
LEBANESE AMERICAN UNIVERSITY

Modeling Software System Interactions Using Temporal Graphs and

Graph Neural Networks: a Focus on Change Propagation

By

Manuella Latif Germanos

A thesis

submitted in partial fulfilment of the requirements

for the degree of Master of Science

in Computer Science

School of Arts and Science

July 2022

©2022

Manuella Latif Germanos

All Rights Reserved

This thesis is dedicated to my loving parents, Rafka and Latif.

I wouldn’t be here without you (literally).

v

Acknowledgement

Words cannot express how grateful I am for the continuous support of the committee

members throughout this thesis.

I am deeply indebted to Dr. Danielle Azar for, without her, I would not have been

able to finish my Bachelor’s degree, let alone this thesis. I would like to thank her

for believing in me, and for guiding me throughout this journey.

I am extremely grateful to Dr. Eileen Marie Hanna as well. She was always ready

to help me make sense of the confusion and offered great advice that sometimes flew

over my head!

I am thankful to Dr. Nader El Khatib, he always lent me an ear whenever discussing

the difficulties that I faced, and was supportive of my work at all times.

Special Thanks to Ralph Chahwan who supported me at all times and spent count-

less hours brainstorming with me.

I am also grateful for my family for pushing me to pursue my dreams. Their selfless-

ness and unconditional love kept me standing even during the hardest days. I hope

I can make them proud.

Last but not least, I would like to mention my friends and thank them for continu-

ously supporting me and not giving up on me.

vi

Modeling Software System Interactions Using Temporal Graphs and

Graph Neural Networks: a Focus on Change Propagation

Manuella Latif Germanos

Abstract

The world is quickly adopting new technologies and evolving to rely on software sys-

tems for the simplest tasks. This prompts developers to expand their software sys-

tems by adding new product features. However, this expansion should be cautiously

tackled in order to prevent the degradation of the quality of the software product.

One challenge when modifying code - whether to patch a bug or add a feature- is

being aware of which components will be affected by the change and amending pos-

sible misbehavior. In such cases, the study of change propagation or the impact

of introducing a change is needed. By investigating how changing one component

may impact the functionality of a dependency (another component), developers can

prevent unexpected behavior and maintain the quality of their system. In this work,

we tackle the change propagation problem by modeling the software system as a

temporal graph where nodes represent system files and edges co-changeability i.e.,

the tendency of two files to change together. The graph representation is tempo-

ral so that nodes and edges can change with time reflecting addition of files in the

system and changes in dependencies. We then employ a Temporal Graph Network

and a Long Short-Term Memory model to predict which files will change when a

modification is introduced to another file. We test our model on software systems of

different functionality, size, and nature. Results show that our model significantly

outperforms other recent published work.

Keywords: Change Impact Analysis, Change Propagation, Temporal Graphs, Graph

Neural Network, Temporal Graph Network, Long Short-Term Memory, Deep Learning

vii

Table of Contents

1 Problem Statement 1

2 Literature Review 4

2.1 Change Propagation . 4

2.2 Graph Neural Networks . 9

2.3 Graph Neural Networks on Temporal Graphs 14

3 Background 19

3.1 Software Quality . 19

3.2 Temporal Graph . 21

3.3 Artificial Neural Networks and Deep Learning 23

3.3.1 The Perceptron and Artificial Neural Networks 24

3.3.2 The Backpropagation Algorithm . 30

3.3.3 Long Short-Term Memory . 34

3.3.4 Temporal Graph Networks . 41

4 Methodology 44

4.1 Data Extraction and System Modeling . 45

4.2 Graph Representation . 46

4.3 Temporal Graph Network . 53

5 Experiments and Results 57

5.1 Datasets . 57

5.2 Performance metrics . 61

5.2.1 Sensitivity or recall . 63

5.2.2 Specificity . 63

viii

5.2.3 Positive Predicted Value . 63

5.2.4 F-measure . 64

5.2.5 G-mean . 64

5.2.6 Accuracy . 64

5.2.7 Matthew’s Correlation Coefficient 64

5.2.8 Area Under Curve . 64

5.3 Experimental Setup . 65

5.4 Parameter Tuning . 66

5.5 Results . 67

5.5.1 Alamofire . 69

5.5.2 Ant . 70

5.5.3 Cassandra . 71

5.5.4 Cassandra website . 72

5.5.5 Flutter . 74

5.5.6 Gephi . 75

5.5.7 Hbase . 76

5.5.8 Laravel . 77

5.5.9 Lucene . 79

5.5.10 Monitor Control . 80

5.5.11 pyDriller . 81

5.5.12 React . 83

5.5.13 Rocketmq clients . 84

5.5.14 Spark . 85

5.5.15 WWW site . 87

5.5.16 Overview of Results . 88

5.5.17 Statistical Analysis Across Systems 89

5.6 Discussion . 90

5.7 Generalizability . 93

5.8 Realism and Limitations . 94

6 Conclusion and Future Work 95

ix

List of Figures

3.1 Class diagram of Java classes A and B where B is a child of A. 20

3.2 Change propagating to different dependencies. Items in grey are the ones

that have changed. 21

3.3 A undirected, unweighted graph(left) and a directed weighted graph(right) . 22

3.4 A temporal graph through four timestamps. Vertices (files) and edges(co-

changeability of files) are added through time 23

3.5 A perceptron . 25

3.6 The space of inputs x1 and x2 with the hyperplane o(x) separating the labels

of the data points . 26

3.7 The ReLU function . 26

3.8 Data points plot of different binary operators 28

3.9 An ANN . 29

3.10 A possible ANN used to represent the XOR operator. Neurons are labeled

with the operator that they perform. 30

3.11 Impact of η on the learning process . 32

3.12 The sigmoid function and its derivative . 33

3.13 The gates of an LSTM unit [1] . 35

3.14 The sigmoid function . 36

3.15 The tanh function . 36

3.16 An unrolled LSTM [2] . 40

4.1 Example of a temporal graph built to model the change sets at every time

step . 45

4.2 Workflow of the proposed approach . 45

x

4.3 Undirected graph representing the website formed of three html files and

one Javascript file. 48

4.4 A directed graph to represent the website example 49

4.5 Temporal graph representation of the commits in Table 4.2 52

4.6 The state of A and B at every time step where B was changed. 54

5.1 Boxplot showing the size distribution of the change sets 60

5.2 Confusion matrix. TP: True positives, TN: True negatives, FP: False posi-

tives, FN: False negatives. 62

5.3 Cross-validation using the rolling-origin-recalibration method 65

5.4 Percentage of comparisons where the proposed model significantly outper-

forms its counterpart . 91

xi

List of Tables

3.1 the XOR operator . 27

4.1 History of commits for website example . 47

4.2 History of commits of example system . 49

4.3 Co-changeability of the files in the example system, the column value shows

the value of the formula for these files . 50

4.4 Data frame created from the history of A and B 55

5.1 Software systems used in this study . 58

5.2 Distribution of the size of commits before processing 59

5.3 Distribution of the size of commits after processing. The No. of files is the

number of files at the last commit considered, and prop. affected files is the

average proportion of files affected by the changes out of all the files of the

system at the time of commit. 61

5.4 Best found parameters for every software system 67

5.5 Mean ± standard deviation of the proposed approach 68

5.6 Comparative results on Alamofire . 69

5.7 p-value and decision of Mann-Whitney on Alamofire 70

5.8 Comparative results on Ant . 70

5.9 p-value and decision of Mann-Whitney on Ant 71

5.10 Comparative results on Cassandra . 72

5.11 p-value and decision of Mann-Whitney on Cassandra 72

5.12 Comparative results on Cassandra website 73

5.13 p-value and decision of Mann-Whitney on Cassandra website 73

5.14 Comparative results on Flutter . 74

xii

5.15 p-value and decision of Mann-Whitney on Flutter 75

5.16 Comparative results on Gephi . 75

5.17 p-value and decision of Mann-Whitney on Gephi 76

5.18 Comparative results on Hbase . 77

5.19 p-value and decision of Mann-Whitney on Hbase 77

5.20 Comparative results on Laravel . 78

5.21 p-value and decision of Mann-Whitney on Laravel 78

5.22 Comparative results on Lucene . 79

5.23 p-value and decision of Mann-Whitney on Lucene 80

5.24 Comparative results on Monitor control . 81

5.25 p-value and decision of Mann-Whitney on Monitor control 81

5.26 Comparative results on PyDriller . 82

5.27 p-value and decision of Mann-Whitney on pyDriller 82

5.28 Comparative results on React . 83

5.29 p-value and decision of Mann-Whitney on React 84

5.30 Comparative results on Rocketmq clients 84

5.31 p-value and decision of Mann-Whitney on Rocketmq clients 85

5.32 Comparative results on Spark . 86

5.33 p-value and decision of Mann-Whitney on Spark 86

5.34 Comparative results on WWW site . 87

5.35 p-value and decision of Mann-Whitney on WWW site 87

5.36 Results of Wilcoxon test at a confidence level α = 0.5 90

5.37 Average density of the temporal graphs . 93

xiii

Chapter 1

Problem Statement

In 1822, Charles Babbage conceptualized and began developing the ”Difference Engine,”

the first automatic computing machine to approximate polynomials [3]. More than a

century later, in 1955, the Massachusetts Institute of Technology revolutionized computers

and introduced the Whirlwind machine, the first digital computer with magnetic core RAM

and real-time graphics [4]. With this technology in hand, it only took humanity 14 years

to land on the moon [5].

Modern computers have only existed for a flicker of time compared to the existence of

humanity. However, they managed to weave their way into every aspect of daily life. From

tracking the grocery list to sending spaceships into outer space and back, humans have

become dependent on technology, and developers have had to keep up with this constant

growth. Developers must regularly update their software to introduce new features and

patch any incorrect code. As their system grows, they must ensure that their program will

be reliable and easy to modify in the future when needed. In this aspect, we speak of the

maintainability of a software system.

Maintainability is a software structural quality1. It comprises multiple sub-characteristics

such as modularity, reusability, modifiability, and testability[6]. The IEEE Standard Glos-

sary of Software Engineering Terminology defines maintainability as the ease with which

a software system or component can be modified to correct faults, improve performance

or other attributes, or adapt to a changed environment[7]. Changing one component in a

system can have a significant impact on other components and hence the maintainability

1A software quality attribute that relies heavily on the structure of the software.

1

of the entire system. This can be easily understood in the context of dependencies that

multiple components can have. It is thus very important to be aware of and able to as-

sess the impact of changing a particular component during the development phase [8]. As

developers build their programs, dependencies will emerge between different components.

These dependencies might be evident such as in the case of inheritance in Object-Oriented

Programming, or obscure such as two components reading and writing to the same file.

The obscure dependencies between the components will become even more concealed as the

system ages and becomes more complex. As the system grows, modifications are applied

to the code. Developers must ensure that they propagate the change of a component to all

its affected dependencies to keep the components up-to-date and functional. An untrained

developer might miss these obscure dependencies and might not account for the need to

propagate a change correctly. In [9], the authors warned of such a scenario, calling it an

”Ignorant Surgery.” They argued that modifications done to the source code by developers

who are not sufficiently knowledgeable are harmful because the developers will not cor-

rectly identify the components that need to be changed when introducing new features.

In [10], the authors forewarn that these ignorant surgeries will introduce hard-to-find and

hard-to-correct bugs, causing the quality of the software program to degrade. This makes

understanding how changes propagate among the software components crucial to main-

taining most, if not all, system quality attributes. This problem is often called ”software

change propagation,” where the effort lies in predicting the set of components affected by

a given modification. This set is often referred to as a ”change set.”

The change impact or change propagation problem can be studied at different granu-

larities, such as the detection of change sets at the variable, method, class, and file levels

[10]. Manual prediction of these sets is an uphill task requiring software engineering ex-

pertise and knowledge of the system. Therefore, researchers attempt to automate this

job to obtain better results with less effort. To tackle this problem, researchers turned to

artificial intelligence methods such as statistical analysis [11], heuristics [8], and machine

learning models [12]. In this work, we propose a new approach to tackle this problem.

We use a temporal graph to model the files of a system and their co-changeability metric.

This metric reflects the proportion of times two files were changed together. Then, we

apply a variant of the Graph Neural Network called Temporal Graph network to learn

the pattern of change in the system and predict which files will change when we modify

2

one. The chapters of this work are divided as follows: in Chapter 2, we review some of

the most popular methods used to predict software change propagation. In Chapter 3, we

visit key concepts and techniques used in this work. In Chapter 4, we discuss the proposed

method. In Chapter 5 we detail the implementation and results of the method, we discuss

the performance of the model, and possible threats to validity. Finally, we conclude in

Chapter 6.

3

Chapter 2

Literature Review

In this chapter, we cover the literature review of change propagation. We also view some

applications of Graph Neural Networks (GNNs) in different fields. Finally, we look into

a variant of GNNs, called Temporal Graph Networks (TGNs), and list some of the work

that employed it.

2.1 Change Propagation

To introduce new features to the software or patch existing bugs, developers must modify

code fragments. These modifications might raise the need to patch other code fragments

to prevent bugs from appearing. The need to change a code fragment due to a previous

revision might chain and propagate across multiple files in the program. This incident is

referred to as change propagation, and developers need to follow the changes needed in

the software to prevent introducing new bugs. The bug or change propagation problem

is a well-known problem tackled using multiple approaches. Some work attempted to

estimate the components that change by studying their dependencies, while others used

the historical changes in the software.

Among the work that attempted to estimate the change propagation patterns by un-

derstanding the dependencies of the software components are [13], where the authors at-

tempted to locate risk containers in software programs to reduce the space that developers

have to search through to find errors. The authors used three types of containers: design

rule containers, resource containers, and use case containers. Design rule containers were

4

based on the class diagram of the software, whereas resource containers grouped the files

that share the same resources, such as files and databases. Finally, use case containers

grouped files according to a sequence of use cases. The authors evaluated how well each

container type isolated the change sets by computing the Containers in Common Co-change

Probability (CCCP), which reflects the probability that two files changing together belong

to the same container, and No Containers in Common Co-change Probability (NCCCP)

which reflects the probability that two files changing together do not have any container in

common. The authors then noted that design rule containers were the most effective when

isolating change propagation as they achieved the highest CCCP (in the range [0.33-0.57])

and the lowest NCCP (in the range [0.25-0.39]) across four software systems.

In [8], the authors developed a wave propagation algorithm to predict which methods

are affected when a change is introduced. Their strategy defined a core set and an impact

set containing the method either directly affected by the change or indirectly. This method

was tested on Ant and Jmeter and managed to better capture the propagation of change

by predicting smaller change sets than the transitive closure, thus increasing the precision

with a slight sacrifice in recall. The proposed method scored an average precision of 0.39

and an average recall of 0.8, compared to the transitive closure method, which scored an

average precision of 0.3, and an average recall of 0.85.

In [14], the authors noted that change propagates in a single direction in the software

program. Hence, they introduced the concept of propagation scope to evaluate the ability

of a change to propagate. The proposed metric, called Edge Instability (EI), is dependent

on the in-degree and out-degree of a component in the call graph. When computing

the correlation of the proposed metrics against the actual change scope, EI exhibited a

range of correlation [0.29-0.94], whereas previously used metrics, such as the clustering

coefficient (CC), had a correlation range [-0.75,0.97]. Although CC managed to give a

better correlation on some tested software systems, EI was consistently correlated with the

change scope.

In [15], the authors proposed new source code dependencies and investigated their

added value when predicting the change impact set. These dependencies are the ”Include

dependencies” extracted by analyzing the preprocessor directives of each source code file.

The ”Symbol dependencies” were extracted by analyzing the function calls which were

going outside the file. Furthermore, the ”Temporal dependencies” were computed by an-

5

alyzing the sequence of execution of different methods present in the system. When these

dependencies were added to already existing ones, they increased the precision and recall

on various software programs by 17% to 89%.

The methods presented so far are convenient, especially when the changes in the soft-

ware are not recorded. However, some fragments have hidden dependencies that are not

easy to detect, and studying the historical changes of software can reveal them. We dis-

cuss next some work that used the history of the programs to understand their change

propagation patterns.

In [16], the authors proposed a new data mining approach called Change Propagation

Path (CPP). This approach employed the frequent pattern algorithm ECLAT to analyze

the historical data within software repositories. The authors extracted the datasets from

Github and used the ECLAT algorithm to generate patterns from the processed dataset.

The authors then integrated their model into a web-based application to help developers

predict the entity that must change and the entities they are working on. After timing the

speed of the developers working with their tool and the developers working without their

tool, the former group was able to maintain their program 50% faster.

In [10], the authors developed a prediction heuristic that takes as input a set of classes

that were changed and outputs a group of classes that might also need change. The authors

grouped their files using four methods: Developer change, where two files were considered

related if they were changed by the same developer. Historical co-change, where two entities

were considered related if they changed together previously. Code structure, where two

entities were considered related if there exists some dependency between them (call, use,

or define relationship). Finally, code layout, where if two entities exist in the same file

or subsystem, then the entities were related. The authors tested these methods on five

systems developed in C, and they noted that the historical co-change and code structure

grouping achieved the best recall (0.87 and 0.83, respectively).

The researchers in [17] noted that change impact analysis tools that used the dependen-

cies of the software were limited to homogeneous systems, i.e., systems that were developed

using a single programming language. Hence, they introduced a new algorithm for min-

ing coupling in heterogeneous systems i.e., systems that were developed using multiple

programming languages. Their rule-based algorithm- Targeted Association Rule Mining

for All Queries (TARMAQ)- studied the history of the program, and when given an in-

6

put query, outputs a set of files that are most probable to be affected by the change.

The authors compared the average precision of their proposed algorithm to that of ROSE

and SVD, two well-known algorithms for extracting the impact sets of a change. Using

the Friedman test with a post-hoc Wilcoxon test, the authors concluded that the average

precision of TARMAQ was higher than that of ROSE and SVD.

In [18], the authors used association rule mining to find hidden dependencies in the code

at different granularity. The authors also proposed using hyper-rule, where they combine

different conventional association rules when determining the impact of a change. In other

words, if different association rules can apply to a given query, the authors merge them to

gain knowledge from all of them instead of the best ones. These hyper-rules improved the

model performance, especially when the level of granularity was fine.

In [19], the authors proposed seven families of association rule mining techniques in-

spired by the previously mentioned algorithm TARMAQ and presented them in a tool

called Adaptive Targeted Association Rule Mining (ATARI). Their approach uses adap-

tive rule mining to learn from a batch of changes instead of the entire software history. The

rule mining process selected which transactions are important to learn the rules from and

discards the remaining transactions. The goal of this work was to provide rules as effec-

tive as baseline methods while using less historical data. To do so, the authors compared

all their proposed techniques to TARMAQ, and although TARMAQ managed to outper-

form the majority of their techniques in terms of Mean Average Precision (mAP), Tukey’s

HSD test showed that this difference is not significant. Therefore, the proposed family of

techniques was able to extract powerful rules while a smaller history than TARMAQ.

The authors in [11] argued that, when studying the history of changes in a software

program, newer changes should be given a higher weight when predicting future change

propagation. They proposed a new co-changeability metric that lowers the weight of older

commits while giving newer ones higher importance. The authors computed the change-

ability of a file by averaging its co-changeability across all the classes in the software

program. When predicting a class change impact, all classes with a co-change probability

higher than a specific cutoff were predicted as changed. This changeability measurement

showed a positive Pearson correlation with Coupling between objects (CBO), indicating

that it can reflect the dependencies of the files. Additionally, when the study compared the

regular co-changeability metric with the one proposed in their work, the proposed metric

7

showed a higher AUC value (in the range [0.63-0.84]) than the older one.

Network Science has also been used to address the issue of software changeability.

The work in [20] used graph metrics to study the correlation between centrality measures

and the scope of change propagation in an unweighted directed graph. The authors also

proposed their metric, CIRank, which measures the co-changeability of two classes. The

authors discovered that a small fraction of focus classes were responsible for most of the

changes. Therefore, they probed for possible centrality measures that were indicative of a

focus class. Their search concluded that CIRank was better fit to detect focus classes than

the degree, closeness, betweenness, and PageRank centralities as it reached the maximum

number of correct predictions in terms of top 5, top 10, top 20, and top 50 accuracy.

