*

RT
45

Implementation of Trust Region Methods in Optimization

By
Mohammed Omar El-Hajj
BS, Beirut University College, 1995

PROJECT

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science at
Lebanese American University
May 1998

Signatures Redacted

Dr. 1 Moghrabi (Advisor)
Sistant Professor of Computer Science
Lebanese American University

Signatures Redacted B U (. LIBRARY.
: 2 1 JUL 1998
Nl
Dr:May Abboud i RECEIVED ’

Associate Professor of Mathematics and Computer Science
Lebanese American University

~+ ii

To Palestinian martyrs, and to my parents

iii

TABLE OF CONTENTS

SYMBOLS, NOTATIONS AND ABBREVIATIONS
ACKNOWLEDGMENT

CURRICULUM VITAE

ABSTRACT

PREFACE

CHAPTER ONE - INTRODUCTION
1.1 Definition and terminology

1.2 The problem

CHAPTER TWO —NEWTON AND QUASI NEWTON
2.1 Introduction

22 Newton’s method for solving non linear equations
2.3 Drawbacks of Newton

24 Quasi-Newton methods

2.4.1 Introduction

2.4.2 Solving non linear equations

2.4.3 Unconstrained optimization

2.4.4 Termination criteria

2.4.5 Derivation of the updating Formula (BFGS)

CHAPTER THREE — LINE SEARCH METHODS
3.1 Descent methods and stability

32 Termination criteria

3.2.1 Percentage test

3.2.2 Armijo rule

3.2.3 Goldstein’s test

3.24 Wolfe test

33 Fibonaccia Search

34 Cubic Interpolation Search

CHAPTER FOUR - TRUST REGION METHODS

4.1 Introduction

4.2 The Dogleg Method

4.3 The Double Dogleg Method

4.4 Acceptance of the step and varying the Trust Region size

CHAPTER FIVE - NUMERICAL RESULT AND
CONCLUSION

5.1 Experimental results and analysis
52 Summary and conclusions
REFERENCES

APPENDIX I -THE TEST PROBLEMS
APPENDIX II -THE TABULAR RESULTS

iv

vi
vii
viil

wn

NOONDOND 00~]

11

14

15
16
16
17
18
18
19
20

23
24
25
31

34
35

37
38
42

Symbols Notation and abbreviation

Superscript
Xmin

Xi

1l

fx)

g(x)

G; or g(x))
§j

Vi

Gx)or G

pi
f
Q-N
{x:}

Transposition
The solution of the minimisation problem

i" estimate of Xomin

" 2
The Euclidean norm of a vector , that is ||x|, = l:z xf}

=l

The function to be minimised

The gradient of f{x) , that is [g(x)]" = [6f/éx, , 81bxa,..., Ofioxy)
The gradient evaluated at x;

X+t~ X1

gi+1 — &i

The n by n hessian matrix of f{x), whose (i,))™ element is given by
& fix) lox; ox;

th
The i" approximations to the Hessian matrix
The i™ approximations to the inverse Hessian matrix

The set of real numbers

The Sreach direction on iteration ¢
The step length on iteration i

An abbreviation for “Quasi — Newton “

The sequence xg, x|, X2, ...

AKNOWLEDGMENTS

I am grateful to my advisor Dr Issam Moghrabi for his encouragment, kind
advice, contribution of a mass of a very useful comments, critisism, and suggestions.
Thus, without his help this project would never have been brought into light. Thanks
are also due to Dr May Abboud, my reader for her valuable comments. Special thanks

also go to my best friend Mazen Habbal for his assistance in to completing this work.

vi

NAME

DATE & PLACE
OF BIRTH

ADDRESS

NATIONALITY

EDUCATION

EXPERIENCE

QUALIFICATIONS

REFERENCES

CURRICULUM VITAE

Hajj, Mohammad Omar 915044,

Kuwait 22-2-1973.

Lebanon, Saida, Abra.
Palestinian.

BS degree in Computer Science BUC 1995 with Hoenor .
MS degree in Computer Science LAU 1998.
Teaching Diploma 1998 (UNESCO).

1994 — 1998 Software Engineering Mikan Computer Systems
1995 - Present UNRWA , Technical Instructor Computer Science

MS-office Expert
Programming using Oracle, FoxPro, Access, Clipper,
ol

Good Knowledge in Network installation, and maintenance.

Dr Issam Moghrabi, Assistant Professor of Computer Science
Dr May Abboud, Associate Professor of Mathematics and
Computer Science

Dr Nasha’t Mansour, Assistant Professor of Computer Science

vii

ABSTRACT

This project presents a new approach to Quasi-Newton methods for
unconstrained optimization. Quasi-Newton Methods update at each iteration the
existing Hessian approximation (or its inverse) cheaply by integrating data derived
from the previously completed one, which is soon ignored. These methods are based
on the so-called Secant equation. In our project we focus on solving a critical
subproblem of the Quasi-Newton algorithm that requires determining a proper,
suitable step size that takes from the current approximation to the minimum to a new
‘better’ one. The subproblem can either be posed as doing a Line Search along some
generated search direction in order to determine a minimum along the search vector.
Another technique, on which we focus primarily in this work, is to use a Trust Region
method that directly computes the step vector without doing a focused Line Search.
The subproblem is critical to the numerical success of Q-N methods. We emphasize
features of successful implementation to pinpoint assess merits of Trust Region
methods. Our Numerical Results reveal that Trust Region algorithms seem to
markedly improve as the dimension of the problem increasés, while for small

dimensional problems performance of both methods is comparable.

viii

PREFACE

Optimization might be defined as the science of determining the best solutions
to certain mathematically defined problems, which are often models of physical
reality. It involves the study of optimality criteria for problems, the determination of
algroihtmic methods of solution, the study of the structure of such methods, and
computer experimentation with methods both under trial conditions and on real life
problems. There is an extremely diverse range of practical applications. Yet the
subject can be studied (not here) as a branch of pure mathematics.

Before 1940 relatively little was known about methods for numercial
optimization of functions of many variables. There had been some least squares
calculations carried out, and Steepest Descent type methods had been applied in some
Physics problems. The Newton method in many variables was known, and more
sophisticated methods were being attempted such as the self-consistent field method
for variational problems in theoretical chemistry. Nonetheless anything of any
complexity demanded armies of assistants operating desk calculating machines. There
is no doubt therefore that the advent of the computer was paramount in the
development of optimization methods and indeed in the whole of numerical analysis
and coupling those with Al techniques for globalizing the method. The 19403 and
1950s saw the introduction and development of the very important branch of the
subject known as linear programming. (lhe term programming by the way is
synonymous with optimization and was originally used to mean optimization in the
sense of optimal planning.) All these methods however had a fairly restricted range of

application [3].

