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Design and Analysis of Buffer-Aided Cooperative Networks

using Deterministic and Reinforcement Learning

Techniques

Sawsan El Zahr

Abstract

Applications enabled by 5G technology resulted in an unforeseen increase in data
traffic and data flows from any source to a destination are experiencing increased
outages, delays, and drop-outs. Cooperative communication is one way to cope
with this problem by integrating relays into systems to help a given source to com-
municate with its destination efficiently. Relays enable multiple shorter paths of
better quality and equipping relays with buffers will further increase the degrees
of freedom and allow for the mitigation of the fading effect. On the other hand,
these benefits come at the expense of added complexity to the system. The
problem of relay selection is a challenging task that can account for multiple
parameters such as: the channel state information, the buffer states, and the po-
sition of relays. In this thesis, we address this problem in two ways: deterministic
and learning-based techniques. Multi-hop systems with buffer-aided half-duplex
relays are considered.

First, we propose a new relaying strategy that is dynamic and can achieve
multiple levels of trade-off between the average packet delay and the outage prob-
ability. The system is analyzed in a Markov Chain framework and all theoretical
results are checked for accuracy with simulation curves. Asymptotic analysis is
the key approach to derive closed-form expressions solely dependent on adjustable
parameters of the system. We could prove the superiority of this scheme com-
pared with other benchmark schemes from the literature. Then, further relaying
strategies are devised and compared. Additional performance levels are achieved
to fit in different applications requirements. Next, for more complex setups, de-
terministic analysis becomes cumbersome, thus reinforcement learning techniques
are used to efficiently boost the performance. A deep RL agent is trained with
a joint reward until it converges to an optimum performance. We demonstrate
the efficiency of this approach to further increase the throughput of cooperative
systems under different interference and design constraints.

Keywords: Relaying, Cooperative Networks, Multi-Hop, Buffer, Data Queue,
Performance Analysis, Markov Chain, Reinforcement Learning, Outage Proba-
bility, Queuing Delay, Diversity Order, Throughput, Optimization.
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Chapter 1

Introduction

1.1 RF Technology and 5G communications

Wireless communication systems existed since 1979 when the first generation

(1G) technology emerged. It started with analog signals and provided voice-only

services. This first generation suffered from low security, bad quality and limited

coverage. 2G technology appeared in 1991 and introduced digital signals with

encryption capabilities. TDMA and CDMA were the main technologies and SMS

services were supported. Later in 2001, 3G emerged with WCDMA to increase

the data rate further. Multimedia messages and video conferencing were possible

for the first time and smart phones became popular. The fourth generation 4G

started in 2009 and used LTE technology. Advanced modulation/coding schemes

were introduced and security of systems was leveraged which enabled high defi-

nition multimedia streaming and 3D gaming applications.

In fact, whenever communication systems evolve, new applications are enabled

and consequently more bandwidth and performance requirements are needed.

Technological advances nowadays resulted in additional dependence on commu-

nication systems: Internet of Things (IoT), Device-to-Device (D2D) communi-

cations, autonomous vehicles, environmental monitoring, smart grids, gaming,

sports broadcasting and many more applications emerged and resulted in an

unparalleled increase in data traffic. Thus, communication systems should de-

velop to meet the necessary requirements of reliability, efficiency and reduced

latency [1]. 5G systems appeared in 2019 and are in continuous development.

Communication techniques span five consecutive layers: Application layer,

Transport layer, Network layer, Data Link layer and Physical layer. This thesis

studies the communication techniques at the lowest layer which is the Physical

layer. This layer is responsible for the transmission of bits over the communication

channel. It deals with the encoding of data, the adaptation of the data rate,

synchronization issues, topologies and transmission modes.

Specifically, among the 5G technologies, cooperative techniques are investi-
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gated for being a promising solution to increase the efficiency and reliability of

wireless systems [2]. Relays are integrated into networks to help a source or multi-

ple sources to transmit packets of data to one or more destinations. In fact, relays

can be placed either in parallel or in series to constitute multiple hops of commu-

nication. Dividing the end-to-end transmission distance allows for better quality

of channels because of lower distances in addition to the ability to mitigate the

fading effect by transmitting at different locations and time slots. Applications

of such systems include unmanned aerial vehicle (UAV) relaying networks [3, 4]

where multiple UAVs are employed as relay nodes to forward information pack-

ets. Another application is wireless backhauling of 5G small cells [5, 6] where a

Macro cell Base Station (MBS) needs to send packets to a far Small cell Base

Station (SBS). In this case, closer SBSs will forward packets sequentially in short

range hops until packets reach the target SBS. Moreover, cooperation can be

established for satellite communications where satellites can cooperate to serve

ground terminals [7].

In this work, cooperative systems with Radio Frequency (RF) technology are

considered. RF is a very old technology and its frequency range started from

1KHz to 1GHz but was recently extended to hundreds of GHz to the millimeter-

wave bands. The obvious reason to increase the frequency band is to expand

the spectrum and achieve higher bandwidth. However another reason is that the

length of RF antennas is proportional to the wavelength and since smaller anten-

nas are required when the frequency was further increased [8]. This technology

has low transmit power requirements and is suitable for transmission over long

distances because of its high spatial diversity gain [9]. There exist different chan-

nel models to represent the multipath fading of RF signals: Rayleigh, Rician and

Nakagami. However, Rayleigh distribution is often assigned to RF links in the

absence of a line-of-sight [10].

1.2 Buffer-Free Cooperative Communications

The first forms of implementing cooperative systems were buffer free where the

relays do not possess any storing capabilities. In addition, different forms of

relaying were implemented: amplify-and-forward (AF) vs decode-and-forward

(DF), different modes of transmission: half-duplex (HD) vs full-duplex (FD) and

different topologies: parallel vs serial relaying.

1.2.1 Amplify-and-Forward versus Decode-and-Forward

A relay in the AF mode amplifies the signal received and then retransmits it

without decoding. However, in the DF mode, a relay decodes and remodulates
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the signal before transmitting it to the destination. Although the AF mode is

relatively simple, it has low performance since noise is amplified as well. In [11,12],

it has been proven that for single-antenna multi-hop relaying, the DF protocol

achieves higher capacity and lower outage probability than the AF protocol. This

advantage comes at the drawback of added complexity because of the added

processing capability for DF relays [13].

1.2.2 Half-Duplex versus Full-Duplex Relays

Fig. 1 shows a comparison between HD and FD modes. A HD relay receives a

signal from the source in the first time slot and then transmits to the destination

in the second time slot. Thus, no simultaneous reception and transmission is

allowed. However, a FD relay can receive and transmit two different signals at

the same time. In this mode, the two signals will interfere with each other and

the nodes of the system should have extra processing capabilities to eliminate

this interference.

Figure 1: Half-Duplex vs Full-Duplex Relay

FD mode is more preferable only for systems with unconstrained bit-error-rate

(BER) and with low transmit power and strong loop interference cancellation

[14]. In [15], HD relays are used to build a virtual FD system where relays

transmit packets one after another while the source is always sending packets to

all relays. An inter-relay-interference (IRI) cancellation method is proposed by

running a priori signal and then accordingly minimizing the power of the residual

interference at every time slot.

1.2.3 Parallel Relaying

The first topology considered is parallel relaying and is illustrated in Fig. 2.

K relays are placed between a source S and a destination D so that packets of

information can be transmitted from S to any relay Rk and then Rk transmits

3



the packet to D with k = 1, · · · , K. With inter-relay cooperation enabled, a relay

Rk will be able to transmit packets to an adjacent relay (i.e Rk−1 or Rk+1) and

hence the number of paths will be higher since K − 1 links are added.

Figure 2: Parallel Relays

The very basic relaying strategy of buffer-free DF parallel setups is the max-

min scheme where the best end-to-end link is selected [16]. In other words,

the quality of all S-R and R-D links are checked and every path is judged by the

minimum channel quality of either S-Rk or Rk-D link. Next, the relay allowing for

the strongest path will receive a packet in the first time slot and then re-transmit

the packet to D in the second time slot. Other feedback schemes were suggested

in [17] and [18] in the context of DF and AF relays, respectively. A direct link

between S and D was considered and relaying is used only if the destination node

fails to correctly decode the signal from the source in case of the DF system or

the SNR of the received signal is below a threshold in case of the AF system. In

case relaying is required, D sends a feedback signal to all relays and then decides

on the best node (among relays and the source) to transmit the packet. Finally,

combination of the received signals is carried out at the destination node.

Inter-relay cooperation was tackled in [19] and its performance advantage was

found to be only at low SNR condition and could achieve a lower outage proba-

bility and a higher throughput. The advantage of using inter-relay cooperation

is further analyzed in [20], where the feedback from the destination is consid-

ered and packet transmission is done in three priority selections: (1) S-D link,

(2) best quality R-D link, (3) an available R-R link where the sending relay cor-

rectly decoded the source’s signal and the receiving relay successfully decoded the

NACK from D. This receiving relay will then retransmit the packet to D. This

scheme proved to achieve better outage probability and higher transmission rate

compared with the conventional max-min scheme without a direct S-D link.
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1.2.4 Serial Relaying

Relays can be placed serially to form multi-hop systems as shown in Fig. 3. With

this topology, packets of information are transmitted from the source to the first

relay R1 and then from one relay to another until it reaches the destination node.

Figure 3: Serial Relays

Serial relaying has been extensively studied in the literature as a means of

extending the coverage of wireless networks [21]. Similar to parallel relays, AF

and DF modes can be implemented at the cooperating relays.

The most basic buffer free scheme consists of transmitting one packet from S

through the relays to D, only when all links are available. Otherwise, an outage

occurs. One weakness of this setup is its limited end-to-end outage performance

that is dominated by the weakest of all hops; i.e. the hop with the highest out-

age probability [22]. Another scheme is implemented in [23] where the IRI is

neglected and even and odd indexed relays transmit packets alternatively. Dif-

ferent modulation schemes were considered and the symbol error probability was

derived for each.

1.3 Buffer-Aided Cooperative Communications

Relaying techniques evolved from buffer-free to buffer-aided (BA) relaying where

the relays are equipped with buffers (or data queues) that can temporarily store

information packets until the links are available for transmission. This feature

allowed for an additional degree of freedom that can be exploited to mitigate

channel fading and, hence, enhance the reliability of communications at the ex-

pense of introducing queuing delays [24, 25].

1.3.1 HD DF parallel relaying

The system model for BA parallel relaying is shown in Fig. 4. K relays are placed

between S and D and are equipped with buffers of size L.

Systems with a single-relay were considered in [26–28]. In [26,27], the through-

put was maximized while the case of buffer overflow was ignored. However in [28],

finite buffers were considered and performance optimization revolved around the

outage probability and the average delay.
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Figure 4: Buffer-Aided Parallel Relays

On the other hand, multiple relays were tackled in [29–41]. The authors

in [29] suggested the max-link scheme that consists of selecting the strongest link

among all available S-R and R-D links. This scheme is capable of achieving a full

diversity order of 2K but only with infinite buffer sizes. Moreover, this scheme

suffers from high APD values of KL+1 that increase linearly with the buffer size.

In [30], another scheme was suggested to reduce the average delay and improved

on the max-link scheme by giving preference for the R-D links. It can achieve a

smaller APD of 2, independent of the buffer size, but at the expense of decreasing

the diversity order. The relaying strategy presented in [31] is similar to [29] but

attempts to equalize the buffer lengths at the relays. This scheme outperformed

the max-link scheme in terms of delay but has a limited diversity order equal to

K as in buffer-free systems. In [32], the relay selection consisted of prioritizing

the S-R and R-D links in odd and even time slots, respectively. This scheme is

advantageous in the case of finite buffer sizes compared to the max-link protocol,

where it achieves a slight increase in the diversity order.

Unlike [29–32] where the relay selection policy is based solely on the CSI,

the buffer state information (BSI) is considered in [33–39]. A balancing BA

scheme was analyzed in [33] for symmetrical networks and consisted of keeping

the number of packets at each buffer the closest possible to L/2. Another priority-

based max-link scheme was proposed in [34] and classifies relays in three priority

classes; namely relays with full, empty and neither full nor empty buffers. In the

case of quasi-symmetrical networks, this scheme also proved to achieve a diversity

order equal to 2K for large values of L. The scheme proposed in [35] is based

on a different relay classification. It assigns the relays as in the transmission

mode or in the reception mode based on their current queue length and then,
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decides on whether to transmit or receive based on the maximum and minimum

number of stored packets for the transmission and reception modes, respectively.

A full diversity order can be achieved for symmetrical networks with finite buffer

sizes, along with a reduced asymptotic APD of 2K + 2 . In [36], the proposed

scheme consisted of assigning a weight to each link that differentiates between

S-R and R-D links and then, the link with the highest weight is selected. Similar

to [35], the scheme in [36] is capable of achieving a diversity order of 2K in

symmetrical networks for L > 2. In order to better address the cases where more

than one link have the same weight, the scheme in [37] introduced a relay selection

factor that includes the weight of the link and the link’s quality as the first and

second metrics, respectively. This resulted in the ability of the scheme to either

prioritize the OP or the APD. Moreover, two delay-aware relaying strategies were

suggested in [38] based on the availability of the links and buffer sizes. The first

policy achieves an asymptotic APD of 4K−1, while the second one trade-offs the

delay and the diversity order and reduces the delay to 2K + 1 at the expense of

decreasing the diversity order. The scheme in [39] introduced a threshold-based

selection scheme where relays are divided into 4 priority classes based on the

threshold of each relay. Multiple levels of tradeoffs between OP and APD could

be achieved with a diversity order ranging from K to 2K and an average delay

ranging from 2 to 2K+2. Moreover, a buffer size of 3 was proved to be sufficient

to extract all the capabilities of the network.

While the BA relay selection schemes in [29–39] are deterministic, probabilis-

tic schemes were considered in [40, 41]. In [40], the strongest available S-R and

R-D links are selected first and then, a random selection is done between the

two selected links. A full diversity order of 2K is achieved for quasi-symmetrical

networks with infinite buffer sizes while allowing for different levels of tradeoff

between OP and APD. In [41], after selecting the S-R and R-D links with the

smallest and largest numbers of packets in the corresponding buffers, respectively,

this scheme randomly selects between these links according to a probability dis-

tribution taking into account the delay constraints.

