
 

 

Lebanese American University 
 

 

 

Development of Seed Variables Prediction Models for Use in 

Dynamic Backcalculation of FWD Data 

 

 

By 

Cynthia Michel Nasr 
 

 

 

 

 

 

 

 

 

 

 

 

A thesis Submitted in partial fulfillment of the requirements for 

the degree of Master of Science in Engineering 

 

 

 

 

 

 

School of Engineering  

April 2022 
 

 









v 

 

Acknowledgment  
 

The author would like to acknowledge the US Federal Aviation Administration (FAA) for making 

available several tools that were developed under research project ARAP0005 “Update 

Backcalculation Software (BAKFAA)”. Those tools were critical for this research and include, but 

are not limited to, Pulse_FE and Pulse_Analyzer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Development of Seed Variables Prediction Models for Use in Dynamic 
Backcalculation of FWD Data 

 

Cynthia Michel Nasr 
 

Abstract 

Understanding the material properties of a pavement structure is crucial for evaluating the 

pavement’s performance and assessing its damage level. Generally, the backcalculation process is 

extensively used to analyze the Falling Weight Deflectometer (FWD) data for estimating the layer

moduli of a pavement structure. It is mainly an iterative process that starts with a set of seed (initial) 

variables, calculates the theoretical pavement surface deflections, and compares them to the 

measured deflections. Yet, this process is most likely unstable and is prone to numerous errors 

including the selection of relevant seed variables. The selected seed variables hold significant 

consequences on the final backcalculated results. This research project aims to develop models 

through classification analysis to predict the seed variables. This involves (1) calculating 

theoretical surface deflections through a finite element model that simulates different pavement 

structures and properties, (2) calculating FWD parameters and indices for each structure and (3) 

using those parameters to build Random Forest models that predict the seed variables with low 

OOB error and high accuracy. The dynamic approach is adopted to perform the analysis on 3-

layered rigid and flexible pavements. The AC layer is modeled as an LVE material while the PCC 

and the unbound layers are modeled as linear elastic materials with damping. The OOB-Estimate 

of error rate and the overall accuracy values obtained dictate that the predictor variables selected 

to build the RF models are efficiently trained and generate accurate predictions for all seed 

variables except for the Rayleigh Damping Parameter of the PCC layer “𝛼𝑅𝑃𝐶𝐶”. The developed 

models can be considered as an effective guidance for pavement engineers to select the seed 

variables that are closer to the actual values to initiate the backcalculation process. 

 

Keywords: Seed Variables, Backcalculation, Random Forests, FWD Data, Finite Element 

Methods, Classification Analysis 
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Chapter One 

 

Introduction and Background 

1.1 Introduction 

It is crucial to have an elaborate understanding of all the material properties that constitute a 

pavement structure for reliably predicting their performance. The accurate estimation of such 

properties is a key element in determining adequate maintenance strategies and precisely assessing 

the damage level and the pavement’s remaining life. The surface pavement deflection or 

displacement has been recognized to represent the sum of the vertical deflections in the subgrade 

and the pavement structure (Horak 1987b). Globally, the vertical deflections, among many others, 

are one of the mostly used measures to assess the pavements’ structural condition for several 

reasons including: (1) cost efficiency, (2) the relative ease of measurements, (3) availability of 

historical data in large amounts, (4) historical correlation existing between the performance of the 

pavement and the deflection data (Solanki et al. 2014 as cited in Fuentes et al. 2020). Two 

approaches are considered to evaluate the structural condition of an existing pavement structure; 

Non-Destructive Testing (NDT) and Destructive Testing (DT). However, the road agencies mainly 

encourage using NDT devices for assessing the pavement’s structural conditions to avoid any 

intrusive testing that might cause further destruction to the pavement structure.  The Falling Weight 

Deflectometer (FWD) is considered the most common NDT device as it better simulates the actual 

field conditions when compared to laboratory testing. Figure 1 illustrates the general effect of an 

FWD load applied on a certain pavement structure. The pavement structure undergoes deflection 

under the wheel load. Consequently, it is important to note that the impact of the FWD load will 

generally extend over a certain radial distance from the point of load application. According to 

Horak (2008), the deflection bowl/deflection basin refers to the area of the pavement deflection 

under and close to the point of load application. 

The FWD drops an impulse load having a duration of about 20 to 30 milliseconds. This 

test is used to assess the layer properties and evaluate the structural capacity of the pavement under 

study. The loading provokes an extensive range of frequency mechanisms and simulates the weight 

effect of a truck or an aircraft moving wheel. Therefore, the pavement surface deflections induced 
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are measured using sensors located at different offsets from the applied load (Sebaaly et al. 1985). 

In a typical FWD equipment, one sensor is directly placed under the loading plate along with a 

minimum of six other sensors placed every 300mm. The aforementioned sensors are also referred 

as geophones and are mainly velocity transducers. Using the FWD device, the structural strength 

of a pavement structure, whether flexible or rigid, can be quantified using the backcalculation 

analysis of the elastic moduli for each layer. 

 

 

 

 

 

 

 

 

 

 

 

 

For an effective analysis, the estimation of each layer modulus is required. As previously 

mentioned, the latter is obtained by a process known as the backcalculation. This method analyzes 

the FWD results and estimates the layer moduli for the pavement structure. It is based on an 

iterative process initiated by assuming a seed layer moduli (initial assumed) values for each layer. 

Following an optimization or root-solving algorithm, a forward calculation method generates new 

surface deflections that match – to a certain extent – the actual response of the pavement structure. 

Therefore, after several iterations, the assumed layer moduli obtained from the analytical 

pavement model are varied and adjusted until they generate a response that converges or strictly 

matches the measured FWD surface deflections. In other words, the analysis is validated once the 

measured and the theoretical deflection basins coincide and reliable results are obtained. Figure 2 

illustrates the backcalculation process and the steps performed to reach the optimal results. Note 

that the seed moduli are consecutively adjusted for the upper pavement layers moving towards the 

lower ones. This approach is necessary to further improve the convergence between the measured 

Figure 1: Deflection Basin resulting from FWD Testing, Choi et al. (2010) 
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and the calculated deflection basins.The seed moduli values tend to affect the convergence speed 

in almost all backcalculation software (Chou and Lytton 1991 , Uzan 1994, Fwa et al. 1997).  

 

 

 

 

 

 

 

 

Conventional static backcalculation models are based on peak FWD deflection values. Yet, 

several progressions have been adopted while using the dynamic models to address the full-

time histories of the FWD load applied and the recorded/measured surface deflections, (Li and 

Wang 2019, Bazi and Assi 2020). Static analysis may be suitable for moderately thin pavements, 

though it holds substantial constraints for stiff and thick flexible or rigid structures which are 

mainly constructed for the airports, (Bazi et al. 2020). The use of dynamic modeling for 

backcalculation is endorsed over static modeling as the viscoelastic properties of asphalt concrete 

(AC) layers, inertial effects, damping and the resonance of the subgrade materials can be taken 

into account, (Bazi and Assi 2020). Thus, the dynamic modeling better reflects the pavement’s 

real-life behavior and generates more reliable results that are suitable to the characteristics of the 

FWD analysis assuming the model is robust.  

Initiating the dynamic backcalculation procedure with seed layer variables that represent the 

actual material properties rather than just guessing some arbitrary values, tends to lessen the 

computational-time required to achieve an adequate match between the calculated and measured 

deflection basins. Thus, developing prediction models for the seed variables will assist and guide 

pavement engineers in the seed variables estimation process. It further tends to generate more 

reliable backcalculation results which are critical for the structural evaluation of any pavement 

structure. 

Figure 2: Backcalculation Process 
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In this research , the dynamic approach is adopted to perform the analysis on both rigid and 

flexible pavements. Pavement structures with three and four layers are considered and modeled 

using Gmsh software. For flexible pavements, the Asphalt Concrete layer is modeled as linear 

viscoelastic (LVE). As for the Portland Cement Concrete layer and all unbound layers underlying 

flexible and rigid pavements are modeled as linear elastic (LE) with damping. A study is performed 

using the axisymmetric finite element modelling to quantify the effect of the FWD parameters on 

the pavement properties (variables). The models that predict the seed values are built using 

machine learning algorithms, specifically using random forests, while following a classification 

analysis. In other words, this research project aims to develop and validate an accurate solution 

that tends to serve as the starting point for the initiation of dynamic backcalculation. Therefore, 

leading to an efficient structural evaluation for both, flexible and rigid pavement structures.  

1.2 Literature Review 

Dynamic backcalculation methods are subject to several constraints. The backcalculated modulus 

does not constantly ensure a precise estimate in which a seed modulus is essential for all the 

individual pavement layers. Thus, this method does not generate a unique solution but rather a user 

dependent one. The backcalculation analysis remains unstable under the effect of several error 

corresponding to either the modeling of the forward approach, numerical computations or 

deflection measurements. As the mathematical expressions used for the backcalculation process 

consider several algorithms, the results will vary from one software to another. It is obligatory to 

identify beforehand the Poison ratios and the thicknesses of each layer within the pavement 

structure. Such parameters are typically assumed for the road agencies that lack databases. The 

accuracy of the backcalculation procedure is further assessed based on a specific tolerance degree 

between the measured FWD deflections and the calculated deflection values (Noureldin 1993). 

Because of the initially assumed seed variables, the convergence to the local optima may lead to 

erroneous and subjective final moduli results. Researchers studied the effect of the Root Mean 

Sqaure Error (RSME) on the backcalculation procedure and the impact of the seed estimation on 

such RSME values, (Seeds et al. 2000). It was noticed that RSME may be used as a mean to regulate 

the convergence of the calculated and measured deflection basins, yet this approach does not 

secure a precise layer moduli backcalculation. Realistic moduli values may not be generated from 

a backcalculation procedure having the least RSME value. Seeds et al. (2000) advocated the 

cautious use of the recommended RSME thresholds with the aid of engineering judgement to 



5 

 

validate the reasonability of the backcalculated moduli. Similar findings were reported by Mehta 

and Roque (2003) in which a good match between the measured and the calculated deflections in 

terms of moderately minute RSME values might not certainly produce logical moduli. 

Over the years, studies emphasized the importance of selecting relevant seed variables for the 

layer properties and acknowledged its major impact on the backcalculation software performance 

and on the final backcalculated results. As the subgrade layer can largely contribute to the surface 

deflection under the effect of the applied load, any error associated to the subgrade elastic modulus 

estimate will result in errors in the backcalculated moduli of the remaining pavement layers. The 

backcalulation results tends to converge to the accurate parameter solutions as long as the seed 

values are relatively closer to the real parameters (Fwa and Rani 2005). Several methods were 

followed by researchers and engineers to select the appropriate seed variables for the individual 

pavement layers and are stated as follows: 

➢ Regression equations based on previous records 

➢ Engineering judgments based on personal experiences 

➢ Empirical models 

➢ Internally produced seed variables in backcalculation software. For example, ELMOD 

uses the radius of curvature method for estimating the seed values. 

Due to the nature of such strategies, their applicability has been limited to certain pavement 

structural design, material types and climate states (Fwa and Rani 2005). Rationally, 

backcalculation software provide embedded seed variables to initiate the analysis. Yet, these 

values do not always generate satisfactory and rational results. For this reason, the convention of 

“user-input” seed variables was recommended in most cases. Fwa and Rani (2005) developed an 

algorithm, 2L-BACK, as a guidance to select the appropriate seed moduli for two-layered flexible 

pavement structure. The algorithm depends on a closed form solution for the backcalculation of 

the moduli. Two different backcalculation programs, EVERCALC and MICHBACK, were used 

to evaluate the effeciency of the proposed process. The authors found that the proposed algorithm 

has improved the MISHBACK performance more than that of EVERCALC in terms of the 

convergence features and the precision of the backcalculation results. This indicated that the 2L- 

Back program lacks consistency among different backcaluclation software. Though, the study 
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proved that the proposed algorithm showed no transferability constrictions and can be considered 

– to a certain extent –  as an effective guidance (Fwa and Rani 2005). Additionally, an approach 

based on the Constrained Extended Kalman Filter (CEKF) was introduced for backcalculation 

(Choi et al. 2010). It makes use of a tranformation to limit the search for the domains required to 

obtain the optimial estimations for the material properties. The approach’s sensitivity was tested 

with respect to the initial seed layer moduli values and the number of the pavement layers. The 

results showed that the EKF method allowed a quick convergence to the actual moduli irrespective 

of the seed values selected (Choi et al. 2010). However, for pavement structures having a stabalized 

base/subbase layer ,the efficiency of the algorithm in terms of the seed value dependency and the 

convergence achievment is not quite confirmed and requires additional research.  

New algorithms are further developed to assist with the fast convergence of the deflection 

basins and to reduce the effect of the seed variables selected on the latter. Genetic algorithm 

technique (GA) is recently presented as an advanced robust method and a highly effective 

optimization tool, capable of conveying various parameters and features that have an impact on 

the backcalculation procedure (Plati et al. 2017). Instead of having a seed value, the optimized-

unknown in GA can have a certain range. Thus, making the quest for an optimal solution tends to 

be more potent than other approaches as the overall solution can be attained and the divergence is 

proscribed (Plati et al. 2017).  Additionally, Li and Wang (2019) combined GA with Artificial 

Neural Networks (ANN) to enhance the solution optimizations. With the aid of finite element 

models, synthetic database was generated to comprehend all the disparities in the pavement 

structure, material properties, temperature and the loading magnitude. The ANN-GA model had 

more advantages when compared to the conventional backcalculation software such as the 

exclusion of the seed variables and the use of complex properties. Yet, the accuracy and the 

applicability of this model presented limitations related to the parameter range used in the 

simulated database (Li and Wang 2019). Moreover, Abd El-Raof et al, (2018) developed a 

simplified closed form procedure which achieved success in the estimation of the layer moduli. 

Yet, this procedure was only limited for a two-layered flexible pavement structure. 

