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A Robust Deep Learning Approach for Distribution System State 

Estimation with Distributed Generation 
 

 

Ronald Kfouri 
 

ABSTRACT 

 
Distribution System State Estimation (DSSE) remains a challenging problem due to the 

nature of distribution grids. Conventional methods, which are used to solve state 

estimation on the transmission level, require the grid to be observable. This is not directly 

applicable to distribution grids. In addition, the high integration of renewable energy 

introduces uncertainty, which makes the DSSE problem more complex. This work 

proposes a deep neural network approach that solves the DSSE problem with and without 

distributed generation, without using highly inaccurate pseudo-measurements. Due to the 

lack of public frameworks, we create a dataset that emulates real-life scenarios to train 

and test the neural network. Also, to evaluate the robustness of the algorithms, we test the 

neural network, without retraining it, on multiple scenarios with noisier data and bad 

data. The algorithms are tested on three different networks. The proposed approach 

solves the DSSE problem with limited measurements as inputs, which cannot be solved 
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using conventional state estimation methods. Our approach also achieves highly accurate 

results, despite the additional noise introduced to the measurements. 

 

Keywords: Bad Data, Deep Learning, Distributed Generation, Distribution System State 

Estimation, Renewable Energy Integration. 

  



viii 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENT ................................................................................................... v 

ABSTRACT ...................................................................................................................... vi 

TABLE OF CONTENTS ................................................................................................. viii 

LIST OF TABLES ............................................................................................................. x 

LIST OF FIGURES .......................................................................................................... xi 

I - INTRODUCTION ........................................................................................................ 1 

II - BACKGROUND ......................................................................................................... 4 

2.1 State Estimation ........................................................................................................... 4 

2.1.1 Definition ............................................................................................................ 4 

2.1.2 Modeling the Measurements .............................................................................. 5 

2.1.3 Observability ...................................................................................................... 8 

2.1.4 Bad Data Detection and Identification ............................................................... 8 

2.2 Neural Network ........................................................................................................... 9 

III - LITERATURE REVIEW ....................................................................................... 11 

IV - CREATING THE DATASET ................................................................................ 13 

V - METHODOLOGY .................................................................................................... 17 

5.1 Neural Network ......................................................................................................... 18 

5.2 Testing the Robustness of the Neural Network ...................................................... 23 

5.2.1 Scenario 1 - Noisier Data ................................................................................. 23 



ix 

 

5.2.2 Scenario 2 - Bad Data ....................................................................................... 23 

VI - RESULTS AND DISCUSSION .............................................................................. 24 

6.1 Software and Equipment .......................................................................................... 24 

6.2 Cases Without DG ..................................................................................................... 25 

6.2.1 18-bus System Demo ........................................................................................ 25 

6.2.2 The Remaining Cases ....................................................................................... 28 

6.3 Cases with DG ............................................................................................................ 28 

6.3.1 18-bus System Demo ........................................................................................ 28 

6.3.2 The Remaining Cases ....................................................................................... 30 

6.4 Noisier Data ................................................................................................................ 30 

6.5 Bad Data ..................................................................................................................... 31 

6.6 Discussion ................................................................................................................... 33 

VII - CONCLUSION AND FUTURE WORK ............................................................. 34 

VIII - REFERENCES ..................................................................................................... 35 

 



x 

 

LIST OF TABLES 

Table 1 - Simulation Results for Voltage Magnitudes and Phase Angles Without DG for 

the 3 Test Cases. ................................................................................................................ 25 

Table 2 - Comparing WLS to NN for the 18-bus System ................................................. 26 

Table 3 - Simulation Results for Voltage Magnitudes and Phase Angles with DG for the 3 

Test Cases. ......................................................................................................................... 29 

Table 4 - Noisier Data Results for Cases Without DG ...................................................... 31 

Table 5 - Noisier Data Results for Cases with DG ............................................................ 31 

Table 6 - Bad Data Results for Cases Without DG ........................................................... 32 

Table 7 - Bad Data Results for Cases with DG ................................................................. 32 

 

 

  



xi 

 

LIST OF FIGURES 

Figure 1 - Two-port π-model of a Network Branch ............................................................ 7 

Figure 2 - Measurement Distribution for the 18-bus System. ........................................... 14 

Figure 3 - Flowchart for Creating the Dataset with DG. ................................................... 16 

Figure 4 - Methodology Summary. ................................................................................... 17 

Figure 5 - Sigmoid Activation Function. ........................................................................... 18 

Figure 6 - Tanh Activation Function. ................................................................................ 19 

Figure 7 - ReLU Activation Function. .............................................................................. 19 

Figure 8 - Neural Network Architecture. .......................................................................... 22 

Figure 9 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System 

Without DG. ...................................................................................................................... 27 

Figure 10 - Simulation Results for Predicting Phase Angles for the 18-bus System 

Without DG. ...................................................................................................................... 27 

Figure 11 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System 

with DG. ............................................................................................................................ 29 

Figure 12 - Simulation Results for Predicting Phase Angles for the 18-bus System with 

DG. .................................................................................................................................... 30 

 



1 

 

CHAPTER ONE 

INTRODUCTION 

Distribution systems are different from transmission systems. They have a low 

𝑋/𝑅 ratio, are highly unobservable, and have a radial or weakly-meshed topology. Also, 

high penetration of renewable energy resources and Distributed Generation (DG) render 

the generation less predictable. Hence, the Distribution System State Estimation (DSSE) 

problem has been heavily studied since the 1990s [1]-[3]. Researchers first adopted the 

State Estimation (SE) methods, which are used for transmission systems, to distribution 

systems: for example, the Weighted Least Squares (WLS) method based on node voltages 

[4]-[6] or branch currents [7]-[9], the Least Absolute Value (LAV) method [10], and the 

Generalized Maximum Likelihood (GM) method [11]. However, WLS is susceptible to 

bad data, LAV is computationally expensive and sensitive to measurement uncertainty, 

and GM is sensitive to parameter selection [12]. 