1.3.2 HD DF serial relaying

The system model for BA serial relaying is shown in Fig. 5. K relays are placed

sequentially between S and D and are equipped with buffers of size L.

While the research on BA parallel relaying is extensive, BA serial relaying

was less investigated in the literature [42–45]. Max-link selection was analyzed

in [42–44] where the link with the highest instantaneous signal-to-noise ratio

(SNR) is selected. The selection is limited to the set of available links where the

link Rk−1-Rk is available when the buffer at Rk−1 is not empty, i.e. has at least

7



Figure 5: Buffer-Aided Serial Relays

one packet of information to be transmitted, and the buffer at Rk is not full,

i.e. can accept at least one packet. In [42], a lowerbound on the bit error rate

was derived by loosening the aforementioned availability constraint and assuming

that the buffers at the relays have an infinite size and that each relay always has

packets to transmit. The derived lower-bound has a diversity order ofK+1 under

independent and identically distributed Rayleigh fading with the same path-loss

assumed along all hops. In [43], the BER and outage probability of the max-

link scheme were analyzed. Results showed that the diversity order of K + 1

can be achieved exclusively with infinite buffer sizes while practical finite-size

buffers can achieve only a fraction of this maximum diversity order. A Markov

chain analysis was adopted to evaluate the outage and delay performance of the

max-link scheme in [44]. Results are consistent with [43] where large buffer sizes

are needed to extract the maximum diversity advantage from the underlying

network. Moreover, results showed that the asymptotic average delay increases

with the buffer size. As such, keeping the delay at acceptable levels incurs the

implementation of buffers with small sizes at the relays which, in turn, reduces

the diversity gain that can be reaped from the BA system.

HD BA DF serial relaying was considered in [45] with infinite buffer sizes.

This work targeted the maximization of the average rate for a communication

session that extends over an infinite number of fading blocks in a block fading

environment. The implementation of the relaying protocol in [45] necessitates

the availability of perfect instantaneous CSI at each transmitting node (source

or relay) so that this node adapts its transmission rate to the underlying channel

conditions where Gaussian codebooks are employed. As in [42–44], the relaying

protocol in [45] is based solely on the CSI where the transmission modes are

related to the rates that can be achieved over the different hops.

1.3.3 FD DF parallel relaying

Virtual FD parallel relaying is investigated in [46] and [47] in the sense that HD

relays are used while the source and one of the relays are transmitting information

packets simultaneously. The authors in [46] proposed joint relay selection and
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beamforming schemes that account for the IRI problem. Relays were equipped

with multiple antennas and the end-to-end rate was maximized using a weighted

sum-rate maximization strategy. Results show that when increasing the number

of relays and/or the number of antennas, the performance can asymptotically

approach the upper-bound of the ideal FD relaying mode. On the other hand,

the power minimization problem accounting for IRI was tackled in [47] with single

antennas at the relays. This scheme has improved the system’s performance in

terms of the energy efficiency, the throughput and the average delay.

1.3.4 FD DF serial relaying

Virtual FD relaying was studied in [48]. The outage performance of the max-

link scheme was improved assuming the absence of inter-relay-interference. This

strict assumption holds if perfect IRI cancellation techniques are implemented

or if highly-directive antennas are deployed. Neglecting the IRI, the relaying

protocol in [48] allows for the simultaneous transmissions along two hops that are

selected from two groups out of the total number of three groups in which the

hops are partitioned. As in the max-link scheme, the selection is based on the

instantaneous SNR.

FD relays were considered in [49–51] where the relays can transmit and receive

at the same time and in the same frequency band. FD BA DF two-hop relaying

was considered in [49] where the relaying protocol revolved around maximizing

the transmission rate over an infinite number of time slots based on the instanta-

neous SNRs along the two constituent hops. The buffer at the relay is assumed

to be sufficiently large so that the incoming data can always be stored with no

overflow. FD BA DF serial relaying was also studied in [50] and [51] in the con-

text of millimeter-wave (mm-wave) and free-space optical (FSO) communications,

respectively. While the self-interference (SI) impairment was taken into consid-

eration for RF, self-interference (SI) and IRI can be neglected for mm-wave and

FSO communications since the mm-wave and laser beams are highly directive.

As such, the relaying protocols in [50,51] take into consideration that concurrent

transmissions can take place along all hops in the absence of interference.

1.4 RL Techniques for BA Systems

Reinforcement learning techniques are recently integrated into cooperative net-

works for their ability to optimize complex problems that are hard to be solved

in a theoretical framework. BA relaying systems are especially tackled since they

can be modeled as Markov Decision Processes (MDP). Details about RL tech-

niques are provided in Section 2.1.
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Parallel BA relaying is considered in [52–57] in the context of RL algorithms.

Joint throughput and delay optimization are tackled in [52–54] for different sys-

tems and under different constraints while the optimization in [55–57] addressed

jointly the secrecy rate, the delay and the throughput of the system. Dealing

with unfeasible actions is also a prime issue for RL techniques.

A deep Q-learning algorithm was proposed in [54] that allocates a negative

reward for unfeasible actions and a positive reward for a packet that reaches

the destination node within the delay constraint. A similar positive reward is

used in [52] but unfeasible actions are assigned a zero Q-value in the target

network while training the agent. This technique proved to further improve the

throughput compared with the punishment-based algorithm in [54]. In [53], two

algorithms were proposed and compared for hybrid OMA/NOMA BA relaying:

asynchronous deep Q-Learning and asynchronous advantage actor-critic scheme.

The former scheme demonstrated better performance and faster convergence for

small action spaces whereas the latter showed better performance in the case of a

large action space. Moreover, the RL agent was provided with a priori-information

about unfeasible actions as well as inconvenient actions for the delay constraint.

The agent uses this information to remove undesirable actions from the action

space at each time slot so that the system could converge faster. The a-priori

information could improve the performance for both aforementioned schemes.

On the other hand, the system in [56] comprises of a primary source, a sec-

ondary source, a primary destination, a secondary destination, K HD BA parallel

relays and one eavesdropper. A deep Q-learning algorithm is proposed to max-

imize the throughput within a delay and secrecy rate constraints and allocates

negative reward for unfeasible actions. The same system was considered in [57],

and a a-priori information based Double Deep Q-learning (DDQN) algorithm was

proposed to improve the convergence. In addition, the system in [55] makes use

of an intelligent reflecting surface (IRS) with N reflecting elements. The prob-

lems of maximizing the throughput under the system’s constraints were divided

into sub-tasks and a distributed multi-agent reinforcement learning scheme was

proposed to solve the optimization problem.

Furthermore, RL is used in the context of simultaneous wireless information

and power transfer (SWIPT) to optimize the energy consumption. Joint power

allocation and throughput optimization for single relay systems is tackled in [58].

Deep Q-learning was used to find the optimal policy that maximizes the long-

term reward. The reward function was based on the number of received and

forwarded packets at the relay. Finally, a pretraining scheme was implemented

to accelerate the convergence of the system by driving the DQN agent to choose

some desirable actions at specific states. These preferences are assumed to hold
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for any system transition function.

1.5 Contributions

1. HD DF serial relaying is not well investigated in the literature compared to

parallel relaying. Previous schemes suffer from high average packet delay

that increases with the buffer size. Also, large buffer sizes are needed to

achieve the full diversity order. In fact, all relay selection schemes in [42–45]

were based on the channel quality of links and the buffers’ states were not

considered. As such, in Chapter 3, we suggest a novel buffer state-based re-

laying scheme for HD BA DF multi-hop communications to further improve

the performance. We analyze the proposed scheme in a theoretical frame-

work using a MC formulation and derive closed-form analytical expressions

for the APD, OP and diversity order.

2. In Chapter 4, we propose two more parameterized relaying techniques that

achieve further performance improvements and levels of tradeoff between

the average packet delay and the diversity order. We compare these schemes

and deduce the adequate choices of the system parameters to optimize the

performance.

3. Further setups of serial and parallel relaying accounting for interference

constraints, inter-relay cooperation and variable transmission rates not in-

vestigated in the literature are considered in Chapter 5. We propose a deep

RL algorithm to deduce the optimal relay selection that can achieve the

maximum throughput and the minimum average packet delay. We compare

the different setups and draw conclusions about the effect of the system’s

variables on the overall performance.

1.6 List of Publications

- ”Buffer State Based Relay Selection for Half-Duplex Buffer-Aided Serial

Relaying Systems,” accepted for publication in IEEE Transactions on Com-

munications.

- ”Relaying Strategies for Half-Duplex Buffer-Aided Serial Relaying Systems,”

submitted/under revision in IEEE Communications Letters.

- ”Optimized Relay Selection for Multi-Hop Cooperative Systems Using Deep

Reinforcement Learning,” under preparation.

11



Chapter 2

Analysis Techniques

2.1 Reinforcement Learning (RL)

2.1.1 Markov Decision Process

A Markov decision process (MDP) is a prime component for the reinforcement

learning. A MDP is a stochastic model defined by a set of states, a set of actions

and the one-step dynamics of the environment [59]. In other words, at time t,

given a state s and assuming an action a is taken, the environment will output a

reward r and move to the next state s′ with a certain probability. The probability

distribution defined in (2.1) for all possible states and actions of the system

characterizes the MDP.

p(s′, r|s, a) = Pr(St+1 = s′, Rt = r|St = s, At = a) (2.1)

2.1.2 RL Agent

RL is a branch of AI that is different from supervised and unsupervised learning.

It is applied on Markov Decision Processes and if converges, results in an optimal

policy that maximizes the reward function. The RL training approach is described

in Fig. 6 where the agent at time slot t, given the current state St chooses the

action At based on (2.2).

At = argmax
a
Q(St, a) (2.2)

where Q(St, a) stands for the Q-value of selecting action a at the state St.

Next, the environment processes this action and outputs the new state St+1

and a reward value Rt. This forms a new training experience expressed as

(St, At, St+1, Rt) and accordingly the Q-values will be updated according to the

Bellman equation (2.3).
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Q(St, At) = Rt + γ ∗max
a
Q(St+1, a) (2.3)

The parameter γ stands for the discount factor that determines the impact of

future rewards on the learning process.

The Q-values are determined and processed by the agent using either a Q-

table (Q-learning) or a neural network (Deep Q-learning) until a final function

St → At converges.

Figure 6: The agent-environment interaction in RL

2.1.3 Q-Learning

For M states and N actions, the Q-learning table will be of size MxN as illus-

trated in Fig. 7. For every state, the Q-value of every action is reported in this

table and after every iteration these values are updated according to (2.3).

Figure 7: Q-learning Approach

2.1.4 Deep Q-Learning

For large sets of states and actions, the Q-table will become huge and the con-

vergence will be slower. As an alternative, a neural network (NN) is trained to

output the Q-values of actions at every state as shown in Fig. 8. In fact, two

NN are required for the training, a prediction network and a target network. The
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maximum future reward at St+1 is computed from the target network to get the

new Q-value in (2.3). According to this new Q-value and the old one (from the

prediction network), a cost function is computed and the prediction NN will be

updated.

Figure 8: Deep Q-learning Approach

2.1.5 Handling Unfeasible Actions

At certain states, some actions might be unfeasible; i.e. the environment cannot

process such actions. An example could be the action of activating a given link

while in fact it is in outage. To handle these cases, different approaches were

proposed in the literature:

• Punishment: Assigning a negative reward whenever an unfeasible action

is chosen. This approach is good enough for Q-learning since it allocates

a negative value at the corresponding entries of the Q-table. However, in

DQN, the NN tries to deduce a smooth function that computes the Q-

values, and unfeasible actions for some states can be the best actions for

others, hence, this approach can be too harsh for DQN.

• Decision Assisted DQN: This approach changes the result of (2.3) to zero

for unfeasible actions which is the actual final value of these Q-values. This

approach can accelerate the convergence but, however, does not guarantee

the selection of feasible actions especially for systems with a large set of

unfeasible actions.

• A-priori Information: the agent can be given some a a-priori information

about unfeasible actions so that it can remove them from the action space

at each time slot. This approach can accelerate the convergence and the

elimination of unfeasible actions is guaranteed.
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• Pretraining: The designer can preset some desirable actions at specific

states and train the agent based on this specific dataset. Next, the agent

will be trained according to the general approach described in Section 2.1.2.

This approach can accelerate the convergence but, however, it can deviate

the agent from converging to the best solution but instead, converge to

what the designer thinks is a good solution.

2.2 Markov Chain Model

A Markov Chain (MC) model is a special case of an MDP where actions and re-

wards are eliminated; i.e. only one action is possible at every state and all rewards

are set to zero. An MC model describes transition probabilities p(s′/s) between

the defined states of a system. This model is useful in wireless communication

systems since probability distributions of different types of channels can be used.

It is defined by a determined number of states and a transition matrix describing

the transition probabilities between every two states. A variety of mathematical

tools can be applied on these models to deduce the steady-state probabilities.

2.3 Asymptotic Analysis

This is an approximation approach of steady-state distributions of a MC model.

It is based on the simplification of the transition probabilities so that some prob-

abilities will tend to zero at certain conditions of the system (for example, at high

SNR). A closed subset of the states will be formed, that is the probabilities of

leaving this subset all tend to zero as described in Fig. 9. This allows to perform

the analysis on a smaller number of states and to derive closed-form expressions

of the system metrics.
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Figure 9: Closed Subset Approach
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Chapter 3

Buffer State Based Relay Selection for

Half-Duplex Buffer-Aided Serial

Relaying Systems

3.1 Objectives

- We suggest a novel relaying scheme for HD BA DF multi-hop communica-

tions.

- We analyze the proposed scheme in a theoretical framework using a MC

formulation.

- We derive closed-form analytical expressions for the APD, OP and diversity

order.

3.2 System Model and Relaying Strategy

3.2.1 Basic Parameters

The system consists of a serial relaying network that involves K + 2 nodes com-

prising K relay nodes denoted by R1,. . ., RK , a source node S and a destination

node D. Because of possible long distances between S and D, the assumption of

no direct link between S and D is valid and, consequently, a packet is transmitted

from S to D in K + 1 hops through the relays R1 to RK as depicted in Fig. 5.

We denote S and D by R0 and RK+1, respectively, and we assume that each relay

Rk can transmit a packet to the next relay Rk+1 (if any). We assume that each

node is equipped with only one antenna and that all nodes are HD which implies

that simultaneous transmission and reception is impossible.