The applicability of optimization methods is widespread; reaching into almost
every activity in which numerical information is processed (Science, Engineering,
Mathematics, Economics, Commerce, etc.). To provide a comprehensive account of

all these applications would therefore be unrealistic, but a selection might include:

(a) Chemical reactor design;

(b) Aero-engine or Aero-frame design;

(c) Structure design-buildings, bridges, etc.;

(d) Commerce-resource allocation, scheduling, blending;
and applications to other branches of numerical analysis:

(e) Data fitting;

() Variational principles in p.d.e.s;

(g) Nonlinear equations in o.d.e.s.

The material of this project will be organized into Five Chapters. Chapter One
will address the problem we are seeking the solution for. Chapter two describes
Newton, and Quasi Newton methods and a comparison between them. In chapter
three we will concentrate on the early Line Search methods. Chapter four is about
Trust Region methods. Chapter Five is dedicated for Numerical Results and

Conclusion.

CHAPTER 1
INTRODUCTION

Optimisation theory is a byproduct of linear Algebra and Analysis. As people
tried to understand, model and control large systems, new optimisation problems have
arisen in economics, science, engineering, management, and technology. The prospect
of solving such problems has only been realised in this century with the advent of
computer algorithms.

Before talking in details about the minimisation problem, we present a number

of definitions, which will referred throughout this project.

1.1 DEFINITIONS AND TERMINOLOGY
Please refer to the “symbols, Notation and Abbreviation” table for more details on the

notation used in the following definitions.

Def. 1.1: (continnity)
A function F: D ¢ R" — R” is continuous at x" € D if only if
| #(x) - Fx) ||, — 0
whenever
IIx-x), =0

where ||. ||,, is a norm on R” and ||.||, is a norm on R".

Def. 1.2: (unconstrained strict global minimum)
A Point x min is said to be astrict global minimum point of a function

R fixy>f(x ., forallx e R', x <>x,,, .

Def. 1.3: (strict local minimum)
A point x,,;,, is said to be a strict local minimum of fover ¢ = R” if there is a
T > (such that A{x) > f(x,,,) forall x € ¢ with|x -x,, 1| <t (for some norm ||.|| and

X <> xmr'n)'

Def. 1.4: (positive definite matrix)
Asymmetric matrix 4 (eR ™) said to be positive definite if, for all nonzero s

e R, s'4s>0 .

Def. 1.5: (convergence)
The sequence {x;} in R" converges to x,,; € R"if and only if
lim ”xi X0t ”:09
i —w
for some norm ||.|| on R" .

Def. 1.6: (quadratic termination)
An iterative method that minimises an arbitrary quadratic function possessing
an unconstrained strict global mimimum in a finite number of iterations is said to

possess “quadratic termination™.

Def. 1.7: (directional derivative and curvature)
For any direction p € R”
x()=x+tp,wheret € R" and x € R",
the directional derivative of {x()) along the line at any point x(f) is given by
afior=p' g(x(),
where g(x(f)) is the gradient of fevaluated at x(¢).
Likewise, the curvature or falong the line is
&1 oF = p' GO,
where G(x(f)) is the Hessian of fevaluated at x(¢).

Def. 1.8: (descent direction)
p is a descent direction from x for a given function if the directional derivative of the
function at x in this direction is negative.
p'a(x(t)<0
Lemma 1.1
Let x and y be any two vectors in R, and let 4 be any n*n real, symmetric positive

definite matrix. The following inequality is true:

(XYY < (" Ax)(pAy).

1.2 THE PROBLEM
We focus attention here on problems of unconstrained optimisation over the whole
vector space R". The problem we will consider throughout is that of finding an
unconstrained local minimum, i.e..
min f(x},
where f: R - K.

A common approach to the construction of algorithms for the solution of
minimization problems is as follows: Given f{x) and an estimate of the minimum, x, ,
produce a sequence {x;} € R" that converges to x,,. An algorithm for producing
such a sequence from an initial estimate x, is obtained by specifying a rule for
producing a new approximation to the local minimiser based upon information
obtained from the current approximation (such as the first partial derivatives and/or
the second partial derivatives).

A global minimum can be numerically difficult to find, especially if the
function 1s non-smooth or highly non-quadratic. In the course of locating a global
minimum, several local minima could be encountered and the particular algorithm
could halt at any of them.

Many practical problems are of the constrained type in that the permissible
values for the variable x are confined to lie in some set. It is possible in some cases to
convert a constrained problem into an unconstrained one [3]. The structure of most

consirained optimisation problems is essentially contained in the following:

min f{x)
subject to
C.(x) =0 ke E
Ci(x)=0 je |

where £ and 7 are the index sets of equality and inequality constraints,
respectively. Constrained optimization problems fall essentially into one of the two

categories:

(I) ~ Linearly-constrained programming
and

(II) Non-linear programming.
Category (I) tends to give rise to simpler problems in that, in many cases, the
objective function is either linear or quadratic (linear or quadratic programming),
and such problems can be solved in a finite number of steps. Category (11} is the
more difficult since it involves non-linear constraints. If the constraints cannot be
climinated directly by reformulation, then one approach is to attempt converting
the problem into a single unconstrained one or a sequence of such problems. For
instance, one method of doing so is known as the Penalty Function method, in
which a penalty term is added to the objective function for any violation of the
constraints. Thus the problem becomes that of finding the unconstrained minimum
of the function

29 = f5) + rP@),

Where f{x) is the main objective function, » 1s a monotonically increasing scale
factor which controls the effect of the constraint violation and P(x) is the pénalty
function. The penalty function should be continuous on R and should be zero if and
only if x is in the feasible region. The function z¢(x) in ,is minimized by performing
unconstrained minimisation for a sequence of increasing values of » [4]. Ideally, as
r—o the solution point of the penalty problem will converge to a solution of the

constrained problem.

CHAPTER 11
NEWTON AND QUASI-NEWTON METHODS

2.1 INTRODUCTION

This chapter starts with discussing the application of Newton’s method to the
solution of nonlinear equations. The practical difficulties of Newton’s method are
outlined and used in motivating Quasi-Newton methods.

Many of the existing optimization methods [and indeed methods for solving
systems of non-linear equations] modify and build around Newton’s method to create
algorithms, which attempt to achieve its rate of convergence.

On the other hand, Newton’s method requires demanding conditions to be
successful. These hmit its effectiveness in practice and, indeed, motivate the

development of methods such as the Quasi-Newton methods.

2.2 NEWTON’S METHOD FOR SOLVING NONLINEAR EQUATIONS

The basic problem studied here is the solution of the system of nonlinear

equations defined by means of the function
F: R >R
For which a solution x,,, must be found such that F{x.,} = 0. The function vector F'is
assumed to be continuously differentiable.
We use the following linear model to approximate £ at x, + p;
m, (5, + p) = Fx) + J(e)p,
where x; is the current iterate and .J (e R™) is the Jacobian matrix of F. This last
model is used to determine the Newton step p,, that takes us to the next iterate x,,,,
defined to be the zero of the model. Thus a typical iteration of the method is:
J&) pi = -Fx),

and

X =%, D

2.3 DRAWBACKS OF NEWTON

Newton’s method possesses a very attractive local convergence rate, by
comparison with other existing methods. However, the method suffers from
implementation difficulties and its convergence is sometimes questionable due to
the following drawbacks (even if p; is used as a search direction along which a step

is to be found such that the function value is reduced);

(a) Convergence to a saddle point is possible, due to an indefinite Hessian matrix.
(b) When G, is singular, p, is undefined.
() If G, is not positive definite, p; may not be a downhill direction.