To better understand the behavior of pavement structures and their design, computer 

simulation techniques with the aid of 3D finite element models have been emerging. Thus, offering 

pavement engineers a prevailing capability to recognize and identify the weakness points present 

in the pavement structure even prior construction. Bazi and Assi (2020) developed a Finite Element 
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application “PULSE 2019” and was further upgraded to “PULSE 2020” by improving the 

estimation of the Jacobian-Matrix, (Bazi et. al, 2021). This application is used in this study to 

determine the deflection time histories for various flexible and rigid pavement structures. 
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Chapter Two  

 

Finite Element Method  

2.1 FEM Definition 

Normally, it is impossible to find analytical/mathematical solutions for problems including 

intricate geometries, properties and loadings. Such solutions are obtained using a mathematical 

expression that produce the intended quantities at different locations in the structure under study. 

Therefore, being only valid and effective for an infinite count of certain locations in the structure. 

Henceforth, for robust and adequate solutions, one must consider the finite element method (FEM). 

The latter is a numerical method that produces a system of concurrent algebraical equations and 

provides approximate solutions for the unidentified at distinct points found in the continuum. This 

method enables users to acquire the evolution in time and space for one or more variables that 

represent the physical system’s behavior (Oñate 2009). Consequently, the finite element method 

is considered a powerful and an effective method for the stresses, strains and displacements 

computations that develop in a structure subjected to a set of loadings.  

The main idea of the Finite Element (FE) method is to divide a certain continuum into a 

correspondent system consisting of a finite number of smaller units, referred to as the finite 

elements, that should remain interconnected at common points between the elements. These points 

are termed by nodes and they do control the element’s behavior. Each element within the 

continuum have much simpler and uncomplicated geometries, boundary limitations/conditions, 

material properties and loading conditions, etc. when compared to the continuum as a whole. This 

corroborates the monotonic fluctuations in the stresses and the deformations in each individual 

element. Therefore, the displacements in each element may be approached by certain displacement 

functions. When allowing the stresses or the deformations present at a definite point within the 

element to depend on the ones at the nodes, one can write an attainable number of the nodes’ 

differential equations of motion (Logan 2017). Thus, the discretization of any structure will allow 

the user to formulate equations for the individual finite elements, which will be later on combined 

for developing a solution of the entire structure. In other words, a problem consisting of infinite 
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numbers of degrees of freedom may be simplified and converted to a problem having a finite 

amount (Qu 2004).  

2.2 Structural Mechanics 

Solid or structural mechanics is a branch of applied or continuum mechanics that studies the 

motion and the displacements of solid structures under the forces’ actions. Any structure subjected 

to various types of either external or internal forces will develop stresses that are generally 

considered as nonuniform (Kazimi 2001). Such stresses will cause the structure to depart away 

from its original rest shape and thus generating strains. The latter may be detected as deformations 

or may be measured through strain gauges. According to Liu and Quek (2013), it is vital to 

comprehend the mechanics of a certain material and the relationships present among the applied 

forces, resulting stresses, strains and displacements for a well-designed structural system.  

The applied forces may be distinguished as being either static or dynamic. Static forces are 

the forces that remain constant over time and, generally, will not generate structural vibrations. A 

static problem mainly has one response, the displacement, that can be determined using the 

principles of static equilibrium. On the other hand, dynamic forces are considered time-dependent 

and will result in structural vibrations once the structure is exposed to such forces. In other words, 

a dynamic problem will have three responses including the displacement, the velocity and the 

acceleration. The dynamic forces are not only considered a function of time, but it also enthuses 

the system’s mass, thus producing inertial effects. Note that the static equations may be derived 

from the dynamic equations by simply eliminating the terms related to the dynamic responses (Liu 

and Quek 2013).  

2.3 Axisymmetry 

An axisymmetric element, a triangular torus, is a special 2D-element that is rather convenient 

when a symmetry exists with respect to the loading and to the geometry about a certain axis of the 

structure under study as shown in Figures 3 and 4.  
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In the axisymmetric problems, radial displacements generate circumferential strains which in 

return induce the stresses 𝜎𝛳 , 𝜎𝑧  𝜎𝑟 , and  𝜏𝑟𝑧 defined in the cylindrical coordinates (r, 𝛳, z). Note 

that 𝛳 , z and r refer to the circumferential, longitudinal and radial directions, respectively (Hutton 

2004, Logan 2017). The symmetry existing about a z-axis causes the stresses to not depend on the 

𝛳 coordinate. This means that all the derivatives corresponding to the 𝛳 disappear; the 

displacement element tangent to the circumferential direction (𝛳) , the shear stresses 𝜏𝛳𝑧  , 𝜏𝑟𝛳 and 

the shear strains 𝛾𝛳𝑧  , 𝛾𝑟𝛳  are zero. Therefore, structures having material and geometrical 

properties independent of the 𝛳 coordinate enables the structure’s intrinsic 3D behavior to be 

demonstrated with a simpler 2D -model. 

A considerable percentage of engineering problems and structures can be represented by 

axisymmetric models. Pavements, for example, that are subject to FWD loading can be analyzed 

using such simple and time efficient 2D-models.  

 

 

 

 

 

 

 

 

 

Figure 5: Axisymmetric Engineering Problem (Bazi et al. 2020) 

Figure 4: Axisymmetric Solid (Oñate 2009) Figure 3: Axisymmetric Element "ijm" (Logan 2017) 
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2.3.1 Displacement Field  

When considering an axisymmetric solid subject to an axisymmetric load as shown in Figure 3, 

the displacement vector will consist of two components including  (𝑢) and (𝑤), the radial and the 

axial displacements, respectively. However, the circumferential displacement component (𝑣) is 

equal to zero because of the axial symmetry. Thus, the displacement vector “U” is given by 

equation (1): (Oñate 2009) 

U = [
𝑢 (𝑟, 𝑧)
𝑤 (𝑟, 𝑧)

]                                                                                                                                (1) 

2.3.2 Strain Field 

As previously mentioned, the displacement components are independent of the (𝛳) coordinate 

causing the tangential strains to be zero.  

 

 

 

 

 

 

 

 

 

 

 

For the axisymmetric element ABCD expressed in a plane cross section (Figure 6), the sides AB 

and CD displace in the radial direction an amount of 𝑢 and 𝑢 + 
𝜕𝑢

𝜕𝑟
𝑑𝑟 respectively. Whereby, in 

the radial direction, the normal strain (𝜀𝑟) is represented by equation 2 (Logan 2017). 

 

  𝜀𝑟 =
𝜕𝑢

𝜕𝑟
                                                                                                                                      (2) 

Generally, the strain developed in the tangential path is dependent on the radial (𝑢) and the 

tangential (𝑣) displacements. Yet, evoke that tangential displacement (𝑣) is zero for an 

axisymmetric deformations (Logan 2017). Therefore, by only having the radial displacement (𝑢), 

the length of arc AB becomes (𝑢 + 𝑟) 𝑑𝛳 and the tangential strain (𝜀𝛳) is represented by equation 

3: 

 

Figure 6 : Axisymmetric Element (Logan 2017) Figure 7: Plane Cross Section (Logan 2017) 
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𝜀𝛳 =
(𝑢+𝑟)𝑑𝛳−𝑟𝑑𝛳

𝑟𝑑𝛳
=

𝑢

𝑟
                                                                                                (3)    

For determining the longitudinal and the shear strains, element BDEF is considered by which it is 

shown to displace a certain amount in the longitudinal and radial directions at each point as 

depicted in Figure 8 below.  

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, using the aforementioned displacements’ derivatives, the longitudinal (𝜀𝑧), and the 

shear strains (𝛾𝑟𝑧) are given by equations (4) and (5) respectively. 

    𝜀𝑧 =
𝜕𝑤

𝜕𝑧
                                                                                                                                     (4) 

    𝛾𝑟𝑧 =
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑟
                                                                                                                           (5) 

In summary, the strain vector (𝜀) at a certain point is represented by the four components: 

𝜀 =  [ 𝜀𝑟  ,  𝜀𝑧  ,  𝜀𝜃  , 𝛾𝑟𝑧  ]
𝑇    =  [

𝜕𝑢

𝜕𝑟
    ,

𝜕𝑤

𝜕𝑧
    ,

𝑢

𝑟
    ,

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
 ]𝑇                                                         (6)                                                                          

2.3.3 Stress Field  

The stresses related to the strain vector of Eq. (6) may be also expressed in a vector format by: 

𝜎 =  [ 𝜎𝑟  ,  𝜎𝑧  ,  𝜎𝜃  , 𝜏𝑟𝑧  ]
𝑇                                                                                                             (7) 

Figure 8: Element Displacement in the r-z Plane (Logan 2017) 
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Where, 

 𝜎𝑟 is the radial stress, 𝜎𝑧 is the longitudinal stress,  𝜎𝜃 is the circumferential stress and lastly 𝜏𝑟𝑧 

is the tangential stress illustrated in Figures 9 and 10. Note that the remaining stresses are equal to 

zero. 

2.3.4 Relationship between the Strains and the Stresses 

The relationship is mainly deduced from the 3D-elasticity theory in a similar way as that for the 

plane elasticity (Oñate 2009). 

For 2D-axisymmetric problems, the elasticity matrix (𝐷) may be determined using that of a 

3D structure by considering that the shear stress  (𝛾𝑟𝑧 ) is not joined with the circumferential stress 

 (𝜎𝜃) as well as forcing  𝛾𝑧𝜃 = 𝛾𝑟𝛳 = 0. Therefore, the elasticity matrix (𝐷) for isotropic materials 

is expressed by:  

𝐷 =
𝐸

(1+𝜈)(1−2𝜈)
 

[
 
 
 
1 − 𝜈 𝜈 𝜈

1 − 𝜈 𝜈

𝑠𝑦.
1 − 𝜈

0
0
0

1−2𝜈

2 ]
 
 
 
                                                                               (8) 

Hence, the relationship between the stresses and the strains for isotropic materials is given by:  

{

 𝜎𝑟
 𝜎𝑧
 𝜎𝜃
𝜏𝑟𝑧

} = 
𝐸

(1+𝜈)(1−2𝜈)

[
 
 
 
1 − 𝜈 𝜈 𝜈

1 − 𝜈 𝜈

𝑠𝑦.
1 − 𝜈

0
0
0

1−2𝜈

2 ]
 
 
 
 

{
 
 

 
 
𝜕𝑢

𝜕𝑟⁄

𝜕𝑤
𝜕𝑧⁄

𝑢
𝑟⁄

 
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟}
 
 

 
 

                                                    (9)  

 

Figure 10: Stresses in an Axisymmetric Structure, 
(Logan 2017) 

 

Figure 9: Element Displacement in the r-z Plane, (Logan 2017) 
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2.4 Formulating the Finite Elements 

2.4.1 Structure Discretization and Element Types 

The structure under study is discretized into a set of elements in which the latter can consist of 

either a single element type or several element types combined together. This discretization is 

also referred to as the Finite Element (FE) mesh. 

A mesh whereby the inner nodes are surrounded by the same elements’ number is known 

as the structured mesh. The latter follows a certain topological pattern which is repeated in all the 

space directions (Berzins 1998). Else, the mesh is considered as an unstructured mesh. 

  

 

 

 

 

 

 

 

 

The selection of elements used in the FE analysis largely depends on the physical 

constituent of the structure under actual-real loadings and on the result’s accuracy level that the 

analyst seeks for especially when compared to real-life behaviors. Engineering judgement 

regarding the suitability of which dimension to adopt is essential. Furthermore, the selection of the 

utmost convenient element for an FE problem is considered one of the main and critical tasks 

performed by the analyst/engineer. Note that such decisions are also affected by the availability of 

the element types in the computer program used and on the analyst’s experience in solving similar 

problems using the FEM. The selected element types should be robust whereby the mesh must 

account for any possible stress gradients that might be present in the solution (Oñate 2009).  

Several elements are available for solving FE problems including the plane (2D) elements 

portrayed in Figure (13). These elements are referred to as triangular and quadrilaterals. Note that 

linear elements - having nodes placed only at the corners and have straight boundaries - are 

considered the simplest 2D elements.  

Figure 12: Structured Mesh Figure 11:Unstructured Mesh 
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Figure 13: Linear, Quadratic Triangular and Quadrilateral Elements, (Logan 2017) 

2.4.1.1 Discretization Accuracy   

The structure’s geometry is discretized and divided into a mesh of finite elements with allied nodes 

and modeled with a specific accuracy. Evidently, this discretization presents an additional 

approximation. Therefore, when compared to the real-life (actual) behavior, two errors arouse from 

the outset including (1) the discretization error and (2) the modelling error. The latter may be 

minimized by enhancing the structural and the conceptual models that define the structure’s real 

behavior (Oñate 2009). On the other hand, the discretization error may be minimized by using 

more elements within the continuum i.e., a finer mesh. The elements should be modeled small in 

a way to generate robust and reliable results but large in a way to lessen the computational exertion 

(Logan 2017). Smaller elements are commonly more recommended when the obtained results vary 

rapidly while larger elements are more desired when the results are moderately constant (Logan 

2017). Another way to minimize the error is by increasing the finite elements’ accuracy selected 

through considering a higher order-polynomial expansions for the displacement field 

approximation in every element (Oñate 2009).   

2.4.1.2 Infinite Media  

Generally, for the generation of the finite elements, three methods are employed to replicate the 

infinite media including:   

➢ Far boundary method 

➢ Infinite element boundary method 

➢ Viscous damping method  
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Note that the overall number of the 𝑎𝑖’s coordinates presented in the displacement function equals 

the overall count of the degrees of freedom for each element. Thus, the displacement at each node 

is (Logan 2017): 

{𝑑} =  {

 𝑑𝑖
 𝑑𝑗
 𝑑𝑚

} =

{
 
 

 
 
𝑢𝑖
 𝑤𝑖
 𝑢𝑗
𝑤𝑗
𝑢𝑚
𝑤𝑚}

 
 

 
 

                                                                                                                       (11)  

Whereby, the degrees of freedom 𝑢 and 𝑤 will be evaluated at each node within an element. For 

example, at node 𝑚:  

𝑢 (𝑟𝑚 , 𝑧𝑚) =  𝑢𝑚 =  𝑎1 + 𝑎2𝑟𝑚 + 𝑎3𝑧𝑚
𝑤(𝑟𝑚 , 𝑧𝑚) =  𝑤𝑚 = 𝑎4 + 𝑎5𝑟𝑚 + 𝑎6𝑧𝑚

 

Hence, the displacement function is given by:  

 

                                    (12) 

 

 

 

Through the substitution of the nodal points’ coordinates in Eq. (12) along with some inversions, 

the 𝑎𝑖’s may be determined while having the following expression:  

 

   

 

 

                                                                                    (13) 

 

 
 

 

Whereby,  

 

 

 

                                           

                                                                                                                                                                

                                           (14) 
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A = Triangular Element Area = 
1

2
[
1
1
1

𝑟𝑖
𝑟𝑗
𝑟𝑚

𝑧𝑖
𝑧𝑗
𝑧𝑚
] 

As for the shape functions (𝑁𝑖 , 𝑁𝑗 and 𝑁𝑚) , they characterize the displacement shape {𝜓} 

when plotted over a certain element’s surface (Logan 2017), and are defined by Eq. (15).  