In what follows, we assume a Rayleigh block fading channel and we indicate

by hk the channel coefficient of the k-th link between nodes Rk−1 and Rk for
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k = 1, . . . , K + 1 as presented in Fig. 5. The channel coefficients are circularly

symmetric complex Gaussian distributed random variables with zero mean and

variances. We denote the variances by Ωk for the k-th link. Finally, all links

experience an additive white Gaussian noise (AWGN) that has zero mean and

unit variance.

Each link is considered in outage when its corresponding channel capacity is

lower than the targeted rate r0 (in bits per channel use (BPCU)). Consequently,

the outage probability along the k-th link is calculated as:

pk = Pr

{
1

K + 1
log2(1 + γ̄|hk|2) ≤ r0

}
= 1− e

− 2(K+1)r0−1
Ωkγ̄ , (3.1)

where γ̄ denotes the average transmit signal-to-noise ratio (SNR). In (3.1), the

division by K +1 is introduced since the communication of a packet from S to D

is performed in K + 1 time slots.

It is assumed that each relay is equipped with one buffer of finite size L, which

allows for temporarily storing the packets until better channel quality is available.

We denote by lk ∈ {0, . . . , L} the actual amount of stored packets present in the

buffer Bk at Rk for k = 1, . . . , K.

The unavailability probability of the k-th link is denoted by qk. Three cases

arise:

• Consider the first hop between S and R1. The link 1 is judged unavailable

if the buffer B1 is full (cannot accommodate for an incoming packet) or the

channel S-R1 is in outage (that is with probability p1).

• Consider the last hop between RK and D. The link K + 1 is unavailable

if the buffer BK is empty (no packet can be communicated to D) or the

channel RK-D is in outage (that is with probability pK+1).

• Consider an intermediate hop between Rk−1 and Rk. The link k, for k =

2, . . . , K, is unavailable if the buffer Bk is full or the buffer BK−1 is empty

or the channel between Rk−1 and Rk is in outage (that is with probability

pk).

Consequently, the unavailability probabilities {qk}K+1
k=1 can be expressed as:

qk(l1, . . . , lK) = pk + (1− pk)×
δl1=L, k = 1;

δlk−1=0 + δlk=L − δlk−1=0δlk=L, k = 2, . . . , K;

δlK=0, k = K + 1.

, (3.2)

18



where δS is either equal to 1 if the statement S is true or equal to 0 if S is false.

3.2.2 Buffer State Based Relaying Strategy

To reap the maximum performance gains from the underlying serial system, the

proposed relaying strategy will be based on the availabilities of the K + 1 links

as well as the buffers’ states captured by the vector (l1, . . . , lK) representing the

current number of packets stored in the K buffers B1, . . . , BK . At each time

interval, the relaying strategy determines the link k̂ that must be activated as

follows:

k̂ = argmax
k∈La

{∆k}, (3.3)

denoting that, in the corresponding time slot, Rk̂−1 must transmit and Rk̂ must

receive. In (3.3), La ⊂ {1, . . . , K + 1} denotes the set of links that are available

and ∆k denotes the weight that is assigned to link k for k = 1, . . . , K + 1.

The relaying strategy that we propose in this work is based on defining the

weights {∆k}K+1
k=1 as in (3.4).

∆k =

{
s, k = 1;

lk−1, k = 2, . . . , K + 1.
. (3.4)

The rationale behind (3.4) is as follows. In the goal of avoiding the excessive

queuing of the packets at the relays’ buffers which negatively impacts the queuing

delay, the proposed strategy corresponds to the selection of the relay whose buffer

is storing the highest number of packets at the transmitting node. Evidently, the

selection is limited among the relays whose links with the subsequent relay (or D)

is available since, otherwise, no packet can be successfully communicated along

the link that must be activated. While the weight associated with each one of the

K relays is determined from the number of packets stored in this relay’s finite-size

buffer, a distinct weight s is assigned to S (i.e. link 1). Note that the source is

assumed to be equipped with an infinite size buffer and to be fully backlogged, i.e.,

it always has enough information packets to be transmitted. These assumptions

are common in the open literature on BA relaying [29,30,35,36,39,42–45,48–51].

It is worth highlighting that any link that is not in outage will ensure the delivery

of a packet from the transmitting node to the receiving node. In other words, if a

link is stronger than another link while both links are not in outage, then there is

no added value in activating the stronger link since, in both cases, the objective

of successfully transmitting the dequeued packet is realized. As such, referring

to (3.1), there is no need to include the explicit value of the link capacity in the

link selection process as long as this capacity is above the threshold value.

The nonzero parameter s will be restricted to the set {1, . . . , L} to have com-
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parable values with the buffer lengths l1, . . . , lK . As will be highlighted later, the

parameter s has a major impact on the achievable diversity orders and queuing

delays and the subsequent performance analysis will suggest convenient options

for selecting this parameter. Finally, in (3.3), in case multiple links share the

same maximum weight, the highest order link (i.e. the closest link to D) will be

selected. This selection will accelerate the arrival of packets at D and, thus, will

contribute to reducing the average packet delay.

Given that each node in multi-hop networks can communicate only with the

preceding and subsequent nodes, the signaling protocol in such networks differs

from that implemented in parallel-relaying networks where S (or D) can broadcast

signaling information to all relays. However, for the proposed relaying scheme,

the decision on the link to be selected can be implemented in an advantageously

simple sequential manner. In fact, instead of collecting all buffer state and channel

state information and sharing it with a central node that makes a decision on the

selected link, every relay can make an intermediate decision on whether this relay

or the subsequent relay (if any) is better suited for transmission. The intermediate

decision along with the corresponding recursive weight can be shared with the

previous relay sequentially until the signaling information reaches S that makes

the final decision on the selected link as follows:

- Starting from RK , relay Rk performs the following tasks for k = K, . . . , 1.

(i): It generates the recursive weight rk and the index ik of the link that

is the best candidate so far. (ii): It shares the metrics (rk, ik) with the

previous relay Rk−1.

- After K signaling time slots, S (relay R0) receives (r1, i1) and generates the

metrics (r0, i0). The integer i0 will be equal to the index of the best link k̂

in (3.3).

- The index i0 then needs to be shared with the K relays over K additional

signaling time slots. Starting from R0, relay Rk shares the value of i0 with

Rk+1 for k = 0, . . . , K − 1.

- Consequently, all nodes R0,. . .,RK have acquired the index of the best link

and the corresponding node (if any) can initiate the data transmission.

For k = K, . . . , 0, rk and ik can be determined recursively as follows:

rk = max{∆k+1sk+1, rk+1}

ik =

{
k + 1, ∆k+1sk+1 > rk+1;

ik+1, otherwise.
,

(3.5)
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where rK+1 = 0, iK+1 = 0, ∆k is given in (3.4) and sk = 0 (resp. sk = 1) if link

k is in outage (resp. not in outage). Note that, ∆k+1sk+1 = 0 if either ∆k+1 = 0

(i.e. the buffer at Rk is empty) or sk+1 = 0 (i.e. the link k + 1 over which Rk

transmits is in outage). In both cases, link k + 1 is unavailable and it cannot be

selected as the best candidate link. Finally, i0 = 0 means that all K +1 hops are

unavailable and the network is in outage.

Comparing the signaling overhead with that of the parallel-relaying BA scheme

in [39]:

- In the downlink (from relays to S), the proposed scheme requires the trans-

mission ofK messages of length d1 = ⌈log2((K+1)(L+1))⌉ inK consecutive

time slots since {(rk, ik)}Kk=1 ⊂ {0, . . . , L}×{0, 2, . . . , K+1}. Similarly, the

scheme in [39] necessitates the transmission of K messages over K time

slots but now the length of each message is d2 = ⌈log2(4(L + 1))⌉ where

the factor four captures the joint availabilities of the links S-Rk and Rk-D.

Note that, even with parallel-relaying, K distinct signaling time slots are

needed since the K relays cannot transmit simultaneously in order to avoid

interference.

- In the uplink (from S to relays), K messages of length u1 = ⌈log2(K+2)⌉
must be transmitted over K time slots to inform the relays which one of

the K+1 hops must be activated (in addition to the option that all nodes

must remain idle). For [39], one message of length u2 = ⌈log2(2K+1)⌉ can

be broadcasted from S to inform all relays on the node to be selected (if

any) and on whether the selected relay should transmit or receive.

As such, except for the incapability of broadcasting in any multi-hop network, the

signaling overheads of the proposed scheme and [39] are comparable especially

for practical systems comprising a limited number of relays K.

The proposed scheme is appealing from a signaling-overhead point of view

for the following reasons. (1): The proposed scheme can be implemented with

small buffer sizes which limits the portion of the signaling overhead pertaining

to the buffer state information. In particular, we prove in the next section that

there is no need to deploy buffers whose sizes exceed five. As such, an immaterial

number of d1 = 6 bits in the downlink can accommodate a network with up

to nine relays. Therefore, the cost of collecting the buffer state information is

not overwhelming. (2): The signaling overhead needs to indicate simply whether

the links are in outage or not through the variable sk in (3.5). Moreover, this

variable can be further multiplied by the weight ∆k since there is no need to

report the number of stored packets if the corresponding link is in outage since

this link will not be selected. As such, unlike the benchmark max-link scheme
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in [44], the proposed scheme does not include the actual values of the path gains

{hk}K+1
k=1 in the decision-making process. In fact, feeding back the K + 1 gains

results in excessively long signaling messages if the real-valued path gains are

to be quantized with a sufficiently high level of accuracy. In this context, it is

worth highlighting that the signaling of the max-link scheme can be implemented

sequentially as well. While the number of messages and the length of each message

in the uplink remains the same as compared to our proposed scheme, the length of

each one of the K messages in the downlink must increase from d1 = ⌈log2((K +

1)(L + 1))⌉ to ⌈log2((K + 1)M)⌉ where M is the number of quantization levels

that exceeds L + 1 (whose maximum value is 6 with the proposed scheme) by

several orders of magnitude.

3.3 Performance Analysis

3.3.1 Generalities

We will adopt a Markov Chain (MC) analysis to study the behavior of the BA

serial relaying system where the features of interest are the outage probability

(OP) and the average packet delay (APD). We define a state as the mixture

of the current amount of stored packets in all buffers and will be denoted by

(l1, l2, . . . , lK). The number of states in this MC is (L + 1)K in total since lk ∈
{0, . . . , L} for k = 1, . . . , K. In this work, we consider a finite buffer size L that

yields a finite-state MC. This choice is motivated by the fact that infinite-size

buffers are not practical since all storage devices have a finite capacity. Moreover,

as will be discussed in Section 3.3.4, we prove that the proposed BA relaying

scheme is capable of extracting the full capabilities of the cooperative network

with buffers having a finite size of five. As such, the use of infinite-size buffers and

finite-size buffers with L > 5 is not justified since such options do not enhance

the asymptotic performance gains.

The transition probability of going from the state (l1, . . . , lK) to the state

(l′1, . . . , l
′
K) is denoted by t(l1,...,lK),(l′1,...,l

′
K) . The transition matrix T of size (L +

1)K × (L+ 1)K describes the evolution between the states. The (i, j)-th element

of T is given by:

Ti,j = t(l1,...,lK),(l′1,...,l
′
K) ;

i = N(l′1, . . . , l
′
K) , j = N(l1, . . . , lK),

(3.6)

where j = N(l1, . . . , lK) is the one-to-one function relating the integer j ∈
{1, . . . , (L + 1)K} and the state (l1, . . . , lK) ∈ {0, . . . , L}K and is expressed as:

j = 1 +
∑K

k=1 lk(L+ 1)K−k.
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We denote by πl1,...,lK the steady-state probability of the system being in the

state (l1, . . . , lK). These steady-state probabilities are calculated as follows [29]:

π = (T+B− I)−1 b, (3.7)

where π is a (L+ 1)K-dimensional vector and its j-th element is equal to πl1,...,lK
with j = N(l1, . . . , lK). In (3.7), B and I are two matrices of size (L+1)K × (L+

1)K that denote the all-one matrix and the identity matrix, respectively. b is a

vector with (L+ 1)K elements all equal to 1.

The system is defined to be in outage only if none of itsK+1 links can be acti-

vated, that is no packets can be transmitted along any of these links. Hence, for a

given state (l1, . . . , lK) an outage occurs with the probability
∏K+1

k=1 qk(l1, . . . , lK)

following from (3.2). The steady state probabilities allow then the calculation of

the outage probability as follows::

OP =
L∑

l1=0

· · ·
L∑

lK=0

πl1,...,lK

K+1∏
k=1

qk(l1, . . . , lK). (3.8)

The queuing at the relays’ buffers will imply a delay in the arrival of the

packets to D. The average packet delay is formulated following from [44] and

Little’s law [60]:

APD =
K +OP + (K + 1)L̄

1−OP
, (3.9)

where the term L̄ is denoting the average queue length of the buffers and is

obtained as follows:

L̄ =
L∑

l1=0

· · ·
L∑

lK=0

πl1,...,lK

[
K∑
k=1

lk

]
. (3.10)

It is worth highlighting that the presented MC analysis holds for multi-hop

networks with any number K ≥ 1 relays. For single-hop networks (i.e. K = 0),

the MC framework is not needed since the network comprises only one link with

no relays’ buffers.

3.3.2 State Transition Matrix

In what follows, the unavailability probabilities in (3.2) will be written as qk for

simplicity. We will denote the state by l = (l1, . . . , lK), the set of all relays by

A = {1, . . . , K} and ek will denote the k-th row of the K ×K identity matrix.

The self transition at any state l of the MC occurs only if all links are un-
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available:

tl,l =
K+1∏
k=1

qk. (3.11)

To transit to another state, at least one link should be activated. Denote by

ak the probability of activating the link k for k = 1, . . . , K + 1. This probability

is mapped to the transition probabilities as follows:

ak =


tl,l+ek , k = 1;

tl,l+ek−ek−1
, k = 2, . . . , K;

tl,l−ek−1
, k = K + 1.