In [21], the authors used the change history to predict change propagation. They relied

on the Concurrent Versions System (CVS) dataset to track the changes in the code. They

only studied recent software changes that impacted 3 to 30 files as recommended by [22].

Their work then used an agglomerative clustering technique that relied on the weighted

average of the Jaccard distance between the files in the change sets and the Jaccard distance

between the sets of words associated with the change set. A membership matrix was then

created for the clusters and source files. Moreover, if a file was changed, the authors

referred to its membership matrix to select the cluster most susceptible to propagating

this change. As the developer included changes in the code, the algorithm selected each

pair of files, computed the change propagation of every file, and merged the predicted set

of every file to get the final prediction. The authors tested their method on the JDT core

and JDT UI systems and reported a higher f-measure than their competitors (when given

one file, the f-measure was 0.3 on the JDT core system and 0.37 on the JDT UI system).

In [12], the authors used a Bayesian Belief Network (BBN) to predict the change prop-

agation in the Azureus2 Java system. Their technique used both the dependency between

the components of the file and the history of change to extract co-dependencies between the

system components and predict change sets using the BBN model. The authors performed

an ablation study by training their model on the dependency dataset alone (the BDM

model), the historical change alone (the BHM model), and the dependency and history of

changes together (the BDHM model). The authors also compared the performance to a

control model where the software entities were assigned random probabilities of change.

Their experiment showed that the best performing model was the BDHM model, which

8

scored an overall accuracy of 0.513, whereas the other models scored an accuracy in the

range of [0.26-0.47].

2.2 Graph Neural Networks

GNNs were first proposed in [23] as a variant of neural networks. The objective of GNN

is to understand the underlying relationships in the data. This approach can be used

in several areas of science and engineering. The GNN model quickly gained popularity,

and many researchers started adopting it to analyze their data better. In this section, we

describe some of the work in order to shed light on the diversity of the fields where GNNs

have been successfully used.

Given the rich relational property of many biological systems, GNNs were frequently

used to tackle biological problems. In [24], the authors tackled the problem of predicting

possible molecule geometries using GNN. They proposed a deep generative graph neural

network that learns the energy function of different molecules and attempts to predict the

geometry of new molecules by minimizing their energy function and using structures seen in

the train data. They used a complete undirected graph to represent a molecule. They fed

their GNN molecules from three molecule datasets (QM9, COD, CSD) that possess distinct

properties to allow the network to learn a plethora of geometries. When evaluating their

model against other traditional methods, the authors used the root-mean-square deviation

(RMSD) between generated and reference geometries. They found that their approach

generated geometries that were closer to the molecule actual one than other methods and

showed an RMSD range of [0.39-1.5] across the data sets.

In [25], the authors built a multimodal graph that included protein-protein interactions,

drug-protein target interactions, and drug-drug interactions. The authors then employed

Decagon, a Graph Convolutional Network (GCN), for multi-relational link prediction in

multimodal networks. Their approach accurately predicted polypharmacy side effects and

outperformed other baseline methods scoring an Area under the ROC curve value of 0.872,

an area under the precision-recall value of 0.832, and an average precision at 50 of 0.8,

outperforming all baseline models on all these metrics.

The work in [26] sought to overcome the scarcity of electronic medical records by

building a classifier that was able to diagnose patients with common and rare diseases

9

according to their symptoms. To do so, the authors created two heterogeneous graphs.

The first was a medical concept graph linking diseases with their related symptoms. The

second was a patient record graph that linked the patients to their observed symptoms

from their electronic medical records. The authors then employed a GNN that learned

from these graphs. Experiments were performed on a real-world electronic medical records

dataset and the performance of the model was compared against baseline models. The

Random Forest model managed to outperform the proposed technique when K = 1 in the

top K predicted diseases. However, for all the remaining tests where K > 1, the proposed

model outperformed all the remaining techniques in terms of recall (0.547-0.759), precision

(0.224-0.393), and F-measure (0.346-0.457).

GNNs were also successfully used to model the spread of epidemics [27]. In this work,

the authors did not only focus on people interactions with their environment but also

on their closeness to clusters of infections. They used the SEIRD epidemic network,

where a person could be Susceptible, Exposed, Infected/infectious, Recovered, or Deceased

(SEIRD). The authors then built a GNN and tested it on a homogeneous network, in which

any node had the same probability of being connected with all the others and a heteroge-

neous one that modeled the City of Boston and Cambridge, Massachusetts, in the United

States. Surprisingly, the model performed better in the second case, where the accuracy

reached 0.80, whereas, on the homogeneous graph, the accuracy was around 0.70. The

researchers theorized that the non-trivial topology of the Boston scenario offered more

information to learn.

In chemistry, GNNs have shown success in predicting structure-property relationships.

In [28], the authors represented molecules as a graph by mapping the atoms to nodes and

their bonds to edges. They aimed to develop GNN models that predicted three fuel ignition

quality indicators: the derived cetane number (DCN), the research octane number (RON),

and the motor octane number (MON) of oxygenated and nonoxygenated hydrocarbons.

Due to the scarcity of data, the researchers employed ensemble learning. The authors

trained multiple GNNs with randomly selected train and validation sets and combined them

to build a more powerful regressor model. Compared to the state-of-the-art methods, this

approach did not need molecular descriptors or structural group selection. It also exhibited

a low MAE score (4.2-4.5), making it a reliable method.

The authors in [29] used GCNs to predict chemical reactivity. They trained the model

10

on hundreds of thousands of reaction precedents covering a broad range of reaction types to

help the model learn reactive sites most likely to change connectivity. Their model outper-

formed other state-of-the-art methods based on the United States Patent and Trademark

Office (USPTO) dataset 410k/30k/40k reactions as it scored a top 1% accuracy of 0.856,

a top 2% accuracy of 0.905, a top 3% accuracy of 0.928, and a top 5% accuracy of 0.934.

In [30], the authors employed GNNs for the task of drug discovery and molecular

generation. Their proposed model, MG2N2, used multiple GNN models to build a graph

representing a molecule sequentially. The experiments performed on the QM9 and Zinc

datasets showed that this approach was able to generalize molecular patterns seen during

the training phase without overfitting and outperformed most baseline models in terms of

the validity of the generated molecules (0.753).

Additionally, GNNs have seen applications in Physics. For example, in [31], the au-

thors relied on GNNs to perform particle reconstruction for their ability to overcome the

irregular data in the high-energy physics field. The goal was to identify the nature of an

incoming particle and estimate its energy from the energy deposition patterns in a simu-

lated imaging calorimeter while minimizing latency and resource utilization. To do so, the

authors modeled the system as a graph where vertices are entities, and the links represent

the interactions of these entities. Each of the vertices, links, and the entire graph, possess

some attributes. The authors considered Graph Networks a particular type of GNNs that

consist of repeatable graph-to-graph mapping blocks. The model showed high reliability

(the highest AUC was 0.98), low latency (155 cycles), and an acceptable resource utiliza-

tion rate (56% of the digital signal processing units, 2.9% of the flip-flips, and 2.3% of the

block RAM) when tested on simulation data. Although the proposed model still needed

improvements before employing it in real life, this study showed that GNNs can perform

fast inference and potentially be used in the future in real-time collider trigger systems.

GNNs were also successfully applied in the field of computer vision. In [32], the authors

tackled the person re-identification task using Similarity-Guided Graph Neural Network

(SGGNN). Their approach constructed a pairwise relationship between gallery-probe pairs,

which helped understand the relationship information between different gallery images

instead of only focusing on the relationship of every gallery image to the probe one. To

validate their approach, SGGNN was tested against state-of-the-art methods on three

datasets and managed to outperform the baseline method on every dataset by having a

11

mAP range of [0.682-0.943], a top 1 accuracy range of [0.911-0.953], a top 5 accuracy of

[0.88.4-0.991], and a top 10 accuracy of [0.912-0.996].

GNNs were also used on the image classification problem. In [33], the authors classified

aerial images collected by satellite sensors and aerial cameras using an end-to-end aerial

image classification model built on a Multiple Label Concept Graph (ML-CG). The model

was tested on two datasets and showed high efficiency even when classifying images with

many labels. The model outperformed state-of-the-art methods in terms of example-based

recall (0.8994), F-scores (F1: 0.8542 and F2: 0.88), and the average label-based recall

(0.8927), and F-scores (F1:0.999 and F2:0.8912), but it failed to do so in terms of example-

based precision (0.8134 whereas the best model got 0.8212), and label-based precision

(0.8853, whereas the best baseline model got 0.8878).

In [34], the authors used GNNs to detect objects from a Light Detection and Ranging

(LiDAR) point cloud. Their proposed GNN, called Point-GNN, helps break the conven-

tional grid encoding of the point cloud and uses graph encoding instead, which helps reduce

information loss. This approach was tested on the KITTI data set, which contains three

labels: car, pedestrian, and cyclist, and a model was trained to predict every label. These

models reported an average precision in the range of [0.437-0.883] when predicting 3D

images and an average precision range of [0.446-0.931] when predicting images taken at

Bird’s eye view.

In [35], the authors used GCNs to estimate the pose in 6D objects from RGB-Depth

(RGB-D) images. Object 6D pose estimation helps predict 3D orientation and translation

of rigid objects, an essential task for robot decision-making systems. The authors used a

CNN to segment the input image and then transform it into a set of point clouds. A graph

was then constructed based on the set of point clouds and fed to the GCN that predicts

the dense pixel-wise correspondences that reflected the underlying relations between points.

The GCN offered the advantage of exploiting known topological information of objects.

This approach outperformed other state-of-the-art models when tested on the LINEMOD-

OCCLUSION datasets = and had an average accuracy of 0.653.

GNNS received widespread attention in the field of Natural Language Processing

(NLP). For example, in [36], the authors employed GNNs for text classification. Their

work used a single text graph for a corpus based on word co-occurrence and document

word relations. The graph is heterogeneous and contained word nodes and document

12

nodes that learned words and document embedding jointly using a Graph Convolutional

Network (GCN). When compared against baseline models on the datasets 20NG, R8, R52,

and Oshumed, the proposed model achieved the highest accuracy values, which were in the

range [0.68-0.97]. The model failed, however, to achieve the highest accuracy on the MR

dataset, where it got an average accuracy of 0.76, whereas the best base model achieved an

accuracy of 0.77. The authors theorized that their model failed to achieve high accuracy

on the MR dataset because the documents are too short, so the graphs built are sparse

and do not allow heavy message passing.

The work in [37] studied social media platforms to detect occurring events, such as the

spread of the flu virus. In their work, the authors employed a new Event Detection model

based on GNN -EDGNN- and extracted events on social media. The model employed

the Conditional Random Field regularized Topic Model (CRFTM) to extract the topic of

information from short texts, which is then used to build text-level graphs to overcome the

sparsity of the graph generated from the short text problem. Their model was evaluated on

a food-borne disease event dataset and outperformed existing models in precision (0.86),

recall (0.84), and F1-measure (0.85).

The work in [38] used Graph Convolutional Networks (CGN) to build a syntax-aware

Neural machine translation. The authors used GCNs on top of CNNS or Bi-directional

RNNs to translate two challenging language pairs: English-German and English-Czech.

The authors evaluated the performance of their model using multi-bleu (Bleu1 and Bleu4)

and Kendal τ reordering scores. Results showed that, when paired with the GCN, the

performance of CNN and Bi-RNN improved, especially in the Bleu4 metric, to achieve a

range of [23.3-23.9] on English-German translation and a range of [8.9-9.6] on the English-

Czech translation.

In [39], the authors proposed RECON, a tool that used GNNs to identify relations in

a sentence. Their model consisted of three elements, an RNN, a graph attention mech-

anism, and a GNN. Their approach effectively learned Knowledge Graph context and

outperformed baseline models on the wikidata dataset in terms of micro precision (0.872),

micro recall (0.8723), micro F-measure (0.872), macro recall (0.339), and macro F-measure

(0.442). However, their model did not achieve the best macro precision (0.6359), whereby

a baseline model achieved a higher value of 0.6921. The model was also evaluated on the

NYT Freebase dataset, where the model achieved the highest top 10% precision (0.875)

13

and top 30% precision (0.741).

Multiple recommender system problems were tackled using GNNs. In [40], the authors

proposed GraphRec+, a GNN framework for social recommendations. The authors used

three graphs: the user-user graph, the user-item graph, and the item-item graph. For each

graph, the model needed to discover latent factors, i.e., hidden behaviors and character-

istics, that might improve the recommendations made. Therefore, GraphRec+ had three

components: the first component models users in an attempt to understand their latent

factors. The second component models items in an attempt to understand their latent

factors. The third aims to rate the predictions made. The authors tested their system on

three datasets: Ciao, Epinions, and Flixster, and for every dataset, they performed two

experiments: once training on 60% of the data, the other on 80% of the data. Across all

data sets and for both experiments, the proposed model scored the lowest MAE [0.73-0.84]

and RMSE [0.97-1].

In [41], the authors used a personal interest attention graph neural network (PIA-GNN)

to predict the user’s next click based on the user’s current and historical sessions. In their

approach, the succession of items clicked is modeled as a directed weighted graph whereby

the weight of the link represents the number of times the user moved from the first item

to the next. Using the cross-entropy loss function, the authors then trained a GNN with

self-attention layers on the graph. The model was evaluated on two datasets: Yoochoose

and Diginetica, and achieved the highest top 20 recall (0.7146 and 0.5262 respectively) and

highest top 20 Mean Reverse Ranking (MRR) (0.3127 and 0.1839 respectively) against all

baseline models.

GNNs were also used to tackle many combinatorial problems, such as the decision

variant of the Traveling Salesman Problem [42, 43, 44], the graph coloring problem [45,

46], maximum constraints satisfaction problems such as Maximum Cut and Maximum

Independent Set [47, 48], among many others.

2.3 Graph Neural Networks on Temporal Graphs

GNNs proved to be potent and versatile deep learning tools that were used to tackle

problems from varying fields. However, the previously mentioned work focused on static

graphs. Although the bulk of recent research papers used static graphs to model their

14

system, more and more researchers are applying GNN, or variants of it, on temporal

graphs. We review below some of this work.

In [49], the authors developed the Long Short-Term Memory R-GCN (LRGCN) model

to tackle the path classification problem. The proposed method, called LRGCN-SAPE,

used node correlations as an intra-time feature and studied the dependencies between two

consequent graph snapshots as inter-time features. Their model has an LSTM component

that learned the trends of edge failures and predicts future ones. The authors also pro-

posed a new self-attention-based method for edge embedding called Self-Attentive Path

Embedding (SAPE) that helped decide which features are the most important to learn

from. The authors applied this approach to two tasks: predicting path failure in telecom-

munication networks and predicting path congestion in traffic networks. They compared

their approach to many baseline models and found that their model reached significantly

better levels of F-measure, where it scored 0.6189 when predicting path failure in telecom-

munication networks and 0.8675 when predicting path congestion.

The work in [50] attempted to predict cellular traffic by region as a first step to allow

the demand-aware resource allocation of cellular data. The authors proposed Multi-View

Spatio-Temporal Graph Network (MVSTGN) for cellular traffic prediction, which lever-

aged the Spatio-temporal characteristics of cellular data demand. Their model used the

attention mechanism to aggregate important local information extracted from the node fea-

tures and their relationships and important global information by aggregating information

from past graph slices 1. The authors divided the city of Milan, Italy, into an N×N matrix

where each cell is a geographical square of 235m× 235m. After recording the cellular data

traffic of this region for almost one year, the authors applied MVSTGN on the temporal

graph generated and recorded the RMSE, MAE, and R2 of their model on different types

of cellular transactions (SMS, call, Internet). Their proposed model recorded an RMSE

range of [30.94 - 165.04], an MAE range of [14.68-88.69], and an R2 range of [0.88-0.95]

and outperformed all baseline models.

In [51], the authors attempted to estimate travel time by leveraging spatial information

as well as temporal ones. The authors mapped the roads as a directed graph where the

vertices are road segments and connect with an edge the road segments that can reach each

1The temporal graph is a sequence of static graphs. Each of these static graphs is called a slice
of the temporal one.

15

other. The authors used their model to predict how long a vehicle needs to traverse an

edge by learning from multiple features, most importantly the traffic speed, which varies

over time. To do so, the authors proposed their own Spatial-Temporal Graph Convolu-

tional Networks (ST-GCN) architecture which learns from edge embeddings using multiple

components such as the ST-GCN cell, which contained graph convolution layers that ag-

gregate the information of the neighboring edges and a transformer layer to emphasize the

information of the node itself. The information generated by these two components was

fed to a transformer layer and then to a network of fully connected layers to make the

predictions. The authors tested their approach on multiple data sets and reported that

the RMSE range of their model was [121.14-52.35], their MAE range was [39.25-63.38],

and their MAPE range was[0.14-0.25]. Their model outperformed other baseline methods.

In [52], the authors proposed an Attention-based interaction-Aware Spatio-Temporal

GNN (AST-GNN) to predict pedestrian trajectories. Their approach was composed of two

components: a Spatial GNN (SGNN) and a Temporal GNN (TGNN). The SGNN focused

on capturing important interactions among pedestrians at a given time step, whereas the

TGNN selects the important time steps to build the motion for the features of each pedes-

trian. The authors reported the average displacement error (ADE) and final displacement

error (FDE) of their model on multiple datasets. The range of their reported ADE is [0.28-

0.66], whereas their reported FDEs fell in the range of [0.45-1.02]. When compared to other

state-of-the-art methods, their model managed to outperform the majority of them in a

faster time.

In [53], the authors proposed a Spectral Temporal Graph Neural Network (SpecT-

GNN) to predict the trajectory of agents. Their approach consisted of two units that

share the same structure but are each applied to a different topology. One of the blocks

is tasked with extracting the information from the agent graph, the other from the en-

vironment graphs. The agent graph contained information about the agents and their

relationship with each other, whereas the environment graph contained information about

the environment extracted from images. Their model employed a CNN to learn from the

aggregated information of the two blocks and predict the trajectory of the agent. The

authors compared their proposed approach to state-of-the-art methods on two datasets:

the SDD dataset and the nuScenes dataset. Their model outperformed all its opponents

in terms of minADE20 and minFDE20 scoring a minADE20 of 8.21 and a minFDE20 of

16

12.42 on the SDD dataset and on the nuScenes dataset, the model reported minFDE20

values in the range of [0.28-1.87].

In [54], the authors tackled the task of wind forecasting using Spatio-temporal graphs.

In their approach, they used an undirected graph where the wind farm regions are the

nodes. The latter carried as features the wind speed and wind direction at every time step.

If two farms were found to have a high feature correlation, they were connected by an edge

that carried the distance between these two farms. The authors then used an LSTM to

learn the temporal features of each node in the graph and extract these features at every

time step. These features were then fed to a module of graph convolutional layers in order

to make predictions. The authors tested their proposed approach on the Eastern Wind

Integration dataset by predicting the wind speed at different intervals, starting at the next

10 minutes up to the next 3 hours. The work reported an RMSE range of [0.43-0.8] and

an MAE of [0.3-0.78], which shows that the model outperformed state-of-the-art methods

In [55], the authors paired Recurrent Graph Networks GCNs) with Long Short-Term

memory to propose a Temporal Graph Convolutional Neural Network (T-GCN)to forecast

crimes of varying severity. The model first used a GCN to extract the embeddings of the

regions in the graph. These embeddings were fed to an LSTM to learn the patterns of crime

and predict future ones. They finally employed a CNN to decode the predictions of the

LSTM and output the crimes that will occur in the graph regions. The authors evaluated

their model using the Root Mean Square Error (RMSE), Mean Absolute Percentage Error

(MAPE), and JessenShannon Divergence (JS) and compared their performance to Random

Forest, XGBoost, and Conv-LSTM. The results showed that the proposed model had an

RMSE range of [1.89-6.6], a MAPE range of [0.34-0.4], and a JS range of [0.06-0.11] on

the four tested crime types. Compared to the other methods, T-GCN outperformed its

counterparts in terms of RMSE and MAPE on three out of the four crime types.