(d) The need to derive and code expressions for the second derivative matrix, a

process which is always susceptible to human error. It is this problem that
motivates Quasi-Newton methods. This problem is, however, becoming less

serious as automatic differentiation algorithms are being developed.

(¢) The need to evaluate the Hessian Matrix at each iteration, a process which is

often expensive. For this problem, several suggestions have been made of which
we mention:

(a)- Ewvaluate the Hessian only at the first iteration. However it should be
re-iterated that if evaluating the Hessian is an expensive process then coding it may
be even more expensive at the first iteration, we then lose the method's speed of
convergence

(b)- To evaluate the Hessian every m iterations (m is some positive
integer). The above argument applies here as well with the difference that the
method converges to the minimum with g-order (m+1)"™ [3]. This is more
efficient than its predecessor is, especially if the Hessian is varying very little from
iteration to iteration.

(c)- To obtain the matrix by finite differencing using first derivatives. This
process is expensive in terms of gradient evaluations and usually requires n+1
gradient evaluations per iteration. Again, the speed of convergence is degraded

especially if the matrix loses its symmetry and/or may not even positive definite.

(vi) The need to solve a linear system of equations at each iteration for p, which
requires O(n’) operations. This problem can be avoided if the Hessian is in a
factorized form. In this case, the problem of solving the system of linear equation is,
thus, transformed to a backward and forward substitution.

(vil) There is the requirement to start close to the minimum inorder to guarantee
convergence and also that the function must (in theory) have continuos derivatives of

order 3. This leaves the possibility of divergence open.

2.4 QUASI-NEWTON METHODS

2.4.1 INTRODUCTION

Quasi-Newton methods are motivated by the drawbacks of Newton’s method
discussed in section 2.3 and, particularly, by the last three. The basic philosophy
behind Quasi-Newton methods is to mimic Newton’s method without requiring that
the Hessian be available. Thus their most attractive feature is that implementing them
requires only the first partial derivatives of the function to be available, the second
derivative matrix is approximated. The approximation to the Hessian is built on a
step-wise basis using only step and gradient information available at each iteration.
The approximation matrices are usually constructed to satisfy the so-called Secant
Equation {(which will be derived in sections 2.4.2 and 2.4.3 for the cases of solving

systems of non-linear equations and minimizing a function, respectively).

2.4.2 SOLVING NONLINEAR EQUATIONS

Again, we address here the problem
F(x)=10, where I R" 2> R"
We start by Newton’s method for finding the step p; from x; to x,,, .
In Quasi-Newton methods, the matrix J(x,,,) is replaced by an approximate B, say,

and, the transition function becomes:

Bp, = -F(x). @.1)

10

The next question is how to determine B,,,;, once x;,, has been found. In order
to determine a condition that the new Hessian approximation should satisty, we build
a Taylor series approximation of first order around x,,, with B,,, replacing G,,, and
require the relation to hold a an equality for x = x,, as follows:

Fx) = Fxp) + Buy (% - %)

or, equivalently,

B0 = Y, (2.2)
Where
Di =X, - X, (2.3)
and
Vi =Fxny) - F(x) (2.4)

Equation (2.2) is widely known as the Secant Equation (or the “Quasi-
Newton Equation™). It is obvious that equation (2.2) does not uniquely define the
matrix B,,,, since it involves n equations with n* unknowns and an infinite number of
matrices may satisfy (2.2). [5]

An outline Quasi-Newton algorithm for solving non-linear equation is given by

ALGORITHM

1. Given F: R" > R", x, € R", B, € R™, i=0 (the iteration count) and the convergence
tolerance €.

2. Solve B, p,= -F{(x,) for p..

3. Compute x,,, =x, + p,, find F{x,,,)

4. Compute y,= F(x,,,) - F(x)

5. Use some updating formula, which satisfies (2.2), to obtain B;,,

6. If |F(x,,)|l > € THEN i = i +1, GOTO 2, ELSE stop.

11

2.4.3. UNCONSTRAINED OPTIMISATION

The Secant Equation is now intended for solving the problem.
min f{x), where f: R 2> R.
xeR"

For minimization problems, g; is the gradient of f at x; and, consequently, the
matrix B, is intended to approximate the Hessian (G,). We are thus seeking to
construct a Hessian approximation, which satisfies (2.2), with y, in (2.4) replaced by

Yi=8u+p - & (2.5)

the direction vector p, is obtained by solving
B.p:=-g
By analogy with the Hessian G, B,., must be symmetric and, thus, for n
equations, there are (n? + n)/2 unknowns in B,,,, as opposed to n’ unknowns for the

unsymmetrical case of the Jacobian approximation. We now show that if the Hessian

T T
pi g =-p Hp <0
approximation is positive- definite, then the quasi- Newton direction is downhill, for

p;=-Hzg,
In this case, the direction vector is computed using

We note here that, as suggested for Newton’s method, the direction vector p

may be used to find a step size o such that

J(x; +ap) < f(x)

Since setting the step size, o, to one may not result in a sufficient reduction in

the function value. In the case p is used as a search direction, p in (2.2) 1s replaced by

op; (s;)-

12

The algorithm can be outlined as follows:

ALGORITHM I

1. Given x,, choose some positive-definite metrix B, [or /] and set i = 0 (the iteration
count).
2. Compute p, using B, p, = -g, (or p,; = -H, g).
3. Compute the step vector s, using either

(a) A Line Search technique to solve

t;, = arg min f{x; + o p),
teR

s0 that s, = £p;

or

{b) A Trust Region method to solve

min f{x,+ s) subject to||s|] < 8,

where 8, € R is a positive scalar that defines the radius of some ball in
which the quadratic model approximation of f{x,+ s, is trusted to be acceptable
[for details, see chapter four].
4. Compute x,, =x; + s, and g(x;,).
5. Compute y,using equation (2.5).
6. IF (i=0) and (the problem dimension is “large”), scale H; or B; by a suitable
constant.
7. Compute /., or B,,; using updating formulas so that (2.2) [or some variant] is
satisfied [with s, replacing p;] (see section 2.5) .
8. IF “termination criteria” (see next section) are met then STOP else i =i + 1,

GOTO 2.

In step (1), the unit matrix is usually used as the initial approximation to the Hessian.

13

2.4.4 TERMINATION CRITERIA

The algorithms outlined above are usually halted on the basis of one or more
of the following tests:
(a) The gradient test:

A test on the gradient size is conducted. This has the form ||g|] < e, for some
small positive £ € R. The quantity € specifies an upper limit on the gradient size.
Ideally, ||g]| = 0 is what is desired but finite precision arithmetic renders such a test
almost impossible to satisfy.