(3.12)

A link k is selected to be activated if it is available and its weight ∆k is the

highest among all other available links:

ak = (1− qk)
∑

K⊂A\{k}

[∏
i∈K

(1− qi)

] ∏
j∈A\{k}∪K

qj

Qk,K, (3.13)

where the set K comprises the indices of the links, other than the link k, that

are available. In (3.13), Qk,K designates the probability that ∆k is greater than

∆k′ for all k
′ ∈ K. We emphasize on the concept of larger ∆k that considers the

tie breaking rule following from the numbering of links based on their distances

from S. As such, Qk,K =
∏

k′∈KQk,k′ where Qk,k′ denotes the probability that ∆k

is greater than ∆k′ :

Qk,k′ = δk′<kδ∆k≥∆k′
+ δk′>kδ∆k>∆k′

; k′ ̸= k, (3.14)

since, for ∆k = ∆k′ , it is preferred to activate the link that is farther from S that

is having the higher index.

Equation (3.13) can be developed as (3.15) that further simplifies into (3.16).

ak = (1− qk)

[
K+1∏

i=1,i ̸=k

qi +
K+1∑

k1=1,k1 ̸=k

(1− qk1)

[
K+1∏

j=1,j ̸=k,j ̸=k1

qj

]
Qk,k1

+
K+1∑

k1=1,k1 ̸=k

K+1∑
k2=k1+1,k2 ̸=k

(1− qk1)(1− qk2)

[
K+1∏

j=1,j ̸=k,j ̸=k1,j ̸=k2

qj

]
Qk,k1Qk,k2 + · · ·

]
.

(3.15)
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ak = (1−qk)

[
K+1∏

i=1,i ̸=k

qi

][
1 +

K+1∑
k1=1,k1 ̸=k

(1− qk1)

qk1
Qk,k1

[
1 +

K+1∑
k2=k1+1,k2 ̸=k

(1− qk2)

qk2
Qk,k21 + . . .

1 + K+1∑
kK=kK−1+1,kK ̸=k

(1− qkK )

qkK
Qk,kK

 , (3.16)

Equation (3.16) can be implemented recursively resulting in the following

expression:

ak = (1− qk)

[
K+1∏

i=1,i ̸=k

qi

]
[1 + fr(A, k, 0)], (3.17)

where fr(·, ·, ·) is the recursive function that can be derived using algorithm 1.

Function: fr(Y , k, a)
Data: Y ⊂ A, k ∈ {1, . . . , K + 1} and a ∈ {0, . . . , K + 1};
Result: Sum;
initialization: Sum = 0;
if a+ 1 > |Y| then

return 0
end
for m = a+ 1 : |Y| do

k′ = Ym (m-th element of Y)
if k′ ̸= k then

Sum = Sum+
(1−qk′ )

qk′
Qk,k′ [1 + fr(Y , k,m)]

end

end
Algorithm 1: Recursive function fr(Y , k, a)

3.3.3 Asymptotic Analysis

Using (3.17) to evaluate the transition probabilities in (3.12) then stacking these

probabilities in the state transition matrix to determine the steady-state proba-

bilities in (3.7) does not yield tractable expressions of the OP and APD especially

when K and/or L are large. This observation follows from (i): the complexity of

the recursive function in (3.17), (ii): the large number of states that can a state l

transit to according to (3.12) and (iii): the need to invert a (L+ 1)K × (L+ 1)K

matrix in (3.7) where there is an exponential increase of the number of states with

the number of relays K. As such, we next resort to an asymptotic analysis that

holds γ̄ ≫ 1. This analysis yields tractable closed-form expressions of the APD

and OP in the asymptotic regime and allows to draw useful conclusion about the

system performance.
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The (L + 1)K states of the state space S ≜ {0, . . . , L}K will no longer be

considered in the steady-state probability calculations, instead, the asymptotic

analysis will focus on a subset Sc of S where this subset comprises a much smaller

number of states and where the MC is in Sc with a probability tending to one

asymptotically. In other words,
∑

l∈Sc
πl → 1 while πl → 0 ∀ l /∈ Sc for γ̄ ≫ 1

where the steady-state probabilities satisfy (3.7). The set Sc is called the closed

subset where the probability of exiting this set tends to zero asymptotically:

tl,l′ → 0 ∀ l ∈ Sc , l
′ /∈ Sc. (3.18)

The performed asymptotic analysis shows that the closed subset Sc and the

corresponding steady-state probabilities depend on the weight s of link 1 in (3.4).

In particular, the cases 1 < s < L, s = 1 and s = L need to be considered

separately. For the sake of notational simplicity, the following definitions of some

states that depend on the parameter s are introduced:

s
(1)
1 = (s− 1, . . . , s− 1),

s
(1)
2 = (s+ 1, s− 1, . . . , s− 1),

s
(1)
3 = (s− 1, . . . , s− 1, s− 2),

s(2)n = (s− 1, . . . , s− 1︸ ︷︷ ︸
n−1 times

, s, s− 1, . . . , s− 1︸ ︷︷ ︸
K−n times

),

s(3)n = (s, s− 1, . . . , s− 1︸ ︷︷ ︸
n−1 times

, s, s− 1, . . . , s− 1︸ ︷︷ ︸
K−n−1 times

),

s(4)n = (s− 1, . . . , s− 1︸ ︷︷ ︸
n−1 times

, s, s− 1, . . . , s− 1︸ ︷︷ ︸
K−n−1 times

, s− 2),

(3.19)

with n=1, . . . , K for s
(2)
n and n=1, . . . , K−1 for (s

(3)
n , s

(4)
n ).

3.3.3.1 Case 1

1 < s < L:

Proposition 1. For 1 < s < L, the closed subset comprises 3K + 1 states as

follows:

Sc = {s(1)n ; n = 1, 2, 3} ∪ {s(2)n ; n = 1, . . . , K}

∪ {s(3)n , s(4)n ; n = 1, . . . , K − 1}, (3.20)
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where the corresponding steady-state probabilities are given by:

π
s
(1)
1

=
1−

∑K+1
k=2 pk

K+1

π
s
(1)
2

= p2
K+1

π
s
(1)
3

= p1
K+1

π
s
(2)
n

=
1−

∑n
k=1 pk

K+1
, for n = 1, . . . , K

π
s
(3)
n

=
∑n+1

k=2 pk
K+1

, for n = 1, . . . , K − 1

π
s
(4)
n

= p1
K+1

, for n = 1, . . . , K − 1.

(3.21)

Proof. The above proposition is proved in Appendix A.

3.3.3.2 Case 2

s = 1:

Proposition 2. For s = 1, the closed subset comprises 2K + 1 elements:

Sc = {s(1)n ; n = 1, 2} ∪ {s(2)n ; n = 1, . . . , K}

∪ {s(3)n ; n = 1, . . . , K − 1}, (3.22)

with the following steady-state probabilities:

π
s
(1)
1

=
1−

∑K+1
k=2 pk

K+1−Kp1

π
s
(1)
2

= p2
K+1−Kp1

π
s
(2)
n

=
1−

∑n
k=1 pk

K+1−Kp1
, for n = 1, . . . , K

π
s
(3)
n

=
∑n+1

k=2 pk
K+1−Kp1

, for n = 1, . . . , K − 1.

(3.23)

Proof. The details of the proof are presented in Appendix B.

3.3.3.3 Case 3

s = L:

Proposition 3. For s = L, the 3K-element closed subset along with the steady

state probabilities are presented below:

Sc = {s(1)1 , s
(1)
3 } ∪ {s(2)n ; n = 1, . . . , K}

∪ {s(3)n , s(4)n ; n = 1, . . . , K − 1}, (3.24)
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

π
s
(1)
1

=
1−

∑K+1
k=3 pk

K+1

π
s
(1)
3

= p1
K+1

π
s
(2)
n

=
1−

∑n
k=1 pk

K+1
, for n = 1, . . . , K

π
s
(3)
n

=
∑n+1

k=3 pk
K+1

, for n = 1, . . . , K − 1

π
s
(4)
n

= p1+p2
K+1

, for n = 1, . . . , K − 1.

(3.25)

Proof. The details of the proof are presented in Appendix C.

In (3.21), (3.23) and (3.25), the terms comprising the product of two or more

outage probabilities among {pk}Kk=1 are ignored since these terms are small for

large values of the SNR. It is obvious that the probabilities in (3.21) add up to

one. The same holds for the probabilities in (3.23) and the probabilities in (3.25).

Assuming L ≥ 5 and replacing (3.21), (3.23) and (3.25) in (3.8) implies the

expressions of the asymptotic OP provided in (3.26).

OPAsymp =



1−
∑K+1

k=2 pk
K + 1−Kp1

p1 +
K∑

n=1

1−
∑n

k=1 pk
K + 1−Kp1

p1pn+1

+
p2

K + 1−Kp1
p1p2 +

K∑
n=2

∑n+1
k=2 pk

K + 1−Kp1
p1p2pn+1

, s = 1

[
1− Kp1

K+1

]∏K+1
k=1 pk +

Kp1
K+1

∏K
k=1 pk, s = 2∏K+1

i=1 pi, 2 < s < L− 1[
1− p2

K+1

]∏K+1
i=1 pi +

p2
K+1

∏K+1
i=2 pi, s = L− 1

1 + p1 −
∑K+1

k=3 pk
K + 1

K+1∏
i=1

pi +
K∑

n=1

1−
∑n

k=1 pk
K + 1

K+1∏
i=1,i ̸=n

pi

+
K∑

n=2

∑n+1
k=3 pk
K + 1

K+1∏
i=2,i ̸=n

pi +
K−1∑
n=1

p1 + p2
K + 1

K+1∏
i=1,i ̸=n

pi,

s = L.

.

(3.26)

It is worth highlighting that the asymptotically-dominant states in (3.19)

comprise the buffer lengths s− 2, s− 1, s and s+ 1. Therefore, the cases s = 2,

s = 1, s = L and s = L−1 need to be considered separately in the OP derivations.

In fact, for s ∈ {1, 2} (resp. s ∈ {L − 1, L}) some buffers are empty (resp. full)

and, hence, cannot transmit (resp. receive) packets. In this context, only the case

2 < s < L− 1 implies that the unavailability probabilities in (3.2) satisfy qk = pk

for k = 1, . . . , K + 1 for all states in (3.19) that determine the closed subset. As

an illustration, for s = 2, the link K + 1 is always unavailable for the states in

Su = {s(1)3 , s
(4)
1 , . . . , s

(4)
K−1} in (3.20). Therefore, the product of the unavailability
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probabilities in (3.8) simplifies to
∏K+1

k=1 qk =
∏K

k=1 pk for the states in Su and to∏K+1
k=1 qk =

∏K+1
k=1 pk otherwise. As such, the asymptotic OP can be written as

OPAsymp = (1 −
∑

l∈Su
πl)

∏K+1
k=1 pk + (

∑
l∈Su

πl)
∏K

k=1 pk which simplifies to the

second expression in (3.26) after replacing the steady-state probabilities by their

values from (3.21) and observing that
∑

l∈Su
πl =

p1
K+1

+ (K − 1) p1
K+1

= Kp1
K+1

.

The asymptotic OP expressions in (3.26) yield the diversity order of the BA

relaying system. The value of the diversity order can be extracted from the OP(γ̄)

curve on a log-log scale as the negative slope of this curve. Asymptotically, the

product of n terms among {p1, . . . , pK+1} scales as γ̄−n (given that each outage

probability in (3.1) scales as γ̄−1) generating a diversity order of n. Consequently,

the system’s diversity order DO is found to be:

DO =


1, s = 1;

K + 1, 1 < s < L;

K, s = L.

, (3.27)

implying that the choice 1 < s < L is the most appealing for maximizing the

diversity order.

For the asymptotic APD derivations, the outage probabilities {pk}K+1
k=1 can be

ignored in evaluating the steady-state probabilities in (3.21), (3.23) and (3.25).

In fact, it was observed that this approach yields to a simple asymptotic APD

expression that is highly accurate. Setting p1 = . . . = pK+1 = 0 in (3.21), (3.23)

and (3.25) results in π
s
(1)
1

= π
s
(2)
1

= · · · = π
s
(2)
K

= 1
K+1

for all values of s while other

steady-state probabilities can be ignored. Therefore, the average queue length in

(3.10) is equal to L̄ = 1
K+1

K(s − 1) + K
K+1

(K(s − 1) + 1) following from the

definitions of the states s
(1)
1 and s

(2)
n in (3.19). Replacing this value of L̄ in (3.9)

while ignoring OP that is very small asymptotically implies the below expression

of the asymptotic APD that holds for all values of s:

APDAsymp = 2K + (s− 1)K(K + 1). (3.28)

implying that the choice s = 1 is the most appealing for minimizing the queuing

delay.

Equation (3.28) demonstrates that the asymptotic APD increases as the num-

ber of relays K is increasing where the delay is accumulated as the information

packets move from one relay’s buffer to the buffer of the next relay. However,

unlike the max-link scheme in [44], the asymptotic APD is independent of the

buffer size L highlighting on the importance of including the buffer state informa-

tion in the relaying strategy where the proposed relaying scheme revolves around

avoiding the congestion of the relays’ buffers.
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The MC framework constitutes the broad mathematical tool to analyze queues

[16,29,30,35,36,39,44,48,51]. The particularities of the underlying network and

the implemented relaying strategy render the MC analysis different from one

system to another. It is worth highlighting that the dynamics of the buffers in

serial-relaying systems are more complicated compared to parallel-relaying sys-

tems as in [39]. In fact, for parallel-relaying, each packet is queued in one and

only one relay buffer before being delivered to D. However, for serial-relaying,

the packets move from one buffer to another and, hence, each packet will be

sequentially queued in all relays’ buffers before reaching D. Therefore, the transi-

tion probabilities derived in this chapter differ substantially from those presented

in [39]. The role of the source node S also differs substantially between [39] and

the current work. A main challenge in the MC analysis performed in this chap-

ter resides in quantifying the role of S via a parameter s that was introduced

in the link selection protocol in (3.4). As such, S has to compete with the re-

lays for transmitting unlike [39]. As demonstrated in the presented performance

analysis, the parameter s impacts the closed subset and, hence, three variants

of the asymptotic analysis need to be carried out depending on the value of s.

Unlike [39] where the closed subset contained only four states for any number of

relays K, the asymptotic MC analysis presented in this thesis is more challenging

for the following reasons. (i): The number of states in the closed subset is not

constant since it depends on the parameter s. (ii): The number of states in the

closed subset is relatively large and increases with the number of relays K. As

such, identifying the closed subset is much more difficult. Moreover, it is tougher

to reach the asymptotic steady-state probabilities in equations (3.21), (3.23) and

(3.25) (as compared to eq. (44) in [39]) since a larger number of balance equations

involving a larger number of variables need to be solved. This also results in more

complicated asymptotic OP expressions as can be observed by comparing (3.26)

with eq. (45) in [39].