Moreover, to solve the unobservability problem, pseudo-measurements are 

employed [13]. These are generated from historic data, standard load data, or weather data 

and thus are highly inaccurate. Probabilistic or statistical-based methods are used to 

generate and handle the errors of these pseudo-measurements: for example, Gaussian 

Mixture Models (GMMs) [14], correlation analysis [15], [16], and multivariate Gaussian 

modeling [17]. 

In addition, with the ubiquitous renewable energy resources and DG integration, 

uncertainty is introduced to the grid, leading researchers to solve the DSSE in presence of 

DGs. For instance, forecasting aided DSSE is studied in [18] using GM and in [19] using 

𝐿1regularization; optimal meter placement in active distribution grids is studied in [20], 

and pseudo-measurements generation with high DG penetration is studied in [21], [22]. 
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Also, [23] proposes models of photovoltaic (PV) arrays to be integrated within the grid 

model, while [24] proposes an approach to generate pseudo-measurements for an active 

distribution grid. 

Another problem that affects SE in general is bad data in measurements [25]-[27]. 

The term bad data refers to the measurements that suffer from anomalies due to 

communication noise or meter errors. In [28], a Lagrangian-based approach is used to 

identify bad data. In [29], 𝐿1-norm is used to identify corrupted measurements and 

estimate the states. But the 𝐿1 penalty function is susceptible to outliers that have large 

magnitudes. As an improvement on [30], the authors in [31] propose a statistical approach 

based on iterative reweight least squares and an improved ADMM approach. Also, [32] 

formulates the Phasor Measurement Unit (PMU)-based SE as a quadratic programming 

problem and solves it in a decentralized way to maintain privacy between operators. 

However, these methods get computationally expensive for high dimensions. Also, 

the DSSE remains a nonlinear problem, whose complexity is increasing with the increase 

of renewable energy integration, thus traditional methods cannot handle this problem and 

are most of the times prone to introducing relaxations or simplifications or guessing initial 

conditions. This leads the algorithm to either get stuck in local optima or not converge. 

Thus, researchers introduced Artificial Intelligence (AI) algorithms to solve DSSE-

related problems. These algorithms shift the computational burden to an offline stage. 

Examples include integrating AI algorithms with traditional algorithms, such as [33] that 

uses a Neural Network (NN) to initialize the Gauss-Newton method, [34] that proposes a 

NN to generate pseudo-measurements, and [35] that uses a Nonlinear Auto-Regressive 

Exogenous algorithm to predict the load and feed it back into the state estimator. Another 

research path is to solve the DSSE problem using only AI methods. For instance, [36] uses 

a Bayesian inference approach for unobservable distribution systems via deep learning. 
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Auto-encoders are studied in [37] to ensure two-way communication with unobservable 

distribution grids. Authors in [38] introduce a physics aware NN that follows the topology 

of the grid to solve the DSSE problem. 

Although these methods have achieved impressive results, the reviewed papers 

suffer from at least one of the following problems: 

• The methods use pseudo-measurements, with an error up to 50%, to compensate 

for the unobservability issue; this leads to inaccurate results following from the 

garbage in garbage out concept. 

• The methods are not verified against outliers or practical anomalies. 

This work proposes a deep learning approach that solves the DSSE problem 

without the need to generate pseudo-measurements, which cannot be performed using 

conventional SE methods. We present two scenarios: the first scenario calculates the 

system states without DG integration, while the second scenario calculates them with DG. 

The contributions are threefold: 

1. We propose a deep neural network approach to solve the DSSE problem without 

using erroneous pseudo-measurements. The suggested algorithm requires a limited 

number of measurements, since distribution grids are unobservable, and can be 

used in real-time to cater to the need of frequently solving the DSSE problem. 

2. Given the additional complexity introduced by DG, the approach shows a very 

good performance compared with the case of passive grids. 

3. To test for robustness, we perform different test cases. We check the performance 

given noisier measurements and bad data. 
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CHAPTER TWO 

BACKGROUND 

2.1 State Estimation 

2.1.1 Definition 

Power systems are composed of generation, transmission, sub-transmission, and 

distribution systems, and loads. Generators inject power into the grid, while loads absorb 

it. Transmission systems embed substations that are interconnected via transmission lines, 

transformers, and other devices for control and protection. Distribution systems, which are 

connected to the transmission systems, usually operate in a radial or weakly-meshed 

configuration [39]. 

Operational constraints of the grid include the upper and lower limits on the 

voltage magnitudes and transmission lines capacity. A grid operates in a normal state if all 

the demand is supplied by the generators without violating these operational constraints. 

The operating conditions of a grid are determined given the network topology and the 

complex phasor voltages at every bus. The set of complex phasor voltages is referred to as 

the static state of the system [39], [40]. 

State Estimation (SE) is a data processing algorithm that converts meter 

measurements and other data into an estimate of the state vector [41]. The state vector 

consists of the voltage magnitudes and phase angles in static state estimation. Generally, 

measurements include active and reactive power flows, power injections, complex phasor 

voltages, current, generator outputs, loads, circuit breaker and switch status information, 

etc. These measurements are taken from sensors and smart meters, placed on the grid. The 
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state estimator filters the noise introduced to these measurements and estimates the state of 

the grid. 

2.1.2 Modeling the Measurements 

The Maximum Likelihood Estimation (MLE) can be used to estimate the most 

likely state of the grid. We assume that the measurements follow a previously determined 

probability distribution, e.g., Gaussian, with unknown parameters. The joint probability 

density function (pdf) is referred to as the likelihood function, which reaches its peak 

when the predicted parameters are closest to their actual values. Thus, an optimization 

problem is set to maximize the likelihood function [39]. 

