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A Robust Deep Learning Approach for Distribution System State
Estimation with Distributed Generation

Ronald Kfouri

ABSTRACT

Distribution System State Estimation (DSSE) remains a challenging problem due to the
nature of distribution grids. Conventional methods, which are used to solve state
estimation on the transmission level, require the grid to be observable. This is not directly
applicable to distribution grids. In addition, the high integration of renewable energy
introduces uncertainty, which makes the DSSE problem more complex. This work
proposes a deep neural network approach that solves the DSSE problem with and without
distributed generation, without using highly inaccurate pseudo-measurements. Due to the
lack of public frameworks, we create a dataset that emulates real-life scenarios to train
and test the neural network. Also, to evaluate the robustness of the algorithms, we test the
neural network, without retraining it, on multiple scenarios with noisier data and bad
data. The algorithms are tested on three different networks. The proposed approach

solves the DSSE problem with limited measurements as inputs, which cannot be solved

Vi



using conventional state estimation methods. Our approach also achieves highly accurate

results, despite the additional noise introduced to the measurements.

Keywords: Bad Data, Deep Learning, Distributed Generation, Distribution System State

Estimation, Renewable Energy Integration.
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CHAPTER ONE

INTRODUCTION

Distribution systems are different from transmission systems. They have a low
X /R ratio, are highly unobservable, and have a radial or weakly-meshed topology. Also,
high penetration of renewable energy resources and Distributed Generation (DG) render
the generation less predictable. Hence, the Distribution System State Estimation (DSSE)
problem has been heavily studied since the 1990s [1]-[3]. Researchers first adopted the
State Estimation (SE) methods, which are used for transmission systems, to distribution
systems: for example, the Weighted Least Squares (WLS) method based on node voltages
[4]-[6] or branch currents [7]-[9], the Least Absolute Value (LAV) method [10], and the
Generalized Maximum Likelihood (GM) method [11]. However, WLS is susceptible to
bad data, LAV is computationally expensive and sensitive to measurement uncertainty,
and GM is sensitive to parameter selection [12].

Moreover, to solve the unobservability problem, pseudo-measurements are
employed [13]. These are generated from historic data, standard load data, or weather data
and thus are highly inaccurate. Probabilistic or statistical-based methods are used to
generate and handle the errors of these pseudo-measurements: for example, Gaussian
Mixture Models (GMMs) [14], correlation analysis [15], [16], and multivariate Gaussian
modeling [17].

In addition, with the ubiquitous renewable energy resources and DG integration,
uncertainty is introduced to the grid, leading researchers to solve the DSSE in presence of
DGs. For instance, forecasting aided DSSE is studied in [18] using GM and in [19] using
L,regularization; optimal meter placement in active distribution grids is studied in [20],

and pseudo-measurements generation with high DG penetration is studied in [21], [22].



Also, [23] proposes models of photovoltaic (PV) arrays to be integrated within the grid
model, while [24] proposes an approach to generate pseudo-measurements for an active
distribution grid.

Another problem that affects SE in general is bad data in measurements [25]-[27].
The term bad data refers to the measurements that suffer from anomalies due to
communication noise or meter errors. In [28], a Lagrangian-based approach is used to
identify bad data. In [29], L,-norm is used to identify corrupted measurements and
estimate the states. But the L, penalty function is susceptible to outliers that have large
magnitudes. As an improvement on [30], the authors in [31] propose a statistical approach
based on iterative reweight least squares and an improved ADMM approach. Also, [32]
formulates the Phasor Measurement Unit (PMU)-based SE as a quadratic programming
problem and solves it in a decentralized way to maintain privacy between operators.

However, these methods get computationally expensive for high dimensions. Also,
the DSSE remains a nonlinear problem, whose complexity is increasing with the increase
of renewable energy integration, thus traditional methods cannot handle this problem and
are most of the times prone to introducing relaxations or simplifications or guessing initial
conditions. This leads the algorithm to either get stuck in local optima or not converge.

Thus, researchers introduced Artificial Intelligence (Al) algorithms to solve DSSE-
related problems. These algorithms shift the computational burden to an offline stage.
Examples include integrating Al algorithms with traditional algorithms, such as [33] that
uses a Neural Network (NN) to initialize the Gauss-Newton method, [34] that proposes a
NN to generate pseudo-measurements, and [35] that uses a Nonlinear Auto-Regressive
Exogenous algorithm to predict the load and feed it back into the state estimator. Another
research path is to solve the DSSE problem using only Al methods. For instance, [36] uses

a Bayesian inference approach for unobservable distribution systems via deep learning.



Auto-encoders are studied in [37] to ensure two-way communication with unobservable
distribution grids. Authors in [38] introduce a physics aware NN that follows the topology
of the grid to solve the DSSE problem.

Although these methods have achieved impressive results, the reviewed papers
suffer from at least one of the following problems:

e The methods use pseudo-measurements, with an error up to 50%, to compensate
for the unobservability issue; this leads to inaccurate results following from the
garbage in garbage out concept.

e The methods are not verified against outliers or practical anomalies.