In [56], the authors predicted the movements of a person by feeding a TGN a temporal

graph representing the movement of their skeleton. Their ST-GCN architecture outper-

formed state-of-the-art methods on two datasets: Kinetics and NTU-RGB+D. The model

recorded 0.307 accuracy on the Kinetics dataset and 0.815 and 0.884 accuracy on the NTU-

RGB+D dataset in terms of X-sub (cross-subject, where they trained on clips from one

set of actors and tested on clips from different actors) and X-View (cross view, where they

trained on the angle of two cameras and tested on the angle of a third one).

17

In [57], the authors attempted to learn the functional connectivity between regions

of the brain to better understand the brain connectome and used it to perform certain

classification tasks of phenotypic characteristics. In this work, they focused on the task

of gender classification. To do so, the authors modeled the functional connectivity of the

brain as a temporal network where the regions of the brain are the nodes, and the edges

link regions that showed activity correlation higher than a preset threshold. The authors

then proposed a model called Spatio-Temporal Attention Graph Isomorphism Network

(STAGIN). They evaluated their proposed approach on the Human Connectome Project

(HCP) dataset and divided it into two groups: HCP-Rest, which showed the HCP-Rest

which groups scans of the patient’s brain while resting, and HCP-Task, which grouped the

scans of the patient’s brains while performing an activity. Their model outperformed state-

of-the-art ones in terms of accuracy and AUC, scoring an accuracy value of 0.8701 and

0.882, as well as AUC values of 0.91 and 0.92, on the HCP-Rest and HCP-Task datasets,

respectively.

18

Chapter 3

Background

This chapter explains the relevant concepts that help grasp the proposed approach. We

start by explaining software quality. Then, we go over temporal graphs, the representation

we use to model the system, and Temporal Graph Networks, the deep learning model we

use to predict the impact of a change.

3.1 Software Quality

Software engineering focuses on many problems that arise when developing a software

system, such as completing user requirements, meeting deadlines, managing hardware lim-

itations, and maintaining the developed software system[58].

The practices of software engineering can be traced back to the early 1950s. However,

research on software engineering emerged later, during the 1960s. Software engineering

was considered a part of the computer science field and it is only in the 1980s that journals

specific to the topic started emerging[58]. As the world became more reliant on software

systems and access to programs became widespread, developers needed to produce complex

programs that were usable, dependable, and safe. These attributes are commonly known

as software quality attributes.

The ISO/IEC 9126 standard[59] summarizes the quality of a program according to six

characteristics: functionality, reliability, usability, efficiency, maintainability, and portabil-

ity. Each of these characteristics is further dissected into subordinate ones that further

detail the qualities of the system[60]. The most important of these qualities is, arguably,

19

maintainability which is the effort and cost required to perform specific modifications to

the software [61]. Nowadays, systems are constantly evolving to meet market requirements;

hence, maintainability has become one of the most critical software quality attributes.

During the maintainability phase of the software system, developers have to introduce

changes to the components of the system to either patch misbehavior or introduce new

features. These changes usually impact more than one dependent system component.

Therefore, developers must know which components will be affected once they introduce

a change. This can be very difficult when conducting changes on legacy code or systems

that the developers have not developed themselves, which is very common in the field [62].

This lack of knowledge of the software dependencies makes tracking how components might

be affected by a change cumbersome and error-prone. Thus, instead of ameliorating the

overall system quality, developers may unknowingly introduce further, more complicated

bugs[10]. That being the case, assessing the impact of a change is essential to maintaining

the system quality.

In this work, we attempt to answer the following question: knowing that the developer

will change file fi, which other files will also need to change? The cause of this change

propagation might be a modification of a code section on which the other component is

dependent. For example, in the Java-based system presented in Figure 3.1, class B is a

child of class A. Class B would use some of the methods and variables that appear in class

A. If a change is introduced to class A, for example, removing a variable such as var1, the

developer would need to account for this in class B.

Figure 3.1: Class diagram of Java classes A and B where B is a child of A.

20

In some cases, the dependencies are hidden, for example, two components reading from

and writing to the same file. Figure 3.2 represents how a change introduced to a file might

propagate to one of its dependent files and might further propagate to other dependencies

of that file.

Figure 3.2: Change propagating to different dependencies. Items in grey are the
ones that have changed.

Change impact analysis estimates how an introduced change will ripple across the

components of a system and which of them will need to be changed as well[63]. This

analysis can be done at different levels, such as methods, classes, or files. In our work,

we focus on the file level granularity and cover both homogeneous systems which were

developed using a single programming language, as well as heterogeneous ones that were

developed using multiple languages. We also focus on different programming paradigms:

object-oriented and other. Therefore, in order to build a general approach, we perform

impact analysis and predict how a change propagates at the file level of the system.

3.2 Temporal Graph

Graph theory is a branch of mathematics that studies the impact of graphs on system

properties[64]. Graphs can be used to represent relationships between different components

within a complex system. In such graphs, system components are represented as vertices

and relationships between them as edges connecting the vertices. More formally, a graph

G = (V,E) has a set of vertices V that contains the components of a system and a set

of edges E that summarizes the relationships between the vertices of V . An edge (vi, vj)

represents the relationship between vertices vi and vj ∈ V .

If the relationship between the vertices is symmetric, the graph is undirected i.e. edge

(vi, vj) is equivalent to edge (vj , vi). Otherwise, the graph is directed and edge (vi, vj) is

different from edge (vj , vi). The graph is said to be weighted if an additional attribute is

21

Figure 3.3: A undirected, unweighted graph(left) and a directed weighted
graph(right)

added to the edge to quantify the relationship between the two vertices. In such a case,

each edge (vi, vj) has a weight attribute wi,j . Figure 3.3 shows an example of an undirected

unweighted graph and a weighted directed one.

In this work, we resort to directed weighted graphs to model our problem. Given a

software system, each file in the system is represented as a vertex, and edges link two files

that changed together. The edge that connects A to B reflects the proportion of B was

involved in a change that modified A as well.

To model the system as a temporal graph, we start with the first recorded change and

add all the modified files to the graph as nodes and link them together. This would make

the graph of the first time step a complete one. We then iteratively build the temporal

graph by adding a time step for every recorded change and updating the nodes, edges,

and their co-changeability value by referring to graph of the previous time step and the

modified files of the current change set. The weight of the added edges is assigned as a co-

changeability metric. The value of co-changeability between two files A and B is the answer

to the following question: from the previous change set, how many times was file A changed

when file B was also changed? We discuss in detail how to compute co-changeability in

Chapter 4.

Usually, graphs are used to represent or model static systems. In such situations,

neither vertices nor edges change throughout the model lifetime. This is not the case for

many real-life applications, such as the growth of the World Wide Web[64] and traffic flow

in computer networks[65]. Similarly, in this work, the graph that we use to represent one

system does not remain static but evolves with the changes introduced to the system. It is

often the case that the degree of vertices changes as well when new vertices are introduced

22

to the graph as new files are added to the underlying software system. Such graphs are

named temporal, dynamic, or evolving graphs [66].

Temporal graphs are represented as an ordered sequence of static graphs capturing, at

each timestamp, the system characteristics at that time. Figure 3.4 shows an example of

a growing temporal graph where nodes and edges are added from one timestamp to the

next.

Figure 3.4: A temporal graph through four timestamps. Vertices (files) and edges(co-
changeability of files) are added through time

3.3 Artificial Neural Networks and Deep Learning

Machine learning is a keystone in technological development and is frequently used to tackle

many complex problems. Conventional machine learning techniques include probabilistic

models, decision trees, and support vector machines, among others. In many real-life ap-

plications, these conventional techniques have trouble finding patterns in raw data. This

requires experts in the field to clean and process the data[67]. Representation learning is a

branch of machine learning that develops models that can learn and find patterns from raw

data. The methods of this branch can differentiate important features from irrelevant ones

when solving a problem. This makes the models more readily usable, as they require little

to no data pre-processing [68]. Deep learning methods are representation methods obtained

by stacking simple modules that transform the data, layer by layer, into representations

at a higher, more abstract level. With the use of sufficient transformations, very complex

functions can be learned [67]. Deep learning solved previously intricate problems for the

machine learning community as it turned out to be very effective in finding complex pat-

terns in high-dimensional systems. Such problems include finding image patterns[69, 70],

23

speech recognition[71, 72], text translation[73, 74], microarray data analysis[75, 76], and

reconstructing brain circuits[77, 78].

These problems required the application of deep learning methods on images, text, sig-

nals, and data frames. Several deep learning methods were developed for these types of data

such as Multilayer Perceptrons (MLPs)[79], Convolutional Neural Networks (CNN)[80],

Long Short Term Memory Networks (LSTMs)[81], Recurrent Neural Networks (RNNs)[82],

Generative Adversarial Networks (GANs)[83], and Restricted Boltzmann Machines(RBMs)

[84]. These complex deep learning techniques are built using a simple unit called percep-

tron, and the mechanism we use to connect different perceptrons helps construct many

powerful models. In the next section, we go over the details of the basic architecture of

an artificial neural network as deep learning is nothing more than a neural network with

many layers.

3.3.1 The Perceptron and Artificial Neural Networks

A vanilla perceptron is a simple unit that takes a vector of real numbers as input, performs

some simple calculation, and then outputs either -1 or 1 (Figure 3.5). The calculations

performed are a linear combination of the input vector with a weight vector that the

perceptron learns. If the sum of this combination is positive, the perceptron outputs 1;

otherwise, it outputs -1. Formula 3.1 depicts the output o of a perceptron when given

an input vector < x1, x3, ..., xn > and wi is real-valued weight that controls the impact

of input feature xi on the output. In this formula, −w0 is a threshold that the linear

combination must surpass for the perceptron to output 1.

o(x1, x2, ...xn) =


1 if w0 + w1x1 + +w2x2 + ...+ wnxn > 0

-1 otherwise

(3.1)

In order to simplifiy Formula 3.1, a constant input x0 = 1 is added so that the inequality

can be written as
∑n

i=0wixi > 0 which can also be formulated as a vector →w .→x > 0 and

Formula 3.1 can thus be simplified as shown in Equation 3.2.

o(→x) = sgn(→w .→x) (3.2)

24

Where

sgn(y) =


1 if y > 0

-1 otherwise

(3.3)

The sgn function is called activation function as it dictates how the weighted sum of

the inputs will be transformed into the output. As we will see later on in this section and

Section 3.3.3, many possible activation functions can replace the sgn. Figure 3.5 represents

this perceptron.

Figure 3.5: A perceptron

Looking back at the equations, we can see that a perceptron represents a hyperplane

decision surface in the n-dimensional space of instance, where n is the number of inputs

the perceptron receives. All the instances that lie on one side of the hyperplane are labeled

with one class, whereas the points lying on the second side are labeled with the other as

shown in Figure 3.6.

This perceptron is powerful enough to correctly classify data points of simple binary

operators such as the AND, OR, NAND, and NOR. This is done by changing the output

function and changing w0, w1, and w2. For example, to correctly classify data points of

the AND function, the perceptron could use the ReLU as its activation function [85]. The

ReLU function is computed using Formula 3.4 and presented in Figure 3.7.

ReLU(x) = max(x, 0) (3.4)

25

Figure 3.6: The space of inputs x1 and x2 with the hyperplane o(x) separating the
labels of the data points

Figure 3.7: The ReLU function

The perceptron could then set w0 = −1, and w1, and w2 both equal to one. This way,

both x1 and x2 should be equal to 1 for the perceptron to evaluate to 1. The equation of

such perceptron is shown in Formula 3.5.

o = ReLU(x1 + x2 − 1) (3.5)

Similarly, the perceptron can learn to label the OR data points by setting w0 = −1, and

w1 and w2 both equal to 2. This ensures that as long as either x1 or x2 is 1, the perceptron

evaluates to 1. The equation of this perceptron is shown in Equation 3.6.

o = ReLU(2x1 + 2x2 − 1) (3.6)

26

However, a simple perceptron cannot represent the binary operator XOR (Table 3.1)

and this is because the data points are not linearly separable.

Table 3.1: the XOR operator

x1 x2 x1 XOR x2

0 0 0

0 1 1

1 0 1

1 1 0

Figure 3.8 visualizes the distribution of data points for the AND, OR, NAND, and

XOR operators. The figure shows that the data points of AND, OR, and NAND are

linearly separable since the plotted lines can separate the positive data points from the

negative ones. Figure 3.8d shows that no single line can separate the data points of the

XOR operator. Therefore, a single perceptron cannot learn this function.

27

(a) Data points of AND operator (b) Data points of OR operator

(c) Data points of NAND operator
(d) Data points of XOR operator

Figure 3.8: Data points plot of different binary operators

The challenge of classifying non-linearly separable data points is tackled by stacking

the perceptrons one after the other to build an Artificial Neural Network (ANN). Figure

3.9 shows an example of an ANN where the first layer of perceptrons is called the input

layer, the last layer of perceptrons is called the output layer, and everything in between

is referred to as hidden layers. This type of network is called a feed-forward network,

as every perceptron, now called a neuron, in one layer will send its output to be input

to neurons in the next layer. This architecture can have multiple hidden layers, each

containing a varying number of neurons. By stacking these layers, the ANN can learn

more complicated functions.

28

Figure 3.9: An ANN

One way to tackle the task of classifying the XOR operator is to break down its opera-

tions into a series of linear ones. TheXOR equation could be re-written as: XOR(x1, x2) =

AND(NOT (AND(x1, x2)), OR(x1, x2)). This series of simple binary operators can now

be represented using a series of neurons. These neurons use an activation function θ defined

in Formula 3.7.

θ =


1 if

∑2
i=0wixi ≥ 0

0 otherwise

(3.7)

An ANN with two hidden layers represented in Figure 3.10 can then learn to classify

the XOR data points.

29

Figure 3.10: A possible ANN used to represent the XOR operator. Neurons are
labeled with the operator that they perform.

In order for the neurons to perform the binary operators assigned to them, the weight

can be set to the following values: w1,AND = w1,OR = w2,AND = w2,OR = 1, wAND,NOT =

−1, wNOT,AND = 1,WOR,AND = 1. Furthermore, the biases of the x0, x
′
0, and x′′0 neurons

should be -2, -1, and 0.5, respectively.

3.3.2 The Backpropagation Algorithm

Throughout the years, researchers developed many techniques to assign appropriate weights

to the network such as the backpropagation algorithm [86], linear programming [87], and

evolutionary algorithms [88], the most widely used one being backpropagation.

The backpropagation algorithm tries to find the best combination of weights for the

network in order to minimize some error function. This is referred to as the training

process. The algorithm starts by randomly initializing the weights of the network. The

data points are then fed to the input layer of the network and then forwarded all the

way, through the different hidden layers, to the output layer. After the network makes its

prediction (classifies an instance), an error function is computed. This function measures

the difference between the predicted label of the data point and the actual one. One

frequently used error function is the one shown in Formula 3.8.

E(→w) =
1

2
(td − od)2 (3.8)

Where td is the target value for the data point d, and od is the output of the model for

30

this data point.

The algorithm then computes the gradient of the error, ∇E(→w), which shows the

way of the steepest ascent. The gradient ∇E(→w) is a vector whose components are the

partial derivatives of the error function with respect to every weight in the network. The

reasoning behind this is that the weights of a neuron in layer Li impact the output that is

sent to the neurons in layer Li+1. This is then used to compute the output of the nodes in

Layer Li+1 which, in turn, is sent to nodes in Layer Li+2 and so on until the final output

layer. Therefore, all the weights in the network will eventually impact the final output.

Backpropagation attempts to quantify the error caused by a weight wi in the network by

taking the partial derivative of the error function with respect to wi(Formula 3.9).

∇E(→w) =

[
∂E

∂w0
,
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wn

]
(3.9)

where ∂E
∂wi

is the partial derivative of E with respect to the weight wi, and ∇E(→w) is the

gradient of E with respect to →w Since ∇E(→w) shows the direction of the steepest ascent

on the error function, −∇E(→w) shows the direction that leads to the fastest decrease in

the error. Therefore, the weights are updated using the −∇E(→w) vector following Formula

3.10.

→w =→w − η∇E(→w) (3.10)

Where η is the learning rate that controls how much the data points affect the weights

update.

Or, in component form, the weights are updated using Formula 3.11.

wi = wi − η∇
∂E

∂wi
(3.11)

The network would be too slow to learn if this rate is too low. However, the network

might overshoot and miss the minima if the rate is too high. Figure 3.11 visualizes this.

31

(a) low η, the network is slow to
learn

(b) large η, the network is missing
the minima

Figure 3.11: Impact of η on the learning process

Although backpropagation tends to reach local minima instead of global ones, it can

still find acceptable weight assignments to the network. Its pseudo-code is presented in

Algorithm 1. Some stopping criteria that can be used are the model reaching a plateau

in the error function, or repeating the training process a certain number of epochs, i.e.

iterations.

Algorithm 1 Backpropagation

while stopping criteria not met do
Feed input to the data
Propagate the information forward from one neuron to the next
Make prediction
Compute the error function
Compute the derivatives of the error with respect to the network weights
Adjust the weights to minimize the error

end while

By stacking simple perceptrons, this ANN is able to learn a function that a percep-

tron alone cannot. Many complex architectures were built to tackle complex problems.

However, one fallback of vanilla ANNs is that they do not consider possible correlations

between the data points. As a matter of fact, the network learns from every data point

without establishing a connection with the one before it. Therefore, this architecture suffers

when fed sequential data such as videos, sound recordings, or temporal data. To efficiently

learn from these types of data, the notion of memory was added to the network in more

advanced architectures where each perceptron, now called a unit, has its memory - called

32

state- that stores some information that was previously fed to it. The first architecture

with such a characteristic was the recurrent neural network (RNN) which had only one

hidden state. This model suffered from long-term memory loss and could not save values

for many previous iterations. This problem was termed the vanishing gradient problem and

it occurs in deep models that have many hidden layers [89]. This happens when computing

the gradient of the earlier layers as the model needs to multiply many derivatives to know

the ∇ ∂E
∂wi

of a weight that belongs to the first few hidden layers. And if these derivatives

are smaller than one, chaining these multiplications will lead to a negligible number, so

the weight will not be updated by a significant factor and these layers become stale. For

example, if the network is using the sigmoid function as an activation function, its deriva-

tive is much smaller than one as seen in Figure 3.12. If the network contains n hidden

layers, the network would need to multiply n derivatives to correct the weight vector of

the first hidden layer, thus decreasing the gradient exponentially n times. As the number

of hidden layer increases, the gradient of the early hidden layers would quickly decrease

until reaching values asymptotic to zero, thus the weight vectors would not be corrected

adequately.

Figure 3.12: The sigmoid function and its derivative

To overcome this, a new architecture was proposed: The Long Short Term memory

model that we describe in the next section.

33

3.3.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a deep learning model capable of learning order

dependencies1 in sequence prediction problems. LSTM is a trainable model that can store

information and detect patterns while being immune to noise in the data (mislabeled data

points or outliers). The model receives data, transforms it into information, and saves this

data in its memory. Data is fed to this model during cycles; as more cycles pass, the LSTM

should not lose the information captured from earlier cycles.

LSTMs build over RNN by attaching to each neuron in the network two different

memories and multiple gates that control the flow of information into these memories.

LSTMs have been shown to save information for longer cycles than their RNN counterparts

[90] since they do not suffer from the vanishing gradient problem[89]. Therefore, this work

will employ LSTMs to learn the co-changeability pattern of the files in a system.

The LSTM model is composed of multiple LSTM units. A standard LSTM unit com-

prises a cell state, a hidden state, and three gates: an input gate, an output gate, and a

forget gate (Figure 3.13). The cell and hidden state are tasked with saving the information

at arbitrary time intervals. The cell state holds the information of many past timestamps

while the hidden state carries the information of the last seen timestamp. For this reason,

the hidden state is known as the unit’s short-term memory while the cell state is the unit’s

long-term memory. The cell state offers an advantage to LSTM that is missing in vanilla

RNN. The gates are tasked with regulating the flow of information into and out of the cell.

1where the input i is not completely independent from the input i−1. Such as the case of videos
or time series.