Assuming independent measurements, the joint pdf can be expressed as follows: 

𝑓𝑚(𝒛) = 𝑓(𝑧1)𝑓(𝑧2) … 𝑓(𝑧𝑚)                        (1) 

where 𝑓(𝑧𝑖) is the individual pdf of every 𝑧𝑖 measurement. 𝑓𝑚(𝒛) is referred to as the 

likelihood function for 𝒛. MLE maximizes 𝑓𝑚(𝒛), or its log (to simplify the optimization 

process), thus, the problem reduces to the following: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒    log 𝑓𝑚(𝑧) 

𝑂𝑅 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ (
𝑧𝑖−𝜇𝑖

𝜎𝑖
)

2
𝑚
𝑖=1                          (2) 

where 𝜇𝑖 is the mean and 𝜎𝑖 is the standard deviation of 𝑧𝑖. Equation (2) can be re-written 

in terms of the residual 𝑟𝑖, defined as: 

𝑟𝑖 = 𝑧𝑖 − 𝜇𝑖                                 (3) 

The mean can be expressed as ℎ𝑖(𝒙) , which is a nonlinear function that relates the state 

vector to the 𝑖𝑡ℎ measurement. The square of the residual, 𝑟𝑖
2, is weighted by the matrix 

𝑾, having 𝑊𝑖𝑖 = 𝜎𝑖
−2 entries, which represent the inverse error variance. Thus, the 

minimization problem reduces to the following: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     ∑ 𝑊𝑖𝑖𝑟𝑖
2

𝑚

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑧𝑖 = ℎ𝑖(𝒙)  + 𝑟𝑖,     𝑖 = 1, … , 𝑚          (4) 

The solution of this optimization problem is referred to as the Weighted Least Squares 

(WLS) estimation of 𝒙 [39]. 

The measurement model thus becomes as follows: 

𝒛𝒎 = [

𝑧1

⋮
𝑧𝑚

] = [
ℎ1(𝑥1, … , 𝑥𝑛)

⋮
ℎ𝑚(𝑥1, … , 𝑥𝑛)

] + [

𝑒1

⋮
𝑒𝑚

] = ℎ𝑖(𝒙) + 𝒆            (5) 

where 

𝒛𝒎 is the measurement vector that includes 𝑚 measurements, 

𝒙 = (𝑥1, … 𝑥𝑛) is a vector denoting 𝑛 system states, composed of voltage magnitudes and 

phase angles, 

ℎ𝑖(𝒙) is a nonlinear function of 𝒙, and 

𝒆 is a vector denoting the measurement noise that is usually assumed to follow a Gaussian 

distribution with zero-mean and a covariance matrix 𝑹 = 𝑑𝑖𝑎𝑔{𝜎1
2, … , 𝜎𝑚

2 }, 𝜎𝑖
2 being the 

variance of 𝒛. 

The WLS is then equivalent to minimizing the following objective function: 

𝐽(𝑥) = ∑
1

𝑅𝑖𝑖
(𝑧𝑖 − ℎ𝑖(𝒙))

2𝑚
𝑖=1                        (6) 

This optimization problem is usually solved using the iterative Gauss-Newton method. 

However, this method is sensitive to initialization, computationally expensive, and is not 

guaranteed to converge [39], [40]. 
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In this manuscript, we use three types of measurements, whose relations with the 

state variables are determined by the following equations: 

• Voltage magnitudes at bus 𝑖: 𝑉𝑖 

• Real and reactive power injections at bus 𝑖: 

𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)𝑁
𝑗=1                (7) 

𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)𝑁
𝑗=1                (8) 

• Real and reactive power flows from bus 𝑖 to bus 𝑗: 

𝑃𝑖𝑗 = 𝑉𝑖
2(𝑔𝑠𝑖 + 𝑔𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos 𝜃𝑖𝑗 + 𝑏𝑖𝑗 sin 𝜃𝑖𝑗)            (9) 

𝑄𝑖𝑗 = −𝑉𝑖
2(𝑏𝑠𝑖 + 𝑏𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin 𝜃𝑖𝑗 − 𝑏𝑖𝑗 cos 𝜃𝑖𝑗)          (10) 

where 

𝑉𝑖 and 𝜃𝑖 are the voltage magnitude and phase angle at bus 𝑖, 

𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 , 

𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 is the 𝑖𝑗𝑡ℎ element of the complex bus admittance matrix, 

𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗 is the admittance of the series branch connecting buses 𝑖 and 𝑗, 

𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖 is the admittance of the shunt branch connected at bus 𝑖, following the 

two-port 𝜋-model of a network branch, as shown in Figure 1, and 

𝑁 is the number of buses. 

 

Figure 1 - Two-port π-model of a Network Branch. 
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2.1.3 Observability 

The network observability determines whether the state can be uniquely estimated, 

given the type of available measurements and their corresponding locations. This analysis 

checks the sufficiency of the existing measurements. If the system is not observable, then 

additional sensors or meters need to be placed on the grid. Observability can be 

determined using numerical or topological methods, which also determine observable 

islands and critical measurements [39]. 

Distribution grids, however, are highly unobservable due to the scarcity of the 

sensors and smart meters placed on such grids [42]. Thus, the SE problem cannot be 

solved using conventional methods. To solve the unobservability problem, pseudo-

measurements are employed [13]. These are generated from historic data, standard load 

data, or weather data. Thus, they are assigned high variances to compensate for their high 

inaccuracy. 

2.1.4 Bad Data Detection and Identification 

The term bad data refers to the measurements that contain errors due to 

communication noise or meter errors. Detection refers to determining whether the 

measurement set contains any bad data. Identification refers to determining which 

particular measurement(s) truly contains bad data [39]. 

Given that there are redundant measurements, state estimators are expected to 

detect such errors, identify them, and filter them out. Some types of bad data are detected a 

priori such as negative voltage magnitudes or very large power flows or injections. Other 

types of bad data need to be detected and eliminated a posteriori. This process depends on 

the method used to solve the SE problem. For example, upon using the WLS method, 

identifying and detecting bad data are executed after the estimation process [39]. 
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2.2 Neural Network 

Our model consists of a feedforward neural network having 𝑘 layers with 𝒛 inputs 

and 𝒚 outputs. Each layer has �̂�𝒊 inputs and 𝒖𝒊 outputs, with 𝒖𝟎 = 𝒛 and 𝒖𝒌 = 𝒚, where: 

�̂�𝒊 represents the values before the activation function, and 

𝒖𝒊 represents the values after the activation function. �̂�𝒊 and 𝒖𝒊 are defined, respectively, 

as �̂�𝒊 = 𝝎𝒊𝒖𝒊−𝟏 + 𝒃𝒊 and 𝒖𝒊 = 𝜎𝑖(𝝎𝒊𝒖𝒊−𝟏 + 𝒃𝒊), where: 

𝝎𝒊 is the weight matrix, 

𝒃𝒊 is the bias vector, and 

𝜎𝑖(⋅) is the activation function. 