 

 

 

 

 

 

 

 

 

𝑁𝑖 = 
1

2𝐴
 [∝𝑖+ (𝑟𝛽𝑖) + (𝑧𝛾𝑖)] 

𝑁𝑗 = 
1

2𝐴
 [∝𝑗+ (𝑟𝛽𝑗) + (𝑧𝛾𝑗)] 

𝑁𝑚 = 
1

2𝐴
 [∝𝑚+ (𝑟𝛽𝑚) + (𝑧𝛾𝑚)] 

                                                                                                              (15) 

Hence, by substituting Eq. (13) into equations (12) by taking into account the shape function 

equations (15), the general function is found to be (Oñate 2009, Logan 2017):  

 

 

 

                                        (16) 

 

 

2.4.3 Stress-Strain and Strain-Displacement Relationships 

The “strain” vector may be written in this format: 

 

𝜀 =  {

 𝜖𝑟
 𝜖𝑧
 𝜖𝜃
𝛾𝑟𝑧

} =         (17)    

 

The gradient matrix [B] is defined by:             

Figure 15: Ni Variation over the X-Y surface for a certain Element (Logan 2017) 
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[𝐵] = [𝐵𝑖  𝐵𝑗  𝐵𝑚]                                                                                                                        (18) 

Whereby,  

𝐵𝑖 =
1

2𝐴

[
 
 
 

𝛽𝑖 0
0 𝛾𝑖

∝𝑖

𝑟
+ 𝛽𝑖 + 

𝑧 𝛾𝑖

𝑟
𝛾𝑖

0
𝛽𝑖]
 
 
 

,          𝐵𝑗 =
1

2𝐴

[
 
 
 
 

𝛽𝑗 0

0 𝛾𝑗
∝𝑗

𝑟
+ 𝛽𝑗 + 

𝑧 𝛾𝑗

𝑟
𝛾𝑗

0
𝛽𝑗]
 
 
 
 

,     𝐵𝑚 =
1

2𝐴

[
 
 
 

𝛽𝑚 0
0 𝛾𝑚

∝𝑚

𝑟
+ 𝛽𝑚 + 

𝑧 𝛾𝑚

𝑟
𝛾𝑚

0
𝛽𝑚]
 
 
 

  (19)                                                             

Note that [B] is clearly a function of both r and the z-coordinates which means that the 

circumferential strain ( 𝜀𝜃) is mainly not constant. 

By substituting Eq. (13) into Eq. (17) and linking it by the [B] matrix, the strain vector will be 

expressed by: 

  

  

                (20) 

 

 

Lastly, the stress is therefore expressed by: 

{ 𝜎 } = [𝐷][𝐵]{𝑑}                                                                                                                                  (21) 

2.5 Linear Viscoelasticity 

Many structures are exposed to a certain loading behavior by which the inertial effects are 

considered one of the main pillars of an efficient dynamic analysis. Normally, for almost any 

material type, a considered amount of energy absorption and dissipation may be experimentally 

observed. Whereby the majority of the dissipative materials are mostly defined using time and/or 

frequency-domains through viscoelastic models. 

2.5.1 Viscoelastic Properties   

The material’s viscoelastic property enables the analyst to determine the amount of energy 

being dissipated, or even returned to the actual surroundings, once an impact is applied. Such 

materials are remarked from other material types that are regarded as purely elastic. Viscoelastic 

materials manifest properties including the relaxation modulus, the creep compliance, the dynamic 

modulus (complex modulus) and dissipative qualities (Tapia-Romero, M. A., et.al 2020). These 

properties describing the material’s capacity to dissipate energy are referred to as the 

dynamic properties. Note that the complex modulus (𝐸∗) is mainly composed of a real and 
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imaginary parts, referred to as the storage modulus (𝐸′) and the loss modulus (𝐸′′) respectively. 

This relationship is given by Eq. (22): 

 𝐸∗ =  𝐸′ + 𝑖 𝐸′′                                                                                                                             (22) 

Whereby, the storage modulus (𝐸′) is best defined as the material’s capacity of storing energy and 

returning it to the surrounding. While the loss modulus (𝐸′′) is defined as the material’s capability 

to dissipate energy to its own interior structure. For a better understanding of this concept, a 

graphical representation is shown in Figure (16).  

 

 

 

 

 

 

 

 

 

2.5.1.1 Viscoelastic Response Discerption  

The stress/strain relations and the time-related properties are determined by modeling the 

viscoelastic materials. Consequently, their responses are controlled by the deformation and its rate 

when subject to loading. Due to the viscous property, the material will surely experience either 

relaxation or creep. The relaxation modulus defines the phenomenon by which the stress tends to 

decrease with time while the strain remains constant. It is mainly necessary to determine in the 

design procedure and within the finite element analysis the thermal stress that is present in the 

asphalt pavement structure  On contrary, the creep compliance defines the phenomenon by which 

the strain tends to decrease with time under the effect of constant stresses.  

Associated to pavement engineering, the asphalt mixtures’ viscoelastic responses can be 

modeled and expressed by a linear combination of dashpots and springs (Zhao, Y et al. 2014). The 

aforementioned dashpots and springs are referred to as the Newton and Hooke elements 

respectively (Figures 17 and 18). Once combined in series, a Maxwell element will be formed, 

otherwise a Kelvin-Voight element is yielded (Figures 19 and 20). 

Figure 16: Storage and Loss Moduli Concept (Saba et al., 2016) 
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𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀 = 𝜀
𝑒 + 𝜀𝑣                                                                                                                   (26) 

𝜎 = 𝜎𝑒 = 𝜎𝑣                                                                                                                                 (27) 

At equilibrium state, έ  𝑣 = 0, the Maxwell element’s viscous strain becomes equal to the total 

strain ( 𝜀𝑣 =  𝜀) whereas the elastic strain (𝜀𝑒)  becomes zero. On the other hand, and through Eq. 

(26), the Maxwell model’s differential equation is given by: 

έ =  
1

𝐸

𝑑𝜎

𝑑𝑡
+

1

ɳ
𝜎                                                                                                                                (28) 

By conducting a relaxation test, the solution for the differential Eq. (28) is expressed by:  

𝜎(𝑡)

𝜀𝑜
= 𝐸𝑒

−𝑡

𝜏 = 𝑅(𝑡)                                                                                                                      (29) 

Where 𝑅(𝑡) is known as the relaxation-function which states the explicit material’s viscoelastic 

features and characteristics. Note that at 𝑡∞, the stress becomes zero. 

 

 

  

 

 

 

 

 

 

 

Figure 21: Generalized Maxwell Element 

Figure 22: Maxwell Element Relaxation Experiment (Kaliske & Rothert 1997) 
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The previously mentioned relaxation experiment performed on one Maxwell element is 

applicable on a generalized maxwell model (GMM). Therefore, using the GMM and its Prony 

series delineation, the relaxation function is expressed by (Kaliske & Rothert 1997): 

𝑅(𝑡)𝐺𝑀𝑀 = 𝐸∞ + ∑ 𝐸𝑗𝑒
−𝑡

𝜏𝑗𝑁
𝑗=1                                                                                                            (30) 

Whereby, (𝐸∞) refers to equilibrium-modulus at 𝑡∞ (long-term) represented by: 

𝐸∞ = 𝐸𝑜  ∑ 𝛼𝑗
𝑁
𝑗=1 = 𝐸𝑜  ∑

𝐸𝑗

𝐸𝑜

𝑁
𝑗=1                                                                                                                             (31) 

𝜏𝑗  and 𝐸𝑗 refer to the time for the viscous relaxation and the elastic stiffness, respectively, that 

correspond to each element constituting the GMM. As for 𝑁, it corresponds to the total number of 

individual Maxwell elements ( 𝑗), while  𝛼𝑗 is known as the relative modulus for each element ( 𝑗). 

At time 𝑡𝑜, (𝐸𝑜) can be determined where it refers to the deformation’s time-independent elastic 

element i.e., it remains constant over time. The latter is known as the instantaneous modulus 

represented by: 

𝐸𝑜 = 𝐸∞ + ∑ 𝐸𝑗
𝑁
𝑗=1                                                                                                                       (32) 

2.5.1.3 Prony Series  

The material’s viscoelastic characteristics may be represented through the Prony series. The latter 

is mainly a mathematical process used to fit a union of equidistant values contingent on a set of 

damped exponentials (Zhang et al. 2018). It can remarkably enhance the computational efficacy 

accredited to its relative physical origin corresponding to the mechanical model theory that deals 

with linear dashpots and springs (Zhang et al. 2018). Consequently, Prony series is generally 

employed in linear viscoelastic functions. 

As previously mentioned, the generalized Maxwell model (GMM) can be utilized to describe 

the asphalt mixtures’ total stress. By distinguishing its corresponding strain by taking into account 

the elastic theory (Park & Schapery 1999), the complex modulus 𝐸∗ representation through the 

Prony Series can be expressed by the following:  

 

𝐸∗ =  𝐸∞ 
+ ∑

𝑖𝜔𝜏𝑗𝐸𝑗

𝑖𝜔𝜏𝑗+1

𝑁
𝑗=1                                                                                                                                       (33) 

Whereby, 𝑖 is equal to √−1  (complex number) and 𝜔 is referred to as an angular frequency in 
𝑟𝑎𝑑

𝑠𝑒𝑐
.  

The relaxation modulus’s Prony series coefficients may be directly obtained through the fitting 

of the dynamic modulus’s master curve. The latter is explained by the fact that the relaxation and 
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the dynamic moduli share same Prony coefficients (Zhang et al. 2018). It is considerably very 

difficult to attain the dynamic modulus’s exact fitting as, in reference to Eq. (22), the dynamic 

modulus is equal to the sum of both storage and loss moduli which thus cannot be immediately 

expressed. In other words, fitting the dynamic modulus must account for the fittings of its two 

components; the storage and the loss moduli. Hence, the Prony series, by the fitting of either the 

storage or the loss modulus, may be considered as the dynamic modulus’s Prony series (Zhang et 

al. 2018). This is further explained by the sharing of the same Prony series by the dynamic, storage 

and loss moduli as expressed in Eqs. (33), (34) and (35). Yet, as presented in Eqs. (34) and (35), 

the storage modulus’s fitting process can produce the long-term equilibrium modulus (𝐸∞) , an 

essential parameter required for the relaxation modulus calculation in Eq. (30). On the contrary, 

the loss modulus fitting process cannot. Therefore, the dynamic modulus’s Prony series is obtained 

by applying the storage modulus fitting. Consequently, based on the complex modulus 

representation in Eq. (22), the storage (𝐸′) and loss moduli (𝐸′′) are expressed respectively by:  

𝐸′(𝜔) = 𝐸∞ + ∑
𝜔2𝜏𝑗

2𝐸𝑗

𝜔2𝜏𝑗
2+1

𝑁
𝑗=1                                                                                                               (34) 

𝐸′′(𝜔) =  ∑
𝜔𝜏𝑗𝐸𝑗

𝜔2𝜏𝑗
2+1

𝑁
𝑗=1                                                                                                                   (35) 

This indicates the availability of an interconversion procedure from the dynamic to the relaxation 

modulus which mainly includes the following steps (Park & Schapery 1999):  

I. The pre-smoothing and the fitting of the dynamic modulus and the phase angle 

experimental values; 

II. Storage modulus (𝐸′𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  ) calculation using the experimental values; 

III. Setting the storage modulus (𝐸′𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) value - obtained using Eq. (34) - equal to the 

previously determined  (𝐸′𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙); 

IV. Obtaining the Prony series coefficients (𝐸∞ ) and (𝐸𝑗) ; 

V. Substitution of the (𝐸∞ ) and (𝐸𝑗) values into the relaxation function for plotting its 

corresponding master curve over a broad time domain. 
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2.5.1.4 Numerical Model Development  

The numerical model development originates from the typical integral idealization of the linear 

viscoelasticity (Kaliske & Rothert 1997): 

                                                                                (36)  

 

Whereby  𝑅(𝑡 − 𝑠) = 𝐸𝑜  + ∑ 𝐸𝑗 exp(−
𝑡−𝑠

𝜏𝑗
)𝑁

𝑗=1                       

By dividing the integral into the two contributions, the elastic and the viscoelastic, the 

component of the elastic stress 𝜎𝑜
𝑒(𝑡) as well as the internally stressed equivalent variables 𝑋𝑗(𝑡) 

can be determined (Kaliske & Rothert 1997) as the following:  

𝜎(𝑡) = 𝐸∞έ + ∑ ∫ 𝐸𝑗 exp (−
𝑡−𝑠

𝜏𝑗
) έ𝑑𝑠 =  𝜎𝑜

𝑒(𝑡) + ∑ 𝑋𝑗(𝑡)
𝑁
𝑗=1

𝑡

𝑜
𝑁
𝑗=1                                            (37) 

Note that at time (𝑡∞) in a relaxation experiment, the contribution due to 𝑋𝑗(𝑡) tends to reach zero, 

thus obtaining the following equation for each individual 𝑋𝑗(𝑡) :  

𝑋𝑗(𝑡) =  ∫ 𝐸𝑗 exp (−
𝑡−𝑠

𝜏𝑗
) έ𝑑𝑠 

𝑡

𝑜
                                                                                                   (38)  

By performing several substitutions and integrations while taking into account a time interval of 

𝑡𝑚 , 𝑡𝑚+1 with a ∆𝑡 =  𝑡𝑚+1 − 𝑡𝑚  , the following equation is obtained:  

𝑋𝑗
𝑚+1 = exp (−

∆𝑡

𝜏𝑗
)𝑋𝑗

𝑚 + 𝛾𝑗  
1−exp(− 

∆𝑡

𝜏𝑗
)

∆𝑡

𝜏𝑗

 [ 𝜎𝑜
𝑚+1 − 𝜎𝑜

𝑚 ]                                                        (39) 

Where (𝛾𝑗) is a factor of the relaxation function that is normalized = 
𝐸𝑗

𝐸∞
   

A vital characteristic of implementing integration algorithms is their reliable and steady 

linearization.  Using the derivative of the current stress state Eq. (40), the viscoelastic tangent 

modulus can be determined Eq. (41) (Kaliske & Rothert 1997). 