34

Figure 3.13: The gates of an LSTM unit [1]

The LSTM unit uses different activation functions in its computations. We list below

the two main ones[91]:

1. The sigmoid function (σ)

All the gates usually employ the non-linear sigmoid function to determine how much

of the information is passed to the next stage. The sigmoid function has an output

value in the range [0-1] and is computed using Formula 3.12.

σ(x) =
1

1 + e−x
(3.12)

Figure 3.14 shows the plot of the sigmoid function.

35

Figure 3.14: The sigmoid function

2. The hyperbolic tangent function (tanh)

The gates usually employ the non-linear tanh function when updating the cell state

and the hidden state. This function outputs values in the range [-1,1] which allows

for increases or decreases in the cell state and hidden state. The tanh function is

computed using Formula 3.13.

α(x) =
e2x − 1

e2x + 1
(3.13)

Figure 3.15 shows the plot of the tanh function.

Figure 3.15: The tanh function

Each of the three gates manages the passage of information at a given stage in the

process [92]. The cycle of updating the cell state and making a prediction at a given time

step is the following:

36

Step 1: The forget gate chooses which information previously saved in the cell should be

removed. This gate attempts to remove data points that might be outliers or noisy.

The forget gate manages the passage of the information gained from the previous

cycles (timestamps) using Formula 3.14.

ft = σ(xt × Uf +Ht−1 ×Wf) (3.14)

where:

xt: the input at the current timestamp t.

Uf : weight associated with the input.

Ht−1: the hidden state of the previous timestamp (t− 1).

Wf : weight matrix of the hidden state 2.

The sigmoid function helps restrict ft to the range [0-1] which reflects the impact

the output of this gate will have on upcoming operations. After computing ft, it

is multiplied by the cell state at time t (Ct). If ft ≈ 0, then the cell state Ct is

discarded for this timestamp; the unit forgets everything. If ft ≈ 1, the cell state is

passed as is, i.e. the unit will never forget anything. The values between 0 and 1

dictate how strong the output of this gate will affect the value of the cell state later

on.

Step 2: The input gate deals with the information passed to the unit at the current times-

tamp. It attempts to learn the importance of the information at the current times-

tamp and whether it should be saved into the cell state or not. The equation of this

gate is shown in Formula 3.15.

it = σ(xt × Ui +Ht−1 ×Wi) (3.15)

where:

xt: input at the current timestamp

Ui: weight associated with the input.

2The f in Uf and Wf stands for ”forget”.

37

Ht−1: hidden state of the previous timestamp (t− 1)

Wi: weight matrix of the hidden state3.

The sigmoid function also limits it to the range [0-1]. The computed value of it is

also used to update the cell state, and like the forget gate, the range [0-1] of the

sigmoid function helps control the effect of the input when updating the cell state.

Step 3: To update the cell state, the unit must first compute the new information using

Formula 3.16.

Nt = α(xt × Uc +Ht−1 ×Wc) (3.16)

where:

xt: the input at the current timestamp t.

Uc: weight associated with the cell state.

Ht−1: the hidden state of the previous timestamp (t− 1).

Wc: weight matrix of the cell state.

The cell state is then updated using Formula 3.17 where ft is used to regulate the

importance of the previous cell state.

ct = ft × ct−1 + it ×Nt (3.17)

As mentioned earlier, a low ft makes the unit quickly forget older information,

whereas a higher ft helps it store older information. Also, it helps regulate the

influence of the input of the current timestamp, xt, on the cell state. The Tanh

function is used instead of the sigmoid function in Equation 3.16 to allow for neg-

ative values of Nt ehich would cause values to be subtracted from the cell state,i.e.

forgotten.

Step 4: The output gate extracts the valuable information from the now updated cell memory

and generates the output of the LSTM unit. The information that the output gate

finds useful is stored in the hidden state of the next time step. Formula 3.18 is that

3The i in Wi and Ui stands for input.

38

of the output gate.

ot = σ(xt × Uo +Ht−1 ×Wo) (3.18)

where:

xt: the input at the current timestamp t.

Uo: weight associated with the output.

Ht−i: the hidden state of the previous timestamp (t− i).

Wo: weight matrix of the output.

To update the hidden state, the unit uses formula 3.19.

Ht = ot × tanh(Ct) (3.19)

whereby Ht is the hidden state at timestamp t.

And finally, the output is computed using Formula 3.20.

Output = σ(Ht) (3.20)

In our work, we used the sigmoid function to compute the output, as it is the go-

to function when performing binary classification using deep learning models. The

sigmoid function will restrict the output values to the range [0-1]. Therefore, if the

output value is greater than 0.5, it is predicted to belong to one class; otherwise, it

is classified as belonging to the other (Algorithm 2). The threshold value 0.5 is used

in this case as it separates the cases when a model predicts a data point as belonging

to one class more than the other. For example, if the model outputs the value 0.7,

this number is close to 1 than 0, so the model is predicting that the input data point

most probably belongs to label 1 more than it belongs to label 0. The output 0.2

however, reflects that the input data point most probably belongs to label 0 instead

of 1.

Just like with perceptron, these units can be stacked one after the other to create a deeper

LSTM model. In a stacked LSTM model, the output of one LSTM unit is the input to the

39

Algorithm 2 Assigning a a class class to the LSTM prediction

output←[0-1]
if output > 0.5 then

predict← ”affected by change”
else

predict← ”not affected by change”
end if

next. After creating and connecting the units, the model uses BackPropagation Through

Time (BPTT) [93] to find the best weights to perform the task at hand.

The BPTT is derived from the Backpropagation algorithm used to train the weights of

a regular ANN. The challenge of applying BPTT derives from the fact that in an LSTM,

the output of the unit depends on the cell state and hidden state of the previous timestamp,

which in turn depends on the cell state and the hidden state of the timestamp before that so

on until the very first timestamps or the first data point that the network receives. Hence,

to adjust the weights of a unit, the algorithm should go back through all timestamps and

”unroll” the LSTM unit i.e. revisit all previous outputs since they influence the current

output so that it can correctly compute the error function. Figure 3.16 shows how an

LSTM unit can be unrolled to revisit old cell states and hidden states.

Figure 3.16: An unrolled LSTM [2]

Once the LSTM unit is unrolled, the weight of passing information from time step ti to

time step ti+1, i.e. the weight associated with the cell state, is the same for all ti. So the

network BPTT can find the gradient with respect to all the weights of the gates and apply

the weight correction method seen in Formula 3.10. The network trains by repeatedly

visiting all data points and learning from them. After updating the internal weights of the

units and the weights connecting the units with each other, the LSTM is ready to classify

new, unseen data points. Algorithm 3 shows this process.

One additional complex data forms that deep learning methods began exploring are

graphs which can readily be used to model interactions between components of various

40

Algorithm 3 The BPTT algorithm

X ← training features
Y ← training labels
Initialize weights of LSTM
for iteration in epoch do

Forward propagate all the training points
Record the predictions of the model
Unroll the model
Compute the error function
Compute the gradient vector
Correct every weight in the model using wi = wi − η∇ ∂E

∂wi

end for

systems. To learn from this type of data, a new deep learning model has been created:

the Graph Neural Network (GNN)[94], with its variant, the Temporal Graph Network

(TGN)[95].

3.3.4 Temporal Graph Networks

Temporal Graph Networks (TGN) are one variant of Graph Neural Networks. The latter

are a more recent class of deep learning methods that learns from the graph data structure

[94]. Their use in solving various problems is making them more and more popular [95].

In GNNs, the nodes iteratively update their states by receiving messages from neighboring

nodes. Through message-passing, a GNN updates every node’s features by aggregating

features from the adjacent nodes. In this work, we focus on Temporal Graph Network - the

variant that was developed with temporal graphs specifically in mind. Although variants

of this architecture were previously presented to tackle many problems, the work in [95]

presents the general TGN architecture and explains the functionality of its components.

The general GNN architecture for temporal graphs is defined as an encoder-decoder

pair. The encoder maps the temporal graph into node embeddings, whereas the decoder

converts these node embeddings to make a prediction. To build the encoder, five modules

are defined [95]. We list them below:

1. Memory (or state): at a given time t, every node i that the model has seen so

far has its own memory vector si(t). This vector summarizes the history of the node

and is updated after every interaction (i.e. the file being impacted by a change),

even after training. Memory helps TGN keep track of long-term dependencies. In

41

our work, the memory of a node stores whether the node was changed at time ti or

not.

2. Message Function: after every event involving node i, a message is computed to

update the node memory. When an interaction involves two nodes i and j, a message

function is computed for each of them. The general formula for the message function

is shown in Equation 3.21.

mi = msg(si(t
−), sj(t

−), t, eij(t)) (3.21)

where:

mi: is the message computed for Node i at the current time step.

si(t
−): is the memory of node i at the previous time step (t− 1).

sj(t
−): is the memory of node j at the previous time step (t− 1).

t: is the current interaction

eij(t): is the edge feature at the current time step (t).

msg: is a learnable function

3. Memory Updater: After every event in the graph, after every commit in our case,

the memory of the affected nodes is updated. A learnable function class, such as

LSTM or GRU, can be used as a memory updater. The memory is updated using

Formula 3.22 where mem is the learnable function class.

si(t) = mem(mi(t), si(t
−)) (3.22)

4. Embedding: The embedding module is used to generate temporal embedding of

Node i at time t. The embeddings are vectors representing the information of a

node. It was observed that when a node has been inactive for a long time, its

information will go out of date and the node becomes stale. This behavior is known

as the staleness problem of nodes. Node embedding can overcome this problem by

aggregating the information from the adjacent nodes and updating the memory of

the node using this information [96]. Multiple methods can be used to embed a node,

42

such as embedding using the identity (the memory itself), time projection (uses an

RNN or one of its variants to project how the embeddings would look like in the

future)[97], and Temporal Graph Attention (which aggregates information from the

neighbors of the node)[95]. In our work, we choose to keep the memory of the node

intact and update the edge features, which contain the co-changeability of the two

nodes, instead. This process is explained in the methodology chapter 4.

In [95], the authors propose the TGN architecture for edge prediction on the Wikipedia,

Reddit, and Twitter datasets. In the first two datasets, the graphs are bipartite and the

task is that of predicting if one user will show interest in a certain topic (either by following

or clicking). The graph of the Twitter dataset is not bipartite and the task is to predict if

a user will follow another one. An ablation study was performed and a variety of message

aggregators, memory updates, embedding functions, and training methods were tested.

When trained on different data sets the trained model significantly outperformed other

GNNs. Therefore, we took inspiration from this approach and present a modified TGN

architecture to tackle the problem of change propagation in software systems.

43

Chapter 4

Methodology

Multiple repositories help developers share their code when implementing a program. An

example of such repositories is GitHub. GitHub provides developers access control and

several collaboration features, such as bug tracking, feature requests, and task management.

These features make GitHub a valuable resource that allows the study of the evolution

of software systems across different patches, where small changes are introduced to the

software, and across different versions, where major changes are introduced.

When developers upload a patch to GitHub, the repository saves metadata, such as a

list of the modified files and the upload time. The files that are included in the patch form

a commit. Our proposed approach is a system that takes as input the GitHub repository

and a file that was changed by the developer. It then outputs the files that are expected to

change as well. In our approach, we consider the multiple commits of a software system on

the GitHub Repository. We represent each commit as a change set that introduces a slice

to the temporal graph. We build the slice of commit time ci by duplicating that of slice

ci−1. Then, we loop through the files affected by the commit. If a given file was introduced

to the system during the current commit, we add a representative node of this file to slice

ci. All the files that were modified in this commit will have their nodes connected to each

other through edges. The edges established after this commit will persist throughout the

entire software history graph, albeit, their weights will change with time to reflect the

fluctuation of their co-changeability value. Figure 4.1 illustrated this step.

44

Figure 4.1: Example of a temporal graph built to model the change sets at every
time step

We then apply a TGN to the temporal graph to learn which files change together. This

will be used later on to predict future change sets. We define a change set as the set of

files that change together at a particular commit. Figure 4.2 shows the workflow of this

process.

Figure 4.2: Workflow of the proposed approach

4.1 Data Extraction and System Modeling

We used the Python library pyDriller to extract change propagation datasets from GitHub

[98]. This Python package can traverse the history of a system from its Github repository

and mine the timestamp and the modified files of each commit. To employ this tool, we

cloned the repository of each program and traversed its commits. We extracted all the

recorded changes along with the modified files and data of every change. This allowed us

to extract a log of each file system where each line holds the timestamp of the commit and

the list of files modified. For example, consider a scenario where the developer changed

File A and File B, pushed the commit to Github; then she changed File B and File C,

and then pushed the commit to Github. And finally she added File D to the system and

pushed the commit. Using pyDriller, we can read these commits in order and know the

45

exact time step during which each file was modified. In this case, the output of pyDriller

would be similar to the following:

7/12/2022-21:51, File A, File B

7/12/2022-23:12, File A

7/13/2022-11:11, File B, File C

7/13/2022-12:14, File A, File B, File C, File

D, File E

7/13/2022-13:10, File F , File A

We would know that File F was added to the system at the last commit since it was

the first time it appeared in a commit.

We assume that every commit represents a change set. Therefore, we discard all the

commits that modified only one file as they do not offer any information about the inter-

actions among files in the system. Additionally, we remove the larger commits, which are

usually indicative of a version update. These large commits have multiple files changed

together, not because they influence each other but because of the significant modifications

done to the system[99]. The result of this step is the change sets of a given software system

in a temporal order. Therefore the only commits kept from the output of pyDiller would be:

7/12/2022-21:51, File A, File B

7/13/2022-11:11, File B, File C

7/13/2022-13:10, File F , File A

4.2 Graph Representation

We use a weighted directed temporal graph to model the change propagation problem. In

our approach, the nodes of the graph are the files of the software in one commit. Two nodes

are linked with an edge whenever the two files that they represent are changed at the same

time (in the same commit). Once two files are connected with an edge, they will remain

adjacent for the remaining slices of the temporal graph. The weight on an edge represents

co-changeability between the two files. Co-changeability is a measure that reflects how

46

likely it is for these two files to change in the same commit. As the system evolves and new

changes are introduced, the co-changeability between the files is recomputed. A basic way

to measure co-changeability is by counting the proportion of times these two files changed

together in past commits and divide this number by the total times these two files were

changed in general. If a given file A has been changed at times SA = ti, tj , ..., tk, and file B

has been changed at times SB = tm, tn, ..., tv, a simple way to compute the co-changeability

of A and B CochA,B is using Formula 4.1.

CochA,B =
|SA ∩ SB|
|SA ∪ SB|

(4.1)

However, this formula does not take into consideration that some files may depend

on one file only while others may be central ones that depend on and change with many

other files. To visualize this better, we assume that we are learning the co-change pattern

of a website. This website contains multiple HTML files, but one JavaScript file. The

JavaScript file acts as a bridge between the HTML files and the API and modifies all

the HTML files to add the information of the database to them. This means that if

the developer modified an HTML file, the change will most likely only propagate to the

JavaScript file. Whereas, if the developer modifies the JavaScript file, the change may

propagate to any of the HTML files.

Our co-changeability value must reflect this. For example, assume that the system is

made up of three HTML files: Home.html, ContactUs.html, and Account.html, and one

JavaScript file called Backend.js. The commits of the file are in Table 4.1

Table 4.1: History of commits for website example

Commit Files affected

c0 Backend.js, home.html

c1 Backend.js, ContactUs.html

c2 Backend.js, Account.html

In this example, the JavaScript file is central in the system, and changes with all the

other files, whereas each HTML file changes only with the JavaScript one. Using Formula

4.1, the last slice of the graph would look like the one in Figure 4.3 where the Javascript

file is represented by a square and the HTML files are represented by circles. In that figure,

47

all the edge weights are equal to 0.33.

Figure 4.3: Undirected graph representing the website formed of three html files and
one Javascript file.

However, a better way to read the history of the commits is that every time home.html

(or any other HTML file) was changed, Backend.js was also changed. The graph in Figure

4.3 does not reflect the fact that every time an hmtl file changed, Backend.js also changed.

After all, Equation 4.1 answers the question: What is the probability of File A and File B

changing together? Instead, we would like to answer the following question: Knowing that

File A changed, what is the probability that File B also changes? This question is better

answered using Formula 4.2.

Coch∗A,B =
|SA ∩ SB|
|SA|

(4.2)

Coch∗i,j may be different than coch∗j,i. Therefore, a directed graph would be best suited

to model this behavior. When using a directed graph to represent the coch∗ values of the

previous example, the weight of the edges on the last slice of the graph would be the ones

in Figure 4.4.

48

Figure 4.4: A directed graph to represent the website example

The graph of Figure 4.4 informs us that every time Home.html was changed, Backend.js

also changed, but only in 33% of the cases when Backend.js was changed, did Home.html

change as well. This better reflects the relationship between the files in the system.

These equations are biased against files added later in the development and mainte-

nance process. As a matter of fact, older files would would score high co-changeability than

newer ones because they tend to be involved in many more change sets. However, newly

introduced files may have many strong dependencies. To correct this, when computing

coch∗A,B, we only consider the change events after introducing both files A and B

to the system. For example, assume that we want to compute the co-changeability of a

system file with the commits listed in Table 4.2.

Table 4.2: History of commits of example system

Commit Files affected

c0 A,B

c1 A,C

c2 B,D

c3 A,B,C

At commit c0, both files A and B were created. Therefore, their co-changeability at

c0 is 1, since, up to this point, every time A was changed, B was changed as well (in this

case, the only change they went through is their creation). At commit c1, a new file C

is introduced to the system, and file A is modified simultaneously. After commit c1, the

coch∗A,B will drop, since A was in a commit that B was not involved in (c1). At time

49

of commit c1, File A was involved in commits SA = {c0, c1}, and File B was involved

in commits SB = {c1}. This makes coch∗A,B = 1
2 = 0.5. At the same time, file C was

only involved in commit c1, so the coch∗A,C = 1. As for cochB,C , these two files were not

involved in any of the same commits since the creation of the newer file (C), so cochB,C = 0,

and no edge is added between their representative nodes. We compute the co-changeability

of all of these files in Table 4.3.

Table 4.3: Co-changeability of the files in the example system, the column value
shows the value of the formula for these files

Commit no. fi fj coch∗fi,fj value

0
A B {c0}/{c0} 1

B A {c0}/{c0} 1

1

A B {c0}/{c0, c1} 0.5

A C {c1}/{c1} 1

B A {c0}/{c0} 1

C A {c1}/{c1} 1

2

A B {c0}/{c0c1} 0.5

A C {c1}/{c1} 1

B A {c0}/{c0, c2} 0.5

B D {c2}/{c2} 1

C A {c1}/{c1} 1

D B {c2}/{c2} 1

3

A B {c0c3}/{c0c1c3} 0.66

A C {c1, c3}/{c1, c3} 1

B A {c0, c3}/{c0, c2, c3} 0.66

B C {c3}/{c2, c3} 0.5

B D {c2}/{c2, c3} 0.5

C A {c1, c3}/{c1, c3} 1

C B {c3}/{c1, c3} 0.5

D B {c2}/{c2} 1

50

We iteratively build the temporal graph by adding nodes and updating the edges from

commit time ci−1 to commit time ci.

1. Create graph of commit time ci, Gi = (Vi, Ei), by copying all the elements from the

previous commit time graph Gi = (Vi−1, Ei−1).

2. Add to Vi all the files that were not in Vi−1 but that were introduced to the system

at commit time ci.

3. Add to Ei all the edges that connect two files modified in commit ci and that did

not already exist. If the edge did not exist previously, this means that these two files

were never modified in the same commit previously.

4. Update the status of every node of Vi by indicating if it was changed in commit ci

5. Recompute the weight of all the edges originating from a modified file at commit

time ci using Formula 4.2.

Using the commits of Table 4.2, the co-changeability values of Table 4.3, and the

previously mentioned steps, we build the temporal graph of Figure 4.5.

51

Figure 4.5: Temporal graph representation of the commits in Table 4.2

In Figure 4.5, at commit time c0, we build the slice of graph G0 by copying the graph

of the previous commit, (which was empty) and adding all the vertices that were modified

in c0. This creates V0 = {A,B}. We then connect all the nodes that were modified at c0,

52

which are A and B, and compute their co-changeability.