The model is provided first with a Training set, that is usually labeled. Having labeled 

data, i.e., data with both the inputs and outputs known, allows the neural network to be 

trained to learn the pattern of the data. Once the model is trained, it can calculate the 

values of new unseen data, which is commonly referred to as a Testing set. If the output 

comprises two or more discrete categories, then the problem is known as a classification 

problem. If the output comprises one or more continuous variables, then it is known as a 

regression problem, which is the case in this manuscript. Calculating and storing 𝒖𝒊, �̂�𝒊, 

and 𝒚 in order from the input layer to the output layer is known as Forward Propagation 

[43]. 

Backward Propagation refers to calculating and storing the gradients (or the partial 

derivatives) of the above variables in reverse order, i.e., from the output layer to the input 

layer. We define the error function 𝐸(𝜔) that compares the calculated output with the 

desired output. Our goal is to train the neural network by minimizing the error function. 

That is, find a weight matrix and bias vector, 𝝎 and 𝒃, that minimize the chosen error 

function. The smallest value would occur where the gradient of the error function is zero: 
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∇𝐸(𝜔) = 0                              (11) 

However, this function is highly nonlinear, thus it can be stuck in local minima. 

Numerous methods have been proposed to solve the optimization problem; one efficient 

procedure is the error back propagation process, mainly using the chain rule of calculus 

[43]. 
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CHAPTER THREE 

LITERATURE REVIEW 

In [34], Manitsas et. al propose an artificial neural network approach to generate 

pseudo-measurements. The authors provide real measurements and typical load profiles to 

a neural network that outputs active and reactive power injections to be used as pseudo-

measurements in DSSE. The approach is demonstrated using the 95-bus section of the 

U.K. generic distribution system model. Results show that the estimated states are within 

the confidence bounds where voltage magnitudes estimation performed significantly better 

than phase angles estimation. 

Hayes et. al in [35] propose a load forecasting and SE tool for distribution grids. 

The predictive database is designed using a Nonlinear Auto-Regressive Exogenous 

algorithm to predict the load. Load estimations are fed back into the state estimator to 

create a closed-loop information flow that is used to monitor and improve the DSSE. This 

method also provides system operators with warnings of potential issues in medium 

voltage grids. The algorithm is tested using a case study of a real 10kV distribution grid 

with a weakly-meshed topology. Results show a reduced load forecasting error and 

reduced estimation error. 

In [33], Zamzam et. al propose using AI techniques to initialize the Gauss-Newton 

method. Specifically, they use historical or simulated data to train and test a neural 

network that maps the measurements to the true network voltages. Simulations are 

demonstrated using the IEEE-37 distribution feeder. The authors introduce renewable 

energy resources to be installed on the grid and use linear and quadratic measurements, as 

well as pseudo-measurements. This hybrid optimization approach is demonstrated to have 
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a better performance than optimization-only approach in terms of accuracy, runtime, and 

stability. 

Authors in [36] propose a deep learning approach for unobservable distribution 

grids with applications in real-time. The algorithm consists of a Monte Carlo sampling 

technique to train a neural network for SE, followed by a bad data detection and filtering 

method using a Bayesian inference approach. The method is demonstrated using the 85-

bus distribution grid. Results show that the computational complexity of the Bayesian 

approach is lower than that of the WLS techniques when used online and has a higher 

accuracy level. 

Authors in [38] introduce a physics aware NN that follows the topology of the grid 

to solve the DSSE problem. Instead of fully connected layers, the authors suggest the 

neurons of the NN to be connected according to the grid topology. This reduces the 

complexity of the training stage and prevents overfitting. They also propose a greedy 

algorithm to minimize the complexity of the NN through optimally placing micro-PMUs. 

Simulations are done on the IEEE 37-bus system. Results show a better performance than 

Gauss-Newton and a robustness against corrupted measurements. 

Sundaray et. al in [37] study auto-encoders to provide two-way communication 

with unobservable distribution grids. The approach incorporates constraints on the latent 

layer as per the voltage measurements and employ symbolic regression for explainability. 

Moreover, nonlinear power flow kernels are embedded into the decoder to adjust the 

forward and inverse mappings. The algorithm is tested on IEEE distribution systems up to 

141 and 8500-bus systems. Simulations show accurate two-way information flow with 

improved computational complexity.  
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CHAPTER FOUR 

CREATING THE DATASET 

In this manuscript, two different datasets are created: a dataset for the passive grids 

without DG and a dataset for the active grids with DG. In each case, the dataset dictates 

the variations in the states of the distribution grid based on variations in generation and 

load. We use the 18, 85, and 141-bus cases from MATPOWER 7.1 [44]. 

For the case without DG, Step 1 is to vary the load at different buses and solve the 

AC power flow problem for each load variation. The load is varied between 50% and 

200% of the original MATPOWER load values. To do that, we run nested for loops to 

change the load. A fragment of the code for the 18-bus system is presented below: 

for PD2_Value = 0.2:0.1:0.4 % 3 values 
    mpc.bus(2, PD) = PD2_Value; 
    mpc.bus(2, QD) = 0.6*PD2_Value; 
 
    for PD4_Value = 0.5:0.5:1.5 % 3 values 
        mpc.bus(4, PD) = PD4_Value; 
 
        for PD5_Value = 0:0.2:0.4 % 3 values 
            mpc.bus(5, PD) = PD5_Value; 
            mpc.bus(5, QD) = 0.625*PD5_Value; 
 
            for PD6_Value = 0.4:0.2:0.8 % 3 values 
                mpc.bus(6, PD) = PD6_Value; 
                mpc.bus(6, QD) = 0.625*PD6_Value; 
 
                for PD7_Value = 0.2:0.1:0.4 % 3 values 
                    mpc.bus(7, PD) = PD7_Value; 
                    mpc.bus(7, QD) = 0.6*PD7_Value; 
 
                    for PD9_Value = 0.3:0.15:0.6 % 3 values 
                        mpc.bus(9, PD) = PD9_Value; 
 
                        for PD11_Value = 0.3:0.15:0.6 % 3 values 
                            mpc.bus(11, PD) = PD11_Value; 
 