𝜎𝑡+ ∆𝑡 = 𝜎∞
𝑡+ ∆𝑡 + ∑ 𝑋𝑗

𝑡 + ∆𝑡𝑁
𝑗=1                                                                                                       (40) 

𝑉𝑚+1 = 
𝑑𝜎𝑚+1

𝑑𝜀𝑚+1
= [1 + ∑ 𝛾𝑗  

𝑁
𝑗=1  

1−exp(− 
∆𝑡

𝜏𝑗
)

∆𝑡

𝜏𝑗

] 𝐸∞                                                                            (41) 

2.6 FE Equations 

2.6.1 Development of Governing Equations 

Generally, the engineer pursues to determine the stresses and the displacements for a structure in 

equilibrium and exposed to different types of loads. For several structures, it is quite difficult to 
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ascertain the deformational distribution through conventional techniques. Hence, it is essential to 

use the Finite Element Method. 

Several approaches are available for the determination of the governing finite element 

equations. These approaches include first the direct equilibrium method (direct method) that could 

be divided into two separate methods known as the displacement/stiffness method, which assumes 

the nodal displacements to be the unknowns, and the force/flexibility method that considers 

unknowns to be the internal forces (Logan 2017). Yet, for the computational goals, it was noticed 

that the stiffness (displacement) method is recommended as it has a much simpler formulation for 

structural problems. Based on the direct equilibrium method, the stiffness matrices as well as the 

element equations that relate the forces and the displacements at each node are determined by 

considering equilibrium force settings in addition to displacement/force relations for a certain 

element (Logan 2017). Another approach for determining the equations is the variational methods 

that consist of different principles including the potential energy theorem and the principle of 

virtual work. The former principle applies on materials that have a linear elastic behavior while 

the latter applies on materials that have either a linear or a nonlinear behavior. Lastly, the weighted 

residual methods can be employed. 

2.6.2 Dynamic Response Equilibrium Equations 

Associated to pavement engineering, an FWD testing applies on the pavement’s surface an 

impulse load of a certain duration. Therefore, ideally, dynamic backcalculation should be 

considered to determine the individual layer’s modulus within the pavement structure along with 

the damping coefficients (Matsui, K. et al. 2006). Consequently, for this FWD load, the equation 

of motion can be determined whereby one must account for the inertial and damping forces that 

depend on the acceleration and on the velocity respectively. Additionally, for a system of finite

elements, the equilibrium equations controlling the dynamic responses is given by (Bathe 2014):  

𝑀ὔ + 𝐶ὐ + 𝐾𝜐 = 𝑅                                                                                                                           (42) 

Whereby [𝑀] is the mass matrix, [𝐶] is the damping matrix, [𝐾] is the stiffness matrix, {𝑅} is the 

vector that includes the external loadings applied,  {𝜐} , {ὐ} , and   {ὔ} represent the displacement, 

velocity and acceleration vectors, respectively. 

When a time dependent load R(t) is applied to the scheme presented in Figure (21), the 

problem under study is detailed with the particle’s mass (𝑚), the parameters representing the 

Maxwell Chain Model including the spring’s elastic stiffness (𝐸∞), the stiffness of the spring (𝐸𝑛), 
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and lastly the damping viscosity coefficient ( ɳ𝑛 ).  Consequently, Eq. (42) can be expressed in 

another format representing the inertial, damping ad elastic forces as function of time. In other 

words, (𝑀ὔ) represents the forces related to inertia 𝑓𝐼(𝑡), (𝐶ὐ) represents the forces related to 

damping 𝑓𝐷(𝑡),  and (𝐾𝜐) represents the forces related to elasticity 𝑓𝐸(𝑡). The equation is therefore 

given by:  

𝑓𝐼(𝑡) + 𝑓𝐷(𝑡) + 𝑓𝐸(𝑡) = 𝑅(𝑡)                                                                                                         (43) 

2.6.3 Element Stiffness Matrix Development 

The stiffness matrix for a certain element is determined by Eq. (44) (Logan 2017): 

                                                                    (44) 

 

Whereby, [B] is the gradient matrix defined in section 3.4.c, [𝐵]𝑇 is the gradient matrix transpose, 

[D] is the elasticity matrix. 

The element stiffness matrix [𝑘] can be evaluated by evaluating the gradient matrix [𝐵] for 

an element’s centroidal point (ȓ, ẑ), and thus represented by Eq. (46):  

ȓ =  
𝑟𝑖+ 𝑟𝑗+ 𝑟𝑚

3
   , ẑ =  

𝑧𝑖+ 𝑧𝑗+ 𝑧𝑚

3
                                                                                                    (45) 

[𝑘] = 2𝜋ȓ𝐴[𝐵]𝑇[𝐷][𝐵]                                                                                                                    (46) 

2.6.4 Element Mass Matrix Development 

The domain under study is meshed through the displacement based finite element method. 

Consequently, the structure’s total volume (𝑉) is discretized itself into a count of (𝑁) elements by 

which each individual element has its own relative elementary volume. Generally, the mass matrix 

[𝑀] defines the system’s global mass and inertia. Accordingly, the mass matrix for each element 

is determined as shown below (Bazi et al. 2020):  

[𝑚] =∭ 𝜌 [𝑁]𝑇[𝑁]𝑑𝑉 = 2𝜋∬ 𝜌 [𝑁]𝑇[𝑁]𝑟𝑑𝑟𝑑𝑧
𝐴

 
𝑉

                                                                (47) 

When deriving each element’s mass matrix by the relationship expressed in Eq. (47), the [𝑁] 

matrix should correspond to all the nodal displacements even the ones in the local coordinate 

system. 
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For a linear-triangular element, the 6x6 mass matrix is expressed as follows: 

 

[𝑚] =
𝜋𝜌𝐴

10
 

[
 
 
 
 
 
 
 
 2ȓ +

4

3
𝑟1             𝑠𝑦𝑚.

0 2ȓ +
4

3
𝑟1

−𝑟3

3
+ 2ȓ 0 2ȓ +

4

3
𝑟2

0   
−𝑟3

3
+ 2ȓ

−𝑟2

3
+ 2ȓ 0

0  
−𝑟2

3
+ 2ȓ

       

 0  2ȓ +
4

3
𝑟2

−𝑟1

3
+ 2ȓ 0

0  
−𝑟1

3
+ 2ȓ

 2ȓ +
4

3
𝑟3

0 2ȓ +
4

3
𝑟3]
 
 
 
 
 
 
 
 

              (48) 

 

Whereby the 𝜌 is the density expressed in lbf.s2/in4 . 

For the analysis, the lumped mass matrix is taken into account to produce more reliable and 

robust results when calculating the model’s natural frequency in the numerical experiments (Bazi 

et al. 2020) . The lumped mass matrix formulation results in a fully diagonal system matrix, it is 

determined by summing the values in each row in the previously determined consistent mass 

matrix. 

2.6.5 Element Damping Matrix Development 

The damping capacity is mainly explicated as the dissipated energy in one oscillation cycle over 

the maximum accumulated energy within the structure (Alipour & Zareian 2008). Several 

mechanisms exist for the structure’s damping including the interfacial damping on one hand and 

the material damping on the other. The latter’s contribution originates from the interaction of a 

complex molecules constituting the material. This indicates that the damping depends on the 

material, its manufacturing and finishing methods (Kareem and Gurley 1996). 

Rayleigh damping, a classical/proportional damping model, is considered to model the 

structure’s characteristics of energy depletion (Rayleigh 1954) i.e., calculating the damping ratio. 

This model describes the damping as a linear combination of both, the mass matrix and the stiffness 

matrix, thus, given by: 

[𝑐] =  𝛼𝑅 [𝑚] + 𝛽𝑅 [𝑘]                                                                                                                 (49) 

Whereby (𝛼𝑅) and (𝛽𝑅) are real scalars, known as the Rayleigh damping coefficients and 

expressed in (  
1

𝑠𝑒𝑐𝑜𝑛𝑑
 )  and ( 𝑠𝑒𝑐𝑜𝑛𝑑) respectively. 
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For a triangular element, the forces at each node are portrayed in Figure (26) and are determined 

as follows in Eq. (51) and (52) for a unit pressure (Bazi et al. 2020):   

 

 

                                                                           

 

 

 

 

 

 

 

𝑓1 =  
2𝜋

6
(ṝ1
2 + ṝ1ṝ𝑜 − 2ṝ𝑜

2)                                                                                                                 (51) 

𝑓2 =  
2𝜋

6
(ṝ1
2 − ṝ1ṝ𝑜 − 2ṝ𝑜

2)                                                                                                                 (52) 

2.7 Dynamic Analysis 

For a certain numerical system, the equation of motion’s analytical solution is typically impossible 

if the system under study is not linear or whether the applied forces arbitrarily vary with time. 

These problems, that especially arise in a wide subject domain of applied mechanics, can be 

unraveled through the use of time stepping approaches for the differential equation integrations. 

Such approaches are developed through examining their corresponding convergence, computer 

implementation, stability and their accuracy. 

The dynamics of viscoelastic structures defined by the generalized Maxwell model results in 

a set of initial value problems linking the variables and the equation of motion. As the full system’s 

numerical integration is considered costly, an alternate method, which was initially established for 

quasistatic problems (Zienkiewicz et al. 1968), was followed which solves the equation of motion 

approximately, while solves the evolutionary constitutive equations and results in an update 

equation for the internal variables that enter the equation of motion (Schmidt et al. 2019). Though, 

f 1 f 2 Uniform Unit Pressure 

ṝ1 

ṝ𝑜 

Figure 25: Linear Triangular Element Shape Functions 

Figure 26: Nodal Forces Surface Traction 
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(Hatada et al., 2000) considered this approach in dynamics whereby the authors established a 

Newmark type algorithm for a Maxwell model with three parameters. 

2.7.1 Newmark’s Method  

In structural mechanics, the Newmark’s method (Newmark 1959) is considered one of the utmost 

essential methods that are based on time steps. This method is clearly an implicit method that 

considers the inversion of matrices. It requires solving a series of linear algebraical equations in 

order to determine the solution at each step. This implies that implicit algorithms are not time 

efficient approaches as the system of matrices should be solved at every step. Nevertheless, the 

Newmark’s method is considered a stable method whereby the time step’s size (∆𝑡) will not have 

an effect on the solution’s stability, yet it is relatively governed through accuracy aspects. 

The Newmark’s method is mainly based on the recursion given by:  

𝜐𝑡 + ∆𝑡 = 𝜐𝑡 + (∆𝑡)ὐ𝑡 + [( 
1

2
−  𝛽) (∆𝑡)2] ὔ𝑡 + [ 𝛽(∆𝑡)2] ὔ𝑡 +1                                                   (53)   

ὐ𝑡+1 = ὐ𝑡 + [ (1 −  𝛾) ∆𝑡 ]ὔ𝑡  + ( 𝛾∆𝑡)ὔ 𝑡 + 1                                                                             (54) 

Note that 𝛽 and 𝛾 are integration parameters that specify the system’s accuracy, stability and 

dissipative characteristics.  

2.7.1.1 Newmark 𝛽 − Method Special Cases 

The Newmark’s method is known by the Newmark 𝛽 − method once ( 𝛾) =  
1

2
  (Wood 1984). 

I. For 𝛾 =  
1

2
  and 𝛽 = 

1

4
 , the previously written Eqs. (53) and (54) refer to the “average” 

acceleration method as illustrated in Figure (25) and the equations below:   

ὔ (∆𝑡) =  
1

2
 ( ὔ 𝑡 + 1 + ὔ 𝑡 )                                                                                                             (55)  

ὐ𝑡+1 = ὐ𝑡 + 
∆𝑡

2
 (ὔ 𝑡 + 1 + ὔ 𝑡 )                                                                                                    (56) 

𝜐𝑡+1 = 𝜐𝑡 +  ὐ𝑡∆𝑡 +
∆𝑡4

4
 (ὔ 𝑡 + 1 + ὔ 𝑡 )                                                                                     (57) 

The assumptions that consider the acceleration’s variation over a certain time-step constant and 

equals the average acceleration is described by Eq. (55). As for Eq. (56), it corresponds to 

integrating the acceleration in Eq. (55) over (∆𝑡)  to determine the velocity.  In a similar fashion, 

the displacement is obtained in Eq. (57) by integrating the previously determined velocity over 

(∆𝑡).   
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II. For 𝛾 =  
1

2
  and 𝛽 = 

1

6
 , the previously written Eqs. (53) and (54) refer to the “average”  

acceleration method as illustrated in Figure (27) and the equations below: 

ὔ (𝜏) = ὔ 𝑡 + 
𝜏

∆𝑡
 ( ὔ 𝑡 + 1 − ὔ 𝑡 )                                                                                                             (58)  

ὐ𝑡+1 = ὐ𝑡 + 
∆𝑡

2
 (ὔ 𝑡 + 1 + ὔ 𝑡 )                                                                                                    (59) 

𝜐𝑡+1 = 𝜐𝑡 +  ὐ𝑡∆𝑡 + ∆𝑡2 ( 
ὔ 𝑡 + 1

6
+ 

ὔ 𝑡 

3
)                                                                                     (60) 

Note that the same explanation for Eqs. (56 – 57) applies here, whereby, 𝜏 =  ∆𝑡 . 