To build G1, we create V1 by adding V0 to the node corresponding to C which was

introduced during this commit. We add any missing edges to connect all the files modified

at this commit time. These are edges (A,C) and (C,A). We then update the weights of

all the edges originating from the modified files i.e. all the edges that have nodes A or C

as the source. We do not link B and C since they did not change in the same commit so

far.

To build G2, we create V2 which is the union of V1 and {D} and E2 which is the union of

E1 and {(B,D), (D,B)} since these files changed at this commit time. Finally, we update

the weights of all edges originating from B or D.

Lastly, to build G3, we create V3 = V2 since no files were added at this time step. We

create E3 which is the union of E2 and the set {(B,C), (C,B)} since this is the first time

files B and C are changed in the same commit. And then we update the weights of all the

edges originating from A, B, or C.

4.3 Temporal Graph Network

The temporal graph that we built in the previous step allows us to quickly review the

history of a node and the evolution of its co-changeability with its adjacent nodes. Hence,

when the developer flags a file as changed, we can review the temporal graph and study

how this file historically evolved with its neighbors to determine which files would also be

impacted by this change.

To study the impact of changing File fi at commit time ci, we search for the neighbor,

fj , with the highest co-changeability at commit time ci−1. We review the history of fi

and fj starting from the first time step they became adjacent, i.e. the first commit that

modified both of them, and record coch∗fi,fj and the status of fj (whether it was changed

or not) at every time step where fi was changed. One thing to note, however, is that if

one file is modified at commit time ci, the co-changeability of this file with its neighbors

at this time reflects whether the second file also changed or not. In other words, in the

previous example (Table 4.2), we focus only on the state of A and B (changed or not) as

well as the co-changeability value Coch∗B,A at that time as shown in Figure 4.6.

53

Figure 4.6: The state of A and B at every time step where B was changed.

At commit time c1, File A was changed but File B was not. This was reflected in

their co-changeability since it dropped at that time. When passing this information to the

LSTM model, we cannot pass the co-changeability of A and B at time c1 for it to predict

whether B will change at that time, because the answer is already present in the drop of

co-changeability of the two files. This creates a leakage in our train set. Instead, when

predicting if B will change at c1, we should pass the co-changeability of A and B at c0

since it holds no information on the status of the files at c1. For example, if after commit

c3 in the previous example, the developer flags that file B changed, the model revisits the

neighbor with the highest co-changeability at the most recent graph slice, here G3. This

neighbor is A since coch∗B,A = 0.66 in G4. And then it builds a data frame that records at

each row coch∗B,A at time ci− 1, and the status of A at commit time ci for every commit

ci where B was changed.

If the only possible data frame to build in this case is the one in Table 4.4. In the

first row, the table holds coch∗B,A at c1 and the status of A at c2 since B was modified at

commit time c2. In the second row, it holds the coch∗B,A at c2 and the status of A at c3

since B was modified at commit time c2.

54

Table 4.4: Data frame created from the history of A and B

previous coch∗B,A state of A

1 not changed

0.5 changed

After building the data frame, the LSTM is trained on the co-changeability values to

predict whether the neighbor is affected by the change or not. Then, the model performs

the final prediction on the most recent co-changeability value to predict if the neighboring

file is affected by the change that was recently flagged by the developer. In our example,

this means that the LSTM predicts if A will change with an input co-changeability of 0.66

since it is the value of coch∗A,B at c3.

If the LSTM predicts the file to be impacted by the change, we add the latter to a

queue and mark the file as modified. Then, we move to the next highest co-changeability

neighbor of the node. In the example, that would be either node C or node D since they

both have a co-changeability value of 0.5 with B at commit time c4.

After visiting the neighbors of file Fi, we dequeue a file and then visit the neighbors of

the dequeued file to check for the possibility of the change propagating to them. To limit

the computational time of our method, we do not visit neighbors with co-changeability

lower than a pre-set cutoff value µ. Additionally, we do not allow our change set to grow

larger than a threshold ρ. The values ofµ and ρ are parameters of our network that we

tune during our parameter tuning experiment detailed in Section 5.4.

After completing this iteration and allowing the model to perform its predictions, we

assess the performance of the model by comparing the predicted change set to the actual

one. A new slice is then added to the temporal graph containing nodes following the steps

previously stated. This is done to ensure the data in the temporal graph does not go out

of date. Algorithm 4 shows the pseudo-code of this TGN.

Going back to the components of a TGN defined in [95], we list below our implemen-

tation of the TGN components.

• The memory: In our implementation, the memory of a node a time t is a vector

of length t that indicates at every time step whether the node was changed or not.

For example, at time of commit c3 in the example of Table 4.2, File A was changed

55

Algorithm 4 Proposed TGN pseudo-code

Q← Queue()
Q.add(source of change file)
change set← φ
while Q not empty and size of change set < ρ do

current node=Q.dequeue()
for neighbor in E[current node] do

if coch∗current node,neighbor > µ and neighbor not in change set then
Retrieve history of current node and neighbor
Train LSTM on the set
if LSTM predicts neighbor to change then

Add neighbor to change set
Add neighbor to Q

end if
end if

end for
end while
return change set

at commit times c0, c1, and c3 but not at c2. The vector memory of the node that

represents A is hence sa = [1, 1, 0, 1].

• The message function: The message passed from B to A is their co-changeability

values across the time steps at which B changed. We use this when we know that

B has changed, and we predict whether B is changed as well.

• The memory updater: The memory updater is the LSTM architecture that learns

from the messages passed to a node and states whether this node will be affected

by the change or not. If the LSTM is attempting to learn whether File A will be

impacted by a change made to File B, we revisit all the time steps of the graph

starting from the time step where A and B first became adjacent. We then record

the weight of edge (B,A) and whether A was changed at every time step where

B was changed. The LSTM then predicts whether File A will be impacted by the

change at this time step and the state of the file is updated accordingly.

• The embedding: To combat the staleness problem, we update Edge (A,B) when-

ever A is changed. This ensures that the relationship between the nodes that repre-

sents the files is kept up to date as long as any one of these files is changed.

56

Chapter 5

Experiments and Results

In this chapter, we describe the experiments that we conducted to validate our approach.

We start by describing the data set that we formed out of 15 different projects. We then

introduce the metrics that we use in the assessment of our model performance. Then, we

describe the experimental setup and the obtained results. We discuss these results focusing

on each software system separately, first, then we focus on the results across all 15 projects.

All our claims derived from the results are supported by statistical tests.

5.1 Datasets

We validate our model on 15 projects (Table 5.1). These differ in their size (number of files),

number of commits, number of extracted change sets, and the programming languages they

were developed with. The programming languages used to implement the tested programs

are Batchfile, Blade, C++, C#, CMake, CoffeeScript, CSS, Dart, Dockerfile, GAP, Go,

Handlebars, HiveQL, HTML, Java, JavaScript, Jupyter Notebook, Lex, Objective-C, Perl,

PHP, Python, R, Ruby, Scala, Shell, Starlark, Swift, Thrift, TypeScript, and XSLT.

Table 5.2 summarizes the information pertaining to the number of commits of every

system. Looking at the numbers, one can see that, for most of the systems, there is a

significant difference between the median and the mean indicating the existence of outliers

overshooting the value of the mean. Outliers are recorded commits that modified a large

proportion of the system. Normally, these map back to complete version updates and hence

affect a vast majority of the files regardless of whether the dependencies exist between these

57

Table 5.1: Software systems used in this study

Project name Application Languages used
Alamofire HTTP networking library Swift(100%)

Ant Java tool

Java(77.7%) HTML(17.8%)
XSLT(3.6%) GAP(0.3%)
Shell(0.3%) Batchfile(0.2%)
Other(0.1%)

Cassandra Cassandra Database management system
Java(97.0%) Python(1.6%)
HTML(0.8%) Shell(0.3%)
GAP(0.3%) Lex(0.0%)

Cassandra Website Website Tool
CSS(43.4%) JavaScript(18.6%)
Handlebars(16.8%) Shell(16.0%)
Dockerfile(2.9%) Python(2.3%)

Flutter Application Framework

Dart(99.1%) Objective-C(0.2%)
Java(0.2%) C++(0.1%)
Shell(0.1%) CMake(0.1%)
Other(0.2%)

Gephi visualization platform Java(99.4%) Other(0.6%)

Hbase Database management system

Java(95.8%) Ruby(1.9%)
Perl(0.9%) Shell(0.8%)
Python(0.3%) Thrift(0.1%)
Other(0.2%)

Laravel web framework
PHP(81.2%) Blade(17.5%)
Other(1.3%)

Lucene Text search engine library
Java(97.7%) HTML(1.1%)
Python(0.7%) Lex(0.3%)
Perl(0.1%) Shell(0.1%)

Monitor Control Apple Application Swift(98.6%) Objective-C(1.4%)
pyDriller Python framework Python(100%)

React App framework

JavaScript(95.7%) HTML(1.9%)
CSS(1.0%) C++(0.7%)
TypeScript(0.3%) CoffeeScript(0.3%)
Other(0.1%)

Rocketmq clients Clients for Apache RocketMQ

C++(42.6%) Java(41.8%)
C#(8.0%) Go(4.0%)
Starlark(2.8%) C(0.6%)
Other(0.2%)

Spark Analytics tool

Scala(67.5%) Python(11.9%)
Java(7.3%) Jupyter Notebook(6.7%)
HiveQL(2.9%) R(2.0%)
Other(1.7%)

WWW site website
HTML(74.8%) CSS(16.8%)
JavaScript(5.3%) XSLT(2.0%)
Other(1.1%)

58

Table 5.2: Distribution of the size of commits before processing

Software system No. of commits Min. Median Mean Q90 Max.
Alamofire 1883 1 2 7.816251 9 290
Ant 20604 1 2 4.849495 7 2169
Cassandra 25393 1 3 4.866577 9 537
Cassandra website 997 1 2 33.75025 5 1983
Flutter 42421 1 2 5.410575 10 2571
Gephi 8818 1 3 9.285552 13 4716
Hbase 28936 1 2 5.813416 11 2052
Laravel 5994 1 1 2.255255 4 102
Lucene 52873 1 3 6.338207 11 5570
Monitor control 358 1 3 6.215084 17 72
pyDriller 858 1 2 2.719114 5 31
React 17978 1 2 4.676994 9 514
Rocketmq clients 1033 1 3 8.673766 15 294
Spark 50520 1 3 5.127534 9 11283
WWW site 976 1 1 7.547131 4 1681

files or not. The significant number of outliers can be seen in in Figure 5.1 which shows a

boxplot of the distribution of the change set sizes for every software system.

59

(a) Change sets size distri-
bution of Alamofire

(b) Change sets size distri-
bution of Ant

(c) Change sets size distri-
bution of Cassandra

(d) Change sets size distri-
bution of Cassandra web-
site

(e) Change sets size distri-
bution of Flutter

(f) Change sets size distri-
bution of Gephi

(g) Change sets size distri-
bution of Hbase

(h) Change sets size distri-
bution of Laravel

(i) Change sets size distri-
bution of Lucene

(j) Change sets size distri-
bution of Monitor control

(k) Change sets size distri-
bution of pyDriller

(l) Change sets size distri-
bution of React

(m) Change sets size distri-
bution of Rocketmq clients

(n) Change sets size distri-
bution of Spark

(o) Change sets size distri-
bution of WWW site

Figure 5.1: Boxplot showing the size distribution of the change sets

60

Commits that affect one file and large commits, both, introduce noise to our data.

Therefore, similarly to most previous work on this problem[99, 11, 21, 22], we discard any

commit that affects a single file only, and any commit that modified more files than a cut-

off value. We set the cut-off value to be equal to the 90th quartile in the distribution of the

number of files modified by the commits for each system and use the commits that meet

these size requirements as change sets of our system. Table 5.3 shows the distribution of the

number of files modified by the commits after performing this data cleaning step. There is

still a difference between the mean value and median value, however, this difference is now

much smaller indicating fewer outliers in the data set. Due to the large number of commits

of some of the systems, we only consider the first 1,000 commits in these experiments.

Table 5.3: Distribution of the size of commits after processing. The No. of files
is the number of files at the last commit considered, and prop. affected files is the
average proportion of files affected by the changes out of all the files of the system
at the time of commit.

Software system No. of files No. of commits Min. Median Mean Max. prop. affected files

Alamofire 168 486 2 3 5.049383 25 0.053

Ant 1065 6190 2 3 3.889822 13 0.017

Cassandra 623 9408 2 3 4.078444 13 0.019

Cassandra website 132 400 2 3 3.3225 43 0.163

Flutter 817 14729 2 3 4.289022 16 0.017

Gephi 1950 2828 2 4 6.035007 23 0.014

Hbase 550 10151 2 3 4.64969 17 0.02

Laravel 616 1017 2 2 3.105211 10 0.018

Lucene 1175 18057 2 3 4.840284 18 0.017

Monitor control 190 138 2 4 5.514493 24 0.082

pyDriller 110 256 2 3 3.09375 8 0.074

React 724 5957 2 3 4.322142 13 0.014

Rocketmq clients 574 379 2 4 6.174142 24 0.034

Spark 617 18852 2 3 4.115638 12 0.02

WWW site 310 122 2 3 4.204918 20 0.04

5.2 Performance metrics

Since we tackle the problem of predicting the impact of a change as a binary classification

problem whereby a file is either impacted by a change or not, we use binary classification

61

metrics to assess our developed method performance. However, the proportion of files im-

pacted by a change is minuscule compared to the number of files unaffected. Additionally,

we are more interested in correctly predicting the impacted files than the ones that have

not been affected by the change since the former ones should be brought to the attention

of the developer when they inject a change in a file. This also can be used by the project

manager in assessing the effort and time incurred by a proposed change. Therefore, we

use sensitivity, specificity, and g-mean to assess our method efficacy and we also report

precision, F-measure, Matthew’s correlation coefficient(MCC), and accuracy to obtain a

general report on the performance of the model. These metrics can be extracted from the

confusion matrix (Figure 5.2) which summarizes the performance of a model by showing

the number of data points correctly or mistakenly classified to both classes in the binary

classification task. In our problem, a positive instance is a file that is impacted by a change

while a negative one is a file that is not impacted by a change.

Figure 5.2: Confusion matrix. TP: True positives, TN: True negatives, FP: False
positives, FN: False negatives.

In the confusion matrix, the following cells can be found:

• True positives(TP): number of files correctly classified as being impacted by the

change.

• False positives(FP): number of files incorrectly classified as being impacted by the

change while in reality, they are not.

• False negatives (FN): the number of files incorrectly classified as not being impacted

by the change while in reality, they are.

62

• True negatives (TN): number of files correctly classified as not being impacted by

the change.

5.2.1 Sensitivity or recall

Sensitivity or recall is an important metric to consider when the positive instances should

be predicted as accurately as possible. This metric evaluates the ability of the model to

correctly identify the true positives[100] and is computed using Equation 5.1.

Sensitivity =
TP

TP + FN
(5.1)

In our work, sensitivity or recall represents the probability of correctly classifying an im-

pacted file as affected by the change. This is very important in our study since the positive

cases help the project managers estimate the time, effort, and budget a particular change

would incur.

5.2.2 Specificity

This measures the ability of the model to correctly identify true negatives in a data set

[100] and is computed using Equation 5.2.

Specificity =
TN

TN + FP
(5.2)

In our work, specificity represents the ability of the model to correctly recognize the

files that are not affected by a change.

5.2.3 Positive Predicted Value

Precision or Positive Predicted Value rate (PPV) measures the proportion of correctly

classified files among those that were classified as positive [101]. Precision is computed

using Formula 5.3

Precision =
TP

TP + FP
(5.3)

63

5.2.4 F-measure

The F-measure is the harmonic mean of recall (or sensitivity) and precision [102] and is

computed using Formula 5.4.

F −measure = 2× Recall ∗ Precision
Recall + Precision

(5.4)

5.2.5 G-mean

The geometric mean (G-mean) is used to measure the accuracy of prediction for both

classes while not favoring the majority class (Equation 5.5). This is an important metric

in our study since our data set is significantly imbalanced [103].

G−mean =
√
Sensitivity ∗ Specificity (5.5)

5.2.6 Accuracy

Accuracy shows the proportion of values that were correctly classified. This metric, how-

ever, is extremely biased toward the majority class, therefore it is an inefficient metric for

the problem of change propagation since the vast majority of the files will not be affected

by a change [102]. Accuracy is computed using Formula 5.6.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.6)

5.2.7 Matthew’s Correlation Coefficient

Matthew’s Correlation Coefficient (MCC) represents the correlation between the predicted

values of a model and the actual ones[104] and is a number between -1 and 1. Formula 5.7

is used to compute the MCC value.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.7)

5.2.8 Area Under Curve

The Area Under Curve (AUC) reflects the probability of the model to correctly classify

a positive instance as positive, and a negative instance as negative [105, 106]. AUC is

64

computed using Formula 5.8.

AUC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(5.8)

5.3 Experimental Setup

We implemented the proposed approach in Python using the NumPy and TensorFlow

libraries. We ran our experiments on an Intel(R) Core(TM) i7-9750H CPU with 32GB

RAM and an Intel(R) UHD Graphics 630 graphics card. We used random search to

perform parameter tuning as is detailed in Section 5.4.

We use the cross-validation on a rolling-origin-recalibration method to split the data

into train-test sets, and assess the performance of the models [107]. This method is used on

temporal data where the model is trained on the data points starting from time t0 to ti, and

then tested on data point at time ti+1. In the next iteration, the model is trained on the

data points from time t0 till ti+1 and then tested on the data point of ti+2. This continues

until the model is tested on the last data point. Figure 5.3 visualizes this technique.

Figure 5.3: Cross-validation using the rolling-origin-recalibration method

To account for the element of randomness in the model, we repeat each experiment on

65

every data set 5 times and report the average and standard deviation of the performance

metrics.

5.4 Parameter Tuning

The performance of the proposed model depends on many parameters. It is known that the

parameters have a significant effect on the model. Therefore, fine-tuning them is essential.

The two widely used techniques for parameter tuning are Random Search and Grid Search.

In our proposed work, we fine-tune the parameters of the model using Random Search. This

technique is a stochastic one that generates random parameter configurations and tests the

performance of the model when set to these different combinations. When compared to

Grid Search, an exhaustive parameter tuning method that tests every possible parameter

combination, Random Search was found to reach acceptable results in less time. The

pseudo-code of Random Search can be found in Algorithm 5.

Algorithm 5 Pseudo-code of Random Search

while Stopping criteria not met do
Generate a set of parameters
Train and test the model
if this configuration reaches better results then

Save these parameters
end if

end while

To limit the computational time of our method, we do not visit neighbors with co-

changeability lower than a pre-set cutoff value µ. Additionally, we do not allow our change

set to grow larger than a threshold ρ. We use Random Search to set the following param-

eters:

• µ: the co-changeability cut-off value.

• ρ: the predicted change set size threshold.

• L1size: number of units in the first layer of the LSTM.

• L2size: number of units in the second layer of the LSTM.

• epochs: number of complete passes over the train set the LSTM goes through while

training.

66

• optimizer: the optimizer used to set the learning rate and weights of the neural

network.

Table 5.4 records the set of best parameters found for each software system.

Table 5.4: Best found parameters for every software system

Software system µ ρ L1size L2size Epochs Optimizer

Alamofire 0.1 80 8 64 6 Adam

Ant 0.005 95 16 16 7 Nadam

Cassandra 0.005 70 16 16 9 Nadam

Cassandra Website 0.25 60 32 2 6 SGD

Flutter 0.1 85 32 4 4 SGD

Gephi 0.003 80 64 64 8 SGD

Hbase 0.1 60 64 64 6 Adam

Laravel 0.005 95 64 2 14 RMSProp

Lucene 0.1 95 64 4 11 Nadam

Monitor Control 0.005 95 4 4 5 Adam

pyDriller 0.1 75 4 4 6 Nadam

React 0.005 95 8 8 15 SGD

Rocketmq Clients 0.2 60 32 32 15 Adagrad

Spark 0.005 60 8 4 7 RMSProp

WWW Site 0.3 50 8 32 9 Adam

5.5 Results

We start by discussing the results obtained on each software system separately then we

summarize the average performance of our model.