                            for PD12_Value = 0.1:0.1:0.3 % 3 values 
                                mpc.bus(12, PD) = PD12_Value; 
 
                                for PD14_Value = 0.2:0.15:0.5 % 3 values 
                                    mpc.bus(14, PD) = PD14_Value; 
 
                                    for PD16_Value = 0.2:0.15:0.5 % 3 values 
                                        mpc.bus(16, PD) = PD16_Value; 
                                        mpc.bus(16, QD) = 0.6*PD16_Value; 
 



14 

 

                                        for PD17_Value = 0.5:0.5:1.5 % 3 values 
                                            a = a + 1; 
                                            mpc.bus(17, PD) = PD17_Value; 
                                            results = runpf(mpc); 

 

The default Newton Raphson algorithm is used to solve the AC power flow, by calling the 

runpf command. There are 11 for loops for the 18-bus system, with 3 values each, that is 

we have 311 = 177,147 cases. 

In Step 2, we check for convergence at every data instance: if the algorithm 

converges, then the result is saved, else it is discarded. This would result in a number of 

data instances that is, for the 18-bus system, less than 177,147, depending on how many 

cases converged. We save these data instances is the following csv files: 

• Bus voltage magnitudes 

• Bus voltage angles 

• Generator real power injections 

• Generator reactive power injections 

• Real power injected into “from” end of branch 

• Reactive power injected into “from” end of branch 

 

Figure 2 - Measurement Distribution for the 18-bus System. 
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For the case with DG, we modify approximately 15% of the buses of each grid, by 

making them generators, in addition to varying the loads. For example, for the 18-bus 

system, we add a generator with automatic voltage regulation on bus 21 and two constant 

active and reactive power generators, to emulate Photovoltaic (PV) generators, on buses 4 

and 9 as shown in Figure 2. We then solve the AC power flow problem and repeat Step 2. 

The chosen measurements for the 18-bus system are the following: 

• Voltage measurement at bus: 51 

• Power injection measurement at bus: 51 

• Power flow measurements (from-to): 2-3, 4-5, and 21-23, which represent 20% of 

the power flow measurements at one side. 

This measurement distribution is shown in Figure 2. We note that this measurement 

distribution cannot be used with conventional SE approaches, because in such approaches, 

the grid has to be observable. 

Step 3 is to convert all the values (except the angles) to the per-unit (pu) system. In 

Step 4, we emulate real measurements by adding Gaussian noise to the chosen 

measurements, with zero-mean and the following standard deviations [39]: 

• 0.004 pu for voltage measurements 

• 0.01 pu for power injection measurements 

• 0.008 pu for power flow measurements 

In Step 5, we shuffle the data and randomly select 100,000 data points to train and 

test the neural network. The algorithm is summarized as a flowchart in Figure 4. 
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Figure 3 - Flowchart for Creating the Dataset with DG. 

 

The same approach is repeated for the 85 and 141-bus systems, while maintaining 

1 voltage measurement, 1 power injection measurement, and 20% of the power flow 

measurements. For the cases with DG, we also add varying generation at 15% of the 

buses. 
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CHAPTER FIVE 

METHODOLOGY 

In this chapter, we explain the approach that we use to solve the DSSE. We first 

present the neural network architecture and then the robustness tests. The whole process is 

summarized in the block diagram in Figure 4. It is performed for the 3 different bus 

systems. 

 

 

Figure 4 - Methodology Summary. 

 

  



18 

 

5.1 Neural Network 

To build the neural network (NN), we need to select some parameters and 

hyperparameters such as: 

1. The number of hidden layers and the number of neurons inside the hidden layers: 

usually, if the problem at hand is linear, one hidden layer is enough. If it is nonlinear 

then two and more layers would be used. We can try to increase the number of hidden 

layers or increase the number of neurons per layer to get more accurate results. 

2. The activation function of each layer: several activation functions have been used in 

the literature such as sigmoid, tanh, and ReLU, among others. The most efficient one is 

the ReLU function. 

a. Historically, the sigmoid function was one of the earliest activation functions used. 

It is defined as 𝜎(𝑢) =
1

1+𝑒−𝑢. Its graph is shown in Figure 5. 

 

Figure 5 - Sigmoid Activation Function. 

 

b. Then, tanh became preferred over the sigmoid. Tanh is defined as 

𝜎(𝑢) =
𝑒𝑢−𝑒−𝑢

𝑒𝑢+𝑒−𝑢. Its graph is shown in Figure 6. 
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Figure 6 - Tanh Activation Function. 

 

c. Recently, the ReLU function is the most used activation function. It is defined as 

σ(𝑢) = max (0, 𝑢). Its graph is shown in Figure 7. It is our selected activation 

function to use. 

 

Figure 7 - ReLU Activation Function. 

 

3. The optimizer: is a method or algorithm that is used to minimize the loss function. The 

optimizer usually changes the weights and biases of a neural network so the predicted 

output would reach the actual output as close as possible, i.e., to minimize the error. 

Some well-known optimizers are RMSProp, SGD, Adagrad, Adadelta, Adamax, 

Adam, Momentum, Nesterov Momentum, among others, each having its own 

advantages, disadvantages, and usages [43]. It has been shown that the Adam (or 
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Adaptive Moment Estimation) optimizer combines the advantages of both RMSProp 

and Momentum optimizers, hence it is used in this manuscript. 

4. The learning rate: is a number that is usually between 0 and 1. It depicts how fast the 

gradient descent moves towards the global minimum. A very large learning rate leads 

the algorithm to oscillate around the global minimum, hence diverging; a very small 

learning rate might lead the algorithm to be trapped in a local minimum. After several 

modifications, the learning rate used for our algorithm is 0.001. 

5. The number of epochs denotes the number of times the algorithm runs through the 

complete training dataset 

The NN is now trained using the training dataset. 

Then, we test the trained NN and check its performance. To test the algorithm, we 

use the training loss or error, to know the percentage of error that is found between the 

given testing data and the predicted data. 