For the sake of the project, the integration parameters 𝛾  and 𝛽 are determined by Hilber-

Hughes-Taylor-α (HHT-α) method which becomes equal to the Newmark’s method for an 𝛼 = 0. 

𝛾 =  
1

2
−  𝛼                                                                                                                                       (61)              

𝛽 =  
(1−𝛼)2

4
                                                                                                                                       (62) 

After several rearrangements for the Newmark Eqs. (53-54), the velocity and the acceleration 

equations can be written with respect to the integration-constants 𝑝𝑜 till 𝑝7 , and then replaced in 

the equation of motion to obtain Eq. (63) (Bazi et al. 2020): 

 𝑝𝑜 = 
1

∆𝑡2𝛽
   ,      𝑝1 = 

𝛾

∆𝑡𝛽
   ,        𝑝2 = 

1

∆𝑡𝛽
  ,       𝑝3 =  

1

2𝛽
− 1 ,         𝑝4 = 

𝛾

𝛽
− 1    

𝑝5 = 
∆𝑡

2
( 
𝛾

𝛽
− 2)   , 𝑝6 = (1 −  𝛾)∆𝑡   ,      𝑝7 = 𝛾∆𝑡  

[𝑴] [  (𝑝𝑜  𝜐
𝑡+1) − ( 𝑝𝑜𝜐

𝑡) − (  𝑝2ὐ
𝑡) −  ( 𝑝3ὔ

 𝑡 ) ] + [𝑪] [ (𝑝1𝜐
𝑡+1) −  (𝑝1 𝜐

𝑡) − ( 𝑝4ὐ
𝑡) −

(𝑝5ὔ
 𝑡 )] + [𝑲]𝜐𝑡+1 =  𝑹 𝑡 + ∆𝑡                                                                                                         (63) 

Figure 27: Average Acceleration Method (Left), Linear Acceleration Method (Right) 
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This equation can be represented by Eq. (66) as function of the “effective” load ( R̂𝑡 + ∆𝑡 )and 

effective(tangential) stiffness matrix (k̂): 

k̂  =  𝑝𝑜[𝑀] +  𝑝1[𝐶] + [𝐾]                                                                                                        (64)      

 R̂𝑡 + ∆𝑡 = [𝑝𝑜[𝑀] +  𝑝1[𝐶]]𝜐
𝑡 + [𝑝2[𝑀] +  𝑝4[𝐶]]ὐ

𝑡 + [𝑝3[𝑀] +  𝑝5[𝐶]]ὔ
 𝑡  + 𝑅 𝑡 + ∆𝑡        (65) 

k̂ 𝜐𝑡+1 =   R̂𝑡 + ∆𝑡                                                                                                                                 (66) 

Initially, the displacement  𝜐𝑡+1 is determined and the value shall be used in Eqs (53 and 54) 

to determine the velocity and acceleration. This process is further repeated for each time interval 

until the desired time is reached. At each time interval, a set of algebraical equations is solved for 

the unknown ( 𝜐𝑡+1 ). Note that if the time interval (∆𝑡) varies, the [k̂] matrix should be computed 

for each (∆𝑡) value, otherwise it can be determined once. In addition, the “effective” load  R̂𝑡 + ∆𝑡  

should be updated after each time interval. After computing the velocity (ὐ𝑡 + ∆𝑡) and acceleration 

( ὔ 𝑡 + ∆𝑡  ), these values are then considered ( 𝜐𝑡) , (ὐ𝑡 ) and (ὔ 𝑡 ) for the next time interval. 
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Chapter Three 

 

LOESS Regression Analysis 

The regression analysis aims to portray the relationship present between variables depending on a 

certain experiential data and to anticipate the dependent variable value contingent on the 

independent variable value.  

3.1 Locally Weighted Regression 

For several decades, polynomial local fitting has been considered for a certain scatterplot of 

(𝑥𝑖, 𝑦𝑖) data, as a mean to smoothen the time series plots; whereby the (𝑥𝑖) values for the successive 

points have equal intervals (Macauley 1931). Similarly, the locally weighted regression method is 

mainly considered an extension of the aforementioned technique to a broader (𝑥𝑖) configuration. 

Local Regression, LOESS, is initially presented by Cleveland (1979) and was further advanced by 

Cleveland and Devlin (1988) which explicitly represents a method known by the 

locally weighted polynomial regression.    

LOESS is considered one of the several contemporary modeling approaches which is built on 

classical approaches including the nonlinear and the linear least squares regression. Contemporary 

regression approaches are designed in a way to report certain situations whereby classical 

approaches do not have an efficient performance or cannot be applicable without excessive labor. 

The local regression LOESS merges the nonlinear regression’s flexibility along with the linear 

least squares regression’s simplicity. This is mainly accomplished through fitting certain models 

to localized data subsets for developing a function which defines the deterministic section of the 

variability in data.  

3.1.1 LOESS Model Description  

For every point provided in the (m) dataset, a polynomial with a degree (d) is fit to a subset of this 

data, having the variable values close to the point under study i.e., the response of this point is 

under evaluation. The latter point is referred to as the estimation point (𝑥𝑝). By considering the 

weighted least squares approach, the polynomial will be fit by which the points that are closer to 

the estimation point (𝑥𝑝) are given more weight, while the farther points are given less weight. 

The regression function is therefore determined by assessing the local polynomial estimates using 
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the point’s explanatory variable values after obtaining the values of the regression function for all 

the (m) points.  

3.1.2 Data’s Localized Subsets and Smoothing Parameter 

The data subsets employed for the individual LOESS weighted least squares fit are computed 

through the closest neighbor’s algorithm. The smoothing parameter (f) is a user-dependent input 

that specifies the number of data points considered to fit every local polynomial. The 

aforementioned parameter controls the model’s flexibility. In other words, it manages how firmly 

the function will be smoothening and fitting the data. Increasing the value of the smoothing 

parameter (f) tends to increase the influential points’ neighborhood and thus increasing the 

smoothness of the already smoothed points (Cleveland 1979). It is important to note that when 

selecting a certain value for this parameter, one must carefully choose the largest value possible in 

order to lessen the variation in the smoothened points without altering the data’s original pattern. 

Selecting a very small value is not quite desirable as the function will start ultimately to recognize 

the data’s random error. Cleveland (1979) presented several guidelines for the selection of the 

smoothing parameter (f) that is essential to proceed with the LOESS procedure. It is mainly found 

within the following range  
𝑑+1

𝑚
< 𝑓 < 1.                                                                                                                                     

3.1.3 Local Polynomials Degree 

Every subset of the data will be fitted using local polynomials with either a zero-, first- or a second-

order degree. When considering a zero-degree polynomial, the LOESS becomes a weighted

moving average. Computationally-wise, a zero- degree is considered the simplest case. However, 

assuming local linearity appears to assist better than assuming constancy which may not be 

efficiently approximating the fundamental function. This is explained by the fact that one’s 

propensity is to plot different variables that are related to each other (Cleveland 1979). As for 

polynomials with a higher degree, they are more likely to be numerically unstable and cause 

overfitting in every subset, thus allowing for more difficult computations. When having a second-

order degree polynomial, the computational means start to override the necessity of having the 

flexibility. While taking a first-order degree polynomial must provide computational proficiency 

and ease as well as obtaining acceptable smoothed points (Cleveland 1979). 
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3.1.4 Weight Function  

As previously mentioned, the weight function provides the least weight for the points that are far 

away from the estimation point (𝑥𝑝) while it provides the highest for the closest points. The 

weights increase as the distance between a point (x) and the estimation point (𝑥𝑝) decreases. 

Taking each point’s weight into account is mainly based on the idea which states that points that 

are close to each other tend to be related to one another more than the ones that are farther away. 

This implies that points with abscissas closer to (𝑥𝑝) play an important role in determining the new 

fitted ordinates, while the ones that are farther tend to have a much lesser role (Cleveland 1979). 

The weight function is mainly defined by the following requirements whereby (Cleveland 1979): 

I. 𝑤(𝑥) > 0  𝑓𝑜𝑟 |𝑥| < 1  

This property is essential as the weight function should be, logically, a positive value. 

II. 𝑤(𝑥) =  𝑤(−𝑥) 

The latter dictates that the points to the right of the 𝑥𝑖 should be treated in a similar manner as 

those to the left. 

III. 𝑤(𝑥) is defined as a function that does not increase for  𝑥 ≥ 0  

This ensures having the appropriate weight distribution among the 𝑥𝑖 values. 

IV. 𝑤(𝑥) = 0 𝑓𝑜𝑟  |𝑥| ≥ 1 

The weight function, 𝑊(𝑥), followed in the LOESS is referred to as the tricube weight 

function and given by the following representation (Cleveland 1979): 

𝑤(𝑥) = { 
( 1 − |𝑥|3)3                𝑓𝑜𝑟 |𝑥| < 1 

             0                                  𝑓𝑜𝑟 |𝑥| ≥ 1            
                                                                (67) 

3.2 LOESS Procedure 

The information visualized on a certain scatterplot may be largely enhanced through some 

additional computations and plotting of the smoothed points. A scatterplot consisting of (𝑥𝑖, 𝑦𝑖) 

with 𝑖 = 1,2,… ,𝑚, is represented by Figure (28). The exact identical scatterplot data is 

summarized and represented by a new set of coordinates (𝑥𝑖, ỹ𝑖) shown in Figure (29), whereby 

the successive points are joined through straight lines. For a given variable plotted on the X-axis, 

any point (𝑥𝑖, ỹ𝑖) depicts the location and the position of the variable distribution on the Y-axis 

(Cleveland 1979). The newly formed points will be mainly referred to the scatterplot smoothed 

points. In other words, a point (𝑥𝑖, ỹ𝑖) is a smoothened point at the 𝑥𝑖 whereby ỹ𝑖 is referred to the 

fitted value at the abscissa 𝑥𝑖. 
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To initiate with the LOESS computations, the data is divided into several subsets (r) by 

multiplying the smoothing parameter with the data size (m), whereby the resulting value shall be 

rounded to the closest integer (Cleveland 1979). For each subset, an estimation point (𝑥𝑝)  shall 

be defined. It is important to appropriately select the data subsets in a way that the values are 

relatively close to the (𝑥𝑝). Moreover, for every (𝑥𝑖), a weight  [𝑤𝑝(𝑥𝑖)] is assigned for the 

different (𝑥𝑝) defined within each subset data through a weight function (𝑊). The latter is mainly 

obtained by the following steps:  

I. Computing the distance between every point (𝑥𝑖) and (𝑥𝑝) in absolute values. 

|𝑥𝑖 − 𝑥𝑝|                                                                                                                             (68) 

II. Scaling the distances by considering the maximum distance obtained from all (𝑥𝑖) points 

within the subset data in the previous step. 

III. Computing the individual weights  [𝑤𝑝(𝑥𝑖)] for every point using the tricube weight 

function given in Eq (67) where “x” represents the scaled distance. 

Locally weighted linear regression typically models first- and second- degree polynomials 

whereby the following regression equations apply respectively:  

ỹ𝑖 = 𝜌𝑜 + 𝜌1𝑥                                                                                                                                     (69) 

ỹ𝑖 = 𝜌𝑜 + 𝜌1𝑥 + 𝜌2𝑥
2                                                                                                                       (70) 

Figure 28:  Artificial Data Scatterplot (Cleveland 1979) Figure 29: Artificial Data Scatterplot with Smoothed 
Points (Cleveland 1979) 
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The objective in the weighted least squares is to determine the coefficients 𝜌𝑜, 𝜌1 and 𝜌2, 

therefore, 

∑ 𝑤𝑖[
𝑚
𝑖=1 𝑦𝑖 − ỹ𝑖]

2                                                                                                                            (71) 

And the weighted equation is given by:  

𝜌 = [𝑋𝑇𝑊𝑋]−1[𝑋𝑇𝑊𝑌]                                                                                                                 (72) 

Whereby W represents the diagonal weight matrix given by Eq. (73) for 𝑖 = 1,2, … ,𝑚. 

𝑊 = [

  𝑤𝑚(𝑥1) 0 0               0
0   𝑤𝑚(𝑥𝑖) 0               0

0
0

0
0

  𝑤𝑚(𝑥𝑖)
0

 0
  𝑤𝑚(𝑥𝑚)

]                                                                       (73) 

Y represents the ordinates (𝑦𝑖 … 𝑦𝑚) vector: 

𝑌 =  

{
 
 

 
 
𝑦1
𝑦2
𝑦3...
𝑦𝑚}
 
 

 
 

                                                                                                                                       (74) 

  X represents a matrix defining the abscissas (𝑥𝑖… 𝑥𝑚) values for a 1st – and 2nd order 

polynomials as shown in Eqs. (75 and 76) respectively: 

𝑋 =

[
 
 
 
 
 
1 𝑥1
1 𝑥2
1 𝑥3
. .
. .

1 𝑥𝑚]
 
 
 
 
 

                                                                                                                               (75)    

𝑋 =

[
 
 
 
 
 
1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

1 𝑥3 𝑥3
2

.    . .

.    . .

1 𝑥𝑚 𝑥𝑚
2]
 
 
 
 
 

                                                                                                                    (76)                                                                                                                                                                                                                                        

Hence, the solution for [𝜌] represents the local parameter approximations - the slope and the 

intercepts - for the new 1st – or 2nd degree polynomial equation. Lastly, the regression function 

value is computed through evaluating the local polynomial at the (𝑥𝑝). Thus, the newly fitted (ỹ𝑖) 

value at every (𝑥𝑖) corresponds to the value fitted for a 𝒅𝒕𝒉-degree polynomial fitting to the data 

by the weighted least squares (Cleveland 1979). A new weight set (𝜑𝑖) will be defined for the 

coordinates (𝑥𝑖, 𝑦𝑖) depending on the residual size  (𝑦𝑖 − ỹ𝑖). This implies that the new fitted 

values will be computed with 𝜑𝑖𝑤𝑝(𝑥𝑖). The same procedure is repeated for a new model with a 
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new estimation point that corresponds to the new subset data. The whole procedure including both 

the preliminary computations and the iterations is known by the robust locally weighted regression 

(Cleveland 1979), whereby a value (𝑡) which represents the robust fitting process iterations 

number shall be selected. The robust fitting process will therefore detect any outliers that distort 

the smoothened points (Cleveland 1979).  