This work proposes a deep learning approach that solves the DSSE problem
without the need to generate pseudo-measurements, which cannot be performed using
conventional SE methods. We present two scenarios: the first scenario calculates the
system states without DG integration, while the second scenario calculates them with DG.
The contributions are threefold:

1. We propose a deep neural network approach to solve the DSSE problem without
using erroneous pseudo-measurements. The suggested algorithm requires a limited
number of measurements, since distribution grids are unobservable, and can be
used in real-time to cater to the need of frequently solving the DSSE problem.

2. Given the additional complexity introduced by DG, the approach shows a very
good performance compared with the case of passive grids.

3. To test for robustness, we perform different test cases. We check the performance

given noisier measurements and bad data.



CHAPTER TWO

BACKGROUND

2.1 State Estimation

2.1.1 Definition

Power systems are composed of generation, transmission, sub-transmission, and
distribution systems, and loads. Generators inject power into the grid, while loads absorb
it. Transmission systems embed substations that are interconnected via transmission lines,
transformers, and other devices for control and protection. Distribution systems, which are
connected to the transmission systems, usually operate in a radial or weakly-meshed
configuration [39].

Operational constraints of the grid include the upper and lower limits on the
voltage magnitudes and transmission lines capacity. A grid operates in a normal state if all
the demand is supplied by the generators without violating these operational constraints.
The operating conditions of a grid are determined given the network topology and the
complex phasor voltages at every bus. The set of complex phasor voltages is referred to as
the static state of the system [39], [40].

State Estimation (SE) is a data processing algorithm that converts meter
measurements and other data into an estimate of the state vector [41]. The state vector
consists of the voltage magnitudes and phase angles in static state estimation. Generally,
measurements include active and reactive power flows, power injections, complex phasor
voltages, current, generator outputs, loads, circuit breaker and switch status information,

etc. These measurements are taken from sensors and smart meters, placed on the grid. The



state estimator filters the noise introduced to these measurements and estimates the state of
the grid.
2.1.2 Modeling the Measurements

The Maximum Likelihood Estimation (MLE) can be used to estimate the most
likely state of the grid. We assume that the measurements follow a previously determined
probability distribution, e.g., Gaussian, with unknown parameters. The joint probability
density function (pdf) is referred to as the likelihood function, which reaches its peak
when the predicted parameters are closest to their actual values. Thus, an optimization
problem is set to maximize the likelihood function [39].

Assuming independent measurements, the joint pdf can be expressed as follows:

fn(2) = f(20)f (22) ... f (Zim) 1)
where f(z;) is the individual pdf of every z; measurement. f,,,(z) is referred to as the
likelihood function for z. MLE maximizes f,,,(z), or its log (to simplify the optimization
process), thus, the problem reduces to the following:
maximize log f,(2)

OR

o\ 2
minimize Y/%; (M) (2)

oj
where y; is the mean and o; is the standard deviation of z;. Equation (2) can be re-written
in terms of the residual r;, defined as:
=2 — W (3)

The mean can be expressed as h;(x) , which is a nonlinear function that relates the state

vector to the it measurement. The square of the residual, r?, is weighted by the matrix

1 T

W, having W;; = o;% entries, which represent the inverse error variance. Thus, the

minimization problem reduces to the following:



minimize Z Wyr?

i=1
subjectto z; =hi(x) +r;, i=1,...m 4)
The solution of this optimization problem is referred to as the Weighted Least Squares
(WLS) estimation of x [39].

The measurement model thus becomes as follows:
[ ] [h1 (x1: v Xp)
Zm m(xlf ey xn)

Z,, 1S the measurement vector that includes m measurements,

€

+ =hi(x)+e (5)

em

where

x = (x4, ... x,) IS a vector denoting n system states, composed of voltage magnitudes and
phase angles,

h;(x) is a nonlinear function of x, and

e is a vector denoting the measurement noise that is usually assumed to follow a Gaussian
distribution with zero-mean and a covariance matrix R = diag{c?, ..., 02}, / being the
variance of z.

The WLS is then equivalent to minimizing the following objective function:
2
J(x) = (Zl hi(x)) (6)
This optimization problem is usually solved using the iterative Gauss-Newton method.

However, this method is sensitive to initialization, computationally expensive, and is not

guaranteed to converge [39], [40].



In this manuscript, we use three types of measurements, whose relations with the
state variables are determined by the following equations:
e Voltage magnitudes at bus i: V;
e Real and reactive power injections at bus i:
P, =V, X1, Vi(Gij cos 6 + Byj sin 6;) (7
Q: = Vi X3, V;(Gijsin6;; — Byj cos 6;) (8)
¢ Real and reactive power flows from bus i to bus j:
P = VZ(gsi + gl-j) — Vl-l/}-(gl-j cos 8;; + b;j sin Hl-j) (9)
Qi; = —VZ(bsi + bi;) — ViVi(gij sin 6;; — b;j cos 6;;) (10)
where
V; and 6; are the voltage magnitude and phase angle at bus i,
0;; = 6; — 6,
Gij + jB;j is the ijt" element of the complex bus admittance matrix,
gij + jb;;j is the admittance of the series branch connecting buses i and j,

Jsi + jbs; is the admittance of the shunt branch connected at bus i, following the
two-port r-model of a network branch, as shown in Figure 1, and

N is the number of buses.

dij bjj

Jsi * J bgj si *J by

—

Figure 1 - Two-port z-model of a Network Branch.