3.3.4 Conclusions about the design of the BA relaying scheme

Following from (3.26)-(3.28), we can reach the following conclusions pertaining

to the values of the weight s and buffer size L.

- There is no interest in selecting s > 3. From (3.28), such large values of

s penalize the APD while not presenting any advantage in terms of the

diversity order as can be observed from (3.27).

- The values {1, 2, 3} all constitute valid options for the parameter s thus

allowing the proposed relaying scheme to achieve different levels of tradeoff

between APD and OP.
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- Setting s to 1 is the best choice if the most critical performance metric of a

given application is the delay. Consequently, this will guarantee the minimal

asymptotic APD value of 2K at the drawback of a minimal diversity order

of 1. In this case, all values of L ≥ 3 result in the same levels of the

asymptotic APD and OP and, hence, there is no need to deploy buffer sizes

exceeding 3 when s = 1.

- Setting s to {2, 3} constitute the best choices in case the outage is set to

be the most critical performance metric.

- Setting s to 2 permits to reach the maximum diversity order of K + 1 but

with an asymptotic APD of K(K + 3). In this case, the OP and APD

performance does not improve by increasing L above 4 and, hence, setting

L = 4 presents the best choice when s is fixed to 2.

- Setting s to 3 permits to achieve the maximum diversity order of K + 1

as well. However, comparing the choices s = 3 and s = 2, the former

choice incurs an increase in the asymptotic APD value to 2K(K + 2) with

the advantage of reducing the asymptotic OP following from the second and

third expressions in (3.26). Therefore, increasing s from 2 to 3 maintains the

same maximum diversity order with the disadvantage of increasing the delay

byK(K+1) and the advantage of a coding gain of 10
K+1

log10

(
1 + K

K+1

ΩK+1

Ω1

)
decibels. Finally, for s = 3, the buffer size of L = 5 is sufficient to reap all

the performance gains in the asymptotic regime. In fact, the derivations in

Section 3.3.3 demonstrated that the probability of having more than five

packets stored in any buffer tends to zero asymptotically. As such, there

is no need to deploy buffers that can store more than five packets. Note

that the delay-loss increases with K while the coding gain decreases with

K rendering the choice s = 2 more adequate to serial relaying systems with

a large number of relays.

- Even though finite-size buffers were assumed in this work, the analysis

presented in Section 3.3.3 with s ∈ {1, 2, 3} holds for infinite-size buffers

as well. In fact, the finite set of recurrent states in (3.19) will shape the

asymptotic steady-state distribution of the MC even with an infinite number

of states since all remaining states will be transient.

3.4 Numerical Results

We next provide some numerical results supporting the theoretical expressions

and conclusions derived in the previous sections. In what follows, r0 is fixed to
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1 BPCU in (3.1). In addition, we define the (K + 1)-dimensional vector Ω as

Ω = [Ω1, . . . ,ΩK+1] capturing the strengths of the K + 1 hops.

Fig. 10 and Fig. 11 present the curves of OP and APD, respectively, for a

network of three relays with L = 8 and Ω = [4, 4.5, 5, 4.5]. The results in these

two figures demonstrate the accuracy of the asymptotic analysis and the validity

of the formulated OP and APD asymptotic expressions in (3.26) and (3.28),

respectively. In fact, for all values of s, the asymptotic and the exact OP and APD

curves are perfectly matched for average-to-large values of SNR. Furthermore,

the theoretical MC analysis that was performed is proved to be valid since the

curves of theoretical OP and APD, from (3.8) and (3.9) respectively, are perfectly

matched with their numerical counterparts that were generated by Monte Carlo

simulations. Consequently, we can deduce the following observations. (i): The

choice s = 1 leads to the highest OP and lowest APD. In fact, assigning a

small weight to link 1 privileges the transmissions from relays with non-empty

buffers which positively contributes towards reducing the queuing delays. (ii):

The choices s = 2, s = 3 and s = L − 1 satisfy the condition 1 < s < L

and, hence, all achieve the maximum diversity order of K + 1 following from

(3.27). This results in comparable OP performance where the corresponding OP

curves are the steepest as can be observed from Fig. 10. However, from Fig. 11,

increasing the value of s leads to higher APD values in coherence with (3.28).

Among the above choices, the value s = 3 results in the smallest OP as predicted

from (3.26); however, the coding gain with respect to the case of s = 2 is small

(around 0.65 dB) and does not justify the increase in the asymptotic APD from

18 to 30. (iii): Selecting s = L results in a higher OP and a higher APD than the

case of 1 < s < L and, consequently, this choice does not present any advantage.

As a conclusion, the above observations validate the findings reported in Section

3.3.4.

Fig. 12 and Fig. 13 make a comparison between the proposed scheme and

the max-link scheme [44] at a SNR of 35 dB with L = 5 and L = 10. These

figures show the variations of the OP and APD, respectively, as function of the

number of relays K for Ω = [3, . . . , 3]. For the proposed scheme, we consider

the values of s in {1, 2, 3} that constitute the valid values for this parameter

following from Section 3.3.4. Results in Fig. 12 and Fig. 13 validate equations

(3.26) and (3.28), respectively, demonstrating that the asymptotic performance

of the proposed scheme is independent of L as long as L ≥ 5. In fact, the OP

and APD curves of the proposed scheme pertaining to the cases L = 5 and

L = 10 overlap for all values of s highlighting that the proposed scheme can be

advantageously associated with a small buffer size of five. This observation does

not hold for the max-link scheme where small buffer sizes present a small diversity
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Chapter 4

Relaying Strategies for Half-Duplex

Buffer-Aided Serial Relaying Systems

This chapter is based on the analysis done in Chapter 3. The system model is the

same as the scenario considered in Chapter 3 and the relaying strategy proposed

in (3.3) is further extended with different weights. In fact, the scheme in Chapter

3 suffers from the limitation that only the two diversity order (DO) and average

packet delay (APD) pairs (DO,APD) = (1, 2K) and (DO,APD) = (K+1, K2+

3K) can be achieved. Leveraging this limitation, this chapter suggests three

relaying schemes that can achieve a broader range of tradeoff levels between DO

and APD thus offering an improved flexibility for wider ranges of 5G applications

depending on their delay tolerance. The proposed schemes differ by the weights

they assign to the hops where these weights depend on the lengths of the buffers

at the transmitting and/or receiving nodes. Different weights must be assigned

to the first and last hops since the source always has packets to transmit while

the destination can accommodate any incoming packet. As such, this chapter

also targets the optimization of these weights for the sake of achieving any target

DO level with the minimal delay. The objective of designing the relaying schemes

with the best DO-APD tradeoffs was accomplished through a MC analysis that

led to simple closed-form expressions of the DO and asymptotic APD.

4.1 Relaying Strategies

The proposed relaying strategies are based on assigning a weight ∆k to link k

for k = 1, . . . , K + 1 and activating the link k̂ (between Rk̂−1 and Rk̂ ) with the

largest weight:

k̂ = argmax
k∈La

{∆k}, (4.1)

where La ⊂ {1, . . . , K + 1} denotes the set of links that are available. If more

than one link share the highest weight, the link closer to D will be selected to
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reduce the packet delay.

The proposed relaying schemes account for both the channel states through

limiting the selection among the available links in La and the buffer states through

the weights {∆k}K+1
k=1 that depend on the buffer lengths {lk}Kk=1 as will be high-

lighted later. The considered schemes differ by their choices of the weights that

include either the buffer length at the transmitting node or the buffer length at

the receiving node or both.

Scheme 1: Privileging the transmission from congested buffers, the weights

{∆k}K+1
k=1 are selected as follows:

∆k =

{
s, k = 1;

lk−1, k = 2, . . . , K + 1.
, (4.2)

where the parameter s is the weight associated with link 1. As such, (4.2) dif-

ferentiates between the cases where either S or a relay is the transmitting node.

Note that scheme 1 is the same as the scheme in Chapter 3 but is revisited here

for completeness and since it fits the general presented mathematical framework.

Scheme 2 privileges the reception at under-filled buffers by assigning the fol-

lowing weights:

∆k =

{
−lk, k = 1, . . . , K;

−d, k = K + 1.
, (4.3)

where d is a parameter associated with link K + 1.

Scheme 3 is based on the buffer lengths lk−1 and lk at the transmitting and

receiving nodes, respectively, as follows:

∆k =


α− l1, k = 1;

lk−1 − lk, k = 2, . . . , K;

lK − β, k = K + 1.

, (4.4)

where α and β are parameters associated with the first and last hops, respectively.

4.2 Performance Analysis

4.2.1 Generalities

The Markov Chain (MC) framework constitutes the appropriate mathematical

tool for analyzing queues [44]. The discrete-time discrete-value Markov chain

that models the considered serial-relaying network comprises the (L+1)K states

(l1, l2, . . . , lK) ∈ {0, . . . , L}K . The transition probabilities between the states can

be determined by applying algorithm 1 in Chapter 3 since the relaying scheme in

Chapter 3 as well as the schemes considered in this chapter adopt the same strat-
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egy of assigning weights to the links and selecting the link of maximum weight.

As such, the derivations of the transition probabilities will not be repeated in

this chapter since the weights in (4.2)-(4.4) can be readily replaced in (3.14).

The transition probabilities can then be used to derive the steady-state proba-

bilities using standard MC techniques (3.7). This formulation directly yields the

derivation of the outage probability (OP) as in (3.8). Equation (3.8) allows for

the derivation of the diversity order (DO) defined as the negative slope of OP in

function of γ̄ on a log-log scale as γ̄ → ∞. The queuing at the relays’ buffers will

incur delays in the system. Following from [44], the APD is expressed as in (3.9).

4.2.2 Asymptotic analysis

An exact MC analysis is intractable since the number of states increases expo-

nentially with the number of relays K. As such, in this section we resort to an

asymptotic analysis that holds for large values of the SNR. This analysis yields

closed-form expressions of the DO and asymptotic APD which allow us to study

the impact of the parameters s, d, α and β on the performance of the proposed

relaying schemes.

4.2.2.1 Closed Subset

The asymptotic analysis is based on the following observation. For the three

considered schemes, we observe and prove the existence of a set of K + 1 states

S ≜ {si}K+1
i=1 ⊂ {0, . . . , L}K such that the transitions s1 → s2, s2 → s3, · · · , sK →

sK+1 and sK+1 → s1 occur with a probability that tends to one asymptotically.

The implications of the this observation are as follows. (i): At high SNR, the MC

will be confined in the subset S where the probability of exiting this subset tends

to zero asymptotically. As such, instead of deriving the steady-state probabilities

for all (L + 1)K states of the MC, it is sufficient to derive these probabilities

only for the K + 1 elements of S. (ii): Since elements of S are connected to

each other in a loop-like structure, then the asymptotic steady-state probability

of each element of S is equal to 1
K+1

.

We denote by si(k) ∈ {0, . . . , L} the k-th element of si which stands for the

number of packets stored in Bk at steady-state. The ordered sequences of states

of the closed subset S for schemes 1 and 2 are presented in (4.5) and (4.6),

respectively:

si(k) =

{
s− 1 + δk=i 1 ≤ i ≤ K;

s− 1 i = K + 1.
, (4.5)

si(k) =

{
d− δk=K−i+1 1 ≤ i ≤ K;

d i = K + 1.
. (4.6)
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Table 1: Closed subset of Scheme 3 for γ > 0
si(k) 1 ≤ k < γ k = γ γ < k ≤ K

i = 1 α− k α− γ α− γ
1 < i ≤ γ α− k − δk=γ−i+1 α− γ + 1 α− γ
i = γ + 1 α− k α− γ + 1 α− γ

γ + 1 < i ≤ K + 1 α− k α− γ α− γ + δk=i−1

Table 2: Closed subset of Scheme 3 for γ < 0
si(k) 1 ≤ k ≤ K − |γ| k = K − |γ|+ 1 K − |γ|+ 1 < k ≤ K

1 ≤ i ≤ K − |γ| α− δk=K−|γ|−i+1 α + 1 α + |γ| − (K − k + 1)
K − |γ| < i < K + 1 α α + δk=i α + |γ| − (K − k + 1) + δk=i

i = K + 1 α α α + |γ| − (K − k + 1)

For scheme 3, the closed subset depends on the parameter γ ≜ α − β. For

γ = 0, elements of S are provided in (4.7). For γ > 0 and γ < 0, the values of

si(k) are reported in Table 1 and Table 2, respectively.

si(k) =

{
α− δk=K−i+1 1 ≤ i ≤ K;

α i = K + 1.
. (4.7)

In Appendix D, we prove that the transition si → si+1 occurs with probability

1 for scheme 1 with 1 ≤ i ≤ K−1. Similar proofs hold for all schemes and for all

values of i ∈ {1, . . . , K + 1} thus justifying the results in (4.5)-(4.7) and Tables

1-2. These proofs are omitted for the sake of brevity.

4.2.2.2 DO and Asymptotic APD

Limiting the analysis to elements of S that are the most probable states in the

MC, the asymptotic OP can be written as: OP = 1
K+1

∑K+1
i=1

∏K+1
k=1 qk(si) follow-

ing from (3.8). Since the unavailability probability qk in (3.2) can be equal either

to pk or 1, then the DO can be determined from:

DO = min
i=1,...,K+1

{
K+1∑
k=1

δqk(si)=pk}, (4.8)

since (3.1) behaves asymptotically as γ̄−1.

Since the asymptotic OP is several orders of magnitude smaller than K

and L, then (3.9) can be approximated by APD = K + (K + 1)L̄ with L̄ =
1

K+1

∑K+1
i=1

∑K
k=1 si(k).

Therefore, the asymptotic APD and DO of the three proposed schemes are as

follows.
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For scheme 1 denoted by Sc(1)(s):

APD(1)(s) = 2K + (s− 1)K(K + 1), (4.9)

DO(1)(s) =


1, s = 1;

K + 1, 1 < s < L;

K, s = L.

. (4.10)

For scheme 2 denoted by Sc(2)(d):

APD(2)(d) = dK(K + 1), (4.11)

DO(2)(d) =


1, d = L;

K, d = 1;

K + 1, 1 < d < L.