(b) The function value test:
| fir - fi | <&, for some small positive €.
{(c) The step norm test:
Checks if the progress made between the last two iterates is insignificant:
[E/NEEA PR
(d) The step components test:
This test is conducted component-wise on the two last iterates
W, -Xi<e,j=1.... n.
(e) Testing the predicted change in function value [given as the difference between
the current function value and that obtained from an approximation to f{x; + p,J,
evaluated at [x,,,]:
Yog'Hg, < & (for Q-N methods)
or
Y2g,'G/'g, < g (for Newton’s method).
(f) The iteration count test: for this test the iteration count is given a pre-specified
upper limit, Tests (¢), (d) and (e) are usetful in that they indicate that the matrix H; (or
G,") or B, may have become singular. Singularity of the matrices may be the cause of
two iterates being close to each other’s. The consequence is that the algorithm may
fail to reach the minimum and will keep iterating in a restricted subspace. However,
these last three tests may result in premature termination. Test (a) does not suffer from
this disadvantage even though it may cause convergence to a saddle point. Test (a),
combined with any or none of the other tests, is usually sufficient for testing

convergence to either a saddle point or the minimum.

14

2.5 DERIVATION OF THE UPDATING FORMULA

The aim now is to define criteria for deriving the updating formula B,,, (or
H.,)) to the Hessian approximation (or its inverse). These approximations satisfy the
Secant Equation B,,;5=y,. In general such formula will have the form
H,,=H+Uy 2.6)
for the inverse Hessian approximation and
B,.,=B+Uy (2.7)
for the Hessian approximation
In (2.6) U, must satisfy
U =s-Hy,
while for (2.7) we require
Ups=yrBs;
where s5,=x,,,~x; and y=g(x,,;)-g(x). The correction matrix I/, can be chosen to be a
low rank matrix in order not to corrupt the information accumulated in A, from
previous iteration. Another reason is to be able to obtain the inverse of Uy, (or U)).
One of the most important updating formula that proved itself a serious
contender in practice is known as the BFGS method, derived independently by

Broyden, Fletcher, Goldfarb and Shanno. It is given by

J";‘TH;'}’;‘]S;‘S? Siya?“Hf +nyiSI:T

U, =1+ : -
8 [sy,)sly, sTy,

The superiority of this method in practice is achieved particularly when the Line
Search is not exact [5].

Some of the problems that will safeguard the Newton like methods, and
consequently producing a robust optimization algorithm, are the Trust Region and / or
Line Search, which are sub-problems, that should be solved at each iteration when
finding the minimum of fx). For Newton-like methods, instead of only using the
search direction as a direct step from one iterate to another, the direction vector is
used in determining a step vector from the current iterate to the next one by solving

special problems that we will address in details in the next chapter.

CHAPTER III
LINE SEARCH

31 DESCENT METHODS AND STABILITY

Line search methods have frequently been used as means of introducing a
degree of reliability and stability into optimization software and this idea is followed
up in this section. The Line Search method is tailored for solving the problem

min fix+ip,) s.t £0
teR

This method is designed to safeguard Newton-Like methods and, thus, to
produce robust optimization algorithms. As appropriate, the sub-problem has to be
solved at each iteration in order to reach the minimum. In the early days one common
strategy was to choose the step 7, close to the value given by an exact Line Search.
This is motivated by early theory, which shows that the Steepest Descent method with
an exact Line Search is globally convergent to a stationary point [1]. However
accurate Line Searches are expensive to carry out, and there is also the nuisance that
the exact minmimizer may not exist. Other researches weakened the Line Search
tolerance considerably and used the Descent property merely to force a decrease f'.),
<f» in the objective function on each iteration. This usually turned out to be more
efficient. However merely requiring a decrease in f does not ensure global
convergence so there were doubts about the stability of this more efficient approach.
This fact, and the proliferation of numerous different codes for the Line Search, led to
the development of a generally accepted set of conditions for terminating the Line
Search which would allow accuracy Line Searches while forcing global convergence.

[See section 3.2].

15

16

LINE SEARCH algorithms can generally be outlined as:

Algorithm 3.1

1. Givenp,, g, andf;setk=0and =49 (an estimate of the line minimum
along p);

2. Use the available information [listed in step (1) above] to locate a better
estimate ¢, ¥ of the line minimum using some method (for e.g., Cubic
Interpolation).

3. SET =1, %, g = 8y fin =%+ 1, p; increment k.

4. GOTO 2 unless converged

In practice, of course, it is impossible to obtain the exact minimum point
called for by the ideal Line Search algorithm. As a matter of fact, it is often desirable
to sacrifice accuracy in the Line Search routine in order to conserve overall
computation time. Because of these factors we must, to be realistic, be certain, at
every stage of development, that our theory does not crumble if inaccurate Line
Searches are introduced.

Inaccuracy generally is introduced in a Line Search algorithm by simply
terminating the search procedure before it has converged exactly.

In the next section we present some commonly used criteria for terminating a

Line Search.
3.2 TERMINATION CRITERIA

3.2.1 Percentage test

One important inaccurate Line Search algorithm is the one that determines the
search parameter ¢ to within a fixed percentage of its true value. Specifically, a
constant ¢, 0<c<l is selected (¢ = 0.10 is reasonable) and the parameter ¢ in the Line
Search is found so as to satisfy |¢ - £'| < ¢ where ¢ is the true minimizing value of the

parameter.

17

3.2.2 Armijo test

A practical and popular criterion for terminating a Line Search is Armijo’s
rule. The essential idea is that the rule should first guarantee that the selected ¢ is not
too large, and next it should not be too small. Let us define the function

SO = fix, +ip)

Armijo’s rule is implemented by consideration of the function 0} + gf(0)¢ for fixed
g, 0<e<l. This function is shown is shown in Fig. III{a) as the dashed line. A value of
t is considered to be not too large if the corresponding function value lies below the
dashed line; that is, if

SO <fO) + ef (Ot (3.1)
To insure that ¢ is not too small, a value n>1 is selected, and # is then considered to be
not too small if

Sy =f0) + &f O,

This means that if ¢ is increased by the factor n, it will fail to meet the test
(3.1). The acceptable region defined by the Armijo rule is shown in Fig.III (a) when
n=>2.

Sometimes in practice, the Armijo test is used to define a simplified Line
Search technique that does not employ curve-fitting methods. One begins with an
arbitrary . If it satisfies (3.1), it is repeatedly increased by n(n =2 orm=10and e =2
are the often used) until (3.1) is not satisfied, and then the penultimate £ is selected. If,
on the other hand, the original ¢ does not satisfy (3.1), it is repeatedly divided by m
until the resulting ¢ does satisfy (3.1).