3.2.1 LOESS Advantages and Disadvantages  

Unlike other classical methods, the LOESS approach does not mandate specifying a function that 

fits the model to the sample data under study. In lieu, the analyst shall only provide and specify a 

value for the smoothing parameter (f) as well as the polynomial degree (d). Moreover, the LOESS 

is considered to be flexible, therefore allowing it to be an ideal approach for the modeling of 

complicated processes whereby a theoretical model does not exist. Such advantages, along with 

its simplicity, makes it one of the efficient contemporary regression approaches for numerous 

applications that comply with the least squares regression’s broad framework. Even though it is 

inconspicuous when compared to other approaches that are related to the least squares regression, 

LOESS ensues the majority of the benefits usually shared and used by these methods. The 

paramount importance of these is the theorem of computing and determining the quandaries and 

the perplexities for calibration and prediction. It is important to note that several procedures and 

methods used for the least squares’ models validation may be also extended and broadened to the 

LOESS models. 

Though the LOESS shares a lot of the finest aspects of the further least squares approaches, 

yet it does not utilize the data efficiently. This approach necessitates a dense, large sampled 

datasets to build effective and reliable models. This is explained by the fact that the LOESS 

requires suitable empirical data for the local fitting process. Furthermore, the LOESS results in a 

regression function that cannot be easily characterized and represented by mathematical equations. 

This will therefore increase the difficulty when it comes to transferring the obtained analysis 

results to the concerned persons who in return require the software and the dataset for the LOESS 

computations. On the other hand, writing functional forms is the only requirement to approximate 

the uncertainty and estimate the unknown parameters in the nonlinear regression. Hence, reliant 

on the application, this might either be a significant or an insignificant drawback for the LOESS. 

In addition, the LOESS method is also disposed to the consequence of the outliers present in the 
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data provided.  Cleveland (1979) proposed an upgraded version based on an iterative process that 

tends to reduce the sensitivity of the LOESS to the outliers. 
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Chapter Four 

  

FWD Indices and FWD Parameters  

Once subjected to various traffic loads, the response mechanism comprises the initiation of three-

dimensional strains, stresses, displacements and deformation within the pavement structure. Of 

main significance are the surface vertical displacements in the vicinity of the load application 

point.  

The FWD equipment measures the responses at critical nodes throughout the deflection 

region’s surface (deflection basin) by simulating the moving wheel loads. Various Deflection Bowl 

Parameters (DBPs) have been developed by researchers from the obtained deflection basin/bowl 

to verify the existing pavements’ structural integrity, to correlate to the critical responses and to 

approximate the moduli of the in-situ pavement layers through backcalculation methods (Fuentes 

et. al 2020). However, prior to the FWD development, several deflection indicators were 

established from data obtained using Road Rater device, Benkelman beam or Dynaflect. Though, 

such devices were only capable of measuring the deflection at only one point (Hossain and 

Zaniewski 1991). The most common deflection bowl parameters suggested in the literature will 

be presented in the upcoming subsections. Generally, the DBP are explicated as indicators that 

utilize the FWD deflection curves as a mean to identify and evaluate obstacles within the pavement 

structures.  When being compared with the backcalculation process, the use of the DBPs will not 

produce thorough results, but rather provide only an indication of the pavement’s structural 

condition. As subsequently discussed, some of the deflection bowl parameters have been outlined 

to offer acceptable correlative outcomes with the pavement’s performance and structural 

condition, while some have intrinsic limitations and challenges. 

4.1 Maximum Deflection (𝑫𝒐) 

The maximum deflection (𝐷𝑜) refers to the deflection that is measured under the applied load. It 

describes the pavement’s behavior as a whole/complete structure, yet does not provide any 

indication related to the mechanical characteristics of each individual layer and their performance 

against permanent deformation or fatigue (Shahin 2005). Past studies verified that the 𝐷𝑜 must not 

be considered alone as a sufficient parameter to determine the pavement’s structural condition, 
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rather to conduct backcalculation to characterize the existing layers’ moduli (Whitcomb 1982, 

Stubstad and Connor 1983). Furthermore, studies performed by Horak (1987b) and Joubert (1992) 

stated that for pavement structures with diverse deflection basins or/and various material 

properties, similar 𝐷𝑜 values can be obtained. It is vital to mention that, originally, the 𝐷𝑜 was 

measured by the Benkelman beam, yet the FWD equipment can be also used. 

4.2 Radius of Curvature (RoC) 

A simplified empirical approach was proposed by Dehlen (1961) to evaluate the performance of 

the pavement structure using the Benkelman beam. To be able to plot the entire section of the 

deflection basin, Dehlen (1961) advised taking deflection measurements using intervals of 75mm. 

As a result, the Radius of Curvature (RoC) was thus proposed as an indicator parameter. The 

Radius of Curvature (RoC) at the point of peak deflection - spotted in the deflection basin - is 

determined by establishing the best fit curve/circle over the 250mm central radius. Moreover, 

Dehlen (1961) explained that the RoC can be considered as an adequate flexural stresses indicator. 

Therefore, it can be used when designing against the flexural cracking. Based on Dehlen’s 

outcomes, the RoC was found to be sensitive to the Hot Mix Asphalt surfacing only for thick layers 

that exceed 50 or 75mm. Primarily, the RoC depended on the base and subbase moduli and was 

impartially not sensitive to the subgrade layer. 

For different sensors, the radius of curvature (RoC) can be represented by the following equations, 

(Dehlen,1962):               

𝑅𝑜𝐶 = 
𝐿2

2𝐷𝑜(
𝐷𝑜
𝐷20𝑜

 −1  )
                                                                                                             (77)    

With L being the radial distance from the load’s center = 8 inches (200mm).  

Whereby, 

➢ 𝐷𝑜 is the surface deflection at the center of the test load 

➢ 𝐷8 (𝐷200 )is the surface deflection at an offset of 8 inches (200 mm) from the test load 

➢ 𝐷12 (𝐷300 )is the surface deflection at an offset of 12 inches (300 mm) from the test load 

Though, with the evolution of technology, FWD devices were introduced in order to overcome 

few of the Benkelman beam challenges including the efficiency and the intensiveness of labor. As 

the FWD devices are capable of capturing the entire response in the load application area, several 

researchers, Rohde and Van Wijk (1996) and Horak et al. (2015), suggested some alterative 
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deflection basin parameters for evaluating the structural capacity of the pavement instead of the 

radius of curvature parameter. Such parameters include, for example, the Surface Curvature Index 

which manifested an acceptable correlation with the radius of curvature. Horak (1987a, 1987b) 

evaluated various FWD deflection bowl parameters and performance indicators under “heavy”

vehicle simulators. Horak concluded that the most significant indicators that resulted with a good 

correlation with the pavement’s structural capacities and the behavioral condition are: (1) 

Maximum Deflection 𝐷𝑜 , (2) Radius of Curvature, (3) Surface Curvature Index (BLI), (4) Base 

Damage Index (MLI), (5) Base Curvature Index (LLI). 

It is important to note that a simplified method was proposed by Horak and Emery (2006) and 

Horak (2008) by using 3-zones demonstrated in Figure 31 to analyze the deflection basin. The 

three zones are discovered by the initial parameters suggested by Anderson (1977) and 

 

 

Kilareski and Anani (1982) and were renamed to the Base Layer Index (BLI), the Middle Layer 

Index (MDI) and lastly the Lower Layer Index (LLI), respectively. Zone 1 usually falls within a 

radius of 12 inches (300mm) from the point of load application. The deflection basin within that 

zone has a positive (+ve) curvature. Horak (2008) stated that this Zone is typically associated to 

the RoC or BLI. As for Zone 2, the deflection basin switches to a negative (-ve) curvature (reverse 

curvature) and is frequently known by the inflection zone. It falls within an offset of approximately 

12 inches (300mm) to an offset of about 24 inches (600mm) from the point of load application. 

This zone is largely affected by the base and the subbase mechanical properties and is mainly 

associated to MLI (Horak 2008). Lastly, Zone 3 stretches from an offset of 24 inches (600mm) 

Figure 31: Curvature Zones of the Deflection Basin Figure 30: Deflection Basin 
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and its extent typically depends on the pavement’s real depth and the subgrade’s structural 

responses. According to Horak (2008), it is associated to LLI. 

4.3 Surface Curvature Index (SCI) 

The Surface Curvature Index (SCI), also referred to as the Base Layer Index (BLI), was considered 

one of the initially used Deflection Bowl Parameters. As previously mentioned, it is mainly 

obtained by calculating the difference between the maximum (peak) deflection 𝐷𝑜 and the 

deflection measured at the sensor located at an offset of 12 inches (300 mm) from the point of load 

application (Eq. (78)). It indicates the surface layer’s structural strength and the bound layer’s 

relative stiffness (Anderson, 1977). According to Horak (1987a, 1987b), the surface curvature 

index was assumed to be one of the relevant parameters associated to the peak horizontal strain 

measured at the bottom of the Hot Mix Asphalt layer. However, due to its poor association with 

the coefficient of determination (R2 < 38%), the SCI should not be considered to obtain the 

subgrade strains (FHWA 2016). The relationship between the deflection bowl parameters and the 

conditions of the layers was validated by Xu et al. (2002) while perceiving that this parameter was 

the utmost sensitive one to the Hot Mix Asphalt layer properties. 

𝑆𝐶𝐼 =  𝐷𝑜 − 𝐷12 , 𝑆𝐶𝐼 =  𝐷𝑜 − 𝐷300                                                                                                                                     (78) 

Kilareski and Anani (1982) conducted a study using the deflection measured by a Road Rater 

equipment to determine the in-situ layer properties and evaluate the remaining life of a certain 

pavement structure. Two parameters/indicators were proposed; the Base Damage Index and the 

Base Curvature Index. 

4.4 Base Damage Index (BDI) 

The Base Damage Index (BDI), also referred to as the Middle Layer Index (MLI), indicates the 

damage and the structural condition of the base layer (Kilareski and Anani 1982). It is mainly 

calculated by the difference between the deflections measured at an offset of 12 inches (300mm) 

and 24 inches (600mm) from the center of the testing load (Eq. (79)).  

𝐵𝐷𝐼 =  𝐷12 − 𝐷24 , 𝐵𝐷𝐼 =  𝐷300 − 𝐷600                                                                                                                     (79) 

This parameter is significant for characterizing and determining the stiffness of the pavement’s 

intermediate layers (Horak 1987b, Xu et al. 2002). 
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4.5 Base Curvature Index (BCI) 

The Base Curvature Index (BCI), also referred to as the Lower Layer Index (LLI), indicates the 

structural strength, condition and the curvature of the subgrade and the subbase (Kilareski and 

Anani 1982). It is determined by difference between the deflections measured at an offset of 24 

inches (600mm) and 36 inches (900mm) from the center of the testing load (Eq. (80)). 

𝐵𝐶𝐼 =  𝐷24 − 𝐷36 , 𝐵𝐶𝐼 =  𝐷600 − 𝐷900                                                                                                                         (80) 

➢ 𝐷𝑜, 𝐷12 (𝐷300) previously defined 

➢ 𝐷24 (𝐷600 )is the surface deflection at an offset of 24 inches (600 mm) from center 

➢ 𝐷36 (𝐷900 )is the surface deflection at an offset of 36 inches (900 mm) from center 

A benchmarking classification was developed by Horak (2007) for several pavement types. 

The structural condition for each pavement was rated between sever, warning and sound 

conditions. The contribution of each layer’s structural strength, depending on which zone they fall 

into, can be correlated to the rating criteria shown in Tables 1 and 4. Therefore, the relative 

structural deficiencies of the pavement layers can be recognized along the road’s length. In other 

words, the causes of any possible structural deficiencies can be presumed from the previously rated 

conditions. 

Table 1: Structural Condition Rating for DBPs (Horak 2007) 

Pavement 

Type 

Rating of 

Structural 

Condition 

Deflection Bowl Parameters (DBPs) 

𝐷𝑜 

(μm) 

RoC 

(m) 

SCI (BLI) 

(μm) 

BDI (MLI) 

(μm) 

BCI (LLI) 

(μm) 

Granular Base Sound < 500 > 100 < 200 < 100 < 50 

Warning 500 – 750 50 – 100 200 – 400 100 – 200 50 – 100 

Severe > 750 < 50 > 400 > 200 > 100 

Cementitious

Base 

Sound < 200  > 150 < 100 < 50 < 40 

Warning 200 – 400  80 – 150 100 – 300 50 – 100  40 - 80 

Severe > 400 < 80 > 300 > 100 > 80 

Bituminous

Base 

Sound < 400 > 250 < 150 < 100 < 50 

Warning 400 – 600 100 -250  150 -300 100 -150 50 – 80  

Severe > 600 < 100 > 300 > 150 > 80 
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4.6 The AREA Parameter 

The AREA method was introduced by Hoffman and Thompson (1981) to represent the deflection 

basins of a two parameter backcalculation process for the flexible pavement structures. Yet, its 

usage has been extended to the rigid pavement structures as well. This method was a continuation/ 

mirror of earlier research performed by Vaswani (1971) who suggested a parameter known by the 

spreadability factor (S) by combining the readings from five sensors of the Dynaflect. The 

normalized area of a certain slice/piece cut through the deflection basin between the test load’s 

center and at diversifying radial distances from that test load is mainly represented by the AREA 

method. The area “normalized” denotes that the area of the deflection basin slice/piece is typically 

divided by the maximum (peak) deflection that is measured at the test load’s center. In this method, 

the deflections measured in the deflection basin curve are mainly combined into one indicator, 

thus minimizing the effects of any possible malfunctions in the sensors. According to Hoffman 

and Thompson (1981), the AREA of the deflection basin is considered an appropriate parameter 

to characterize the whole pavement structure. On the other hand, Saleh (2015) specified that the 

AREA parameter showed an adequate relationship with the elastic modulus (stiffness of the 

pavement). Yet, it has not been broadly used for evaluating the pavement structure since there was 

not any rating standards/scales developed for raking the pavement structure between two extreme 

cases i.e., pavement structures of poor and high quality. 