. (4.12)

For scheme 3, denoted by Sc(3)(α, β), the asymptotic APD is given by:

APD(3)(α, β) =



αK(K + 1) , γ = 0;

2K + βK(K + 1)+

(γ − 1)

(
K + 1

2
γ − 1

) , γ > 0;

αK(K + 1) +
γ2 − γ

2
+

K

(
γ2 + γ + 2

2

) , γ < 0.

. (4.13)

The DO depends on whether γ = 0, γ > 0 or γ < 0:

DO(3)(α, β) =


K, α = 1;

K + 1, 1 < α < L;

1, α = L.

; γ = 0, (4.14)

DO(3)(α, β) =


K, (α, γ) = (L, 1);

K + 1, α > γ;

γ, α = γ;

; γ > 0, (4.15)

DO(3)(α, β) =

{
K, α ∈ {1, L+ γ};

K + 1, elsewhere;
; γ < 0. (4.16)

The asymptotic APD expressions in (4.9), (4.11) and (4.13) follow directly

from (4.5)-(4.7) and Tables 1-2. In Appendix E, we provide highlights on how
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the DO of scheme 2 in (4.12) can be derived. Similar derivations hold for the two

remaining schemes and are not provided here for conciseness.

4.2.3 Conclusions about the design of the BA relaying schemes

Similar to the buffer lengths, the parameters s, d, α and β are natural integers.

As such, γ assumes integer values.

For scheme 3, (4.14) and (4.16) show that the diversity orders of K and K+1

can be achieved by γ = 0 and γ < 0. However, from (4.13), it can be observed

that for the same value of α the APD is always smaller in the former case since
γ2−γ

2
> 0 and γ2+γ+2

2
> 0 when γ is a nonzero negative integer. Therefore, the

choice γ < 0 presents no advantage compared to the choice γ = 0 and the former

option can be omitted.

The proposed schemes are capable of achieving different levels of tradeoff

between DO and APD as highlighted below.

4.2.3.1 DO = 1

(4.10) and (4.15) show that Sc(1)(1) and Sc(3)(1, 0) are capable of achieving this

DO with an APD value of 2K following from (4.9) and (4.13). Similarly, (4.12)

and (4.14) show that Sc(2)(L) and Sc(3)(L,L) can achieve DO = 1 but with an

increased APD of LK(K + 1).

Therefore, Sc(1)(1) and Sc(3)(1, 0) are the best delay-prioritizing schemes that

achieve the smallest possible delay of 2K at the expense of a reduced DO = 1.

4.2.3.2 DO = K + 1

Sc(1)(2), Sc(2)(2), Sc(3)(2, 2) and Sc(3)(2, 1) are all capable of achieving this max-

imum DO where the corresponding delays are K2 + 3K, 2K2 + 2K, 2K2 + 2K

and K2+3K, respectively. Note that, from (4.15), other values of α and γ (with

α > γ) can result in DO = K + 1 when γ > 0. However, the choice α = 2 and

γ = 1 (implying that β = 1) is the best option since the APD in (4.13) increases

with α and γ when γ > 0.

Therefore, Sc(1)(2) and Sc(3)(2, 1) are the best outage-prioritizing schemes

that achieve the highest possible DO of K + 1 with an APD value of K2 + 3K.

4.2.3.3 DO = K

This DO can be achieved by Sc(1)(L), Sc(2)(1), Sc(3)(1, 1) and Sc(3)(L,L−1) with

the smallest delay of APD = K2 +K achieved by Sc(2)(1) and Sc(3)(1, 1).
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4.2.3.4 DO ∈ {2, . . . , K − 1}

(4.15) shows that only scheme 3 with γ > 0 can achieve such diversity orders

when α = γ = DO. Therefore, Sc(3)(DO, 0) must be applied with DO < K. The

corresponding APD is 2K+(DO−1)(K+1
2
DO−1) that increases with DO. Note

that this delay must not exceed K2 +K since, otherwise, Sc(2)(1) and Sc(3)(1, 1)

will be better options since they achieve a smaller delay while increasing the DO

to K. Therefore, Sc(3)(DO, 0) is particularly appealing with large values of K

where the achievable APD that increases linearly with K will fall below K2 +K.

Based on the above discussion and on the observation that scheme 1 and

scheme 2 are easier to implement compared to scheme 3 (since the weights assume

simpler expressions), the following conclusions can be drawn. (i): Scheme 1 is

a good option capable of covering the extreme cases (DO,APD) = (1, 2K) and

(DO,APD) = (K + 1, K2 + 3K) giving the full priority to the APD and DO,

respectively. (ii): Scheme 2 is a suitable choice for achieving (DO,APD) =

(K,K2+K) where, compared to the full-diversity case, DO is reduced by 1 with

the advantage of reducing the APD by 2K. (iii): Scheme 3 demonstrates the

highest flexibility and can achieve all levels of tradeoffs between DO and APD.

4.3 Numerical Results

In (3.1), we fix r0 = 1. We define the vector Ω = [Ω1, . . . ,ΩK+1] that captures

the strengths of the K+1 hops.

Fig. 16 shows the variations of the APD as a function of the number of relays

K for L = 5, γ̄ = 30 dB and Ωk = 3,∀ k = 1, ..., K+1. Results show that the APD

values in (4.9), (4.11) and (4.13) match the simulation results thus demonstrating

the accuracy of the closed-form asymptotic expressions. Fig. 16 shows that the

proposed schemes can achieve a wide range of tradeoffs between DO and APD

for any number of relays. Compared with Sc(2)(1), Sc(3)(3, 0) compromises the

DO for the sake of achieving reduced APD values for K ≥ 5. For K = 5, the

former scheme is better since it achieves a larger DO and a smaller APD. Fig. 16

highlights on the increased delays of the max-link scheme in [44] despite the fact

that this scheme achieves full diversity only with infinite-size buffers.

Fig. 14 and Fig. 15 show the OP and APD, respectively, for K = 5, L = 5

and Ω = [2, 3, 2.5, 2, 3, 3.5]. Results highlight on the adjustability of the pro-

posed schemes and on the impact of the control parameters s, d and (α, β) on

the OP-APD tradeoffs. At DO = 1, Sc(1)(1) and Sc(3)(1, 0) manifest exactly the

same OP and APD performances. At DO = K +1, Sc(1)(2) achieves smaller OP

levels compared with Sc(3)(2, 1) at the expense of higher APD levels for small-

to-average values of the SNR. At large SNRs, both schemes achieve the same
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Chapter 5

Optimized Relay Selection for

Multi-Hop Cooperative Systems Using

Deep Reinforcement Learning

The scenario considered in Chapters 3 and 4 presents a number of limitations:

(1) the channel capacity is not used efficiently since for sufficiently large values of

SNR, channels can allow for the transmission of multiple packets. (2) For large

values ofK, relays will be significantly distant so that multiple relays can transmit

at the same time without interfering with each other. Thus, the interference

constraint for HD relays becomes a limitation and might be loosened to gain

some performance advantage.

To overcome these limitations, more complex setups for serial and parallel

relaying are suggested in this chapter that allow for more degrees of freedom.

The transmission of multiple packets and the activation of more than one link

are introduced for serial setups whereas transmitting more than one packet and

allowing for inter-relay cooperation are considered for parallel relaying setups.

Deterministic analysis of such networks is a challenging task because more

states are involved and the transitions between these states are hard to be for-

mulated within a MC model. Thus, RL techniques that are capable of analyzing

large systems are considered in this chapter.

5.1 Objectives

- We formulate the problem of relay selection as a Markov Decision Process

(MDP) for multiple setups of HD BA DF serial and parallel relaying.

- We optimize jointly the throughput and the average packet delay using a

deep RL algorithm.
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5.2 System Model

Different setups will be considered for serial and parallel relays. However, we

assume the presence of K HD DF relays for all setups with no direct path linking

S to D. Moreover, each relay is equipped with a buffer of size L. Rayleigh block

fading channel is assumed as in previous chapters and all links are corrupted with

AWGN.

5.2.1 Serial Relaying

5.2.1.1 Single Link Single Packet (SLSP)

This setup is equivalent to the scenario considered in Section 3.2. One link can be

selected to be activated at every time slot and only one packet can be transmitted.

The channel capacity Ck of link k (k = 1, · · · , K+1) is given by (5.1) and outage

happens if Ck < r0.

Ck =
1

K + 1
log2(1 + γ̄|hk|2) (5.1)

The availability of a link is related to the buffer states: the buffer at the

transmitting node should contain at least one packet and the buffer at the re-

ceiving node must not be full. The number of packets that can be transmitted is

presented in (5.2).

nmax =


min{δCk≥r0 , L− l1} , S-R1 link (k = 1);

min{δCk≥r0 , lK} , RK-D link (k = K + 1);

min{δCk≥r0 , lk−1, L− lk} , Rk−1-Rk link for k = 2, · · · , K.

(5.2)

where δS is 1 if the statement S is true and 0 otherwise.

From (5.2), the case of lk−1 = 0 means that the buffer at the sending relay

is empty and hence, no packet can be transmitted over this link. Similarly, if

lk = L then the number of remaining slots in the receiving relay is L − lk = 0

and consequently, no additional packets can be accommodated at Rk. Finally, if

Ck < r0 then, δCk≥r0 = 0 which means that the link k is in outage and cannot be

activated.

5.2.1.2 Single Link Multiple Packets (SLMP)

The channel capacity is considered more carefully for this setup where n packets

will be allowed to be transmitted through link k if the channel capacity Ck given

in (5.1) satisfies (5.3). In other words, the number of transmitted packets will be
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adapted to the channel quality where more than one packet can be transmitted

along links with high SNR. However, n′ ≤ n packets will be transmitted based

on the channel capacity and the buffer states. The maximum possible number of

packets follows (5.4).

Ck ≥ n ∗ r0; with n = ⌊Ck/r0⌋ (5.3)

nmax =


min{⌊Ck/r0⌋, L− l1} , S-R1 link (k = 1);

min{⌊Ck/r0⌋, lK} , RK-D link (k = K + 1);

min{⌊Ck/r0⌋, lk−1, L− lk} , Rk−1-Rk link for k = 2, · · · , K.

(5.4)

Moving from (5.2) to (5.4), the factor δCk≥r0 that limited the transmission to

one packet is replaced by ⌊Ck/r0⌋ to make use of the full capacity of the channel.

5.2.1.3 Multi Link Single Packet (MLSP)

The interference constraint for HD relays is loosened in this setup. It is assumed

that when a relay Rk transmits a packet, it interferes only with the previous and

next relays as illustrated in Fig. 19. This assumption holds in the scenario of long

hops where the interference with distant nodes can be neglected. Accordingly,

relay Rk+2 cannot transmit simultaneously since in this case, it will interfere

with Rk+1 that is receiving a packet. Rk+3 is the nearest relay that is allowed to

transmit. Hence, for multiple link selection, every two nodes transmitting (source

or relay) with indices k and k′ should verify (5.5).

k′ ≥ k + 3; k, k′ ∈ {0, 1, · · · , K | k < k′} (5.5)

In this setup, either no packet or a single packet can be transmitted along the

selected links based on (5.2).

Figure 19: Interference Constraint for Multiple Links Activation

5.2.1.4 Multi Link Multiple Packets (MLMP)

This setup is a combination of SLMP and MLSP where multiple links can be

selected to be activated and multiple packets per link can be transmitted. The
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conditions in (5.4) and (5.5) should hold where up to n packets can be transmitted

along the available links according to (5.3).

5.2.2 Parallel Relaying

5.2.2.1 Single Packet no Inter-Relay Cooperation (SPNI)

K parallel relays are placed between S and D and among 2K links, only one can

be selected to carry a single packet. The channel capacity is different than the

serial case, since every packet needs only two hops (one S-R and one R-D links)

to reach D. Hence, the channel capacity Ck for parallel relays without inter-relay

cooperation is given by (5.6).

Ck =
1

2
log2(1 + γ̄|hk|2) (5.6)

The link S-Rk (respectively Rk-D) is available if Ck ≥ r0 and the buffer at Rk

is not full (respectively not empty). The maximum number of packets per link is

given in (5.7).

nmax =

{
min{δCk≥r0 , L− lk} , S-Rk link for k = 1, · · · , K;

min{δCk≥r0 , lk} , Rk-D link for k = 1, · · · , K.
(5.7)

where nmax can be either 0 or 1.

5.2.2.2 Multiple Packets no Inter-Relay Cooperation (MPNI)

Similarly to SLMP of the serial setup, n packets can be transmitted per link if the

condition in (5.3) holds. Accounting for the buffer states, the maximum number

of packets per link is given in (5.8).

nmax =

{
min{⌊Ck/r0⌋, L− lk} , S-Rk link for k = 1, · · · , K;

min{⌊Ck/r0⌋, lk} , Rk-D link for k = 1, · · · , K.
(5.8)

5.2.2.3 Single Packet with Inter-Relay Cooperation (SPWI)

If inter-relay cooperation is allowed, packets have K − 1 possible additional links

to reach D where Rk now have the option of forwarding the packet either to

subsequent relay Rk+1 (if any) or to the destination D. Consequently, a packet

can pass by K − 1 + 2 = K + 1 links in a worst case scenario and the channel

capacity again is different than the SPNI and MPNI cases but is similar to (5.1).
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This implies that more links can be activated at the expense of a lower quality

of the channel since the fraction of the total power allocated to each link will be

smaller. The effect of the inter-relay cooperation will be discussed in Section 5.6.

The maximum number of packets that can be transmitted follows (5.7) and (5.9).

nmax =
{
min{δCk≥r0 , lk, L− lk+1} , Rk-Rk+1 link for k = 1, · · · , K − 1. (5.9)

5.2.2.4 Multiple Packets with Inter-Relay Cooperation (MPWI)

The difference between SPWI and MPWI is the ability to transmit multiple pack-

ets. At every time slot, the maximum number of packets that can be transmitted

follows (5.8) and (5.10).

nmax =
{
min{⌊Ck/r0⌋, lk, L− lk+1} , Rk-Rk+1 link for k = 1, · · · , K − 1.

(5.10)

5.3 Problem Formulation

The objectives of the RL agent are two-fold: (1) maximize the throughput of the

system and (2) minimize the delay of packets arriving at D.