18

3.2.3 Goldstein’s test

It essentially uses test (3.1) but with 0 < ¢ <% and replaces the second test by

L) > f(0) + (I-8) t (0.
Thus Goldstein’s parameter ¢ must satisfy

fi+1 _ﬁ
p'g;

£< <l-g

3.2.4 Wolfe Test

If derivatives of the objective function, as well as its values, can be evaluated
relatively easily, then the Wolfe test, which is a variation of the above, is sometimes

preferred. In this case € is selected with 0<e<, and ¢ is required to satisfy (3.1) and

fO=21-5) 1)

This test is illustrated in Fig.IlI{c). An advantage of this test is that this last
criterion is invariant to scale-factor changes, where as in the Goldstein test is not.

Another test, which we have adopted in our experiments, also uses (3.1) in addition to

VR AL (3-2)
{Obtained by rewriting Wolfe’s test}. Condition (3.2) requires that the rate of change
of fin the direction p at x; (8;) be larger than some prescribed fraction of the rate of
decrease in the direction p at x(0).

The constants in both tests must satisfy:

g € (0,0.5]and B € (g, 1].

19

3.3 FIBONACCI SEARCH

A very popular method for resolving the Line search problem is the Fibonacci
search method described in this section. The method has a certain degree of
theoretical elegance, which no doubt partially accounts for its popularity, but on the
whole, as we shall see, there are other procedures, which in most circumstances are
superior.

The method determines the minimum value of a function f over a closed
interval [c1, ¢2]. In applications, f may in fact be defined over a broader domain, but
for this method a fixed interval of search must be specified. The only property that is
assumed of f'is that it is unimodal, that is, it has a single relative minimum (see Fig.
III(d)) The minimum point of f is to be determined, at least approximately, by
measuring the value of f at a certain number of points. It should be imagined, as is
indeed the case in the setting of nonlinear programming, that each measurement of fis
somewhat costly of time if nothing more.

To develop and appropriate search strategy, that is, a strategy for selecting
measurement points based on the previously obtained values, we pose the following
problem. Find how to successively select N measurement points so that, without
explicit knowledge of £, we can determine the smallest possible region of uncertainty
in which the minimum must lie. In this problem the region of uncertainty is
determined in any particular case by the relative values of the measured points in
conjunction with out assumption that fis unimodal. Thus, after values are known at N
points x,, X,,...,Xy with

CLEX <Xy Xy <Xy S0y,
the region of uncertainty is the interval [x,, x,,,] where the minimum point is among
the N, and we define x,=¢,, x,.,=c, for consistency. The minimum of f must lie
somewhere in this interval.

The derivation of the optimal strategy for successively selecting measurement
points to obtain the smallest region of uncertainty is fairly straightforward but
somewhat tedious. We simply state the result and give and example.

Let
d, = ¢, - ¢, the initial width of uncertainty

d, = width of uncertainty after £ measurements. (Decreasing)

20

Then, if the total of N measurements is to be made, we have d, <d,

dk =(F,}r;k+l]dU
N

where the integers F, are members of the Fibonacei sequence generated by the

recurrence relation
Fy=Fy + Fy,, Fo=F =1.
The resulting sequence is 1, 1,2, 3,5, 8, 13,....

The procedure for reducing the width of uncertainty to &, is this: The first two
measurements arec made symmetrically at a distance of (F,/Fy)d, from the ends of the
initial intervals; according to which of these is of lesser value, and uncertainty interval
of width d,=(F, /F\)d, is determined. The third measurement point is placed
symmetrically in this new interval of uncertainty with respect to the measurement
already in the interval. The result of this third measurement gives and interval of
uncertainty d, = (F\/F,)d,. In general, each successive measurement point is placed
in the current interval of uncertainty symmetrically with the point already existing in

that interval.

3.4 CUBIC INTERPOLATION

This Line search algorithm constructs a cubic polynomial that interpolates the
data. £ (), At.), £(#), and f(¢,), where £, and f,; are the extreme points of some initial
search interval [#,.f;]. The minimum point of the cubic curve and the search interval
size changes estimates the line minimum as one of the extreme points is replaced by
the estimated minimum (on the basis of some tests). The process is carried out until

conditions such as (3.1) and (3.2) are satisfied.

L.

A general frame of Cubic Interpolation algorithm is as follows:

Given #, (=0), A1), S (1), ty, fty), and £(t,);
Iftest (3.1) succeeds (with # = £) then
{if (3.2) succeeds return #;
else
{/*1;1s too small*/
b=t At) = Rt (1) =1 (s
o = wiy (w>1); find fit,) and £(1,);
goto2;}

else /*if (3.1) faiis*/
{a- do a cubic fit in the available points
and determine ¢ (the minimum of the cubic), f{¢.),
and £'(t0);
b- if test (3.1) succeed (with f = #.) then
{if condition (3.2) succeeds (with 7 = #.) return 7.
else
{8, = 1 ft)=) S () (10); go to 3az}
ki
else /* £ is too large */
{ty = tc; Aty) = Rte), [(tu) =1 (1c); go to 3a}
}

21

Fig H1
(a) Armijo Rule.
(b) Golestein rule

{ c) Wolfe test

)

A

i

BT

4 N

i T

f

i ' |

; ‘ >
i
\

!

4

A4

22

CHAPTER1V
TRUST REGION

4.1 INTRODUCTION

When one has a poor approximation to an unconstrained minimiser, quick
improvement is likely to result from taking a step a long the negative gradient. This
approach bogs down as the minimum is approached. But, when a good approximation
minimiser is available, the Quasi-Newton methods improve it quickly to acceptable
accuracy.

Powell introduced a strategy in an unconstrained minimisation which can be
viewed essentially as an elegant way to change from the gradient to the Q-N steps as
the approximate minimiser is improved. Powell's strategy can be geometrically seen
as a line joining x;, and the negative gradient, and then sliding from the top of the
negative gradient to the top of the Q-N to reach our target which is a suitable step (s,).
From this s; we can have the starting point of the next iteration. x,,; = x,+s,

Powell's strategy (Dogleg) seeks to

Minimize ¢(s;) subjectto||s|| < b, (4.1)
seR” '
,where
o(s) =fix) +sg’ + VasBs; 4.2)

A useful advice is to think of x,+s, as a region in which we can trust ¢(s,). The
size of this region can be varied depending on the trustworthiness of (4.2). If the
predicted function value is good, s, can be increased and, if the prediction is poor, s,

can be decreased.

23

24

So during one iteration of a full optimising a Trust Region algorithm will take

the following steps:

Algorithm IT (Trust Region Algorithm),

(For algorithm I see section 2.4.3).

(1) Given x, f, g; and B, find the step s; which minimizes ¢(s,) subject to || 5;|| < 8,
(Algorithm III).

(iiy Decide if this Step s; is acceptable (according to conditions explained in
section 4.4). If not, adjust the size of the Trust Region and return to (i).

(Algorithm IV).