In our discussion, we compare between the performance of the proposed model and that

presented in [11]. We chose this work as it is a recent publication that used the concept of

aging in the history of software systems. In this work, the authors gives less importance

to older commits when calculating the co-changeability between two files. This makes the

work similar to ours in the sense that some temporal dimension is introduced to the data.

67

Table 5.5: Mean ± standard deviation of the proposed approach

Alamofire Gephi pyDriller
Sensitivity 0.561429 ±0.007284 0.409034 ±0.001958 0.542188 ±0.023199
Specificity 0.995314 ±0.000618 0.997089 ±5.25E-05 0.986687 ±0.001517
PPV 0.881429 ±0.013418 0.561205 ±0.00404 0.777604 ±0.020027
F-measure 0.66581 ±0.001633 0.357619 ±0.003944 0.602664 ±0.01272
G-Mean 0.741376 ±0.004047 0.607028 ±0.000824 0.719992 ±0.013731
Accuracy 0.980349 ±0.000395 0.994481 ±4.74E-05 0.964622 ±0.00085
MCC 0.684443 ±0.002527 0.40942 ±0.003676 0.614343 ±0.012642
AUC 0.778371 ±0.00334 0.703062 ±0.001005 0.764437 ±0.011079

Ant Hbase React
Sensitivity 0.48659 ±0.003258 0.532073 ±0.007499 0.60567 ±0.006021
Specificity 0.998043 ±0.000111 0.998808 ±9.71E-05 0.998702 ±3.33E-05
PPV 0.753196 ±0.010873 0.878154 ±0.008496 0.791111 ±0.007057
F-measure 0.51892 ±0.004983 0.612811 ±0.00582 0.647404 ±0.004903
G-Mean 0.671931 ±0.002126 0.708647 ±0.004677 0.761981 ±0.003685
Accuracy 0.994825 ±0.00012 0.994341 ±0.000115 0.996629 ±4.00E-05
MCC 0.562388 ±0.00536 0.653203 ±0.005447 0.670279 ±0.005395
AUC 0.742317 ±0.001649 0.765441 ±0.003747 0.802186 ±0.003008

Cassandra Laravel Rocketmq clients
Sensitivity 0.457016 ±0.001899 0.524476 ±0.003127 0.421413 ±0.008877
Specificity 0.998158 ±7.50E-05 0.998871 ±5.94E-05 0.993952 ±0.000117
PPV 0.772812 ±0.005255 0.888345 ±0.005961 0.662078 ±0.009058
F-measure 0.519726 ±0.00127 0.645082 ±0.003265 0.437137 ±0.007128
G-Mean 0.656791 ±0.00177 0.721041 ±0.001834 0.619653 ±0.00567
Accuracy 0.993808 ±4.83E-05 0.994368 ±6.93E-05 0.982993 ±0.000177
MCC 0.5607 ±0.001392 0.67252 ±0.00352 0.475385 ±0.006963
AUC 0.727587 ±0.000922 0.761673 ±0.001569 0.707683 ±0.004462

Cassandra website Lucene Spark
Sensitivity 0.781308 ±0.019067 0.496301 ±0.002596 0.485068 ±0.003813
Specificity 0.950317 ±0.002141 0.998508 ±8.18E-05 0.997498 ±6.32E-05
PPV 0.707788 ±0.010278 0.82343 ±0.006339 0.67604 ±0.006793
F-measure 0.709586 ±0.011756 0.554753 ±0.00388 0.501159 ±0.004931
G-Mean 0.849797 ±0.010475 0.680138 ±0.001746 0.673655 ±0.002741
Accuracy 0.932384 ±0.002691 0.995539 ±7.79E-05 0.993414 ±9.45E-05
MCC 0.693872 ±0.013248 0.60041 ±0.003769 0.534668 ±0.005149
AUC 0.865813 ±0.00944 0.747404 ±0.001312 0.741283 ±0.001938

Flutter Monitor control WWW site
Sensitivity 0.430457 ±0.006165 0.463359 ±0.005495 0.566667 ±0.038188
Specificity 0.997046 ±7.88E-05 0.962864 ±0.003056 0.987971 ±0.002507
PPV 0.639448 ±0.007597 0.554475 ±0.034973 0.820833 ±0.033203
F-measure 0.442763 ±0.00403 0.407382 ±0.010212 0.633333 ±0.018305
G-Mean 0.632492 ±0.004765 0.646682 ±0.00374 0.735005 ±0.022725
Accuracy 0.993088 ±6.18E-05 0.941351 ±0.002901 0.966363 ±0.001599
MCC 0.481157 ±0.003179 0.42862 ±0.015276 0.647561 ±0.015617
AUC 0.713752 ±0.003061 0.713111 ±0.0037 0.777319 ±0.018168

68

Also, the results in [11] showed higher AUC than the baseline models that did not age the

commits.

We repeat each experiment on every software system 5 times, and each time we start

the propagation of change for every commit from a different file. Furthermore, to ensure

that the comparison is fair, for every commit in the experiment, we propagate the change

from the same file when predicting using our model and that of [11].

To test the statistical significance of the obtained results, we perform a one-tailed

Mann-Whitney test[108] with a significance level α = 0.05 to verify if the performance of

our model on each metric is significantly better than that of [11]. We formulate the null

hypothesis H0 as follows: Given metric M, the performance of our proposed approach on

data set D is not better than that of [11]. Rejecting H0 ensures that the performance of

our model is significantly better on metric M .

5.5.1 Alamofire

Alamofire is a homogeneous software system developed using Swift. The model of [11]

outperforms the proposed model in terms of specificity and PPV. However, our proposed

approach outperforms its counterpart in terms of sensitivity, F-measure, G-mean, accu-

racy, MCC and AUC (Table 5.6). This indicates that the proposed approach is better at

identifying the files that will be impacted by the change than its counterpart on Alamofire.

Table 5.6: Comparative results on Alamofire

Our results Results of [11]

Sensitivity 0.561429 ±0.007284 Sensitivity 0.375645 ±0.004795

Specificity 0.995314 ±0.000618 Specificity 0.997807 ±0.000268

PPV 0.881429 ±0.013418 PPV 0.913881 ±0.010554

F-measure 0.66581 ±0.001633 F-measure 0.48827 ±0.003738

G-Mean 0.741376 ±0.004047 G-Mean 0.588192 ±0.004501

Accuracy 0.980349 ±0.000395 Accuracy 0.974081 ±0.00021

MCC 0.684443 ±0.002527 MCC 0.548518 ±0.002462

AUC 0.778371 ±0.00334 AUC 0.686726 ±0.002286

Table 5.7 shows the results of the Mann-Whitney test for the Alamofire software system.

69

The results reinforce that the proposed model can reach statistically significantly better

results in terms of sensitivity, F-measure, G-mean, accuracy, MCC, and AUC.

Table 5.7: p-value and decision of Mann-Whitney on Alamofire

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.9999 Fail to reject H0

PPV 0.996 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

5.5.2 Ant

Ant is a heterogeneous tool developed mainly in Java. While the model of [11] outperforms

the proposed model in terms of PPV, the proposed model still outperforms it in terms of

sensitivity, specificity, F-measure, G-mean, accuracy, MCC, and AUC (Table 5.8). This

indicates that the proposed model has a better tendency to identify which files will be

affected by the change than its counterpart.

Table 5.8: Comparative results on Ant

Our results Results of [11]

Sensitivity 0.48659 ±0.003258 Sensitivity 0.471105 ±0.002197

Specificity 0.998043 ±0.000111 Specificity 0.997696 ±0.000122

PPV 0.753196 ±0.010873 PPV 0.765721 ±0.007375

F-measure 0.51892 ±0.004983 F-measure 0.501946 0.±002341

G-Mean 0.671931 ±0.002126 G-Mean 0.656615 ±0.00172

Accuracy 0.994825 ±0.00012 Accuracy 0.99447 ±0.000112

MCC 0.562388 ±0.00536 MCC 0.550932 ±0.002456

AUC 0.742317 0.001649 AUC 0.734401 ±0.001058

70

Table 5.9 shows the results of the Mann-Whitney test for the Ant software system.

The results reinforce that the proposed model can reach statistically significantly better

results in terms of sensitivity, specificity, F-measure, G-mean, accuracy, MCC, and AUC.

Table 5.9: p-value and decision of Mann-Whitney on Ant

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.003 Reject H0

PPV 0.952 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.007 Reject H0

AUC 0.003 Reject H0

5.5.3 Cassandra

Cassandra is a heterogeneous tool with the vast majority of its code developed in Java.

Although the model of [11] outperforms the proposed model in terms of specificity and

PPV, the latter one outperforms it in terms of sensitivity, F-measure, G-mean, accuracy,

MCC, and AUC (Table 5.10). This indicates that the proposed model has a better tendency

to identify the files that will be impacted by change.

71

Table 5.10: Comparative results on Cassandra

Our results Results of [11]

Sensitivity 0.457016 ±0.0018 Sensitivity 0.337976 ±0.001707

Specificity 0.998158 ±7.50E-05 Specificity 0.999144 ±8.04E-05

PPV 0.772812 ±0.0052 PPV 0.906948 ±0.00427

F-measure 0.519726 ±0.0012 F-measure 0.453071 ±0.001862

G-Mean 0.656791 ±0.0017 G-Mean 0.560852 ±0.001473

Accuracy 0.993808 ±4.83E-05 Accuracy 0.992457 ±6.87E-05

MCC 0.5607 ±0.0013 MCC 0.523763 ±0.001574

AUC 0.727587 ±0.0009 AUC 0.66856 ±0.000828

Table 5.11 shows the results of the Mann-Whitney test for the Cassandra software

system. The results reinforce that the proposed model can reach statistically significantly

better results in terms of sensitivity, F-measure, G-mean, accuracy, MCC, and AUC.

Table 5.11: p-value and decision of Mann-Whitney on Cassandra

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

5.5.4 Cassandra website

Cassandra website is a heterogeneous system that does not have a dominant development

language. Although the language that is mostly used in its development is CSS, the

percentage of files written using this language is 43.4%. The model of [11] outperforms

72

the proposed model in terms of specificity, PPV, and accuracy. However, our proposed

approach outperforms that of [11] in terms of sensitivity, F-measure, G-mean, MCC, and

AUC (Table 5.12). This indicates that the proposed model is better at identifying files

impacted by the change.

Table 5.12: Comparative results on Cassandra website

Our results Results of [11]

Sensitivity 0.781308 ±0.019067 Sensitivity 0.615576 ±0.005062

Specificity 0.950317 ±0.002141 Specificity 0.982623 ±0.001787

PPV 0.707788 ±0.010278 PPV 0.85919 ±0.012867

F-measure 0.709586 ±0.011756 F-measure 0.68704 ±0.008065

G-Mean 0.849797 ±0.010475 G-Mean 0.765712 ±0.003929

Accuracy 0.932384 ±0.002691 Accuracy 0.942318 ±0.00201

MCC 0.693872 ±0.013248 MCC 0.685098 ±0.008848

AUC 0.865813 ±0.00944 AUC 0.7991 ±0.002991

Table 5.13 shows the results of the Mann-Whitney test for the Cassandra website

software system. The results reinforce that the proposed model reaches statistically signif-

icantly better results in terms of sensitivity, F-measure, G-mean, and AUC but that the

difference in MCC is not statistically significant.

Table 5.13: p-value and decision of Mann-Whitney on Cassandra website

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.015 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.999 Fail to reject H0

MCC 0.273 Fail to reject H0

AUC 0.003 Reject H0

73

5.5.5 Flutter

Flutter is a heterogeneous tool mostly developed using Draft. The model of [11] outper-

forms the proposed model in terms of specificity, PPV, F-measure, accuracy, and MCC.

However, our proposed approach outperforms that of [11] in terms of sensitivity, G-mean,

and AUC (Table 5.14). The high sensitivity value indicates that the proposed model had

a better tendency to detect the files affected by the change. And although the model

fails to outperform its opponent in the majority of the performance metrics, it was able

to keep high G-mean and AUC values, which indicates that even though the model pre-

dicted false positives at a higher, it maintains a semblance of balance when predicting the

labels and does not heavily favor one label over the other. We also note that the accuracy

and specificity in [11] are already very high and our proposed approach reaches very close

results.

Table 5.14: Comparative results on Flutter

Our results Results of [11]

Sensitivity 0.430457 ±0.006165 Sensitivity 0.362858 ±0.002897

Specificity 0.997046 ±7.88E-05 Specificity 0.998672 ±0.000111

PPV 0.639448 ±0.007597 PPV 0.835553 ±0.009336

F-measure 0.442763 ±0.00403 F-measure 0.444367 ±0.00413

G-Mean 0.632492 ±0.004765 G-Mean 0.575371 ±0.002321

Accuracy 0.993088 ±6.18E-05 Accuracy 0.993618 ±0.000128

MCC 0.481157 ±0.003179 MCC 0.508253 ±0.004653

AUC 0.713752 ±0.003061 AUC 0.680765 ±0.00147

Table 5.15 shows the results of the Mann-Whitney test for the Flutter software system.

The results reinforce that the proposed model can reach statistically significantly better

results in terms of sensitivity, G-mean, and AUC.

74

Table 5.15: p-value and decision of Mann-Whitney on Flutter

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.5 Fail to reject H0

G-Mean 0.003 Reject H0

Accuracy 0.999 Fail to reject H0

MCC 0.999 Fail to reject H0

AUC 0.003 Reject H0

5.5.6 Gephi

Gephi is a heterogeneous tool but the vast majority of its files were developed using Java.

The model of [11] outperforms the proposed model in terms of sensitivity, PPV, F-measure,

and MCC. However, our proposed model outperforms its counterpart in terms of specificity,

G-mean, Accuracy, and AUC (Table 5.16). Both models obtain very close results in terms

of sensitivity, specificity, G-mean, and AUC. This indicates that they can predict how the

change propagates at a similar success rate.

Table 5.16: Comparative results on Gephi

Our results Results of [11]

Sensitivity 0.409034 ±0.001958 Sensitivity 0.409873 ±0.00212

Specificity 0.997089 ±5.25E-05 Specificity 0.993387 ±0.000198

PPV 0.561205 ±0.00404 PPV 0.601158 ±0.00676

F-measure 0.357619 ±0.003944 F-measure 0.363059 ±0.002422

G-Mean 0.607028 ±0.000824 G-Mean 0.604694 ±0.001539

Accuracy 0.994481 ±4.74E-05 Accuracy 0.990924 ±0.000196

MCC 0.40942 ±0.003676 MCC 0.417472 ±0.002692

AUC 0.703062 ±0.001005 AUC 0.70163 ±0.001033

75

Table 5.17 shows the results of the Mann-Whitney test for the Gephi software sys-

tem. The test shows that the proposed model statistically significantly outperforms its

counterpart in terms of specificity, G-mean, and accuracy.

Table 5.17: p-value and decision of Mann-Whitney on Gephi

Metric p-value Conclusion

Sensitivity 0.654 Fail to reject H0

Specificity 0.003 Reject H0

PPV 0.999 Fail to reject H0

F-measure 0.924 Fail to reject H0

G-Mean 0.015 Reject H0

Accuracy 0.003 Reject H0

MCC 0.999 Fail to reject H0

AUC 0.111 Fail to reject H0

5.5.7 Hbase

Hbase is a heterogeneous tool that was mostly developed using Java. while the model

of [11] outperforms the proposed model in terms of specificity, and PPV, the latter one

outperforms it in terms of sensitivity, F-measure, G-mean, accuracy, MCC, and AUC

(Table 5.18). This indicates that the proposed model has a better tendency to predict files

that were affected by the change.

76

Table 5.18: Comparative results on Hbase

Our results Results of [11]

Sensitivity 0.532073 ±0.007499 Sensitivity 0.359416 ±0.001111

Specificity 0.998808 ±9.71E-05 Specificity 0.999328 ±5.27E-05

PPV 0.878154 ±0.008496 PPV 0.930827 ±0.003162

F-measure 0.612811 ±0.00582 F-measure 0.487137 ±0.001464

G-Mean 0.708647 ±0.004677 G-Mean 0.581299 ±0.001039

Accuracy 0.994341 ±0.000115 Accuracy 0.992181 ±4.83E-05

MCC 0.653203 ±0.005447 MCC 0.553064 ±0.001426

AUC 0.765441 ±0.003747 AUC 0.679372 ±0.00055

Table 5.19 shows the results of the Mann-Whitney test for the Hbase software sys-

tem. The results reinforce that the proposed model attains statistically significantly better

results in terms of sensitivity, F-measure, G-mean, accuracy, MCC, and AUC.

Table 5.19: p-value and decision of Mann-Whitney on Hbase

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

5.5.8 Laravel

Laravel is a heterogeneous tool mostly developed using PHP. The model of [11] outperforms

the proposed model in terms of accuracy only while the proposed approach outperforms

it in all other metrics (Table 5.20). Furthermore, given that Laravel is severely imbal-

77

anced, accuracy cannot be considered a good measure of performance. Obtained results

indicate that the proposed model is more successful in identifying the change sets than its

counterpart.

Table 5.20: Comparative results on Laravel

Our results Results of [11]

Sensitivity 0.524476 ±0.003127 Sensitivity 0.497293 ±0.000664

Specificity 0.998871 ±5.94E-05 Specificity 0.998402 ±0.000105

PPV 0.888345 ±0.005961 PPV 0.852061 ±0.00158

F-measure 0.645082 ±0.003265 F-measure 0.628039 ±0.00158

G-Mean 0.721041 ±0.001834 G-Mean 0.68736 ±0.000651

Accuracy 0.994368 ±6.93E-05 Accuracy 0.994435 ±0.00011

MCC 0.67252 ±0.00352 MCC 0.619177 ±0.001087

AUC 0.761673 ±0.001569 AUC 0.747847 ±0.000358

Table 5.21 shows the results of the Mann-Whitney test for the Laravel software system.

The results reinforce that the proposed model can reach statistically significantly better

results in terms of sensitivity, specificity, PPV, F-measure, G-mean, MCC, and AUC.

Table 5.21: p-value and decision of Mann-Whitney on Laravel

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.003 Reject H0

PPV 0.003 Reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.888 Fail to reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

78

5.5.9 Lucene

Lucene is a heterogeneous system mostly developed using PHP. The model of [11] out-

performs the proposed model in terms of sensitivity alone while our proposed approach

outperforms that of [11] in terms of specificity, PPV, F-measure, G-mean, accuracy, MCC,

and AUC (Table 5.22). The performance of the proposed model on this software is the

opposite of what is seen on the majority of the systems so far as it managed to better

classify the negative labels, i.e. files that were not impacted by the change.

Table 5.22: Comparative results on Lucene

Our results Results of [11]

Sensitivity 0.496301 ±0.002596 Sensitivity 0.500143 ±0.004749

Specificity 0.998508 ±8.18E-05 Specificity 0.996227 ±0.000172

PPV 0.82343 ±0.006339 PPV 0.737058 ±0.009245

F-measure 0.554753 ±0.00388 F-measure 0.504545 ±0.005681

G-Mean 0.680138 ±0.001746 G-Mean 0.678574 ±0.004184

Accuracy 0.995539 ±7.79E-05 Accuracy 0.992746 ±0.000154

MCC 0.60041 ±0.003769 MCC 0.551392 ±0.005847

AUC 0.747404 ±0.001312 AUC 0.748185 ±0.002355

Table 5.23 shows the results of the Mann-Whitney test for the Lucene software system.

The results reinforce that the proposed model reaches statistically significantly better re-

sults in terms of specificity, PPV, F-measure, and MCC. The test however shows that the

proposed model does not significantly outperform its counterpart on G-mean and AUC.