At every time slot t, we denote by the vector a(t) the number of packets

transmitted via every link. Thus, a(t) has K + 1 elements for serial setups, 2K

elements for parallel relaying setups without inter-relay cooperation such that

elements 1 ≤ k ≤ K correspond to S-Rk links and K < k ≤ 2K correspond to

Rk-D links. With inter-relay cooperation,K−1 elements are added so that indices

2K < k ≤ 3K − 1 correspond to Rk-Rk+1 links. To increase the throughput of

the system, the number of packets passing through the last hop (RK-D) must be

increased. This in turn will reduce the delay of packets since to reach the last

hop, relays should forward packets faster. We denote by Ψ(t) the set of indices

of non-zero elements in a(t).

The optimization problem over T time slots, can be formulated as:{
max 1

T

∑T
t=1 a(t)[K + 1] ∗ δ(a(t)[K+1]≤nmax[K+1]) for serial setups

max 1
T

∑T
t=1

∑2K
k=K+1 a(t)[k] ∗ δ(a(t)[k]≤nmax[k]) for parallel setups.

(5.11)

where a(t)[k] is the k-th element of a(t). This implies that the objective of the

RL agent is to increase the likelihood of selecting the last hop link, as well as to

maximize the number of packets transmitted over this link under the constraint
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of not exceeding nmax.

This optimization problem is subject to different constraints:

- For SLSP, SPNI and SPWI: (5.12) should hold.∑
k

a(t)[k] ≤ 1 (5.12)

Hence, since a(t)[k] is a positive integer then, at most one entry of the a(t)

vector will be equal to 1 and all other entries will be equal to 0. This is

equivalent to allow at most one link to transmit one packet.

- For SLMP, MPNI and MPWI: (5.13) should hold.

|Ψ(t)| ≤ 1 (5.13)

(5.13) does not restrict the entries of a(t) to be less than or equal to 1, but

restricts the number of links that can be activated (i.e. have positive entries

in a(t)). At most one link is allowed to be activated.

- For MLMP: the loosened interference constraint expressed in (5.14) should

hold.

k′ ≥ k + 3, ∀ k, k′(k < k′) ∈ Ψ(t) (5.14)

- For MLSP: both (5.14) and (5.15) must hold.

a(t)[k] = 1, ∀k ∈ Ψ(t) (5.15)

In addition to the interference constraint, all non-zero entries in Ψ(t) (i.e. all

links selected for activation) should transmit only one packet.

5.4 Elements of the Reinforcement Learning Model

5.4.1 Environment

The environment is the entity responsible for saving the current state and pro-

cessing the action chosen by the agent. It necessarily implements the functions:

- reset(): to re-initiate the system at the end of every round.

- step(): to process the action.

- observe(): to return the resulting state.

- evaluate(): to return the reward corresponding to the processed action.
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- check unfeasible(): to inform the agent of the feasibility of a potential

action.

5.4.2 States

Both the CSI and buffer state information (BSI) are included in the state. The

state vector S is divided into two parts. In order to unify the notation for serial

and parallel setups, assume thatK is the number of relays and X is the number of

links in the system, thus, S has K+X entries: the first K elements correspond to

lk the number of packets stored in the buffer of every relay. The next X elements

represent nmax for every link in the system. nmax is computed based on (5.2),

(5.4), (5.7)-(5.10).

5.4.3 Actions

The number of actions is specific for every setup. An action a(t) is defined by

the number of packets to be transmitted via every link. For serial setups, a(t)

has K + 1 elements corresponding to K + 1 links whereas for parallel setups,

the vector a(t) has either 2K entries if no inter-relay cooperation is allowed, or

3K − 1 entries otherwise. a(t) will follow the preset constraints for every setup

(5.12)-(5.15).

5.4.4 Reward Function

For serial systems, setting a reward based solely on the goal of transmitting a

packet to D will make the convergence, if any, very slow. Another joint reward

function is suggested based on the number of packets transmitted in a time slot

along with their relative positions from D.

Let A = (i1, i2, . . . , iK+1) be the action chosen at a state st and ik is the

number of packets transmitted at link k. The reward function is defined as in

(5.16):

rt =

−10 , in case of outage

α ∗
∑

k ik + β ∗
∑

k(
k

K+1
∗ δik>0) , otherwise

(5.16)

where α and β are two tuning parameters. This implies that the higher the

number of packets and the closer they are to D, the higher the reward is.

The same concept will be applied to parallel relaying setups. A higher reward

should be given to the R-D links whereas R-R links do not add any advantage

in terms of the packets’ position with respect to D. For parallel setups, only one

link k can be selected with ik standing for the number of packets chosen to be
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transmitted. Thus, the reward for parallel setups is as in (5.17).

rt =


−10 , in case of outage

0 , R-R link is selected

α ∗ ik + β ∗ mk

2
, otherwise

(5.17)

where mk = 1 for S-R links (1 ≤ k ≤ K) and mk = 2 for R-D links (K < k ≤
2K).

5.5 Deep Reinforcement Learning

The number of states and actions associated with the considered complex setups

is relatively high and Q-learning tables with such a huge number of entries cannot

converge. Hence, deep Q-learning is the convenient choice in this case.

5.5.1 Neural Network (NN)

The neural network has the state S(t) as input and outputs the Q-values of all

possible actions. The implemented NN has three layers:

1. Dense layer with 64-neurons and a leaky-Relu activation function (α = 0.3).

2. Dense layer with 64-neurons and a leaky-Relu activation function (α = 0.3).

3. Dense layer with (K +X)-neurons and a Relu activation function.

5.5.2 Handling Unfeasible Actions

A-priori information will be used in this work to enforce the agent to choose

feasible actions at all times. This is based on letting the agent use the previous

knowledge about feasible actions so that when training and testing, the agent

selects only feasible actions. This will allow the agent to train the NN on a

smaller set of actions and hence will have a faster convergence.

Unlike the work in [53] where information about unfeasible actions as well

as inconvenient actions assumed by the authors was provided to the agent, in

this work, only unfeasible actions are eliminated and the agent is free to learn

convenient actions to improve the performance.

Let ϕst be the set of feasible actions for a given state st. The selection of an

action with a-priori information is done based on (5.18).

at =

Random selection from ϕst with probability ϵ

maxa∈ϕst
(Qpredicted(st, a)) with probability 1− ϵ

(5.18)
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where ϵ is the exploration rate. The agent starts with a high value for ϵ to better

explore the action space, and then ϵ is decreased to allow the agent to move to

the exploitation phase and refine the selection to the best action.

5.5.3 Agent

The deep RL agent consists of a prediction network and a target network, both

having the same structure. The function of this agent can be divided into three

steps as explained below.

1. Generate Nc experiences: At every iteration, the agent forwards the envi-

ronment in Nc actions according to (5.18) and stores all (st, at, st+1, rt)

experiences in the set ψ.

2. Update the prediction network: Recall that the output of the prediction

network is the Q-values of all actions. This network is updated according

to the difference between the predicted Q-values and the target Q-values

that form a loss function. The prediction network is updated using the

Adam algorithm with a learning rate of 0.01.

For every experience in ψ, the predicted Q-value is calculated from the

prediction network as Q(st, at). On the other hand, the target Q-value is

calculated from the target network as rt + γ ∗ (maxaQtar(st+1, a)) which is

based on the current reward rt and the maximum future reward. This step

is illustrated in Fig. 20.

Figure 20: Step 2 of Deep-RL Agent
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3. Update the target network: simply by copying the weights of the prediction

network to the target network. This step is done every round (every Ni

iterations) until the system converges (the weights of the prediction and

target networks become approximately the same).

5.5.4 Algorithm

The learning process is summarized in Algorithm 2. A brief explanation of the

terms is shown in Table 3.

Table 3: Summary of RL Symbols
Nr Number of rounds for RL
Ni Number of iterations per round
Nc Number of collected experiences per iteration
BS Training batch size
γ Discount factor
ϵ Exploration rate
f Decay factor
ψ Set of saved experiences per iteration

5.6 Simulation Results and Discussion

The main performance metrics considered are the throughput and the average

packet delay (APD). The throughput of a system is defined as the average number

of packets arriving at D and is measured in packets per time slot. The APD is

measured by averaging the delay of all packets that arrived to D and its unit is

normalized per time slot.

In what follows, we fix Nr = 25, Ni = 50, Nc = 200, BS = 32, γ = 0.8,

f = 0.999 and ϵmin = 0.1. A network of 4 relays placed in series is considered

in Fig. 21-Fig. 24 with Ω = [12, 12, 12, 12, 12]. All deployed buffers have a size

L = 10.

Fig. 21 shows the throughput of the system for all 4 setups at an SNR of 30

dB. It can be seen that all setups have a fast convergence. The setup MLMP

took a longer time to converge (approximately after 400 iterations) because the

number of actions considered is the largest (multiple links and multiple packets

are allowed to be transmitted) and hence the NN is relatively bigger than other

setups. Clearly, SLSP has the lower throughput since the number of packets that

can be transmitted in one time slot is limited whereas setups allowing for multiple

packets per link have the highest throughputs.

Fig. 22, Fig. 23 and Fig. 24 show the variations of the throughput, the average

packet delay and the percentage of change in behavior with respect to the SNR,
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Initialization: ψ = ∅, build prediction and target networks
for n = 1 : Nr do

Reset the environement’s variables
for i = 1 : Ni do

Update ϵ to move from exploration to exploitation phase:

ϵ = max(fnNi+i, ϵmin) (5.19)

for j = 1 : Nc do
Get at based on (5.18)
Perform at and get st+1 and rt
Store the experience (st, at, st+1, rt) in ψ

end
Randomly choose BS experiences from ψ
for j = 1 : BS (for every experience) do

From target network get maximum future reward:
T (j) = maxaQtar(st+1, a)
Get target weight: Tar(j) = rt + γ ∗ T (j)
From prediction network get: Pr(j) = Qpredicted(st, at)

end
Get the Loss Function Li (based on MSE):

Li =
BS∑
j=1

(Tar(j)− Pr(j))2 (5.20)

Update the Prediction Network based on (5.20)
Clear ψ = ∅

end
Update Target Network: Copy the weights of the prediction network
into the target network

end
Algorithm 2: Deep RL with a-priori information for all setups of serial and
parallel relay selection
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Chapter 6

Conclusions and Future Work

In this thesis, we investigated the problem of relay selection for BA cooperative

relaying. Deterministic and learning-based techniques were the main tools for

analyzing the proposed schemes and both serial and parallel positioning of HD

relays were considered.

First, we proposed three novel deterministic schemes for HD multi-hop sys-

tems with an arbitrary number of relays. Based on a MC analysis and closed

subset formulation, we identified the most probable states to derive closed-form

expressions of the OP and APD. These expressions were essential for optimiz-

ing the control parameters of the tunable relaying schemes allowing to achieve

different levels of tradeoff between outage and delay.

However, moving to more complex setups, deterministic analysis becomes

cumbersome and modeling the transitions between states in a MC model becomes

challenging. Hence, a RL algorithm was proposed to improve the performance

of different serial and parallel relaying setups. A new design of the reward func-

tion was suggested and led to a fast convergence of the system. Results show

that allowing for multiple packets transmission per link was advantageous for

all setups at average to high SNR values, that is when the channel capacity is

high. Moreover, loosening the interference constraint for serial setups resulted in

a higher throughput even at low values of the SNR. For parallel relaying on the

other hand, inter-relay cooperation, by adding more links to the system, decreases

the fraction of the total power allocated to each link and hence achieves a low

throughput and a very high delay.

Finally, we note that the RL model tackled in this thesis consisted of discrete

states and actions to solve the relay selection problem. A future work might

address the power allocation problem that is based on continuous state and action

spaces and need more advanced algorithms of RL. Power efficient systems are

required especially for applications of wireless sensor networks.
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Appendix A

Closed Subset for 1 < s < L

For convenience, we introduce the following definition of the asymptotic order

of a probability that can be written as the weighted sum of terms involving the

product of 0 to K + 1 elements of {p1, . . . , pK+1}. For a probability p that can

be expressed as:

p =
∑
i1≥0

· · ·
∑

iK+1≥0

ci1,...,iK+1

K+1∏
n=1

pinn , (A.1)

where {ci1,...,iK+1
} are constants, then the asymptotic order of p is defined as:

O(p) = min
i1≥0 ··· iK+1≥0

{
K+1∑
n=1

in | ci1,...,iK+1
= 0 ∀

K+1∑
n=1

in < O(p)

}
. (A.2)

For example, O(1/3− p1+2p2+ · · · ) = 0 and O(p21+ p1p2p3+ · · · ) = 2. From

(A.2), it follows that O(pp′) = O(p) +O(p′) and O(p+ p′) = min{O(p), O(p′)}.
The asymptotic analysis that we carry out in this appendix is an order-1

analysis where all probabilities whose asymptotic orders exceed 1 are ignored. In

fact, for asymptotic SNR values, pk ≪ 1 for k = 1, . . . , K + 1 implying that the

terms involving the product of two or more elements of {p1, . . . , pK+1} can be

ignored.

First, we demonstrate that the set Sc in (3.20) is closed by proving that

the corresponding transition probabilities satisfy (3.18). A key element in the

proof is to further partition the set Sc into two subsets Sc,1 and Sc,2 such that

Sc = Sc,1 ∪ Sc,2 and (for k ∈ {1, . . . , K + 1}):

∀ l ∈ Sc,1 : tl,l′ =

{
1− pk, l′ ∈ Sc,1;

pk, l′ ∈ Sc,2.
(A.3)

∀ l ∈ Sc,2 : tl,l′ =

{
1− pk, l′ ∈ Sc,1 ∪ Sc,2;

pk, l′ /∈ Sc,1 ∪ Sc,2.
, (A.4)

where all transition probabilities whose asymptotic orders exceed one were ig-

70



nored.

Proposition 4. For the subsets Sc,1 and Sc,2 satisfying (A.3)-(A.4), the asymp-

totic orders of the steady-state probabilities of the corresponding states satisfy the

relation in (A.5): 
O(πl) = 0, l ∈ Sc,1;

O(πl) = 1, l ∈ Sc,2;

O(πl) ≥ 2, l /∈ Sc,1 ∪ Sc,2.