4.2 The Dogleg Method
In order to find x,,, Powell first calculate the Cauchy point, i.e., the point
x~0*g; where
8 . _ giT Ei
o ==,
g Big,
(4.3)

which minimises ¢ (-o*g;). If the Cauchy point is outside the circle center at x;, with
redius o,then

X=X - Potg,
where 3 is chosen so that

| Bou*g || =38,

The reasoning is that the gradient is still large, so we should continue to move
along it. If the Cauchy point is inside the Trust Region, then we assume that it is the

time to calculate the Newton point x, - f,g, If the Newton point 1s inside the circle, we

pick
X1 =X; - Hg; ;
otherwise we pick
X, =x+d,
where
| dil| =8,

d =(-0)-a*z) +0(-Hg), with0<6.<1. (4.4)

25

4.3 Double Dogleg Method

One of the reasons why people use Powell's dogleg method is that it has
excellent global convergence properties. However, when we are fairly close to the
solution, a Dogleg step seems to have more bias toward the gradient direction and the
result is apparently slower convergence. Dogleg method is modified so that more bias

toward the Newton step is introduced[2].

o __lgl

Let 57 be the Cauchy step, s™ be the full Q-N step,s” is the reduced Q-N step
ie.,
s =-Hg,
In fact the reduced Q-N step lies in the Q-N direction but variable within a

certain bound 1 that will be discussed later

When
s < 8, and §¥ >85,
we first look for the point in the Newton direction at which the reduction of
the quadratic approximation to fresulting from taking this step is the same as taking

the Cauchy step.

26

That is, we determine 1 such that

fHﬁ&)ﬂﬂ)f{““%,
g Bg

which yields after equating the two formulas

ng/ﬂH&)n@Jhm+/[lmm}=o

If Bl gl‘
where
2 i H i
&Hgn$gH&>'“Wg 81
"= g; B.g,
giTHr'gi '
_ 4
=HJ le ',
g/ H,g,g Bg,
and

_le&w
g 1.8/ Bg,
It can be shown that ¢<1 and n is well defined.

We then take the dogleg step between s and ns” if |ns"||>8,in practice, it

seems best to take 1 as

n=1-al-c,

Where o is some positive number less than 1, which we used it in our

implementation as,

o =08/J1-¢

27

from the stated above n=0.8¢+0.2.

In the dogleg curve we must move from the Cauchy point to N with @
decreasing monotonically.

Now that we have fully described the double Dogleg curve we can define an
algorithm to calculate s,. Clearly, we wish to ascertain if || s” [|< §, and, if not, find the
point where the double Dogleg curve crosses the boundary of the Trust Region. This
involves only four checks.

1 If| 5" || < §,then s=s" (see Fig. 4.1).

2) Next check if || sN“ <9, (i.e.if 1isin the Trust Region);ifitis then so is
the Cauchy Point (see Fig. 4.2). We deduce that a point on the curve between N and
N is where the curve with the Trust Region boundary intersect; then we take a step of
length 8, in the Quasi- Newton direction.

DIF ||s7)] > 8, then we check if || s || > 8, . If so (see Fig. 4.3) then a point on
the curve between x; and C.P. is where the Trust Region boundary and curve intersect
and we take a step of length &, in the direction of Steepest Descent.

4HIf none of these cases is satisfied then we are left with the boundary of the
Trust Region intersection with the curve at a point between C.P. and ¥ i.e. we have a
step direction somewhere between the direction of steepest decent and the Quasi-

Newton direction. In this case we must calculate the A for which:

28

e, +5C + Ams"- ST = lx + sl = 8 (4.6)
Lets"F = ns¥ - 57 4.7)
and

o = (S{VCP) rger ; B = (SNCP) T (SJVCP) : y = ||SCPH

A
4

FIGURE 4.1
S¥< 8,

Then we have

VAT, (4.8)
p

A

So A is easily calculated from current information and we set s;=s" + A (n 5" - 57)

We now have Algorithm IV to perform Step (i) of Algorithm II:

29

Algorithm IV (Dogleg Step Algorithm).

(i) Calculate s, s and 5" (only on first call of Algorithm IV main program iteration)
(i) Check for possibility of a full Newton step:

If %< § THEN RETURN 5, = 5" to algorithm II.

ELSE Ifs” <8, THEN RETURN s, = 857 Algorithm 1I.
[l

8,5 .
ELSEIF s < 8 THEN RETURN s,=__'° _to Algorithm II.
(B

ELSE calculate A using (4.8) and RETURN s,=5" + & (m s" - 57).
The Dogleg algorithm therefore involves four simple checks and these easy

calculations after the Dogleg curve has been initially set up.

s" ' Newton Direction

N :Newton Point

FIGURE 4.2
<8,

30

Referring to Algorithm II, we see that the step calculated in step (i) must be
checked for acceptability in step (ii). Step (i) of Algorithm IV is only carried out on
entry to Algorithm II and for one complete iteration of the main program the Dogleg
curve remains fixed. Section 4.4 describes how 3§, is varied to decide on acceptability
of 5. Even if the first pass of Algorithm III renders no full Quasi-Newton step, it is
possible that the size of the Trust Region can be increased and a full Quasi-Newton
step finally accepted. So Algorithms IV excludes the possibility of choosing such a
step even if the first attempt is unsuccessful. In contrast a full Quasi-Newton step
may be unacceptable by Algorithm II Step (ii) and a smaller step may finally be
chosen.

In the next section we discuss in more detail how such decisions may be taken.

N Newton Point

~8; N ERedzar«:'ea’ Newton Point

FIGURE 4.3

5> 8,

Where s is the step in Cauchy Point direction

31

4.4 ACCEPTANCE OF THE STEP AND VARYING THE TRUST REGION
SIZE

We must now define some rules for the acceptance of the step s; and for the
varying of the size of the Trust Region if is unacceptable (Step (ii) of Algorithm II).
The principle is that the Doglegs curve remains fixed from the first call of Algorithm
II and is varied by Algorithm IV umtil Algorithms III produces an s, which is
acceptable. Naturally the major constraint is that at x,,,=x,+ s, the function value must
be lower than at x; i.e £,,<f. This condition will not always be met for instance, if 8,
is too large then the algorithm could shoot past the minimum to point where the
function value is larger.

Thus to prevent £, = f;, we impose the restriction :

fro <f +ags, a=10" 4.9)
since og,'s, < 0 this implies f,.,<f. If (4.9) is not satisfied then &, is too large and
must be decreased to obtain a smaller f, when s, is recalculated . To find the
optimum size of 8, we minimize f; in the direction s; from x;, and to do this we

approximate f{x,+A.s) by a quadratic model which is minimized at

'gTSr'
2[ﬁ+1’-f1j- gTr'S'L]
The new & (given by 8, = ||x;,,~x;i]), which is obtained, is constrained to lic in

[0.18, 0.58,) . Thus &, shrinks by 50-90% and Step (i) of Algorithm II is performed

Ao (4.10)

again to calculate a smaller Step s, which hopefully will enable 4.9 to be satisfied. If
not the above process is carried out again. Of course the opposite can occur and the
Trust Region size can be too small. Two cases have to be considered which indicate
that 8, is too small and s; unacceptable.