2.1.3 Observability

The network observability determines whether the state can be uniquely estimated,
given the type of available measurements and their corresponding locations. This analysis
checks the sufficiency of the existing measurements. If the system is not observable, then
additional sensors or meters need to be placed on the grid. Observability can be
determined using numerical or topological methods, which also determine observable
islands and critical measurements [39].

Distribution grids, however, are highly unobservable due to the scarcity of the
sensors and smart meters placed on such grids [42]. Thus, the SE problem cannot be
solved using conventional methods. To solve the unobservability problem, pseudo-
measurements are employed [13]. These are generated from historic data, standard load
data, or weather data. Thus, they are assigned high variances to compensate for their high

inaccuracy.

2.1.4 Bad Data Detection and Identification

The term bad data refers to the measurements that contain errors due to
communication noise or meter errors. Detection refers to determining whether the
measurement set contains any bad data. Identification refers to determining which
particular measurement(s) truly contains bad data [39].

Given that there are redundant measurements, state estimators are expected to
detect such errors, identify them, and filter them out. Some types of bad data are detected a
priori such as negative voltage magnitudes or very large power flows or injections. Other
types of bad data need to be detected and eliminated a posteriori. This process depends on
the method used to solve the SE problem. For example, upon using the WLS method,

identifying and detecting bad data are executed after the estimation process [39].



2.2 Neural Network

Our model consists of a feedforward neural network having k layers with z inputs
and y outputs. Each layer has u; inputs and u; outputs, with uy = z and u,;, = y, where:
u; represents the values before the activation function, and
u; represents the values after the activation function. @; and u; are defined, respectively,
as i; = w;u;_q1 + b; and u; = o;(w;u;_1 + b;), where:

w; is the weight matrix,

b; is the bias vector, and

o;(+) is the activation function.

The model is provided first with a Training set, that is usually labeled. Having labeled
data, i.e., data with both the inputs and outputs known, allows the neural network to be
trained to learn the pattern of the data. Once the model is trained, it can calculate the
values of new unseen data, which is commonly referred to as a Testing set. If the output
comprises two or more discrete categories, then the problem is known as a classification
problem. If the output comprises one or more continuous variables, then it is known as a
regression problem, which is the case in this manuscript. Calculating and storing u;, u;,
and y in order from the input layer to the output layer is known as Forward Propagation
[43].

Backward Propagation refers to calculating and storing the gradients (or the partial
derivatives) of the above variables in reverse order, i.e., from the output layer to the input
layer. We define the error function E (w) that compares the calculated output with the
desired output. Our goal is to train the neural network by minimizing the error function.
That is, find a weight matrix and bias vector, w and b, that minimize the chosen error

function. The smallest value would occur where the gradient of the error function is zero:



VE(w) =0 (11)
However, this function is highly nonlinear, thus it can be stuck in local minima.
Numerous methods have been proposed to solve the optimization problem; one efficient
procedure is the error back propagation process, mainly using the chain rule of calculus

[43].
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CHAPTER THREE

LITERATURE REVIEW

In [34], Manitsas et. al propose an artificial neural network approach to generate
pseudo-measurements. The authors provide real measurements and typical load profiles to
a neural network that outputs active and reactive power injections to be used as pseudo-
measurements in DSSE. The approach is demonstrated using the 95-bus section of the
U.K. generic distribution system model. Results show that the estimated states are within
the confidence bounds where voltage magnitudes estimation performed significantly better
than phase angles estimation.

Hayes et. al in [35] propose a load forecasting and SE tool for distribution grids.
The predictive database is designed using a Nonlinear Auto-Regressive Exogenous
algorithm to predict the load. Load estimations are fed back into the state estimator to
create a closed-loop information flow that is used to monitor and improve the DSSE. This
method also provides system operators with warnings of potential issues in medium
voltage grids. The algorithm is tested using a case study of a real 10kV distribution grid
with a weakly-meshed topology. Results show a reduced load forecasting error and
reduced estimation error.

In [33], Zamzam et. al propose using Al techniques to initialize the Gauss-Newton
method. Specifically, they use historical or simulated data to train and test a neural
network that maps the measurements to the true network voltages. Simulations are
demonstrated using the IEEE-37 distribution feeder. The authors introduce renewable
energy resources to be installed on the grid and use linear and quadratic measurements, as

well as pseudo-measurements. This hybrid optimization approach is demonstrated to have

11



a better performance than optimization-only approach in terms of accuracy, runtime, and
stability.

Authors in [36] propose a deep learning approach for unobservable distribution
grids with applications in real-time. The algorithm consists of a Monte Carlo sampling
technique to train a neural network for SE, followed by a bad data detection and filtering
method using a Bayesian inference approach. The method is demonstrated using the 85-
bus distribution grid. Results show that the computational complexity of the Bayesian
approach is lower than that of the WLS techniques when used online and has a higher
accuracy level.