The above steps are iterated to find the algorithm with the best performance. That 

is, we check loss metrics: the training loss, the validation loss, and the testing loss. There 

are no strict rules that dictate how to select the above parameters and hyperparameters, but 

there are trial-and-error methods and best practices, found in the literature [43], to perform 

adjustments to the parameters. Some of these best practices are: 

1. If the training loss is small, but the validation loss is large, then this is due to high 

variance, that is, the algorithm is overfitting or not generalizing well, then: 

a. Check the validation set performance 

b. Try using regularization techniques 

2. If the training loss and the validation loss are both large, then the algorithm is 

underfitting due to high bias, then: 

a. Get a bigger network (either collect more data, or augment them) 
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b. Train for longer epochs 

c. Try a more advanced optimization algorithm 

3. If the training loss and the validation loss are both small and comparable, then the 

algorithm is pretty good; we have low bias and low variance. 

On another note, we can follow simple rules such as: 

1. If the training loss is not satisfactory: 

a. Try a bigger network (more neurons per layer or more layers) 

b. Try a different optimization algorithm 

c. Train for longer epochs 

2. If the validation loss is not satisfactory: 

a. Try regularization 

b. Use a bigger training set 

c. Hyperparameter search 

3. If testing loss is not satisfactory 

a. Get a bigger validation set 

The validation split that is selected in the code is 20%, i.e., 20% of the training dataset is 

used as a validation dataset. 

In this paper, we use a deep feedforward NN that consists of one input layer, 4 

hidden layers, and one output layer. For every grid topology, we build a separate NN: 

1. NN to predict 𝑽 for a grid without DG 

2. NN to predict 𝜽 for a grid without DG 

3. NN to predict 𝑽 for a grid with DG 

4. NN to predict 𝜽 for a grid with DG 
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In every case, the inputs are 𝑚 measurements, which range from 𝑧1 to 𝑧𝑚, 

depending on the size of the grid. The outputs are 𝑛 − 1 state variables (voltage 

magnitudes and phase angles), 𝑛 being the number of buses. We predict 𝑛 − 1 variables 

because the slack bus is pre-determined, then its voltage magnitude and phase angle are 

already known thus, there is no need to include them in the NN to be predicted. The NN 

architecture is shown in Figure 8. 

 

 

Figure 8 - Neural Network Architecture. 

 

For every NN, we split the data into 80%, called Training dataset, and 20%, called Testing 

dataset. We note that, instead of predicting the angles, we predict the sine of the angles, 

i.e., sin 𝜃. This step can be considered as a pre-processing step, to scale the output angles 

between −1 and 1. The angles can be recovered in post-processing by performing an 

inverse sine, since the sign is preserved. The error (or loss function) used with most 

regression networks is Mean Squared Error (MSE) or Mean Absolute Error (MAE). In this 

manuscript, we use the MSE given by the following formula: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝒚𝒊 − �̂�𝒊)

2𝑛
𝑖=1                            (12) 
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𝒚𝒊 is the ground truth vector. It is 𝑽 for the first and third NNs and 𝜽 for the second and 

fourth NNs; 

�̂�𝒊 is the predicted vector. It is �̂� for the first and third NNs and �̂� for the second and 

fourth NNs. 

5.2 Testing the Robustness of the Neural Network 

After the NN learns the mapping between the input measurements and the output 

states, we perform two test scenarios to verify its robustness. 

5.2.1 Scenario 1 - Noisier Data 

We assume that we have measurements with higher noise due to communication 

anomalies or extreme weather events. The measurement distribution is the same one 

provided in Chapter Four, but we add more noise in three steps: 2𝜎, 3𝜎, and 4𝜎. We add 

noise on all the data points of the Testing dataset, which corresponds to 20,000 data points, 

then, based on these noisier measurements, we evaluate the performance of the previously 

trained NN, without retraining it. 

5.2.2 Scenario 2 - Bad Data 

We assume that we have bad data due to meter errors or communication noise. The 

measurement distribution is the same one provided in Chapter Four, but we further corrupt 

the data by adding 10𝜎 in three stages: we assume first that 10% of the measurements are 

bad data, followed by 20% and then 30%. This is done on the Testing dataset, which 

corresponds to 20,000 data points, to emulate bad measurements. Then, based on these 

measurements, we evaluate the performance of the previously trained NN, without 

retraining it.  
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CHAPTER SIX 

RESULTS AND DISCUSSION 

6.1 Software and Equipment 

The following software, packages, and platforms were used to write the codes and 

perform simulations for this thesis. 

MATPOWER [44] is a free package that is used with MATLAB for solving 

optimal power flow and power flow problems. It contains case files that are transmission 

or distribution grids with different number of buses. MATLAB R2021b was used with the 

academic license. MATPOWER was used to create the datasets. 

Google Colaboratory, or Colab for short, is a virtual environment where codes can 

be written and simulated in the browser without any configurations. A Colab notebook is 

stored in a Google Drive account and easily shareable. GPUs and TPUs can be used to 

accelerate the simulation performance [45]. Colab was used to create and simulate the 

neural networks. 

Tensorflow [46] is an end-to-end Python-based platform that is used to build and 

deploy machine learning and deep learning projects. The neural network simulations are 

performed using the TensorFlow [46] platform. 

Pandapower [47] is a Python-based power system analysis tool for solving power 

flow, optimal power flow, and state estimation, among others. Pandapower was used to 

execute the conventional SE approach. 
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6.2 Cases Without DG 

6.2.1 18-bus System Demo 

For the 18-bus system without DG, we build a Neural Network (NN) having 

𝒛𝟏𝟖𝒃𝒖𝒔 inputs, in accordance with the measurement distribution presented in Chapter Four. 

The 𝒛𝟏𝟖𝒃𝒖𝒔 vector comprises 𝑉51, 𝑃51, 𝑄51, 𝑃2−3, 𝑄2−3, 𝑃4−5, 𝑄4−5, 𝑃21−23, and 𝑄21−23. 

The NN consists of 4 hidden layers, having 16 neurons each. The Rectified Linear Unit 

(ReLU) is used as an activation function. The output layer consists of 𝑛 − 1 = 17 voltage 

magnitudes, with no activation function. We calculate 17 voltage magnitudes because the 

magnitude of the slack bus, in this case bus 51, is known beforehand. The NN is trained 

with a validation split of 20%, using the Adam optimizer, having a learning rate of 1𝑒 −

03, over 200 epochs. After several simulations, the average testing error is 6.83𝑒 − 07, as 

shown in Table 1. The average simulation time to calculate one data point is 64 𝑚𝑠, also 

shown in Table 1. 