The spreadability (S) is given by the following equation: 

𝑆 =  
𝐷𝑜 + 𝐷12 + 𝐷24 

3𝐷𝑜
𝑥 100                                                                                                                  (81) 

While the AREA equation for a configuration of four sensors is represented by:                                                                                  

𝐴𝑅𝐸𝐴 =  6 [1 +
2𝐷12
𝐷𝑜

+
2𝐷24
𝐷𝑜

+
2𝐷36
𝐷𝑜

]                                                                                              (82) 

Or, in metric, the equivalent equation is shown by: 

𝐴𝑅𝐸𝐴𝑀𝑒𝑡𝑟𝑖𝑐 = 150 [1 +
2𝐷300
𝐷𝑜

+
2𝐷600
𝐷𝑜

+
2𝐷900
𝐷𝑜

]                                                                           (83) 

 Whereby, 

➢ AREA is the area determined under the deflection basin  

➢ 𝐷𝑜, 𝐷12 (𝐷300), 𝐷24 (𝐷600 ), 𝐷36 (𝐷900 ) previously defined 

➢ 𝐷48 (𝐷1200)is the surface deflection at an offset of 48 inches (1200 mm) from center 

It is important to note that the AREA’s unit of measure is in inches (mm) since it is normalized 

by the maximum (peak) surface deflection (𝐷𝑜). 
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Determining the AREA for a single-layer system is equivalent to deflecting the upper part of 

the subgrade layer. This testing will result in the minimum value that the AREA can attain which 

is equal to 11.1 inches. The latter value is obtained by replacing the ratios shown in Eqs. (86) in 

the AREA Eq. (82),  

𝐷12

𝐷𝑜
= 0.26 ,

𝐷24

𝐷𝑜
= 0.125 ,

𝐷24

𝐷𝑜
= 0.083                                                                         (84) 

The minimum AREA value proposes that the elastic moduli that corresponds to the pavement 

structures will be equal. Yet, this is vastly not probable to occur for the existing pavement 

structures. Low values indicate that the pavement structure tend to be more likely similar to the 

underlying subgrade structure. On the other hand, the maximum AREA value is obtained when 

the surface deflection measurements (𝐷𝑜 =  𝐷12 = 𝐷24 = 𝐷36) are equal, though it is unlikely to 

happen. Thus, by replacing the aforementioned deflection measurements’ values in the AREA Eq. 

(82), the maximum AREA value will be obtained and is equal to 36 inches. Having the surface 

deflections 𝐷𝑜  , 𝐷12 , 𝐷24 , 𝐷36 equal (or approximately equal) indicates that the pavement structure 

tends to be very stiff. 

For a configuration of four sensors, typical values for the AREA and the surface deflection at 

the testing load’s center are presented in Table (2) (Pierce et. al 2017). Table (3) presents general 

guides and typical insights for using the AREA values from the FWD surface deflections. 

Table 2: Typical Area and Do values for a 4-Sensor Configuration, Pierce et. al (2017) 

Pavement Structure Type 

*Inches (mm) 

AREA 

Inches (mm) 

𝐷𝑜 

mil (μm) 

Thin HMA ≤ 4 (200) 16 - 21 (410 -530) 30 - 50 (760 - 1,200) 

Thick HMA ≥ 4 (200) 21 -30 (530 -760) 20 - 40 (500.- 1,000) 

Portland Cement Concrete 29.-32 (740 -810) 10 -20 (250 - 500) 

Table 3: General Trends and Guides of AREA and Do Values, Pierce et. al (2017) 

AREA Maximum Surface 

Deflection (𝑫𝒐) 

Insights* 

Structure Subgrade 

Low Low Weak Strong 

Low High Weak Weak 

High Low Strong Strong 

High High Strong Weak 

* 1 Exceptions might take place 
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In summary, the AREA method aids in characterizing the deflection basin’s shape that is close 

to the applied load by the means of the normalized area on top of the deflection basin (Kim et al. 

2000, Talvik 2007) 

Moreover, another parameter related to the deflection basin is the Area Under Pavement 

Profile (AUPP) which will be discussed subsequently. 

4.7 Area Under Pavement Profile (AUPP) 

Based on the study performed by Garg and Thompson (1997) using the MnRoad testing sections, 

an acceptable correlation was observed between the HMA mechanical responses and the AUPP. 

This parameter helps in characterizing the pavement’s upper layers’ condition.  It can be also used 

to estimate the tensile strain at the bottom of the hot mix asphalt layers with a high statistical 

precision; R2 ≥ 90%, (Kim and Park 2002, FHWA 2016). AUPP is represented by the following 

equation: 

𝐴𝑈𝑃𝑃 =  
5𝐷𝑜−2𝐷12− 2𝐷24− 𝐷36

2
                                                                                                            (85)   

4.8  Area Indices 

Horak (2015) proposed several area indices including AL1, AL2, AL3 and AL4 as indicators of the 

pavement’s layer structural condition. The AL1 parameter is significant for determining the 

structural condition of the upper layer of the pavement structure. On the other hand, AL2 and AL3 

parameters are significant for the middle layer structural condition while AL4 is for the lower layer 

structural condition. The area indices presented by Horak (2015) were suggested as alternatives, 

yet commendatory parameters to BLI, MLI and the LLI parameters. The area indices are mainly 

given by the following equations: 

𝐴𝐿1 = 
𝐷𝑜+𝐷300 

2𝐷𝑜
                                                                                                                                     (86)              

𝐴𝐿2 = 
𝐷300+𝐷600 

2𝐷𝑜
                                                                                                                                 (87)          

𝐴𝐿3 = 
𝐷600+𝐷900 

2𝐷𝑜
                                                                                                                                 (88)          

𝐴𝐿4 = 
𝐷900+𝐷1200  

2𝐷𝑜
                                                                                                                                (89)       
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Table 4 : Structural Condition Rating for DBPs (Hoffman and Thompson 1981, Horak 2015) 

Pavement 

Type 

Structural 

Condition’s 

Rating 

Deflection Bowl Parameters (DBPs) 

AUPP 

(inches) 

AL1 AL2 AL3 AL4 

Granular 

Base 

Sound > 7.4 > 0.84 > 0.54 > 0.31 > 0.18 

Warning 6.6 – 7.4 0.75 –0.84 0.36 –0.54 0.19 –0.31 0.14 –0.18 

Severe < 6.6 < 0.75 < 0.36 < 0.19 < 0.14 

 

4.9  Shape Factors 

The shape factors correspond to the amount - or the proportion - of the deflection bowl 

curvature. They are inversely proportional to the stiffness of the pavement over the stiffness of the 

subgrade. In other words, the shape factors tend to reflect the bound or the upper parts of the 

pavement structure’s relative stiffness and tend to determine the layer’s condition at 

an equivalent depth (Kim et al 2000, Talvik 2007). 

The shape factors F1 and F2 are expressed by Eq. (90) and Eq. (91), respectively: 

F1 =
𝐷𝑜−𝐷24 

𝐷12 
                                                                                                                                                     (90) 

F2 =
𝐷12−𝐷36 

𝐷24 
                                                                                                                                                   (91)  

4.10 Deflection Ratio (QR) 

According to Claessen et al. (1976), the deflection ratio (QR) is useful for determining the layer’s 

condition at a certain equivalent depth and evaluating the pavement’s structural integrity. It is 

mainly defined as the ratio between the measured deflection at an offset of 24 inches (600mm) 

from the load application to the maximum (peak) deflection as indicated in Eq. (94). A sensitivity 

analysis was conducted by University of Dundee (1980) on a 3-layer pavement structure to study 

the deflection bowl parameters. The deflection ratio QR showed some sensitivity when varying the 

other parameters. Contrarily, Koole (1979) stated that the QR can be considered reliable. The 

inconsistency in the results was due to the lack of coherence to the precondition assumed by Koole 

(1979) which considers  𝐷𝑟 = 
𝐷𝑜

2
  while determining the deflection ratio. University of Dundee, 

however, considered 𝐷𝑟 = 𝐷600 in the analysis which explained the QR’s insensitivity to the 
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changes in the other parameters.  It is important to note that the input required to determine the 

deflection ratio may vary based on the location of the sensor needed for evaluation. For example, 

𝐷𝑟 may be taken as 𝐷250 i.e., to evaluate the deflection measured at an offset of 10 inches (250mm) 

from the load applied. Yet, the latter is not considered in this research as 𝐷250 does not fall within 

the scope of the project. In this research, however, Eq. (94) is used. 

𝑄𝑅 =
𝐷𝑟
𝐷𝑜

=
𝐷24
𝐷𝑜

, 𝑜𝑟 
𝐷600
𝐷𝑜

                                                                                                                        (92) 

𝑄𝑅 =
𝐷𝑟
𝐷𝑜

=
𝐷10
𝐷𝑜

, 𝑜𝑟 
𝐷250
𝐷𝑜

                                                                                                                        (93) 

𝑄𝑅 =
𝐷𝑟
𝐷𝑜

=
𝐷48
𝐷𝑜

, 𝑜𝑟 
𝐷1200
𝐷𝑜

                                                                                                                      (94) 

The pavement structure is said to be stronger and stiffer for higher deflections ratio. Based on 

the deflectograph, FWD load of 40 KN or Benkelman Beam, Table 5 represent the recommended 

deflection ratio (QR) values with their corresponding indications. 

Table 5: Deflection Ratio (QR) Values and Indications (Saleh 2016) 

Deflection Ratio (QR) Indication 

< 0.6 Likely a weak unbound pavement structure 

with a thin asphalt layer  

0.6 ≤ QR  ≤ 0.7 Unbound pavement structure with good 

quality 

≥ 0.8 Bound pavement structure 

  

4.11 Bending Index (BI) 

Hveem (1955) conducted a study on the response of pavement structures under repeated loadings 

and evaluated the fatigue failures. Reasonable approximate values for the maximum (peak) 

permissible deflections were reported for different pavement types and base constructions. 

However, a relationship proposed by A.C. Benkelman and W.N. Carey proved to be better and 

consistently substantial than only measuring the deflections (Hveem 1955). The aforementioned 

relationship is known by the bending index. The latter is generally difficult to determine, yet it can 

be obtained by the following equation: 

BI =
𝐷𝑜
𝑎
                                                                                                                                                        (95) 
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Whereby, 

➢ a is the length of the deflection basin 

4.12  Radius of Influence (RI) 

Ford and Bissett (1962) studied the pavement structures to evaluate the pavement’s performance 

with its corresponding deflection and the physical properties of the base and the subgrade. From 

the deflection curves obtained, the wheel’s radius of influence (RI) was assumed to be measured 

from the point of the peak deflection extended to the location whereby the curve starts becoming 

tangent to the plane surface/horizontal. The Helmer recorder was used to generate the RI 

measurements on certain “high-type” pavement stations. Ford and Bissett (1962) further 

determined the ratio of the RI to the measured pavement deflections (Eq. (96)). A high ratio value 

indicated a larger influence zone or smaller deflections. The results showed that the outer wheel-

path ratio was more indicative of the pavement’s structural condition. A ratio of 800 appeared as 

a benchmark to differentiate poor from good pavements whereby a value greater than 800 indicated 

a good structural condition (Ford and Bissett 1962). In other words, the ratio of RI to deflection is 

a relevant criterion to evaluate the overall performance of the pavement structure. 

RI =
𝑅1

𝐷𝑜
                                                                                                                                                      (96)   

Whereby, 

➢ 𝑅1 is the distance measured from the peak deflection to the point where the curve starts 

becoming tangent to the plane surface. 

4.13 Slope of Deflection 

The slope of deflection is an important parameter that helps in reflecting the stiffness of different 

layers of the pavement structure. The relative stiffness of the upper parts of the pavement section 

and the bound layers are reflected when measuring the slope in the section of the deflection bowl 

that is close to the applied load. As for the relative stiffness of the lower parts and the base layer, 

they are reflected by measuring the slope in the middle section of the deflection basin.  

The slope of deflection is given by the following equation, Kung (1967). 

𝑆𝐷 =  tan−1
𝐷𝑜 − 𝐷24 

𝐿
                                                                                                                            (97) 

Where L is the radial distance from the load’s center. 
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4.14 Normalized Area Ratio (Ar’) 

After using a deflectograph device for evaluating the pavement’s structural condition, Saleh (2015) 

argued that the Normalized Area Ratio (Ar’) provides valuable information concerning the 

structural capacity of the pavement above the soil; subgrade layer. It is mainly significant in 

characterizing the subgrade structural condition. Saleh (2016) defined the area ratio parameter (Ar) 

as a ratio between the area parameter (AREA) of a certain pavement to that of the stiffest pavement 

structure. The value of the area ratio is expected to be large for strong pavement sections over 

strong subgrades. However, the value will be very low for weak pavement sections over weak 

subgrades. For other combinations of subgrade conditions and pavement structures, the area ratio 

will fall within the two extremes aforementioned. Different pavements will have different 

responses depending on the load applied, therefore the normalized area ratio will vary from one 

pavement structure to another. For this reason, it is essential to take into account the composition 

of each pavement structure to have a better classification of the structural capacities. Saleh (2016) 

proved that the Ar is subtle to the condition of the subgrade and well associated to the compressive 

strain found on top of the subgrade (R2 = 90.5%). For a deflection basin of 36 inches (900mm) 

length, the area ratio is expressed by the following equation. 

  𝐴𝑟 =  
50 

900𝐷𝑜
𝑥 (

 𝐷𝑜+𝐷900

2
+ ∑  𝐷𝑖

850
𝑖=50 )                                                                                         (98)        

Whereby, 

➢  𝐴𝑟 is the area ratio parameter 

➢  𝐷50  , 𝐷100  … 𝐷900   are the surface deflections at offsets of 50 mm, 100mm …900mm 

from the test load’s center 

Moreover, the area ratio parameter was found to be strongly correlated with the deflection ratio 

(Saleh 2016). However, the area ratio parameter is more desirable as it addresses a longer 

deflection basin extending from 0 to 36 inches (900mm), thus accounting the entire pavement 

layers situated above the soil; subgrade layer. Additionally, the deflection ratio is more prone to 

measurement errors as it is based only on two deflection measurements unlike the area ratio 

parameter. Combining the maximum deflection 𝐷𝑜 with the area ratio (Ar) to form a single 

indicator will provide even more valuable information regarding the pavement structure condition. 