Authors in [38] introduce a physics aware NN that follows the topology of the grid
to solve the DSSE problem. Instead of fully connected layers, the authors suggest the
neurons of the NN to be connected according to the grid topology. This reduces the
complexity of the training stage and prevents overfitting. They also propose a greedy
algorithm to minimize the complexity of the NN through optimally placing micro-PMUs.
Simulations are done on the IEEE 37-bus system. Results show a better performance than
Gauss-Newton and a robustness against corrupted measurements.

Sundaray et. al in [37] study auto-encoders to provide two-way communication
with unobservable distribution grids. The approach incorporates constraints on the latent
layer as per the voltage measurements and employ symbolic regression for explainability.
Moreover, nonlinear power flow kernels are embedded into the decoder to adjust the
forward and inverse mappings. The algorithm is tested on IEEE distribution systems up to
141 and 8500-bus systems. Simulations show accurate two-way information flow with

improved computational complexity.
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CHAPTER FOUR

CREATING THE DATASET

In this manuscript, two different datasets are created: a dataset for the passive grids
without DG and a dataset for the active grids with DG. In each case, the dataset dictates
the variations in the states of the distribution grid based on variations in generation and
load. We use the 18, 85, and 141-bus cases from MATPOWER 7.1 [44].

For the case without DG, Step 1 is to vary the load at different buses and solve the
AC power flow problem for each load variation. The load is varied between 50% and
200% of the original MATPOWER load values. To do that, we run nested for loops to

change the load. A fragment of the code for the 18-bus system is presented below:

for PD2_Value = 0.2:0.1:0.4 % 3 values
mpc.bus(2, PD) = PD2_Value;
mpc.bus(2, QD) = 0.6*PD2_Value;

for PD4_Value = ©0.5:0.5:1.5 % 3 values
mpc.bus(4, PD) = PD4_Value;

for PD5_Value = 0:0.2:0.4 % 3 values
mpc.bus(5, PD) = PD5_Value;
mpc.bus(5, QD) = ©.625*PD5_Value;

for PD6_Value = 0.4:0.2:0.8 % 3 values
mpc.bus(6, PD) = PD6_Value;

mpc.bus(6, QD) = ©.625*PD6_Value;

for PD7_Value = 0.2:0.1:0.4 % 3 values
mpc.bus(7, PD) = PD7_Value;
mpc.bus(7, QD) = ©.6*PD7_Value;

for PD9_Value = 0.3:0.15:0.6 % 3 values
mpc.bus(9, PD) = PD9_Value;

for PD11_Value = 0.3:0.15:0.6 % 3 values
mpc.bus(11, PD) = PD11_Value;

for PD12_Value = 0.1:0.1:0.3 % 3 values
mpc.bus(12, PD) = PD12 Value;

for PD14 _Value = 0.2:0.15:0.5 % 3 values
mpc.bus(14, PD) = PD14 Value;

for PD16_Value = 0.2:0.15:0.5 % 3 values
mpc.bus(16, PD) = PD16_Value;
mpc.bus(16, QD) = 0.6*PD16_Value;

13



for PD17_Value = 0.5:0.5:1.5 % 3 values
a=a+ 1;
mpc.bus(17, PD) = PD17_Value;
results = runpf(mpc);

The default Newton Raphson algorithm is used to solve the AC power flow, by calling the
runpf command. There are 11 for loops for the 18-bus system, with 3 values each, that is
we have 31 = 177,147 cases.

In Step 2, we check for convergence at every data instance: if the algorithm
converges, then the result is saved, else it is discarded. This would result in a number of
data instances that is, for the 18-bus system, less than 177,147, depending on how many
cases converged. We save these data instances is the following csv files:

e Bus voltage magnitudes

e Bus voltage angles

e Generator real power injections

e Generator reactive power injections

e Real power injected into “from” end of branch

e Reactive power injected into “from” end of branch

4
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Figure 2 - Measurement Distribution for the 18-bus System.
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For the case with DG, we modify approximately 15% of the buses of each grid, by
making them generators, in addition to varying the loads. For example, for the 18-bus
system, we add a generator with automatic voltage regulation on bus 21 and two constant
active and reactive power generators, to emulate Photovoltaic (PV) generators, on buses 4
and 9 as shown in Figure 2. We then solve the AC power flow problem and repeat Step 2.
The chosen measurements for the 18-bus system are the following:

e Voltage measurement at bus: 51
e Power injection measurement at bus: 51
e Power flow measurements (from-to): 2-3, 4-5, and 21-23, which represent 20% of

the power flow measurements at one side.

This measurement distribution is shown in Figure 2. We note that this measurement
distribution cannot be used with conventional SE approaches, because in such approaches,

the grid has to be observable.

Step 3 is to convert all the values (except the angles) to the per-unit (pu) system. In
Step 4, we emulate real measurements by adding Gaussian noise to the chosen
measurements, with zero-mean and the following standard deviations [39]:
e 0.004 pu for voltage measurements
e 0.01 pu for power injection measurements

e 0.008 pu for power flow measurements

In Step 5, we shuffle the data and randomly select 100,000 data points to train and

test the neural network. The algorithm is summarized as a flowchart in Figure 4.
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Figure 3 - Flowchart for Creating the Dataset with DG.