The first is that (4.9) is satisfied but is satisfied much to well. If we have:
St £F; +gls, <f +ags, (4.11)

Then f has decreased in value , relatively speaking , by a very large amount
and we can consider that it will carry on decreasing rapidly from x;., .This implies that

a larger step can be taken.

32

The second case is one where the quadratic model (4.1) is predicting the
function value much too well. A tolerance can be placed on the model performance
thus:

| Mea = A1 < 0.1] Af] (4.12)
where
Myes= Moo
and
A= fiur - f;

In other words, there is a percentage error of less than 10% between the
quadratic model and the actual function values, then the model is performing “too
well” and the Trust Region size can be increased.

Arbitrarily it is decided to double 8 ; and retry step (i) of Algorithm II doubling
of §, is performed until any of (4.9), (4.11), (4.12) are not satisfied, i.e. until doubling
of 8, is not justified. In the case of (4.9) not being satisfied we drop back to the
previous x,,,. There is also a chance that f;,, is greater than the previous f;, before
(4.9) fails and this case we also drop back to be previous step.

The above controls on s, should finally yield a satisfactory step s, and also
adjust &, to a more suitable value. This value of 3, should be a good starting point for
the next iteration of the main program (Algorithm I), but we carry out one final check
on &, before leaving Algorithm I1 to proceed with Step (iv) of Algorithm [.

If the model is predicting well, 1.e.:

Af 075 A e (4.13)
we double §, in preparation for the next call of Algorithm II.
If it is predicting badly, i.e.:

A 2075 M e (4.14)
We halve 9, for the next iteration.
Otherwise §, is acceptable and is left unaltered .

So the basic steps for the above conditions are:

Algorithm IV (Step acceptance and Trust Region updating algorithm).

(a)

(i)

(iii)

(iv)

IF 8, was doubled in a previous call THEN
IF (4.9)is not satisfied OR f,,>f ..~y THEN
drop back to previous step.
Step s5; is now acceptable (Step (iv) is not required).
RETURN to Algorithm I.
IF &, has not previously been doubled THEN
IF (4.9) is not satisfied THEN
Set 3,,,=A. ||x;,,-x]| ensuring that &;,, € [0.15,, 0.58)]
RETURN to Algorithm III.
IF &, has not previously been reduced THEN
IF one of (4.10) OR (4.11) is satisfied THEN
Set §,,,=29,
RETURN to Algorithm III.
Step s5; is now acceptable .
Check conditions (4.13) and (4.14) and set &; accordingly
RETURN to Algorithm I.

33

By the conditions imposed, if the Trust Region starts to be increased it cannot

be decreased and vice-versa.

CHAPTERY
NUMERICAL RESULTS AND CONCLUSION.

5.1 EXPERIMENTAL RESULTS AND ANALYSIS

In this Chapter we conduct the numerical results obtained from the
experiments on 20 functions using both Trust Region Method (Double Dogleg) and
the Line Secarch Method. We specify for each function the starting point we used in
our tests. Each starting point corresponds to a different problem number, and this
function number is the one referred to by our tabular results. (See Appendix I). Most
of our functions are taken from the list presented by More, Garbow, and Hillstorm [5].
In our presentation of the starting point, we have used the notation “[... |*” to denote
that the sequence in the bracket is repeated as many time as necessary to fill in the
component of the vector x,. The functions are listed with starting points numbered
according to the problem number referred to by the tabular results. (See Appendix II)

The results summarised in this chapter are based on testing the problems for
three-dimensional categories, as follows: as small as less than 16, then medium with
dimension 40, and finally large with dimension that reaches 80.

We now explain the entries in the tables in Appendix H. We have used the
abbreviation NOI, FC, and GC to refer to the total number of iterations, number of
functions, and the number of gradient evaluations, respectively.

Our comparison of the performance of the tested methods will be carried out
on the basis of function/gradient evaluations, which may be regarded as being the
dominating factor in the optimization process. Ties are resolved using the iteration
count. The method with * means that it showed a befter performance, and they are
compared at the last column in appendix Il and if the result yields a negative number

means that the over all performance of the Trust Region is better, and and visa vers.

34

35

5.2 SUMMARY AND CONCLUSION

Optimisation can be classified into two main classes the first called
approximation methods, which approximated f{x) to a known function. The second
class depends on evaluation of the function f af suitable search points. The main
difference between the two classes is that approximation methods can only be applied
to continuously differentiable functions, while search methods can be applied to any
unimodal functions.

Most of the existing Optimisation methods [and indeed methods for solving
system of non linear equations] modify and build around Newton’s method to create
algorithms, which attempt to achieve its rate of convergence.

From the drawbacks of Newton methods the Quasi-Newton method motivated.
The basic philosophy of Quasi-Newton method is to have the Newton method rate of
convergence without requiring the Hessian be available ie., its implementation
requires only the first derivatives while the second derivative matrix is approximated.

Quasi-Newton methods update at each iteration its Hessian (or inverse) from
the current iteration information that will be ignored after reaching the next iteration.

In our implementation we focused on two subiterative Quasi-Newton methods
which are Line Search, that generate at each iteration a scalar that regulate the size of
search vector to serve as a step from the current iterate to the next one. The second
methods which produce a region around x, that we can trust the minimum to be
within. In this method we can directly compute the step vector without doing a
focused Line Search on some search direction.

Our tool implement the Trust Region and Line Search methods and it can be
plugged in an optimisation packages, and can serves as a comparison benchmark
between two classes of optimisation.

Trust Region methods are promising techniques that are proven established

conversion theorems

36

Our numerical results on different problem dimensions revealed that both

Trust Region and Line Search produced a comparable performance in small

dimensions, but on large dimensions (greater than 80)Trust Region method produced

a faster results due to savement in gradient evaluations.

REFERENCE

[1] Currey, H.B. (1944): “The method of Steepest Descent for non linear
minimization problems”, Quart. Appl. Math., 2 258-261.

[2] Dennis, Jr. (1979): “ Two new unconstrained optimisation algorithms
which use function and gradient values”.

[3] Fletcher, R. (1987): “Practical Methods of optimisation”, vol. 1 of

“Unconstraint optimisation”, John Wiley and Sons, New York.

[4] Luenberger, D.G. (1984): “Linear And Nonlinear Programming”, (second
edition), Addison-Wesley, London.

[S] Moghrabi, LAR. (1993): “Multi-Step Quasi-Newton methods for
optimisation”, (Ph.D. Dissertation), Computer Sc. Dept., University of Essex

[6] More, J.J. Garbow, B.S. and Hillstorm, K.E. (1981): “Testing
unconstraint optimaisation”, A.CM T.OM.S.,717-41

[7} Naldrett, J.L. (1990): “Trust Region Methods for nonlinear optimisation
with function values”, (M.Sc. Dissertation), Computer Sc. Dept., University of Essex.