Table 1 - Simulation Results for Voltage Magnitudes and Phase Angles Without DG for the 3 Test Cases. 

Case Variable MSE Time (in ms) 

18-bus 𝑽 6.83e-07 64 

  𝜽 1.63e-07 63 

85-bus 𝑽 2.52e-07 64 

  𝜽 1.11e-08 67 

141-bus 𝑽 1.90e-07 68 

  𝜽 4.23e-08 66 

 

The same NN architecture is used to calculate the sine of the phase angles, except 

the NN now is trained for different outputs. The same measurements are used as inputs. 

The results are also summarized in Table 1. 
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For the 18-bus case, the NN is compared with conventional SE method. We use the 

SE module of Pandapower [47], which in turn uses the WLS method. To perform the WLS 

method, we provide the following measurements: 

• Voltage measurement at bus: 51; this is similar to the one chosen for the NN. 

• Power injection measurement at bus: 51; this is similar to the one chosen for the 

NN. 

• 100% of the power flow measurements, as opposed to the case of the NN, where 

we choose 20% of the power flow measurements. With 20% only, the grid is 

unobservable thus, WLS method cannot be performed. Therefore, we increase the 

number of measurements to make the grid observable. 

We refer to these measurements as 𝒛𝟏𝟖𝒃𝒖𝒔𝑾𝑳𝑺. Similar to the NN, Gaussian noise is used 

with zero-mean, and the same variances provided in Chapter Four. We also do not use any 

pseudo-measurements in the case of WLS. As for the NN, we provide the algorithm with 

the measurements listed as 𝒛𝟏𝟖𝒃𝒖𝒔, for the same data instance. We compare the MSE of the 

WLS method with the one of the NN method, for the same data instant. Results are 

summarized in Table 2. 

Table 2 - Comparing WLS to NN for the 18-bus System 

Case Variable WLS Proposed Method 

With DG 𝑽 1.81e-05 8.27e-07 

  𝜽 1.03e-05 2.68e-07 

Without DG 𝑽 1.96e-05 7.61e-07 

  𝜽 1.01e-05 1.49e-07 

 

Table 2 shows that our approach performs significantly better than the classic SE, based 

on WLS method, in all cases. We note that despite unobservability, our proposed approach 
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achieves better results than the conventional SE method, in which the grid is fully 

observable. 

Figures 9 and 10 show the graphical representation of the errors of the estimated 

states with respect to the true system states, for one data instance of the 18-bus system. 

The graphs show that the states estimated by the NN closely follow the actual states. 

 

Figure 9 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System Without DG. 

 

 

Figure 10 - Simulation Results for Predicting Phase Angles for the 18-bus System Without DG. 
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6.2.2 The Remaining Cases 

For the 85-bus system, we also use a NN with 4 hidden layers, but this time, every 

layer has 64 neurons. The rest of the parameters are the same as the ones for the 18-bus 

system. Also, one NN is trained for predicting voltage magnitudes and another is trained 

for predicting phase angles. The results are summarized in Table 1. 

For the 141-bus case, the hidden layers are also 4, but with 128 neurons each. This 

is done to compensate for the larger dimensionality of the bigger grids. The results are also 

summarized in Table 1. 

Table 1 shows that our approach performs very well, under noisy measurements 

and unobservability. We note that conventional SE methods cannot be used with similar 

inputs. In addition, the NN shifts the computational burden to an offline stage. Thus, we 

evaluate the simulation time when this algorithm is used online to calculate a single 

output. In every case, the simulation time spent to calculate one data instance is in the 

milliseconds range. Moreover, even with larger grid topologies, the NN is achieving 

impressive results, in terms of accuracy and simulation time. 

6.3 Cases with DG 

6.3.1 18-bus System Demo 

For the 18-bus system with DG, the same NN architecture is adopted, albeit with 

different input and output values. The inputs are represented by the 𝒛𝟏𝟖𝒃𝒖𝒔 vector and the 

outputs are the voltage magnitudes for the first NN, and the phase angles for the second 

NN, but the values are updated by adding DG to the grid as mentioned in Chapter Four. 

Results are shown in Table 3. 
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Table 3 - Simulation Results for Voltage Magnitudes and Phase Angles with DG for the 3 Test Cases. 

Case Variable MSE Time (in ms) 

18-bus 𝑽 5.17e-07 67 

  𝜽 1.96e-07 62 

85-bus 𝑽 3.57e-07 64 

  𝜽 3.97e-08 65 

141-bus 𝑽 7.39e-07 67 

  𝜽 6.42e-08 68 

 

Moreover, we compare our proposed approach with the conventional SE method. 

We use the same measurement distributions presented before: one data instance of the 

𝒛𝟏𝟖𝒃𝒖𝒔 vector for the NN method, and one data instance of 𝒛𝟏𝟖𝒃𝒖𝒔𝑾𝑳𝑺 for the WLS 

method, to make the grid observable. Results are shown in Table 2. 

Figures 11 and 12 show the graphical representation of the errors of the estimated 

states with respect to the true system states, for one data instance of the 18-bus case. The 

graphs show that the states estimated by the NN closely follow the actual states. 

 

Figure 11 - Simulation Results for Predicting Voltage Magnitudes for the 18-bus System with DG. 
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Figure 12 - Simulation Results for Predicting Phase Angles for the 18-bus System with DG. 

 

6.3.2 The Remaining Cases 

For the 85 and the 141-bus systems, we also use the same NN architectures with 

the input and output values changed, to dictate DG. Also, one NN is trained for predicting 

voltage magnitudes and another is trained for predicting phase angles. The results are 

summarized in Table 3. 

Similar conclusions can be drawn for the cases with DG. Despite the added 

complexity, the proposed approach is performing very well in terms of accuracy and 

simulation time. 

6.4 Noisier Data 

For this scenario, given the trained NN, we test the algorithm using noisier data. 