The same approach is repeated for the 85 and 141-bus systems, while maintaining
1 voltage measurement, 1 power injection measurement, and 20% of the power flow
measurements. For the cases with DG, we also add varying generation at 15% of the

buses.
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CHAPTER FIVE

METHODOLOGY

In this chapter, we explain the approach that we use to solve the DSSE. We first
present the neural network architecture and then the robustness tests. The whole process is
summarized in the block diagram in Figure 4. It is performed for the 3 different bus

systems.

Train a NN without '
DG to predict V

Train a NN without
DG to predict @

Create Splitinto 80/20 for ———
Dataset training/testing I

Same Inputs 1
1
1
Train a NN with !
DG to predict V

—_—
1
1
1
1
1
1

Train a NN with
DG to predict 8

Figure 4 - Methodology Summary.
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5.1 Neural Network

To build the neural network (NN), we need to select some parameters and
hyperparameters such as:

1. The number of hidden layers and the number of neurons inside the hidden layers:
usually, if the problem at hand is linear, one hidden layer is enough. If it is nonlinear
then two and more layers would be used. We can try to increase the number of hidden
layers or increase the number of neurons per layer to get more accurate results.

2. The activation function of each layer: several activation functions have been used in
the literature such as sigmoid, tanh, and ReLU, among others. The most efficient one is
the ReLU function.

a. Historically, the sigmoid function was one of the earliest activation functions used.

1
1+e~u’

It is defined as o (u) = Its graph is shown in Figure 5.

Sigmoid Function

y-axis

X-axis

Figure 5 - Sigmoid Activation Function.

b. Then, tanh became preferred over the sigmoid. Tanh is defined as

el—

o(u) = ::Z Its graph is shown in Figure 6.

e+
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Tanh Function

y-axis

X-axis

Figure 6 - Tanh Activation Function.

c. Recently, the ReLU function is the most used activation function. It is defined as
o(u) = max (0, w). Its graph is shown in Figure 7. It is our selected activation

function to use.

ReLU Function

X-axis

Figure 7 - ReLU Activation Function.

3. The optimizer: is a method or algorithm that is used to minimize the loss function. The
optimizer usually changes the weights and biases of a neural network so the predicted
output would reach the actual output as close as possible, i.e., to minimize the error.
Some well-known optimizers are RMSProp, SGD, Adagrad, Adadelta, Adamax,
Adam, Momentum, Nesterov Momentum, among others, each having its own

advantages, disadvantages, and usages [43]. It has been shown that the Adam (or
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Adaptive Moment Estimation) optimizer combines the advantages of both RMSProp
and Momentum optimizers, hence it is used in this manuscript.

4. The learning rate: is a number that is usually between 0 and 1. It depicts how fast the
gradient descent moves towards the global minimum. A very large learning rate leads
the algorithm to oscillate around the global minimum, hence diverging; a very small
learning rate might lead the algorithm to be trapped in a local minimum. After several
modifications, the learning rate used for our algorithm is 0.001.

5. The number of epochs denotes the number of times the algorithm runs through the
complete training dataset

The NN is now trained using the training dataset.

Then, we test the trained NN and check its performance. To test the algorithm, we
use the training loss or error, to know the percentage of error that is found between the
given testing data and the predicted data.

The above steps are iterated to find the algorithm with the best performance. That
is, we check loss metrics: the training loss, the validation loss, and the testing loss. There
are no strict rules that dictate how to select the above parameters and hyperparameters, but
there are trial-and-error methods and best practices, found in the literature [43], to perform
adjustments to the parameters. Some of these best practices are:

1. If the training loss is small, but the validation loss is large, then this is due to high
variance, that is, the algorithm is overfitting or not generalizing well, then:

a. Check the validation set performance

b. Try using regularization techniques
2. If the training loss and the validation loss are both large, then the algorithm is

underfitting due to high bias, then:

a. Get a bigger network (either collect more data, or augment them)
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b. Train for longer epochs

c. Try amore advanced optimization algorithm
3. If the training loss and the validation loss are both small and comparable, then the

algorithm is pretty good; we have low bias and low variance.

On another note, we can follow simple rules such as:
1. If the training loss is not satisfactory:

a. Try abigger network (more neurons per layer or more layers)

b. Try a different optimization algorithm

c. Train for longer epochs
2. If the validation loss is not satisfactory:

a. Try regularization

b. Use a bigger training set

c. Hyperparameter search
3. If testing loss is not satisfactory

a. Geta bigger validation set
The validation split that is selected in the code is 20%, i.e., 20% of the training dataset is
used as a validation dataset.

In this paper, we use a deep feedforward NN that consists of one input layer, 4
hidden layers, and one output layer. For every grid topology, we build a separate NN:
1. NN to predict V for a grid without DG

2. NN to predict @ for a grid without DG

w

NN to predict V for a grid with DG

4. NN to predict @ for a grid with DG
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In every case, the inputs are m measurements, which range from z, to z,,,
depending on the size of the grid. The outputs are n — 1 state variables (voltage
magnitudes and phase angles), n being the number of buses. We predict n — 1 variables
because the slack bus is pre-determined, then its voltage magnitude and phase angle are
already known thus, there is no need to include them in the NN to be predicted. The NN

architecture is shown in Figure 8.