[8] Powell, MLJ.D. (1964): “An efficient method for finding the minimum of a
function of several variables without calculating derivatives”, Computer J. 7, 155-162.

[9] Powell, M.J.D. (1970): “A hybrid method of nonlinear equations”, in
“Numerical Methods for non linear algebraic equations”, (ed. P. Rabinowitz), Gordon
and Breach, London.

37

APPENDIX I

The functions listed here can be found in More et al (1981), unless stated

otherwise.

One- The Discrete Boundary value problem:

n 2%, X, X, HRA(x 1
f — Z[L 1 ,
i=1

Where h=——t =ih

1) x, =t *(t—1).
19) xT = ([25,-25]%).

Two- Broyden Tridiagonal function
2

f= Z [3—2x,)x, —x; - 2x,, +1] .
i=1
3) x =-1.

Three- Dixon function {n=10)
9
F=0-x)Y+1-x,)° +Z(xr’2 — %)
i=t

4y x;=-1.

Four- The Linear Rank-1 function

5) x=1.

38

Five- Full set of Distinct Eigenvalues problem

F=r =D+ 32, — x5,)
=2
2)x;=1.

Six- - Oren and Spedicato Power function.
i 2
2
i=i
6) x,=1.

Seven- Generalised Powell Quartic function.

;l
/= Z[(x4i—3 +10x,,5)7 + 5034 = %,)" + (x4 =Xy 10" 100, _x4f)4]=
=1

where n mod 4 = 0.
7) xT = ([3:"1 905 1]*)'
Eight-The tridiagonal function
F=Yliex, -x.
i=2
g) x;=1.

Nine- The variably Dimensioned problem

f= i(xi ~1)? -]{Zn:i(x,. —l):| +|:ii(xi —1)])

i=1 i=l

9 x~1-1/n.
10)x~=-1.

39

Ten- The Generalized Wood Function

i
= Z {1 00[(x4i—2 - xi‘-z)z]+ (1- x4i—3)2 + 90[(364,. - xji—l)z +(1- x4,._1)2]+
i=1
10.1[x4j_2 —1)% +(x,, —1)2]+19-8(x4,-ﬁ2 ~1)(x = 1) §

wherenmod 4 =10

10) x'= ([-300,100]%).

I- Non-diagonal variant of Rosenbrock’s function

"

f=2{1000x —x7)" +(1-x,)" }
12)x'= ([1.2,17%).

m- Penalty function [

n

f=>11070, 1) +H xj}—%} }

i=1

13)x~=i

n- Modified Trigonometric function
2

f= i{n - icos(xj) +i(1—cos(x;)) —sin(x,) +e"i—1 }

J=1

14) x~1/n.

o- Penalty II function

f=f1 +f2+f3

where

B U 5 U A AN |
£=3(x-02) {a [exp(mnexp(w) yﬂ

i=1

40

< % xi—n+] _ __1 2
¥e) =§(d [GXP(T) eXp(lo)}) ,

ﬁzﬂi(”‘f“)x?}l]’

where a=107, y, =exp(i/20) + exp[(i-1)/10].

15) x, = 4.

P- Generalised shallow function

#,

2

f= Z[(x'jf—l -xy)" +(1 _x2f—])2]’

i=1

nmod2=0
16) x;=-200

s- Extended Rosenbrock’s function
A
7= 311006k, - 220 +(1-x,.)02]
j=l
nmod 2 = 0.
17) x" = ([-1.2,1]*).
u- the “Sum of Quartics” problem

f= Zj(xi '“04-
18) x, = 20.

41

APPENDIX 11

Please refer to section 5.1 for more details on the notations used in the following
tables

. Trust Region Line Search Comparison
14 9
12 11 [*] 9 12] 12 0 -9.1
14 12 8 10 | 10 | 286 167
20 19 17 | 19 [19 51 ©
4 3 2 3 3 25] 0
35 [*] 31 [*]| 35 | 41 [41 17] 32
32 31 28 | 31 | 31] 313 0
10 9 5 8 8 20 11.1
11 10 9 10 [10 | 909 0O
17 15 7 12 | 12 | 294] 20
. 28 24 17 | 24 | 24 | 143 0
18 15 12 [14 | 14 | 22.2] 667
27 25 13 | 17 [17 37] 32
24 23 11 | 14 [14 [41.7] 391
222 [* [204 [*[157 | 241 | 241 | -86] -18
33 | *| 32 [*] 32 | 42 | 42 | -271] -3
. 32 31 [*] 28 | 32 | 32
102 | *[101 [*] 90 | 105 | 105
, TOTAL| 592 | 655 |Jj 610 | 489 | 649 | 649

Table 1

Results on functions with small dimensions
2<dimensions<16

42

43

Line Search Comparison

77 | 78 78 42 | 74 | 74 | 5.128] 5128
29 | 53 | *] 50 |~ 42 | 69 | 69 | 302 -38
29 | 53 11 50 | *| 42 | 107 | 107 | -102] -114

323 329 324 35 225 | 225 | 31.61] 30.56
50 55 51 6 14 7 87.27| 86.27

6 8 * 7 *| 42 57 57 -613| -714
107 128 108 42 73 73 42.97] 32.41
120 123 121 42 70 70 43.09| 42.15
49 53 50 23 32 32 390.62 36
29 31 * 30 | *} 42 102 | 102 =229 -240
61 65 62 42 58 58 10.77] 6.452

82 91 * 83 *| 24 98 98 -7.69 -18.1
159 164 | * | 160 | * | 42 166 | 166 | -1.22| -3.75

460 | 463 461 42 | 85 | 85 | 81.64] 81.56

174 | 179 [* [175 [*| 42 [390 | 390 [-118 -123

5 7 [*] 6 [*] 42 | 8 | 8 | -1071] -1267

42 | 44 |+ | 43 [*] 42 | 77 [77 75| -79.1

19 | 42 | 44 x| 43 [*| 42 | 125 [125 | -184] -191
TOTAL| 1884 | 1968 [1902 676 | 1897

Table 11

Results on functions with medium dimensions
20<dimensions<5(

44

rust Region Line Search Comparison
%g o G
. 08 * 98 | *| 67 129 | 129
5 97 * 95 | * | 86 173 | 173
¥ 169 | * | 160 | * | 65 178 | 178
63 * 59 | * | 45 70 70
10 9 8 9 9
348 | * | 319 | * | 356 399 | 399
258 255 187 | 242 | 242
100 | * 97 *1 85 171 171
36 35 18 21 21
605 582 64 173 | 173
156 | * | 143 * | 117 | 203 | 203
270 260 99 249 | 249
. 660 654 162 | 402 | 402
232 | *| 228 | * | 393 | 515 | 515
323 | * | 316 | * | 321 969 | 969
393 | * | 389 | * | 259 | 396 | 3986
471 | * | 459 | * | 375 | 613 | 613
142 | * | 135 | * | 105 | 240 | 240
. 4431 4293 2812 | 5152 | 5152

Table 111

Results on functions with Large dimensions
60<dimensions<85