That is, we add 2𝜎, 3𝜎, and 4𝜎 to the measurements, available in the Testing dataset, and 

check the performance of the NN without retraining it. The results for the cases without 

DG and with DG are summarized in Tables 4 and 5, respectively. Results show that the 
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proposed approach can still be used with noisier measurements, despite being scarce. Also, 

the accuracy remains higher than conventional SE method which requires more data. 

Table 4 - Noisier Data Results for Cases Without DG 

Case Variable 
Original 

MSE 

MSE with 

2𝜎 

MSE with 

3𝜎 

MSE with 

4𝜎 

18-bus 𝑽 6.83e-07 7.81e-07 1.06e-06 1.53e-06 

  𝜽 1.63e-07 1.96e-07 2.88e-07 4.27e-06 

85-bus 𝑽 2.52e-07 2.79e-07 3.61e-07 4.92e-07 

  𝜽 1.11e-08 2.70e-08 3.43e-08 6.27e-08 

141-bus 𝑽 1.90e-07 1.96e-07 2.10e-07 2.35e-07 

  𝜽 4.23e-08 5.11e-08 7.27e-08 1.53e-07 

 

Table 5 - Noisier Data Results for Cases with DG 

Case Variable 
Original 

MSE 

MSE with 

2𝜎 

MSE with 

3𝜎 

MSE with 

4𝜎 

18-bus 𝑽 5.17e-07 6.42e-07 1.01e-06 1.65e-06 

  𝜽 1.96e-07 2.36e-07 3.43e-07 5.43e-07 

85-bus 𝑽 3.57e-07 3.60e-07 3.67e-07 3.91e-07 

  𝜽 3.97e-08 4.40e-08 5.93e-08 1.04e-07 

141-bus 𝑽 7.39e-07 7.88e-07 8.24e-07 9.01e-07 

  𝜽 6.42e-08 6.86e-08 8.54e-08 1.05e-07 

 

6.5 Bad Data 

For this scenario, we further corrupt the data by adding 10𝜎 to the Testing dataset 

in three stages: we assume first that 10% of the measurements are bad data, followed by 

20% and then 30%. We test the NN without retraining it. The results for the case without 

DG and with DG are summarized in Tables 6 and 7, respectively. Results show that the 
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performance remains higher than the conventional SE method, while 10% of the 

measurements are bad data, but as expected, starts to decline when the percentage of bad 

data increases to 20% and 30%. 

Table 6 - Bad Data Results for Cases Without DG 

Case Variable 
Original 

MSE 

MSE with 

10% Bad 

Data 

MSE with 

20% Bad 

Data 

MSE with 

30% Bad 

Data 

18-bus 𝑽 6.83e-07 1.78e-06 3.13e-05 3.20e-05 

  𝜽 1.63e-07 2.12e-06 6.62e-05 1.84e-04 

85-bus 𝑽 2.52e-07 7.24e-06 3.97e-05 7.47e-05 

  𝜽 1.11e-08 1.52e-06 1.02e-05 5.71e-04 

141-bus 𝑽 1.90e-07 4.98e-06 2.28e-05 7.54e-04 

  𝜽 4.23e-08 2.14e-06 6.12e-05 4.37e-04 

 

Table 7 - Bad Data Results for Cases with DG 

Case Variable 
Original 

MSE 

MSE with 

10% Bad 

Data 

MSE with 

20% Bad 

Data 

MSE with 

30% Bad 

Data 

18-bus 𝑽 5.17e-07 4.73e-06 2.80e-05 3.51e-04 

  𝜽 1.96e-07 2.78e-06 2.73e-05 2.38e-05 

85-bus 𝑽 3.57e-07 1.14e-06 5.79e-05 3.64e-04 

  𝜽 3.97e-08 6.39-06 3.21e-05 6.72e-05 

141-bus 𝑽 7.39e-07 2.31e-06 2.95e-05 6.11e-04 

  𝜽 6.42e-08 3.16e-06 1.60e-05 3.52e-04 
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6.6 Discussion 

• Our proposed approach solves the DSSE problem with high accuracy, despite the 

grid being highly unobservable, as shown in Tables 1 and 3. We recall that we only 

have 1 voltage injection measurement, 1 power injection measurement, and 20% of 

the power flow measurements. We do not use any pseudo-measurements. 

Moreover, the simulation time is in the order of milliseconds, even for the large 

141-bus grid, which would enable the operators to frequently solve the DSSE 

problem. This approach is suitable for grids with and without DG. 

• We compare our proposed approach with the WLS method, as shown in Table 2 

and Figures 9, 10, 11, and 12. We show that the proposed method is more accurate 

despite having less inputs than WLS. Also, the WLS method cannot be performed 

using the same number of measurements that was provided to the NN. 

• Tables 4 and 5 show that the NN is robust to additional noise. This is attributed to 

the fact that the NN was trained on a large dataset, making it more immune to 

noise. 

• Tables 6 and 7 show that the NN still has good accuracy, with 10% of bad data. 

The performance, however, starts declining as more data are corrupted. 

 

  



34 

 

CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

DSSE is still a challenging problem due to the nature of distribution grids. 

Conventional SE methods, which are used for transmission SE, cannot be used for DSSE 

mainly because distribution grids are unobservable. Conventional SE methods are also 

computationally expensive, sensitive to initial conditions, may not always converge, might 

get stuck in local optima, and use highly inaccurate pseudo-measurements to compensate 

for the unobservability issue. 

Neural networks, on the other hand, shift the computational complexity to an 

offline stage, are immune to noise, and can handle large networks if used online. Also, a 

NN does not require the grid to be observable and can easily work with the addition of 

renewable energy resources. 

In this paper, we propose a deep neural network approach to solve the DSSE 

problem, with and without DG. Due to the lack of public frameworks, we create a dataset 

to train and test the neural network. We also check its robustness by testing several 

scenarios with noisier data and bad data. Our proposed approach has a better performance 

than conventional SE methods, even with less measurements, without using pseudo-

measurements. The algorithms can also perform fast to cater to the need of frequently 

solving the DSSE problem. 

Future work directions can be to design a similar approach to incorporate dynamic 

state estimation, on the distribution level, and to consider the unbalanced distribution 

grids. 
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