Input Layer

Hidden Layers Qutput Layer

Figure 8 - Neural Network Architecture.

For every NN, we split the data into 80%, called Training dataset, and 20%, called Testing
dataset. We note that, instead of predicting the angles, we predict the sine of the angles,
i.e., sin 8. This step can be considered as a pre-processing step, to scale the output angles
between —1 and 1. The angles can be recovered in post-processing by performing an
inverse sine, since the sign is preserved. The error (or loss function) used with most
regression networks is Mean Squared Error (MSE) or Mean Absolute Error (MAE). In this

manuscript, we use the MSE given by the following formula:

MSE = -3, (y; — 9:)? (12)
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y; is the ground truth vector. It is V for the first and third NNs and @ for the second and
fourth NNs;
y; is the predicted vector. It is V for the first and third NNs and 8 for the second and

fourth NNs.

5.2 Testing the Robustness of the Neural Network

After the NN learns the mapping between the input measurements and the output
states, we perform two test scenarios to verify its robustness.
5.2.1 Scenario 1 - Noisier Data

We assume that we have measurements with higher noise due to communication
anomalies or extreme weather events. The measurement distribution is the same one
provided in Chapter Four, but we add more noise in three steps: 2a, 30, and 4. We add
noise on all the data points of the Testing dataset, which corresponds to 20,000 data points,
then, based on these noisier measurements, we evaluate the performance of the previously
trained NN, without retraining it.
5.2.2 Scenario 2 - Bad Data

We assume that we have bad data due to meter errors or communication noise. The
measurement distribution is the same one provided in Chapter Four, but we further corrupt
the data by adding 100 in three stages: we assume first that 10% of the measurements are
bad data, followed by 20% and then 30%. This is done on the Testing dataset, which
corresponds to 20,000 data points, to emulate bad measurements. Then, based on these
measurements, we evaluate the performance of the previously trained NN, without

retraining it.
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CHAPTER SIX

RESULTS AND DISCUSSION

6.1 Software and Equipment

The following software, packages, and platforms were used to write the codes and
perform simulations for this thesis.

MATPOWER [44] is a free package that is used with MATLAB for solving
optimal power flow and power flow problems. It contains case files that are transmission
or distribution grids with different number of buses. MATLAB R2021b was used with the
academic license. MATPOWER was used to create the datasets.

Google Colaboratory, or Colab for short, is a virtual environment where codes can
be written and simulated in the browser without any configurations. A Colab notebook is
stored in a Google Drive account and easily shareable. GPUs and TPUs can be used to
accelerate the simulation performance [45]. Colab was used to create and simulate the
neural networks.

Tensorflow [46] is an end-to-end Python-based platform that is used to build and
deploy machine learning and deep learning projects. The neural network simulations are
performed using the TensorFlow [46] platform.

Pandapower [47] is a Python-based power system analysis tool for solving power
flow, optimal power flow, and state estimation, among others. Pandapower was used to

execute the conventional SE approach.
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6.2 Cases Without DG

6.2.1 18-bus System Demo

For the 18-bus system without DG, we build a Neural Network (NN) having
Z1gpus INPULS, In accordance with the measurement distribution presented in Chapter Four.
The z1gpys Vector comprises Vsy, Psy, Qs1, Pa—3, Q2-3, Py—s, Qa—s, P21-23, and Q21_23.
The NN consists of 4 hidden layers, having 16 neurons each. The Rectified Linear Unit
(ReLU) is used as an activation function. The output layer consists of n — 1 = 17 voltage
magnitudes, with no activation function. We calculate 17 voltage magnitudes because the
magnitude of the slack bus, in this case bus 51, is known beforehand. The NN is trained
with a validation split of 20%, using the Adam optimizer, having a learning rate of 1e —
03, over 200 epochs. After several simulations, the average testing error is 6.83e — 07, as
shown in Table 1. The average simulation time to calculate one data point is 64 ms, also

shown in Table 1.

Table 1 - Simulation Results for Voltage Magnitudes and Phase Angles Without DG for the 3 Test Cases.

Case Variable MSE Time (in ms)
18-bus V 6.83e-07 64

0 1.63e-07 63
85-bus V 2.52e-07 64

0 1.11e-08 67
141-bus V 1.90e-07 68

7] 4.23e-08 66

The same NN architecture is used to calculate the sine of the phase angles, except
the NN now is trained for different outputs. The same measurements are used as inputs.

The results are also summarized in Table 1.
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For the 18-bus case, the NN is compared with conventional SE method. We use the
SE module of Pandapower [47], which in turn uses the WLS method. To perform the WLS
method, we provide the following measurements:
e Voltage measurement at bus: 51; this is similar to the one chosen for the NN.
e Power injection measurement at bus: 51; this is similar to the one chosen for the
NN.
e 100% of the power flow measurements, as opposed to the case of the NN, where
we choose 20% of the power flow measurements. With 20% only, the grid is
unobservable thus, WLS method cannot be performed. Therefore, we increase the

number of measurements to make the grid observable.