79

Table 5.23: p-value and decision of Mann-Whitney on Lucene

Metric p-value Conclusion

Sensitivity 0.888 Fail to reject H0

Specificity 0.003 Reject H0

PPV 0.003 Reject H0

F-measure 0.003 Reject H0

G-Mean 0.273 Fail to reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.789 Fail to reject H0

5.5.10 Monitor Control

Monitor Control is a heterogeneous system that was mainly developed using Swift. The

model of [11] outperforms the proposed model in terms of specificity, PPV, F-measure,

accuracy, and MCC. However, our proposed model outperforms its counterpart in terms

of sensitivity, G-mean, and AUC (Table 5.24). This shows that the proposed model is

biased towards predicting labels as positives, i.e., files as changed. And although it fails

to outperform its counterpart on the five out of eight of the performance metrics, it did

showed a good senstivity value indicating that the model is able to detect the files that will

be impacted by a change as well as good G-mean and AUC values which indicates that it

keeps some semblance of balance in its predictions.

80

Table 5.24: Comparative results on Monitor control

Our results Results of [11]

Sensitivity 0.463359 ±0.005495 Sensitivity 0.424124 ±0.003549

Specificity 0.962864 ±0.003056 Specificity 0.978412 ±0.001216

PPV 0.554475 ±0.034973 PPV 0.669498 ±0.015681

F-measure 0.407382 ±0.010212 F-measure 0.413566 ±0.007902

G-Mean 0.646682 ±0.00374 G-Mean 0.610572 ±0.004582

Accuracy 0.941351 ±0.002901 Accuracy 0.951091 ±0.001437

MCC 0.42862 ±0.015276 MCC 0.453391 ±0.008975

AUC 0.713111 ±0.0037 AUC 0.701268 ±0.002259

Table 5.25 shows the results of the Mann-Whitney test for the Monitor control software

system. The test shows that the proposed model statistically significantly outperforms its

counterpart in terms of sensitivity, G-mean, and AUC.

Table 5.25: p-value and decision of Mann-Whitney on Monitor control

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.789 Fail to reject H0

G-Mean 0.003 Reject H0

Accuracy 0.999 Fail to reject H0

MCC 0.992 Fail to reject H0

AUC 0.003 Reject H0

5.5.11 pyDriller

pyDriller is a homogeneous tool that was developed using Python. The model of [11]

outperforms the proposed model in terms of PPV and accuracy. However, our proposed

approach outperforms its counterpart in terms of sensitivity, F-measure, G-mean, MCC,

81

and AUC (Table 5.26). This shows that the model is somewhat biased towards predicting

files as changed, but that it can better predict the files affected by the change and that it

is able to balance its performance better than on some of the previous software systems

such as Monitor Control and Flutter.

Table 5.26: Comparative results on PyDriller

Our results Results of [11]

Sensitivity 0.542188 ±0.023199 Sensitivity 0.405409 ±0.003851

Specificity 0.986687 ±0.001517 Specificity 0.995753 ±0.000287

PPV 0.777604 ±0.020027 PPV 0.895789 0.005219

F-measure 0.602664 ±0.01272 F-measure 0.530504 ±0.004593

G-Mean 0.719992 ±0.013731 G-Mean 0.623401 ±0.003181

Accuracy 0.964622 ±0.00085 Accuracy 0.971023 ±0.000391

MCC 0.614343 ±0.012642 MCC 0.575329 ±0.004706

AUC 0.764437 ±0.011079 AUC 0.700581 ±0.002009

Table 5.25 shows the results of the Mann-Whitney test for the pyDriller software sys-

tem. The results reinforce that the proposed model is capable of reaching statistically

significantly better results in terms of sensitivity, F-measure, G-mean, MCC, and AUC.

Table 5.27: p-value and decision of Mann-Whitney on pyDriller

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.999 Fail to reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

82

5.5.12 React

React is a heterogeneous tool that was mostly developed using JavaScript. The model

of [11] outperforms the proposed model in terms of specificity, and PPV. However, our

proposed approach outperforms its counterpart in terms of sensitivity, F-measure, G-mean,

accuracy, MCC, and AUC (Table 5.28). This shows that the model is better at predicting

the files affected by the change and can balance its performance better than some previous

software systems such as the case of Monitor control and Flutter.

Table 5.28: Comparative results on React

Our results Results of [11]

Sensitivity 0.60567 ±0.006021 Sensitivity 0.433088 ±0.00207

Specificity 0.998702 ±3.33E-05 Specificity 0.99936 ±2.52E-05

PPV 0.791111 ±0.007057 PPV 0.891961 ±0.003319

F-measure 0.647404 ±0.004903 F-measure 0.547719 ±0.001547

G-Mean 0.761981 ±0.003685 G-Mean 0.639943 ±0.001599

Accuracy 0.996629 ±4.00E-05 Accuracy 0.99583 ±1.74E-05

MCC 0.670279 ±0.005395 MCC 0.598329 ±0.001276

AUC 0.802186 ±0.003008 AUC 0.716224 ±0.001028

Table 5.29 shows the results of the Mann-Whitney test for the React software system.

The results reinforce that the proposed model can reach statistically significantly better

results in terms of sensitivity, F-measure, G-mean, accuracy, MCC, and AUC.

83

Table 5.29: p-value and decision of Mann-Whitney on React

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.999 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

5.5.13 Rocketmq clients

Rocketmq clients is a heterogeneous tool that does not have a dominant programming

language. The most used programming language during its development is C++, but it

only accounts for 42.6% of its files. The model of [11] outperforms the proposed model in

terms of PPV (table 5.30). However, our proposed approach outperforms its counterpart

in terms of sensitivity, specificity, F-measure, G-mean, accuracy, MCC, and AUC.

This shows that the model somewhat achieved a balance as it is able to better identify

the files affected by a change.

Table 5.30: Comparative results on Rocketmq clients

Our results Results of [11]

Sensitivity 0.421413 ±0.008877 Sensitivity 0.338076 ±0.003656

Specificity 0.993952 ±0.000117 Specificity 0.965404 ±0.003162

PPV 0.662078 ±0.009058 PPV 0.745738 ±0.007276

F-measure 0.437137 ±0.007128 F-measure 0.354144 ±0.004547

G-Mean 0.619653 ±0.00567 G-Mean 0.540133 ±0.002362

Accuracy 0.982993 ±0.000177 Accuracy 0.953826 ±0.003056

MCC 0.475385 ±0.006963 MCC 0.416766 ±0.004489

AUC 0.707683 ±0.004462 AUC 0.65174 ±0.001018

84

Table 5.29 shows the results of the Mann-Whitney test for the Rocketmq clients soft-

ware system. The results reinforce that the proposed model can reach statistically sig-

nificantly better results in terms of sensitivity, specificity, F-measure, G-mean, accuracy,

MCC, and AUC.

Table 5.31: p-value and decision of Mann-Whitney on Rocketmq clients

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.003 Reject H0

PPV 0.999 Fail to reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

5.5.14 Spark

Spark is a heterogeneous system that was mostly developed using Scala. The model of

[11] outperforms the proposed model in terms of PPV and MCC. However, our proposed

approach outperforms that of [11] in terms of sensitivity, specificity, F-measure, G-mean,

accuracy, and AUC (Table 5.32). This shows that the model somewhat achieved a balance

as it is able to better identify the files affected by a change than those that are not.

85

Table 5.32: Comparative results on Spark

Our results Results of [11]

Sensitivity 0.485068 ± 0.003813 Sensitivity 0.446137 ±0.001734

Specificity 0.997498 ±6.32E-05 Specificity 0.997413 ±6.44E-05

PPV 0.67604 ±0.006793 PPV 0.798251 ±0.00771

F-measure 0.501159 ±0.004931 F-measure 0.493248 ±0.003407

G-Mean 0.673655 ±0.002741 G-Mean 0.640558 ±0.001531

Accuracy 0.993414 ±9.45E-05 Accuracy 0.992471 ±6.33E-05

MCC 0.534668 ±0.005149 MCC 0.547153 ±0.003999

AUC 0.741283 ±0.001938 AUC 0.721775 ±0.000859

Table 5.33 shows the results of the Mann-Whitney test for the Spark software system.

The test shows that the proposed approach significantly outperforms its counterpart in

terms of sensitivity, F-measure, G-mean, Accuracy, and AUC. However, even though our

model attained an average specificity higher than that of [11], the Mann-Whitney test

showed that the difference is not statistically significant.

Table 5.33: p-value and decision of Mann-Whitney on Spark

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.111 Fail to reject H0

PPV 0.999 Fail to reject H0

F-measure 0.015 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.999 Fail to reject H0

AUC 0.003 Reject H0

86

5.5.15 WWW site

WWW site is a heterogeneous tool that was mostly developed using HTML. Our proposed

approach achieved perfect performance on this system and outperforms its counterpart in

every performance metric (Table 5.34). This shows that the model is able to learn the

patterns of change propagation better than the model of [11].

Table 5.34: Comparative results on WWW site

Our results Results of [11]

Sensitivity 0.566667 ±0.038188 Sensitivity 0.505462 ±0.00382

Specificity 0.987971 ±0.002507 Specificity 0.96429 ±0.002417

PPV 0.820833 ±0.033203 PPV 0.687451 ±0.030368

F-measure 0.633333 ±0.018305 F-measure 0.490801 ±0.014032

G-Mean 0.735005 ±0.022725 G-Mean 0.678843 ±0.002378

Accuracy 0.966363 ±0.001599 Accuracy 0.958802 ±0.002351

MCC 0.647561 ±0.015617 MCC 0.524046 ±0.014924

AUC 0.777319 ±0.018168 AUC 0.734876 ±0.001625

Table 5.35 shows the results of the Mann-Whitney test for the WWW site software

system. The results show that the proposed approach managed to statistically significantly

outperform its counterpart on all metrics.

Table 5.35: p-value and decision of Mann-Whitney on WWW site

Metric p-value Conclusion

Sensitivity 0.003 Reject H0

Specificity 0.003 Reject H0

PPV 0.003 Reject H0

F-measure 0.003 Reject H0

G-Mean 0.003 Reject H0

Accuracy 0.003 Reject H0

MCC 0.003 Reject H0

AUC 0.003 Reject H0

87

5.5.16 Overview of Results

Below, we list the general observations we derived from all the experiments we conducted

across all data sets:

• We performed a total of 120 comparisons across all software systems using 8 metrics,

out of which our proposed model outperformed that of [11] on 85 i.e. in 70.8% of

the comparisons. Eighty two out of these 85 comparisons were statistically signif-

icant. Therefore, the model statistically significantly outperformed its counterpart

on 68.33% of the comparisons.

• In terms of sensitivity: We performed 15 comparisons. Our model statistically sig-

nificantly outperformed its counterpart on 13 of them (86.66%).

• In terms of specificity: We performed 15 comparisons. Our model outperformed

its counterpart on 8 of them(53.33%). Out of these 8 comparisons, 7 were statis-

tically significant. Therefore, the model statistically significantly outperformed its

counterpart in 46.66% cases.

• In terms of PPV: We performed 15 comparisons out of which our model significantly

outperformed its counterpart on 3 of them (20%).

• In terms of F-measure: We performed 15 comparisons out of which our model sig-

nificantly outperformed its counterpart on 12(80%).

• In terms of G-mean: We performed 15 comparisons in all of which our model out-

performed its counterpart (100%). Out of these 15 comparisons, 14 were statistically

significant. Therefore, the model statistically significantly outperformed its counter-

part on 93.33% of these comparisons.

• In terms of accuracy: We performed 15 comparisons out of which our model statis-

tically significantly outperformed its counterpart on 10 (66.66%).

• In terms of MCC: We performed 15 comparisons out of which our model outper-

formed its counterpart on 12 of them (80%). Out of these 12 comparisons, 10 of

them were statistically significant. Therefore, the model statistically significantly

outperformed its counterpart on 66.66% of these comparisons.

88

• In terms of AUC: We performed 15 comparisons out of which our model outperformed

its counterpart on 14 of them (93.33%). Out of these 14 comparisons, 13 of them were

statistically significant. Therefore, the model statistically significantly outperformed

its counterpart on 86.66% of these comparisons.

The above indicates that the proposed system shows major improvement in terms of sen-

sitivity, F-measure, G-mean, MCC, and AUC. It also outperforms its counterpart the

majority of times in terms of specificity and accuracy. However, it scores lower values in

terms of PPV. That is because the proposed model has a tendency to overestimate the

number of files affected by a change. We encourage this behavior by setting high ρ values,

which is the predicted change set size threshold (see Section 5.4). This is because we be-

lieve that a false negative, i.e. predicting a file as not affect by a change, when in actuality

it is, is more harmful to the maintainability of the software than making a false positive

prediction, i.e. predicting an unaffected file as affected.

5.5.17 Statistical Analysis Across Systems

To further validate our analysis and ensure that the average performance of the proposed

model is statistically significantly higher than that of [11], we perform a one-tailed Wilcoxon

Signed-Rank test [109] with a significance value α = 0.05. The samples compared are the

averages of each metric across the different systems. We group the values of a given

performance metric of our model across all the software systems in one group, and the

results of the counterpart on that same metric across all software systems in another

group. And then, we compare these two groups. The null hypotheses H0 is the following:

Given metric M, our model does not statistically significantly outperform the model in [11]

on M. Table 5.36 shows the obtained p-values.

89

Table 5.36: Results of Wilcoxon test at a confidence level α = 0.5

Metric p-value Conclusion

Sensitivity 0.0017 Reject H0

Specificity 0.6044 Fail to reject H0

PPV 0.9681 Fail to reject H0

F-measure 0.0285 Reject H0

G-Mean 0.0011 Reject H0

Accuracy 0.1392 Fail to reject H0

MCC 0.0483 Reject H0

AUC 0.0008 Reject H0

Results of the statistical test reinforce that the proposed model statistically significantly

outperforms its counterpart in terms of sensitivity, F-measure, G-mean, MCC, and AUC.

However, it failed to do so on the specificity, PPV, and accuracy metrics.

5.6 Discussion

Looking at all the results, we note that our model outperforms that of [11] in metrics

that reflect the rate of true positives, false negatives (sensitivity) as well those that reflect

unbiasedness (G-mean, F-measure, MCC, and AUC), as seen in Figure 5.4. The proposed

model also significantly outperforms its counterpart on the majority of the systems in terms

of accuracy. However, since the accuracy metric is biased towards the majority label, and

since the data sets used are extremely imbalanced where the vast majority of the files will

not change in a commit, we do not rely on this metric to claim the supremacy of our model.

90

Figure 5.4: Percentage of comparisons where the proposed model significantly out-
performs its counterpart

The proposed model is better at predicting files that have been affected by the change

since it has high recall values, but it also has a tendency to overestimate their number

since the performance on PPV is sometimes low.

On the performance metrics that take into consideration both labels in an imbalanced

data set, namely F-measure, G-mean, MCC, and AUC, our model outperforms its counter-

part on most of the data sets. The model does not outperform its counterpart in terms of

specificity and PPV, though. The specificity metric focuses on the true negative and false

positive values while PPV focuses on the proportion of files that were correctly predicted as

changed. Therefore, our model wrongly predicts more than its counterpart, that some files

were changed. Therefore, the model in [11] is better at detecting files that will not change.

We acknowledge that having many false positives in the prediction set is bothersome to the

developer as they would have to go through the files and check for non-existent dependen-

cies. However, having many false negatives is way more damaging as it would mislead the

developer and the project manager equally. As a matter of fact, false negatives results in

developers leaving out some required changes and project managers underestimating the

total time, effort and budget required for a particular change. In the best-case scenario, a

model should be able to achieve low rates of false positives and false negatives, however, we

believe that if this is not attainable, it is better to achieve a low level of false negatives, and

an acceptable level of false positives to uphold the overall quality of the software system.

We investigate the cases where our model did not perform well in terms of sensitivity

and balanced metrics. We specifically investigate the Gephi and Lucene systems where the

model of [11] slightly outperforms the proposed model on sensitivity. Both of these systems

91

are heterogeneous and are mostly built using Java. However, many other systems such as

Cassandra, and Hbase were also mainly developed using Java. On the latter systems, the

performance of the proposed model is superior, which negates the claim that the model

failed to learn well on Gephi and Lucene due to the underlying programming languages

used. Both of these systems also have different functionalities where one is a visualization

tool (Gephi), and the other is a search engine library (Lucene). The distribution of the

size of commits (min, median, mean, and max) in these systems conforms as well to

those of the remaining systems (Table 5.3). Additionally, the number of commits on both

of these systems is large, but so is that of many other systems tested (Ant, Casandra,

Flutter, Hbase, Laravel, React, Spark), and the model performed well on these systems.

We note however, that both Lucene and Gephi have the largest number of files (Table

5.3). The model therefore might have failed to learn from these systems due to their

large size. However, the relationship between the performance of the models and the

system size requires further investigation. We can therefore conclude that there is no

direct link between the nature (homogeneous or heterogeneous), function, length of history

(number of commits), or the programming languages used to develop these systems and

the performance of the models but we do notice that the number of files might have some

effect on the performance of the model, although the trend is not clear.

Furthermore, we investigate the characteristics of the temporal graphs built and analyze

their average density. The density of a graph is the ratio of edges that are present in the

graph to the maximum number of edges that this graph can have. The density of a directed

graph with no self-loops1 is computed using Formula 5.9 where |E| is the number of edges

in the graph and |V | is the number of vertices.

DensityG =
|E|

|V ||(V − 1)|
(5.9)

We compute the density of every slice in the temporal graph built and report the average

for every system in Table 5.37. Results show that Gephi has the lowest density value.

However, the density of Lucene does not stand out as there are many systems (Flutter,

Laravel, Spark, WWW site) with a temporal graph that is less dense and on which the

proposed model managed to perform well.

1A self-loop is an edge from one vertex to itself.

92

Table 5.37: Average density of the temporal graphs

Software system Density

Alamofire 0.780765128

Ant 0.680531282

Cassandra 0.735817785

Cassandra website 0.680880658

Flutter 0.628611804

Gephi 0.621887397

Hbase 0.76857526

Laravel 0.6606467

Lucene 0.678689195

Monitor control 0.684564073

pyDriller 0.687118019

React 0.687249903

Rocketmq clients 0.682907611

Spark 0.674177019

WWW site 0.631825596

We conclude that the cause of degradation in the performance of the proposed model

on Lucene and Gephi might be a combination of the above parameters. For example, the

model might have failed to learn the patterns of change propagation on Gephi due to the

large number of files in the graph and its low density. However, we need to investigate

the performance of the model on many more software systems before we can reach a solid

conclusion.

5.7 Generalizability

In our study, we reported the results on software systems of varying size, functionality,

and nature. We tested the proposed approach on both homogeneous and heterogeneous

systems developed using a variety of programming languages. Results show that the model

performs reasonably well on the tested systems, which encourages the possibility that the

93

proposed approach can learn from different types of software systems.

5.8 Realism and Limitations

When extracting the history of a software system from a versioning repository like Github,

it is impossible to know which files were modified before which others. Therefore, in

the testing phase, the model chose a random file as the source of the change and then

predicted which files are affected by this change. To account for this, we report the average

performance of the model on different runs for each software system selecting, at each time,

a different source. Additionally, we assume that a commit is a complete change set i.e.

it contains all the changes that the developer implemented when correcting a single bug,

or implementing a single feature. However, this might not be the case as some commits

may map to a developer fixing two or more bugs, or may not contain all the changes the

developer implemented when adding a feature. In case the commit maps to two or more

bug corrections or features introduced, the model would create dependencies between files

that might not be dependent. And in case the commit does not contain all the files that the

developer changed to fix a bug or introduce a new change, then the model will fail to detect

some actual dependencies in the code. Although the notion of considering a commit as an

entire change set has been used extensively in previous work, it is an oversimplification of

the actual change sets.

94

Chapter 6

Conclusion and Future Work

In this work, we presented an innovative approach to track how change propagates in

software systems. We first model the software system as a temporal directed graph where

nodes represent system files and edges co-changeability of two files. We add the temporal

dimension to the graph to better learn the patterns of change development in the system.

To build the graph, we extract the change sets of the software system and connect the files

that were changed together after a certain time step. The edges of the graph carry the

co-changeability of the two files. We then employ a TGN that learns the pattern of co-

changeability between the files of the system. To do so, when a file is marked as changed,

the model visits all its adjacent nodes and learns using an LSTM component their pattern

of co-changeability in the past. The LSTM model then predicts if the current change will

impact this adjacent node as well.

