[12] R. K. Samala and K. Mercy Rosalina, “Optimal allocation of multiple photo-voltaic and/or 

wind-turbine based distributed generations in radial distribution system using hybrid technique 

with Fuzzy Logic Controller,” Journal of Electrical Engineering & Technology, vol. 16, no. 1, pp. 

101–113, 2020.  

[13] Gopiya Naik. S, D.K. Khatod and M.P. Sharma, Optimal Allocation of Dispatchable and Non-

Dispatchable DG Units In Distribution Networks. International Journal of Electrical Engineering 

& Technology, 8(6), 2017, pp. 29–56,2016. 

[14] M. Kefayat, A. Lashkar Ara, and S. A. Nabavi Niaki, “A hybrid of ant colony optimization and 

artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed 

energy resources,” Energy Conversion and Management, vol. 92, pp. 149–161, 2015.  

[15] A. S. Hassan, Y. Sun, and Z. Wang, “Water, energy and food algorithm with optimal 

allocation and sizing of renewable distributed generation for power loss minimization in 

distribution systems (WEF),” Energies, vol. 15, no. 6, p. 2242, 2022.  

[16] H. Hassanzadeh Fard and A. Jalilian, “Optimal sizing and siting of renewable energy 

resources in distribution systems considering time varying electrical/heating/cooling loads using 

PSO algorithm,” International Journal of Green Energy, vol. 15, no. 2, pp. 113–128, 2018.  

[17] N. Haghdadi, B. Asaei, and Z. Gandomkar, “Clustering-based optimal sizing and siting of 

photovoltaic power plant in Distribution Network,” 2012 11th International Conference on 

Environment and Electrical Engineering, 2012.  

[18] M. Duong, T. Pham, T. Nguyen, A. Doan, and H. Tran, “Determination of optimal location 

and sizing of solar photovoltaic distribution generation units in radial distribution systems,” 

Energies, vol. 12, no. 1, pp. 174, 2019.  

[19] M. Bazrafshan, L. Yalamanchili, N. Gatsis, and J. Gomez, “Stochastic planning of distributed 

PV Generation,” Energies, vol. 12, no. 3, pp. 459, 2019.  

[20] M. D. Hraiz, J. A. Garcia, R. Jimenez Castaneda, and H. Muhsen, “Optimal PV size and 

location to reduce active power losses while achieving very high penetration level with 

improvement in voltage profile using modified Jaya algorithm,” IEEE Journal of Photovoltaics, 

vol. 10, no. 4, pp. 1166–1174, 2020.  

[21] A. Paz-Rodríguez, J. F. Castro-Ordoñez, O. D. Montoya, and D. A. Giral-Ramírez, “Optimal 

integration of photovoltaic sources in distribution networks for daily energy losses minimization 

using the vortex search algorithm,” Applied Sciences, vol. 11, no. 10, pp. 4418, 2021.  

[22] O. D. Montoya, D. A. Giral-Ramírez, and J. C. Hernández, “Efficient integration of PV 

sources in distribution networks to reduce annual investment and operating costs using the 

modified arithmetic optimization algorithm,” Electronics, vol. 11, no. 11, pp. 1680, 2022.  



50 
 

[23] O. D. Montoya, L. F. Grisales-Noreña, and C. A. Ramos-Paja, “Optimal allocation and sizing 

of PV generation units in distribution networks via the Generalized Normal distribution 

optimization approach,” Computers, vol. 11, no. 4, pp. 53, 2022.  

[24] R. O. Bawazir and N. S. Cetin, “Comprehensive overview of optimizing PV-DG allocation in 

power system and Solar Energy Resource Potential Assessments,” Energy Reports, vol. 6, pp. 

173–208, 2020.  

[25] P. Dakic and D. Kotur, “Optimal placement of photovoltaic systems from the aspect of 

minimal power losses in distribution network based on genetic algorithm,” Thermal Science, 

vol. 22, no. Suppl. 4, pp. 1157–1170, 2018.  

[26] M. Ahmadi, M. E. Lotfy, R. Shigenobu, A. Yona, and T. Senjyu, “Optimal sizing and 

placement of rooftop solar photovoltaic at Kabul City Real Distribution Network,” IET 

Generation, Transmission & Distribution, vol. 12, no. 2, pp. 303–309, 2017.  

[27] R. Chedid and A. Sawwas, “Optimal placement and sizing of photovoltaics and battery 

storage in Distribution Networks,” Energy Storage, vol. 1, no. 4, 2019.  

[28] A. M. Azmy and I. Erlich, “Impact of distributed generation on the stability of electrical 

power systems,” in Proceedings of the IEEE Power Engineering Society General Meeting, pp. 

1056–1063, IEEE, June 2005.  

[29] “Innovation for a better life - LG electronics.” [Online]. Available: 

https://www.lg.com/us/business/download/resources/BT00002151/LGxxxQ1C-A5_350-

365W_ck_FRD_V5.pdf. 

[30] O. Amanifar, "Optimal distributed generation placement and sizing for loss and THD 

reduction and voltage profile improvement in distribution systems using Particle Swarm 

Optimization and sensitivity analysis," 16th Electrical Power Distribution Conference, 2011, pp. 

1-7.  

[31] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using Genetic 

Algorithms: A tutorial,” Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, 

2006.  

 

 

 

 