We refer to these measurements as z1gpuswis- Similar to the NN, Gaussian noise is used
with zero-mean, and the same variances provided in Chapter Four. We also do not use any
pseudo-measurements in the case of WLS. As for the NN, we provide the algorithm with
the measurements listed as z,gp,, fOr the same data instance. We compare the MSE of the
WLS method with the one of the NN method, for the same data instant. Results are

summarized in Table 2.

Table 2 - Comparing WLS to NN for the 18-bus System

Case Variable WLS Proposed Method
With DG |4 1.81e-05 8.27e-07

0 1.03e-05 2.68e-07
Without DG V 1.96e-05 7.61e-07

0 1.01e-05 1.49e-07

Table 2 shows that our approach performs significantly better than the classic SE, based

on WLS method, in all cases. We note that despite unobservability, our proposed approach
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achieves better results than the conventional SE method, in which the grid is fully

observable.

Figures 9 and 10 show the graphical representation of the errors of the estimated
states with respect to the true system states, for one data instance of the 18-bus system.
The graphs show that the states estimated by the NN closely follow the actual states.

Exact and Predicted Output Voltages Without DG
T T T T T T T T T

T T T
==& Ground Truth
1.085 = ®= Proposed NN | _|

Classic SE

1.09 T

Values

1.05 — ‘

Vm VDZ VDB VD4 VDS VDE VD? VDE VDB VED V21 V22 V23 V24 V25 VEE VSD V51

Variables

Figure 9 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System Without DG.
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Figure 10 - Simulation Results for Predicting Phase Angles for the 18-bus System Without DG.
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6.2.2 The Remaining Cases

For the 85-bus system, we also use a NN with 4 hidden layers, but this time, every
layer has 64 neurons. The rest of the parameters are the same as the ones for the 18-bus
system. Also, one NN is trained for predicting voltage magnitudes and another is trained
for predicting phase angles. The results are summarized in Table 1.

For the 141-bus case, the hidden layers are also 4, but with 128 neurons each. This
is done to compensate for the larger dimensionality of the bigger grids. The results are also
summarized in Table 1.

Table 1 shows that our approach performs very well, under noisy measurements
and unobservability. We note that conventional SE methods cannot be used with similar
inputs. In addition, the NN shifts the computational burden to an offline stage. Thus, we
evaluate the simulation time when this algorithm is used online to calculate a single
output. In every case, the simulation time spent to calculate one data instance is in the
milliseconds range. Moreover, even with larger grid topologies, the NN is achieving

impressive results, in terms of accuracy and simulation time.

6.3 Cases with DG

6.3.1 18-bus System Demo

For the 18-bus system with DG, the same NN architecture is adopted, albeit with
different input and output values. The inputs are represented by the z,g;,¢ vector and the
outputs are the voltage magnitudes for the first NN, and the phase angles for the second
NN, but the values are updated by adding DG to the grid as mentioned in Chapter Four.

Results are shown in Table 3.
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Table 3 - Simulation Results for Voltage Magnitudes and Phase Angles with DG for the 3 Test Cases.

Case Variable MSE Time (in ms)
18-bus V 5.17e-07 67

0 1.96e-07 62
85-bus V 3.57e-07 64

0 3.97e-08 65
141-bus |4 7.39e-07 67

0 6.42e-08 68

Moreover, we compare our proposed approach with the conventional SE method.
We use the same measurement distributions presented before: one data instance of the
Z1gpus Vector for the NN method, and one data instance of zgp,swis for the WLS
method, to make the grid observable. Results are shown in Table 2.

Figures 11 and 12 show the graphical representation of the errors of the estimated
states with respect to the true system states, for one data instance of the 18-bus case. The

graphs show that the states estimated by the NN closely follow the actual states.
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Figure 11 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System with DG.
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Exact and Predicted Phase Angles With DG
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Figure 12 - Simulation Results for Predicting Phase Angles for the 18-bus System with DG.

6.3.2 The Remaining Cases

For the 85 and the 141-bus systems, we also use the same NN architectures with
the input and output values changed, to dictate DG. Also, one NN is trained for predicting
voltage magnitudes and another is trained for predicting phase angles. The results are
summarized in Table 3.

Similar conclusions can be drawn for the cases with DG. Despite the added
complexity, the proposed approach is performing very well in terms of accuracy and

simulation time.

6.4 Noisier Data

For this scenario, given the trained NN, we test the algorithm using noisier data.
That is, we add 20, 30, and 40 to the measurements, available in the Testing dataset, and
check the performance of the NN without retraining it. The results for the cases without

DG and with DG are summarized in Tables 4 and 5, respectively. Results show that the
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proposed approach can still be used with noisier measurements, despite being scarce. Also,

the accuracy remains higher than conventional SE method which requires more data.