. (A.5)

Proof. We will prove that (A.5) satisfies the asymptotic orders of all balance

equations. For any state l, the balance equation at steady-state is generalized as

follows:

πl =
∑

l′∈Sc,1

tl′,lπl′ +
∑

l′∈Sc,2

tl′,lπl′ +
∑

l′ /∈Sc,1∪Sc,2

tl′,lπl′ (A.6)

implying that:

O(πl) = min

 min
l′∈Sc,1

{O(tl′,l)︸ ︷︷ ︸
≜o1

+O(πl′)︸ ︷︷ ︸
=0

},

min
l′∈Sc,2

{O(tl′,l)︸ ︷︷ ︸
≜o2

+O(πl′)︸ ︷︷ ︸
=1

}, min
l′ /∈Sc,1∪Sc,2

{O(tl′,l)︸ ︷︷ ︸
≥0

+O(πl′)︸ ︷︷ ︸
≥2

}

 (A.7)

≜ min {O1(πl), O2(πl), O3(πl)} , (A.8)

where the asymptotic orders from (A.5) were replaced in (A.7). (i): For l ∈ Sc,1,

o1 = 0 and o2 = 0 following from (A.3) and (A.4), respectively. Consequently,

O1(πl) = 0, O2(πl) = 1 and O3(πl) ≥ 2 implying from (A.8) that O(πl) = 0 thus

proving the first relation in (A.5). (ii): For l ∈ Sc,2, o1 = 1 and o2 = 0 following

from (A.3) and (A.4), respectively. Consequently, O1(πl) = 1, O2(πl) = 1 and

O3(πl) ≥ 2 implying from (A.8) that O(πl) = 1 thus proving the second relation

in (A.5). (iii): For l /∈ Sc,1 ∪ Sc,2, o1 ≥ 2 and o2 = 1 following from (A.3)

and (A.4), respectively. Consequently, O1(πl) ≥ 2, O2(πl) = 2 and O3(πl) ≥ 2

implying from (A.8) that O(πl) = 2 thus proving the third relation in (A.5).

Lemma 1. For the subsets Sc,1 and Sc,2 satisfying (A.3)-(A.4), the set Sc =

Sc,1 ∪ Sc,2 is closed asymptotically.

Proof. For l /∈ Sc = Sc,1 ∪ Sc,2, O(πl) ≥ 2 from (A.5) implying that the steady-

state probability πl can be ignored when carrying out the order-1 asymptotic

analysis. Therefore, the MC is always in one of the states of Sc asymptotically

implying that this set is closed.
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Lemma 2. For the order-1 asymptotic analysis, the transition probabilities in

(A.4) can be approximated by:

∀ l ∈ Sc,2 : tl,l′ ≈

{
1, l′ ∈ Sc,1 ∪ Sc,2;

0, l′ /∈ Sc,1 ∪ Sc,2.
. (A.9)

Proof. Since the transitions from Sc,2 to states outside Sc are ignored since the set

Sc is asymptotically closed following from lemma 1, then pk can be approximated

by 0 in (A.4). In fact, the inclusion of the probability pk in the transitions

appearing in (A.4) will only yield to terms whose asymptotic orders exceed two

and, hence, can be ignored.

Proposition 5. The following subsets of the set Sc in (3.20) satisfy the condi-

tions in (A.3)-(A.4):

Sc,1 = {s(1)1 } ∪ {s(2)n ; n = 1, . . . , K}

Sc,2 = {s(1)n ; n = 2, 3} ∪ {s(3)n , s(4)n ; n = 1, . . . , K − 1}.
(A.10)

Proof. We first prove the condition in (A.3). Ignoring the terms involving the

product of two or more elements of {pk}K+1
k=1 asymptotically, the non-zero transi-

tion probabilities from elements of Sc,1 in (A.10) are:

t
s
(1)
1 ,s

(2)
1

= 1− p1 ; t
s
(2)
K ,s

(1)
1

= 1− pK+1

t
s
(2)
n ,s

(2)
n+1

= 1− pn+1 , n = 1, . . . , K − 1,
(A.11)

and:

t
s
(1)
1 ,s

(1)
3

= p1 ; t
s
(2)
1 ,s

(1)
2

= p2

t
s
(2)
n ,s

(3)
n−1

= pn+1 , n = 2, . . . , K,
(A.12)

where the proof of (A.11) and (A.12) follows directly from the relaying strategy

in (3.3)-(3.4). We will next provide the proof for the states s
(1)
1 and s

(2)
n for

n = 2, . . . , K − 1. The proof for other states in Sc,1 follows in a similar manner

and, hence, will be omitted for the sake of brevity. (i): For s
(1)
1 = (s−1, . . . , s−1),

∆1 = s and ∆2 = · · · = ∆K+1 = s − 1 implying that preference is given for

transmission from S. In this case, if link 1 is not in outage (with probability

1 − p1), there will a transmission of a packet from S to R1 which implies an

increase in the number of packets stored in the buffer of R1 by 1 thus moving

to the state s
(2)
1 = (s, s − 1, . . . , s − 1). If link 1 is in outage (with probability

p1) and since ∆2 = · · · = ∆K+1, the priority will be given for the transmission

along the link with the highest index K + 1 according to the tie breaking rule
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adopted in the relaying protocol. Therefore, with probability p1(1− pK+1) ≈ p1,

a packet will be transmitted from RK to D implying that the MC will move to

the state s
(1)
3 = (s− 1, . . . , s− 1, s− 2). If link K +1 is in outage, the subsequent

transition probabilities will involve the multiplicative term p1pK+1 implying that

such terms can be neglected in the order-1 asymptotic analysis. (ii): For s
(2)
n

(with n = 2, . . . , K − 1), ∆1 = ∆n+1 = s while ∆2 = · · · = ∆n = ∆n+2 =

· · · = ∆K+1 = s − 1. As such, priority will be given for transmission along link

n+1 followed by link 1 if the link n+1 is in outage. Therefore, with probability

1−pn+1, a packet will be transmitted from Rn to Rn+1 implying that the number

of packets stored in Rn will be reduced by 1 while the number of packets stored

in Rn+1 will rise by 1, thus incurring a transition to the state s
(2)
n+1. On the other

hand, with probability pn+1(1− p1) ≈ pn+1, a packet will be transmitted from S

to R1 thus incurring a transition to the state s
(3)
n−1. Other transition probabilities

will involve the term pn+1p1 and, hence, can be ignored for large values of the

SNR. As a conclusion, the transition probabilities in (A.11)-(A.12) satisfy the

condition in (A.3).

Next, we prove the condition in (A.4). For elements of Sc,2 in (A.10), the

transitions that are confined in Sc = Sc,1 ∪ Sc,2 occur with the following proba-

bilities:

t
s
(1)
2 ,s

(3)
1

= 1− p2 ; t
s
(1)
3 ,s

(4)
1

= 1− p1

t
s
(3)
K−1,s

(2)
1

= 1− pK+1 ; t
s
(4)
K−1,s

(1)
1

= 1− pK

t
s
(3)
n ,s

(3)
n+1

= 1− pn+2 , n = 1, . . . , K − 2

t
s
(4)
n ,s

(4)
n+1

= 1− pn+1 , n = 1, . . . , K − 2,

(A.13)

while the transitions leading to states outside Sc occur with the following proba-

bilities:

t
s
(1)
2 ,s

(1)
2 +e1

= p2 ; t
s
(1)
3 ,s

(1)
3 −eK−1+eK

= p1

t
s
(3)
K−1,s

(3)
K−1−e1+e2

= pK+1 ; t
s
(4)
K−1,s

(4)
K−1+e1

= pK

t
s
(3)
n ,s

(3)
n −e1+e2

= pn+2 , n = 1, . . . , K − 2

t
s
(4)
n ,s

(4)
n +e1

= pn+1 , n = 1, . . . , K − 2,

(A.14)

where (A.13)-(A.14) follow directly from the relaying strategy in (3.3)-(3.4). As

an illustration, we will provide the proof for the state s
(3)
n with n = 1, . . . , K − 2

and the proof for other states of Sc,2 will follow in a similar manner. For the

state s
(3)
n (with n = 1, . . . , K − 2), ∆1 = ∆2 = ∆n+2 = s while ∆k = s − 1 for

k ̸= 1, 2, n + 2 implying that the highest priority is to transmit along the link
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n + 2 followed by the link 2 (in case the link n + 2 is in outage). Therefore,

with probability 1 − pn+2, Rn+1 transmits and Rn+2 receives resulting in the

transition s
(3)
n → s

(3)
n −en+1+en+2 = s

(3)
n+1. Ignoring the outage of more than one

link asymptotically, with probability pn+2, R1 transmits and R2 receives resulting

in the transition s
(3)
n → s

(3)
n − e1 + e2 /∈ Sc. As a conclusion, the transition

probabilities in (A.13)-(A.14) satisfy the condition in (A.4).

Therefore, the union of the sets in (A.10) is closed asymptotically following

from lemma 1 and the transition probabilities in (A.13) and (A.14) can be ap-

proximated by 1 and 0, respectively, following from lemma 2. This results in the

simplified closed state diagram illustrated in Fig. 29.

Figure 29: Closed Subset for 1 < s < L.

From Fig. 29, the 3K + 1 balance equations in the closed subset Sc are given

by:

π
s
(1)
1

= (1− pK+1)πs(2)K
+ π

s
(4)
K−1

(A.15)

π
s
(2)
1

= (1− p1)πs(1)1
+ π

s
(3)
K−1

(A.16)

π
s
(2)
n

= (1− pn)πs(2)n−1
, n = 2, . . . , K (A.17)

π
s
(1)
2

= p2πs(2)1
(A.18)

π
s
(3)
1

= p3πs(2)2
+ π

s
(1)
2

(A.19)

π
s
(3)
n

= pn+2πs(2)n+1
+ π

s
(3)
n−1

, n = 2, . . . , K − 1 (A.20)

π
s
(1)
3

= p1πs(1)1
(A.21)

π
s
(4)
1

= π
s
(1)
3

(A.22)

π
s
(4)
n

= π
s
(4)
n−1

, n = 2, . . . , K − 1. (A.23)
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Solving the relation
∑

l∈Sc
πl = 1 along with the above balance equations,

generates the expressions of the steady-state probabilities presented in (3.21).
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Appendix B

Closed Subset for s = 1

The case of s = 1 differs from the case 1 < s < L presented in Appendix A by the

elimination of the states s
(1)
3 and s

(4)
n for n = 1, . . . , K−1 since these states do not

exist for s = 1 (since s− 2 becomes negative in this case). Removing these states

from (3.20) results in the closed subset provided in (3.22). The closed subset is

now as presented in Fig. 30 that is obtained by removing the above mentioned

K states from the state diagram in Fig. 29.

Figure 30: Closed Subset for s = 1.

Consequently, in the balance equations (A.15)-(A.23), equations (A.21)-(A.23)

must be removed while equation (A.15) must be replaced by:

π
s
(1)
1

= (1− pK+1)πs(2)K
+ p1πs(1)1

. (B.1)

Solving (A.16)-(A.20) and (B.1) along with the relation
∑

l∈Sc
πl = 1 generates

the steady-state probabilities presented in (3.23).
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Appendix C

Closed Subset for s = L

The case of s = L differs from the case 1 < s < L presented in Appendix A by

the elimination of the state s
(1)
2 = (s + 1, s − 1, . . . , s − 1) since s + 1 exceeds

the buffer size L for s = L. As such, the closed subset in (3.20) reduces to the

one given in (3.24). The reduced state diagram for s = L is illustrated in Fig.

31 where a transition can occur from s
(2)
1 to s

(4)
1 with probability p2. In fact, in

the state s
(2)
1 = (s, s− 1, . . . , s− 1), the highest priority is given for transmission

along link 2 followed by the transmission along link K+1 since the buffer at R1 is

full for s = L and the link 1 is unavailable. Consequently, equation (A.18) must

be removed while equations (A.19) and (A.22) must be replaced by:

π
s
(3)
1

= p3πs(2)2
(C.1)

π
s
(4)
1

= p2πs(2)1
+ π

s
(1)
3
. (C.2)

Figure 31: Closed Subset for s = L.

Solving equations (A.15)-(A.17), (A.20)-(A.21), (A.23) and (C.1)-(C.2) along

with the relation
∑

l∈Sc
πl = 1 generates the steady-state probabilities presented

in (3.25).
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Appendix D

Transition Probabilities of Scheme 1

Consider an integer i ∈ {1, . . . , K − 1}. From (4.5):

si = (s− 1, . . . , s− 1︸ ︷︷ ︸
i−1 times

, s, s− 1, . . . , s− 1︸ ︷︷ ︸
K−i times

), (D.1)

implying from (4.2) that ∆k = s for k = 1, i + 1 and ∆k = s − 1 otherwise. As

such, link i+ 1 will be activated according to the tie-breaking rule. This implies

that the number of packets in Bi will decrease by one while the number of packets

in Bi+1 will increase by one reflecting the flow of a packet from Ri to Ri+1 along

link i + 1 assuming that all links are not in outage in the asymptotic regime.

Therefore, si(i) → si(i) − 1 = s − 1 and si(i + 1) → si(i + 1) + 1 = s. The new

state has the structure of si+1 following from (D.1) implying a transition of the

MC from state si to state si+1.
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Appendix E

Derivation of the DO Expression

Full and empty buffers contribute to decreasing the DO since they reduce the

number of available links. From (3.2) and (4.8), si(k) = L ⇒ qk(si) = 1 and

si(k) = 0 ⇒ qk+1(si) = 1.

From (4.6), for i = 1, . . . , K, one element of si is equal to d − 1 while the

remaining K − 1 elements are equal to d and all elements of sK+1 are equal to

d. (i): For 1 < d < L, none of the elements of {si}Ki=1 and sK+1 is equal to 0 or

L. As such, assuming that pk → 0 asymptotically for all values of k, all links in

the network are available and DO = K + 1. (ii): For d = 1, each state in {si}Ki=1

has one zero element corresponding to a single empty buffer while none of the

elements of sK+1 is equal to 0 or L. Consequently, for each state in {si}Ki=1, one

link out of the K + 1 links is unavailable resulting in DO = K. (iii): For d = L,

all buffers are full except for the buffer at RK−i+1 that contains L − 1 packets

for i = 1, . . . , K from (4.6). Therefore, for each state in {si}Ki=1, two links are

available; namely, link RK-D and RK−i-RK−i+1 implying that the corresponding

summation in (4.8) is equal to 2. For sK+1, all buffers are full and only link RK-D

is available implying that the corresponding summation in (4.8) is equal to 1. As

a conclusion, DO = min{1, 2} = 1.
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