We tested our approach on systems from the Github repository. These systems differ

in their size (number of files), their functionality, as well as the programming languages

used to implement them. Furthermore, some of the systems are heterogeneous (differ-

ent programming paradigms and/or different programming languages) while others are

homogeneous (one programming language is used in their development). We performed

experiments on 15 different systems. Results show that overall, the proposed approach

outperforms current methods in predicting how a change propagates in a software system

in terms of sensitivity, F-measure, G-mean, MCC, and AUC. The model fails to outperform

its counterpart on 2 out of the 15 systems but the difference is minimal and the perfor-

mance is very comparable in some of the metrics. From the pool of systems that were

95

tested, this failure cannot be attributed to a programming language or length of history.

However, a faint pattern emerges when looking at the number of files in the system as

the two systems our model did not perform well on have the largest number of files. To

have a definitive conclusion on why the model did not outperform its counterpart on these

systems, we would need to test it on numerous additional datasets.

This work is the first to explore the use of temporal networks and TGNs on the prob-

lem of predicting software change propagation. Although the results using the proposed

components are superior, there are still many possible configurations to test and questions

to be answered.

An interesting path to explore at the level of the TGN would be the application of

new modules to the memory, message function, memory updater, and embeddings of the

TGN. At the level of the system representation, it would be interesting to test the model on

different granularities of the system where graph nodes can represent methods, or packages,

etc. Finally, TGNs can help reformulate the problem from a binary classification one to an

overlapping community detection one where the model can immediately identify the sets

of files - rather than one file at a time - that are most likely to change together and group

them into overlapping sets. We hope that the current research paves the way for these new

venues.

96

Bibliography

[1] Changhui Jiang, Yuwei Chen, Shuai Chen, Yuming Bo, Wei Li, Wenxin Tian, and Jun

Guo. A mixed deep recurrent neural network for mems gyroscope noise suppressing.

Electronics, 8(2):181, 2019.

[2] Faisal Mohammad, Mohamed A Ahmed, and Young-Chon Kim. Efficient energy

management based on convolutional long short-term memory network for smart

power distribution system. Energies, 14(19):6161, 2021.

[3] Charles Babbage. On the application of machinery to the computation of astronom-

ical and mathematical tables. 1824.

[4] Martin H Weik. A survey of domestic electronic digital computing systems. Number

971. Ballistic Research Laboratories, 1955.

[5] JL Nayler. Soviet space exploration—the first decade. w. shelton. arthur barker,

london. 1969. 350 pp. illustrated. 45s. The Aeronautical Journal, 73(700):342–342,

1969.

[6] Dave Zubrow. Measuring software product quality: The iso 25000 series and cmmi.

Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST, 2004.

[7] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990,

pages 1–84, 1990.

[8] Bixin Li, Qiandong Zhang, Xiaobing Sun, and Hareton Leung. Using water wave

propagation phenomenon to study software change impact analysis. Advances in

Engineering Software, 58:45–53, 2013.

97

[9] D.L. Parnas. Software aging. In Proceedings of 16th International Conference on

Software Engineering, pages 279–287, 1994.

[10] Ahmed E Hassan and Richard C Holt. Predicting change propagation in software

systems. In 20th IEEE International Conference on Software Maintenance, 2004.

Proceedings., pages 284–293. IEEE, 2004.

[11] Anushree Agrawal and Rakesh K Singh. Predicting co-change probability in software

applications using historical metadata. IET Software, 14(7):739–747, 2020.

[12] Siavash Mirarab, Alaa Hassouna, and Ladan Tahvildari. Using bayesian belief net-

works to predict change propagation in software systems. In 15th IEEE International

Conference on Program Comprehension (ICPC’07), pages 177–188. IEEE, 2007.

[13] Andrew Leigh, Michel Wermelinger, and Andrea Zisman. Evaluating the effectiveness

of risk containers to isolate change propagation. Journal of Systems and Software,

176:110947, 2021.

[14] Lei Wang, Han Li, and Xinchen Wang. The influences of edge instability on change

propagation and connectivity in call graphs. In International Conference on Funda-

mental Approaches to Software Engineering, pages 197–213. Springer, 2016.

[15] Mrinaal Malhotra and Jitender Kumar Chhabra. Improved computation of change

impact analysis in software using all applicable dependencies. In International Con-

ference on Futuristic Trends in Network and Communication Technologies, pages

367–381. Springer, 2018.

[16] Ali Ben Abdullah, Abdelsalam M. Maatuk, and Osama M. Ben Omran. Change

propagation path: An approach for detecting co-changes among software entities. In

The 7th International Conference on Engineering & MIS 2021, pages 1–6, 2021.

[17] Thomas Rolfsnes, Stefano Di Alesio, Razieh Behjati, Leon Moonen, and Dave W

Binkley. Generalizing the analysis of evolutionary coupling for software change im-

pact analysis. In 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), volume 1, pages 201–212. IEEE, 2016.

98

[18] Thomas Rolfsnes, Leon Moonen, Stefano Di Alesio, Razieh Behjati, and Dave Bink-

ley. Aggregating association rules to improve change recommendation. Empirical

Software Engineering, 23(2):987–1035, 2018.

[19] Sydney Pugh, David Binkley, and Leon Moonen. The case for adaptive change

recommendation. In 2018 IEEE 18th International Working Conference on Source

Code Analysis and Manipulation (SCAM), pages 129–138. IEEE, 2018.

[20] Rongcun Wang, Rubing Huang, and Binbin Qu. Network-based analysis of software

change propagation. The Scientific World Journal, 2014, 2014.

[21] Megan Bailey, King-Ip Lin, and Linda Sherrell. Clustering source code files to predict

change propagation during software maintenance. In Proceedings of the 50th Annual

Southeast Regional Conference, pages 106–111, 2012.

[22] Annie Tsui Tsui Ying. Predicting source code changes by mining revision history.

PhD thesis, University of British Columbia, 2003.

[23] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. IEEE Transactions on Neural Net-

works, 20(1):61–80, 2009.

[24] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular

geometry prediction using a deep generative graph neural network. Scientific reports,

9(1):1–13, 2019.

[25] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side

effects with graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

[26] Zhenchao Sun, Hongzhi Yin, Hongxu Chen, Tong Chen, Lizhen Cui, and Fan Yang.

Disease prediction via graph neural networks. IEEE Journal of Biomedical and Health

Informatics, 25(3):818–826, 2020.

[27] Abhishek Tomy, Matteo Razzanelli, Francesco Di Lauro, Daniela Rus, and Cosimo

Della Santina. Estimating the state of epidemics spreading with graph neural net-

works. Nonlinear Dynamics, pages 1–15, 2022.

99

[28] Artur M Schweidtmann, Jan G Rittig, Andrea Konig, Martin Grohe, Alexander

Mitsos, and Manuel Dahmen. Graph neural networks for prediction of fuel ignition

quality. Energy & fuels, 34(9):11395–11407, 2020.

[29] Connor W Coley, Wengong Jin, Luke Rogers, Timothy F Jamison, Tommi S

Jaakkola, William H Green, Regina Barzilay, and Klavs F Jensen. A graph-

convolutional neural network model for the prediction of chemical reactivity. Chem-

ical science, 10(2):370–377, 2019.

[30] Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph

neural networks for drug discovery. Neurocomputing, 450:242–252, 2021.

[31] Yutaro Iiyama, Gianluca Cerminara, Abhijay Gupta, Jan Kieseler, Vladimir Loncar,

Maurizio Pierini, Shah Rukh Qasim, Marcel Rieger, Sioni Summers, Gerrit Van On-

sem, et al. Distance-weighted graph neural networks on fpgas for real-time particle

reconstruction in high energy physics. Frontiers in big Data, page 44, 2021.

[32] Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, and Xiaogang Wang. Person

re-identification with deep similarity-guided graph neural network. In Proceedings of

the European conference on computer vision (ECCV), pages 486–504, 2018.

[33] Dan Lin, Jianzhe Lin, Liang Zhao, Z Jane Wang, and Zhikui Chen. Multilabel

aerial image classification with a concept attention graph neural network. IEEE

Transactions on Geoscience and Remote Sensing, 60:1–12, 2021.

[34] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object

detection in a point cloud. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1708–1716, 2020.

[35] Pengshuai Yin, Jiayong Ye, Guoshen Lin, and Qingyao Wu. Graph neural network

for 6d object pose estimation. Knowledge-Based Systems, 218:106839, 2021.

[36] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for

text classification. In Proceedings of the AAAI conference on artificial intelligence,

volume 33, pages 7370–7377, 2019.

100

[37] Wang Gao, Yuan Fang, Lin Li, and Xiaohui Tao. Event detection in social media

via graph neural network. In International Conference on Web Information Systems

Engineering, pages 370–384. Springer, 2021.

[38] Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an.

Graph convolutional encoders for syntax-aware neural machine translation. In Pro-

ceedings of the 2017 Conference on Empirical Methods in Natural Language Process-

ing, pages 1957–1967, 2017.

[39] Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Isaiah Onando Mulang, Saeedeh

Shekarpour, Johannes Hoffart, and Manohar Kaul. Recon: relation extraction using

knowledge graph context in a graph neural network. In Proceedings of the Web

Conference 2021, pages 1673–1685, 2021.

[40] Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and

Dawei Yin. A graph neural network framework for social recommendations. IEEE

Transactions on Knowledge and Data Engineering, 2020.

[41] Xiangde Zhang, Yuan Zhou, Jianping Wang, and Xiaojun Lu. Personal interest atten-

tion graph neural networks for session-based recommendation. Entropy, 23(11):1500,

2021.

[42] Marcelo Prates, Pedro HC Avelar, Henrique Lemos, Luis C Lamb, and Moshe Y

Vardi. Learning to solve np-complete problems: A graph neural network for decision

tsp. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 4731–4738, 2019.

[43] Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search

approach to traveling salesman problem. IEEE Access, 8:108418–108428, 2020.

[44] Yujiao Hu, Zhen Zhang, Yuan Yao, Xingpeng Huyan, Xingshe Zhou, and Wee Sun

Lee. A bidirectional graph neural network for traveling salesman problems on

arbitrary symmetric graphs. Engineering Applications of Artificial Intelligence,

97:104061, 2021.

[45] Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colour-

ing meets deep learning: Effective graph neural network models for combinatorial

101

problems. In 2019 IEEE 31st International Conference on Tools with Artificial In-

telligence (ICTAI), pages 879–885, 2019.

[46] Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber.

Graph coloring with physics-inspired graph neural networks. arXiv preprint

arXiv:2202.01606, 2022.

[47] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural

networks for maximum constraint satisfaction. Frontiers in artificial intelligence,

3:580607, 2021.

[48] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial op-

timization with physics-inspired graph neural networks. Nature Machine Intelligence,

4(4):367–377, 2022.

[49] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and

Lujia Pan. Predicting path failure in time-evolving graphs. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pages 1279–1289, 2019.

[50] Yang Yao, Bo Gu, Zhou Su, and Mohsen Guizani. Mvstgn: A multi-view spatial-

temporal graph network for cellular traffic prediction. IEEE Transactions on Mobile

Computing, 2021.

[51] Guangyin Jin, Min Wang, Jinlei Zhang, Hengyu Sha, and Jincai Huang. Stgnn-tte:

Travel time estimation via spatial–temporal graph neural network. Future Generation

Computer Systems, 126:70–81, 2022.

[52] Hao Zhou, Dongchun Ren, Huaxia Xia, Mingyu Fan, Xu Yang, and Hai Huang. Ast-

gnn: An attention-based spatio-temporal graph neural network for interaction-aware

pedestrian trajectory prediction. Neurocomputing, 445:298–308, 2021.

[53] Defu Cao, Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Spectral temporal

graph neural network for trajectory prediction. In 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 1839–1845. IEEE, 2021.

102

[54] Mahdi Khodayar and Jianhui Wang. Spatio-temporal graph deep neural network

for short-term wind speed forecasting. IEEE Transactions on Sustainable Energy,

10(2):670–681, 2018.

[55] Guangyin Jin, Qi Wang, Cunchao Zhu, Yanghe Feng, Jincai Huang, and Jiangping

Zhou. Addressing crime situation forecasting task with temporal graph convolutional

neural network approach. In 2020 12th International Conference on Measuring Tech-

nology and Mechatronics Automation (ICMTMA), pages 474–478. IEEE, 2020.

[56] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional

networks for skeleton-based action recognition. In Thirty-second AAAI conference

on artificial intelligence, 2018.

[57] Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph repre-

sentation of brain connectome with spatio-temporal attention. Advances in Neural

Information Processing Systems, 34:4314–4327, 2021.

[58] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in software

engineering: an analysis of the literature. Information and Software technology,

44(8):491–506, 2002.

[59] Korea Standards Association et al. Ks x iso/iec 9126-1: Software engineering-product

quality-part 1: Quality model. Industrial Standards Council, 2017.

[60] Kshirasagar Naik and Priyadarshi Tripathy. Software testing and quality assurance:

theory and practice. John Wiley & Sons, 2011.

[61] Tibor Bakota, Péter Hegedűs, Gergely Ladányi, Péter Körtvélyesi, Rudolf Ferenc,

and Tibor Gyimóthy. A cost model based on software maintainability. 2012.

[62] Samuel Ajila. Software maintenance: an approach to impact analysis of objects

change. Software: Practice and Experience, 25(10):1155–1181, 1995.

[63] Muhammad Shahid and Suhaimi Ibrahim. Change impact analysis with a software

traceability approach to support software maintenance. In 2016 13th International

Bhurban conference on applied sciences and technology (IBCAST), pages 391–396.

IEEE, 2016.

103

[64] Albert-László Barabási. Network science. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 371(1987):20120375,

2013.

[65] Frank Harary and Gopal Gupta. Dynamic graph models. Mathematical and Com-

puter Modelling, 25(7):79–87, 1997.

[66] Othon Michail. An introduction to temporal graphs: An algorithmic perspective.

Internet Mathematics, 12(4):239–280, 2016.

[67] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[68] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[69] A Vinay, Desanur Naveen Reddy, Abhishek C Sharma, S Daksha, NS Bhargav,

MK Kiran, KNB Murthy, and S Natrajan. G-cnn and f-cnn: Two cnn based archi-

tectures for face recognition. In 2017 International Conference on Big Data Analytics

and Computational Intelligence (ICBDAC), pages 23–28. IEEE, 2017.

[70] Xiaoqi Wan, Hui Song, Lingen Luo, Zhe Li, Gehao Sheng, and Xiuchen Jiang. Pat-

tern recognition of partial discharge image based on one-dimensional convolutional

neural network. In 2018 Condition Monitoring and Diagnosis (CMD), pages 1–4.

IEEE, 2018.

[71] Jianfeng Zhao, Xia Mao, and Lijiang Chen. Speech emotion recognition using deep

1d & 2d cnn lstm networks. Biomedical signal processing and control, 47:312–323,

2019.

[72] Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech

recognition using deep rnn models and wfst-based decoding. In 2015 IEEE Workshop

on Automatic Speech Recognition and Understanding (ASRU), pages 167–174. IEEE,

2015.

[73] Rabih Zbib, Lingjun Zhao, Damianos Karakos, William Hartmann, Jay DeYoung,

Zhongqiang Huang, Zhuolin Jiang, Noah Rivkin, Le Zhang, Richard Schwartz, et al.

104

Neural-network lexical translation for cross-lingual ir from text and speech. In Pro-

ceedings of the 42nd International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 645–654, 2019.

[74] RF Gibadullin, M Yu Perukhin, and AV Ilin. Speech recognition and machine trans-

lation using neural networks. In 2021 International Conference on Industrial Engi-

neering, Applications and Manufacturing (ICIEAM), pages 398–403. IEEE, 2021.

[75] Lintang Adyuta Sutawika and Ito Wasito. Restricted boltzmann machines for unsu-

pervised feature selection with partial least square feature extractor for microarray

datasets. In 2017 International Conference on Advanced Computer Science and In-

formation Systems (ICACSIS), pages 257–260. IEEE, 2017.

[76] Yu-Heng Lai, Wei-Ning Chen, Te-Cheng Hsu, Che Lin, Yu Tsao, and Semon Wu.

Overall survival prediction of non-small cell lung cancer by integrating microarray

and clinical data with deep learning. Scientific reports, 10(1):1–11, 2020.

[77] Jan Funke, Fabian Tschopp, William Grisaitis, Arlo Sheridan, Chandan Singh,

Stephan Saalfeld, and Srinivas C Turaga. Large scale image segmentation with struc-

tured loss based deep learning for connectome reconstruction. IEEE transactions on

pattern analysis and machine intelligence, 41(7):1669–1680, 2018.

[78] Zhi Zhou, Hsien-Chi Kuo, Hanchuan Peng, and Fuhui Long. Deepneuron: an open

deep learning toolbox for neuron tracing. Brain informatics, 5(2):1–9, 2018.

[79] Jerzy W Bala and John Robert Anderson. Machine Learning: A Multistrategy Ap-

proach, Volume IV, volume 4. Morgan Kaufmann, 1994.

[80] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[81] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag prob-

lems. Advances in neural information processing systems, 9, 1996.

[82] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

105

[83] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

[84] Paul Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. Technical report, Colorado Univ at Boulder Dept of Computer Science,

1986.

[85] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Icml, 2010.

[86] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural

networks for perception, pages 65–93. Elsevier, 1992.

[87] Kristin P Bennett and Olvi L Mangasarian. Neural network training via linear

programming. Technical report, University of Wisconsin-Madison Department of

Computer Sciences, 1990.

[88] Jinn-Moon Yang and Cheng-Yan Kao. A robust evolutionary algorithm for training

neural networks. Neural Computing & Applications, 10(3):214–230, 2001.

[89] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6(02):107–116, 1998.

[90] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166, 1994.

[91] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-

term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

[92] Christopher Olah. Understanding lstm networks. 2015.

[93] Paul J Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

106

[94] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. IEEE transactions on neural networks,

20(1):61–80, 2008.

[95] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti,

and Michael Bronstein. Temporal graph networks for deep learning on dynamic

graphs. arXiv preprint arXiv:2006.10637, 2020.

[96] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter

Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.

J. Mach. Learn. Res., 21(70):1–73, 2020.

[97] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding tra-

jectory in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD

international conference on knowledge discovery & data mining, pages 1269–1278,

2019.

[98] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. PyDriller: Python frame-

work for mining software repositories. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering - ESEC/FSE 2018, pages 908–911, New York, New

York, USA, 2018. ACM Press.

[99] Leon Moonen, Stefano Di Alesio, Thomas Rolfsnes, and Dave W Binkley. Exploring

the effects of history length and age on mining software change impact. In 2016 IEEE

16th International Working Conference on Source Code Analysis and Manipulation

(SCAM), pages 207–216. IEEE, 2016.

[100] Abdul Ghaaliq Lalkhen and Anthony McCluskey. Clinical tests: sensitivity and

specificity. Continuing education in anaesthesia critical care & pain, 8(6):221–223,

2008.

[101] Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image seg-

mentation: analysis, selection, and tool. BMC medical imaging, 15(1):1–28, 2015.

107

[102] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation metrics for

data classification evaluations. International journal of data mining & knowledge

management process, 5(2):1, 2015.

[103] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training

sets: one-sided selection. In Icml, volume 97, page 179. Citeseer, 1997.

[104] Qiuming Zhu. On the performance of matthews correlation coefficient (mcc) for

imbalanced dataset. Pattern Recognition Letters, 136:71–80, 2020.

[105] James Fogarty, Ryan S Baker, and Scott E Hudson. Case studies in the use of

roc curve analysis for sensor-based estimates in human computer interaction. In

Proceedings of Graphics Interface 2005, pages 129–136, 2005.

[106] Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M Chen, and Yo-

gachandran Rahulamathavan. Pindroid: A novel android malware detection system

using ensemble learning methods. Computers & Security, 68:36–46, 2017.

[107] Christoph Bergmeir and José M Beńıtez. On the use of cross-validation for time

series predictor evaluation. Information Sciences, 191:192–213, 2012.

[108] Henry B Mann and Donald R Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The annals of mathematical statistics,

pages 50–60, 1947.

[109] William Jay Conover. Practical nonparametric statistics, volume 350. john wiley &

sons, 1999.

108