Table 4 - Noisier Data Results for Cases Without DG

Case Variable Original MSE with MSE with MSE with

MSE 20 3o 4o
18-bus V 6.83e-07 7.81e-07 1.06e-06 1.53e-06
0 1.63e-07 1.96e-07 2.88e-07 4.27e-06
85-bus % 2.52e-07 2.79e-07 3.61e-07 4.92e-07
0 1.11e-08 2.70e-08 3.43e-08 6.27e-08
141-bus |4 1.90e-07 1.96e-07 2.10e-07 2.35e-07
0 4.23e-08 5.11e-08 7.27e-08 1.53e-07

Table 5 - Noisier Data Results for Cases with DG

Original MSE with MSE with MSE with

Case Variable MSE 20 30 1o
18-bus |74 5.17e-07 6.42e-07 1.01e-06 1.65e-06
0 1.96e-07 2.36e-07 3.43e-07 5.43e-07
85-bus vV 3.57e-07 3.60e-07 3.67e-07 3.91e-07
0 3.97e-08 4.40e-08 5.93e-08 1.04e-07
141-bus Vv 7.39e-07 7.88e-07 8.24e-07 9.01e-07
0 6.42e-08 6.86e-08 8.54e-08 1.05e-07
6.5 Bad Data

For this scenario, we further corrupt the data by adding 100 to the Testing dataset
in three stages: we assume first that 10% of the measurements are bad data, followed by
20% and then 30%. We test the NN without retraining it. The results for the case without

DG and with DG are summarized in Tables 6 and 7, respectively. Results show that the
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performance remains higher than the conventional SE method, while 10% of the
measurements are bad data, but as expected, starts to decline when the percentage of bad

data increases to 20% and 30%.

Table 6 - Bad Data Results for Cases Without DG

MSE with MSE with MSE with

Case Variable Olr\i/lgsigal 10% Bad 20% Bad 30% Bad
Data Data Data
18-bus V 6.83e-07 1.78e-06 3.13e-05 3.20e-05
0 1.63e-07 2.12e-06 6.62e-05 1.84e-04
85-bus % 2.52e-07 7.24e-06 3.97e-05 7.47e-05
0 1.11e-08 1.52e-06 1.02e-05 5.71e-04
141-bus V 1.90e-07 4.98e-06 2.28e-05 7.54e-04
(7] 4.23e-08 2.14e-06 6.12e-05 4.37e-04

Table 7 - Bad Data Results for Cases with DG

MSE with MSE with MSE with

Case Variable o&%iga' 10% Bad 20% Bad 30% Bad
Data Data Data
18-bus v 5.17e-07 4.73¢-06 2.80e-05 3.51e-04
) 1.96e-07 2.78¢-06 2.73e-05 2.38e-05
85-bus |4 3.57e-07 1.14e-06 5.79e-05 3.64e-04
) 3.97¢-08 6.39-06 3.21e-05 6.72¢-05
141-bus v 7.39¢-07 2.31e-06 2.95¢-05 6.11e-04
) 6.42¢-08 3.16€-06 1.60e-05 3.52¢-04
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6.6 Discussion

Our proposed approach solves the DSSE problem with high accuracy, despite the
grid being highly unobservable, as shown in Tables 1 and 3. We recall that we only
have 1 voltage injection measurement, 1 power injection measurement, and 20% of
the power flow measurements. We do not use any pseudo-measurements.
Moreover, the simulation time is in the order of milliseconds, even for the large
141-bus grid, which would enable the operators to frequently solve the DSSE
problem. This approach is suitable for grids with and without DG.

We compare our proposed approach with the WLS method, as shown in Table 2
and Figures 9, 10, 11, and 12. We show that the proposed method is more accurate
despite having less inputs than WLS. Also, the WLS method cannot be performed
using the same number of measurements that was provided to the NN.

Tables 4 and 5 show that the NN is robust to additional noise. This is attributed to
the fact that the NN was trained on a large dataset, making it more immune to
noise.

Tables 6 and 7 show that the NN still has good accuracy, with 10% of bad data.

The performance, however, starts declining as more data are corrupted.
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CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

DSSE is still a challenging problem due to the nature of distribution grids.
Conventional SE methods, which are used for transmission SE, cannot be used for DSSE
mainly because distribution grids are unobservable. Conventional SE methods are also
computationally expensive, sensitive to initial conditions, may not always converge, might
get stuck in local optima, and use highly inaccurate pseudo-measurements to compensate
for the unobservability issue.

Neural networks, on the other hand, shift the computational complexity to an
offline stage, are immune to noise, and can handle large networks if used online. Also, a
NN does not require the grid to be observable and can easily work with the addition of
renewable energy resources.

In this paper, we propose a deep neural network approach to solve the DSSE
problem, with and without DG. Due to the lack of public frameworks, we create a dataset
to train and test the neural network. We also check its robustness by testing several
scenarios with noisier data and bad data. Our proposed approach has a better performance
than conventional SE methods, even with less measurements, without using pseudo-
measurements. The algorithms can also perform fast to cater to the need of frequently
solving the DSSE problem.

Future work directions can be to design a similar approach to incorporate dynamic
state estimation, on the distribution level, and to consider the unbalanced distribution

grids.
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