Dividing the area ratio by the maximum deflection 𝐷𝑜 will produce the normalized area ratio (Ar’) 

represented in the equation below: 
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 𝐴𝑟 = 
50 

900𝐷𝑜
2 𝑥 (

 𝐷𝑜 +𝐷900
2

+ ∑  𝐷𝑖

850

𝑖=50

)                                                                                       (99)   

The structural capacity for several pavement types were classified by Saleh (2016) based on the 

normalized area ratio (Table 6). 

Table 6: Structural Capacity Classification based on the Normalized Area Ratio (Saleh 2016) 

Pavement Type Structural Capacity Classification based on Ar’ 

Weak Fair Good  Strong  

Unbound Granular + 

Surface Treatment 

< 0.1 0.1 – 0.25 0.25 – 0.45  > 0.45 

Unbound Granular + Thin 

Asphalt 

< 0.25 

 

0.25 – 0.4 0.4 – 0.7 > 0.7 

Structural Asphalts < 0.6 0.6 – 1  1 – 1.5  > 1.5 

Cement Stabilized Base < 1 1 – 2  2 – 3  >3 

 

Saleh’s (2016) results verified the correlation between the normalized area ratio (Ar’) and the 

maximum deflection  (𝐷𝑜). For small 𝐷𝑜 values, the Ar’ was found to be very high signifying, 

thus, a strong subgrade and pavement structure. Contrarily, high 𝐷𝑜 values were associated with 

small Ar’ values reflecting a very weak subgrade and pavement structure. 

The normalized area ratio, however, cannot be used in this study as it requires input values that 

are not taken into account within the scope of project. 

4.15 Surface Modulus 

Plotting the surface modulus is very useful as it provides an indication of the stiffnesses of the 

layers at various corresponding depths. For a certain depth (𝑧𝑒), the surface modulus approximates 

a certain combined modulus of the layers situated under each other.  The surface modulus is found 

to be nearly equivalent to that of the subgrade when the equivalent depth (𝑧𝑒) is larger than the 

total thickness of the pavement. Hence, the surface modulus equations at the loading plate’s 

center(𝐸𝑜) and at a certain distance z (𝐸𝑧) are given by Eq. (100) and Eq. (101) respectively.  

𝐸𝑜 = 
2 𝑥 𝜎𝑜  𝑥 𝑟𝑝 𝑥 (1 − 𝜐

2)

𝑑𝑧
                                                                                                                (100) 

𝐸𝑧 = 
 𝜎𝑜  𝑥 𝑟𝑝

2 𝑥 (1 − 𝜐2)

𝑑𝑧  𝑥 𝑧
                                                                                                                     (101) 
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As for the equivalent depth, the equation is given by: 

  

ℎ𝑒,𝑚 = 

[
 
 
 

ℎ1√
𝐸1
𝐸2

3

+ ℎ2√
𝐸2
𝐸3
+⋯ℎ𝑚−1√

𝐸𝑚−1
𝐸𝑚

33

]
 
 
 

 𝑥 𝑓𝑚                                                                       (102) 

Whereby, 

➢ 𝐸𝑜 is the surface modulus at the loading plate’s center, lbf/inch2 (MPa) 

➢ 𝐸𝑧 is the surface modulus at a certain distance z, lbf/inch2 (MPa) 

➢ 𝜎𝑜 is the contact pressure beneath the loading plate, lbf/inch2 (MPa) 

➢ 𝜐 is the Poisson’s ratio 

➢ z is the distance from the sensor to the loading center, inches (mm) 

➢ 𝑑𝑧 is the deflection measured at the distance z, inches (mm) 

➢ 𝑟𝑝 is the loading plate radius, inches (mm) 

➢ ℎ𝑒,𝑚 is the equivalent depth, inches (mm) 

➢  𝑓𝑚  is a factor ranging from 0.8 -1, dependent on the thickness, the number of layers and 

modular ratio 

➢ ℎ𝑚 is the thickness of the layer m, lbf/inch2 (MPa) 

➢ 𝐸𝑚 is the stiffness modulus of the layer m, lbf/inch2 (MPa) 

In order to calculate the aforementioned FWD Indices, the FWD parameters shall be 

initially determined. These parameters are subsequently discussed in the upcoming section. 

4.16 FWD Parameters 

An ample amount of information can be extracted from the FWD deflection time histories that are 

distinctive to the individual pavement structures, whereby, several FWD parameters can be 

examined to efficiently determine the variables within each layer. The backcalculation procedure 

considers a forward model to calculate the theoretical surface deflections; the aforementioned 

model is based on either static or dynamic analysis. Yet, the static analysis makes use of only the 

peak deflections, unlike the dynamic analysis that uses the FWD peak deflections along with the 

time lag between the latter and the peak loading.  

Bazi and Assi (2020) used the FWD parameters in the PULSE 2019 to comprehend the 

magnitude and the shape of the time histories for each sensor. The FWD parameters mainly 

included “DPeak” (FWD peak deflection) that takes place at “TDPeak” time, “T50R” and “T50L” 
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which are the times to the right and left of the FWD peak, respectively; and represent 50% of the 

FWD peak deflection. Lastly, “Dur50” is the pulse duration at the 50% of the FWD peak 

defections; it is obtained by the difference between the “T50R” and “T50L” 

Besides the above-mentioned parameters, the authors further explored, in their PULSE 2020 

application, 17 more parameters that are essential for the backcalculation procedure. Thus, 

resulting with a total of 22 FWD parameters illustrated in Figures 32 and 33. For each sensor, the 

22 FWD parameters are mainly extracted using the “PULSE Analyzer” module. The latter uses 

polynomial fittings to precisely quantify the parameters (Bazi et al. 2021). For an accurate 

determination of the FWD Parameters, it is essential to allow for the data fitting as the measured 

and calculated FWD values are not continuous, but rather discrete. As for the FWD surface 

velocity plot (Figure 33), it is determined through the central difference method, while the 

parameters are obtained through fitting the deflection time-histories data. 

 

 

       Figure 32: A Typical FWD Deflection Time History, Bazi, Brynick, Bou Assi, and Gagnon (2021) 
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After quantifying the contribution of the layer moduli, layer thicknesses and Rayleigh 

damping coefficients, etc. on the 22 parameters, (Bazi et al. 2021) found that the subgrade modulus 

(E3) predominantly controlled the 22 parameters, then the damping coefficient (𝛽𝑅),  AC thickness 

and lastly the depth to the rigid/stiff layer when available. As for the FWD parameters that showed 

significant contributions for usage in the dynamic backcalculation included “TPeak”, “DPeak”, 

“DminL”, “DminR”, “TVPeak”, “VPeak”, “VminL”, “VminR”, “T50R”, “T50L”, “T75R” and “T75L”, (Bazi 

et al. 2021). 

It is important to note that some FWD parameters, including the “DminL”, “TDminL”, “DminR”, 

“TDminR”, “VminL”, “TVminL” will not exist for all pavement structures and sensors at all offsets. 

However, these parameters provide relevant information about the pavements that must be 

considered during the dynamic backcalculation procedure. For this reason, they ought to be 

evaluated when available. “DminR” and “TDminR”, for example, designate the existence of a stiff 

shallow layer (Bazi, Brynick, Bou Assi, and Gagnon, 2021). Hence, if this layer was not accounted 

in the model, substantial errors are then expected.  

4.17 Difference Variables 

Using the aforementioned FWD parameters, additional variables are determined and referred 

to as the “Difference Variables”. The latter are defined by the difference between individual FWD 

Figure 33: A Typical FWD Velocity Time History, Bazi, Brynick, Bou Assi, and Gagnon (2021) 
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parameters at subsequent offsets. The denotations and the equations of such variables are found 

below: 

 Dp08 = DPeak_D. 0 −  DPeak_D. 8                                                                                           (103)  

Dp812 = DPeak_D. 8 −  DPeak_D. 12                                                                                           (104)  

Dp1218 = DPeak_D. 12 −  DPeak_D. 18                                                                                          (105)  

The logic behind the denotation is followed for "Dp1824", "Dp2436", "Dp3648","Dp3648", 

"Dp4860", Dp6072", "Dp7284", "Dp8496", "Dp96108", "Dp108120". 

Tp08 = TPeak_D. 0 −  TPeak_D. 8                                                                                            (108)  

Tp812 = TPeak_D. 8 −  TPeak_D. 12                                                                                            (109)  

The logic behind the denotation is followed for "Tp1218","Tp1824","Tp2436","Tp3648", 

"Tp4860","Tp6072","Tp7284","Tp8496","Tp96108","Tp108120" 

Dml08 = DminL_D.0 −  DminL_D. 8                                                                                          (110)  

The same logic for "Dml812", " Dml1218", " Dml1824", " Dml2436", " Dml3648", "Dml4860", 

"Dml6072", "Dml7284", "Dml8496","Dml96108","Dml108120" 

Tml08 = TDminL_D.0 −  TDminL_D. 8                                                                                          (111)  

The same logic for "Tml812", " Tml1218", " Tml1824", " Tml2436", " Tml3648", "Tml4860", 

"Tml6072", "Tml7284", "Tml8496","Tml96108","Tml108120" 

Dmr08 = DminR_D. 0 −  DminR_D. 8                                                                                          (112)  

The same logic for "Dmr812", "Dmr1218", "Dmr1824", "Dmr2436", "Dmr3648", "Dmr4860", 

"Dmr6072", "Dmr7284", "Dmr8496","Dmr96108","Dmr108120" 

Tr08 = DminR_D. 0 −  DminR_D. 8                                                                                          (113)  

The same logic applies to "Tr812","Tr1218", "Tr1824", "Tr2436", "Tr3648", "Tr4860", "Tr6072", 

"Tr7284", "Tr8496","Tr96108","Tr108120" 

TVPD08 = TVPeak_D. 0 −  TVPeak_D. 8                                                                                          (114)  

The same logic applies to "TVPD812", "TVPD1218", "TVPD1824", "TVPD2436", "TVPD3648", 

"TVPD4860","TVPD6072","TVPD7284","TVPD8496","TVPD96108","TVPD108120" 

TVP08 = TVPeak. 0 −  TVPeak. 8                                                                                            (115)  

The same logic applies to "TVP812", "TVP1218", "TVP1824", "TVP2436", "TVP3648", 

"TVP4860","TVP6072","TVP7284","TVP8496","TVP96108","TVP108120" 

VPD08 = VPeak_D. 0 −  VPeak_D. 8                                                                                          (116)  
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The same logic applies to "VPD812", "VPD1218", "VPD1824", "VPD2436", "VPD3648", 

"VPD4860","VPD6072","VPD7284","VPD8496","VPD96108","VPD108120" 

VP08 = VPeak. 0 −  VPeak. 8                                                                                                   (117)  

The same logic applies to "VP812", "VP1218", "VP1824", "VP2436", "VP3648", 

"VP4860","VP6072","VP7284","VP8496","VP96108","VP108120" 

TVMD08 = TVminR_D. 0 −  TVminR_D.8                                                                                          (118) 

The same logic applies to "TVMD812", "TVMD1218", "TVMD1824", "TVMD2436", 

"TVMD3648","TVMD4860","TVMD6072","TVMD7284","TVMD8496","TVMD96108", 

"TVMD108120" 

TVM08 = TVminR. 0 −  TVminR. 8                                                                                           (119) 

The same logic applies to "TVM812", "TVM1218", "TVM1824", "TVM2436", 

"TVM3648","TVM4860","TVM6072","TVM7284", "TVM8496", "TVM96108", "TVM108120" 

VMD08 = VminR_D.0 −  VminR_D.8                                                                                          (120) 

The same logic applies to "VMD812", "VMD1218", "VMD1824", "VMD2436", "VMD3648", 

"VMD4860","VMD6072","VMD7284","VMD8496","VMD96108", "VMD108120" 

VM08 = VminR0 −  VminR. 8                                                                                                  (121) 

The same logic applies to "VM812", "VM1218", "VM1824", "VM2436", "VM3648", 

"VM4860","VM6072","VM7284","VM8496","VM96108", "VM108120 

T25L08 = T25L_D.0 −  T25L_D. 8                                                                                                  (122) 

T25R08 = T25R_D. 0 −  T25R_D.8                                                                                                  (123) 

T50L08 = T50L_D.0 −  T50L_D. 8                                                                                                  (124) 

T50RL08 = T50R_D. 0 −  T50R_D.8                                                                                                  (125) 

T75L08 = T75L_D.0 −  T75L_D. 8                                                                                                  (124) 

T75RL08 = T75R_D. 0 −  T75R_D.8                                                                                                  (125) 

The same logic applies for "T25L_D.", "T50L_D.", "T75L_D.", "T25R_D.", "T50R_D.", 

"T75R_D." at subsequent offsets. 

D25_08 = 0.25 x (Dp08)                                                                                                           (126) 

The same logic applies to "D25_812","D25_1218", "D25_1824", "D25_2436", 

"D25_3648","D25_4860","D25_6072","D25_7284","D25_8496","D25_96108","D25_108120" 

D0_2550 = 0.5 x (DPeak_D. 0)                                                                                                           (127) 

D8_2550 = 0.5 x (DPeak_D. 8)                                                                                                           (128) 
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The same logic applies to "D12_2550", "D18_2550", "D24_2550", "D36_2550", "D48_2550", 

"D60_2550","D72_2550","D84_2550","D96_2550","D108_2550","D120_2550" 
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considered naturally adaptive. They learn and train themselves from a data that has an identified 

outcome, and manage to optimize their weights to provide more accurate predictions in 

circumstances with obscure outcome.  

A zoomed view to an output or a hidden node is presented in Figure 35. The node accepts the 

output (𝑥𝑖) of the preceding nodes to which it is linked to. These are further multiplied by the 

weights (𝑤𝑖) and then summed. Then, the sum is transformed using the function 𝑓( ) and 

transmitted to the next layer’s nodes or to an output as an outcome.  

 

 

 

 

 

 

 

 

Following the setup of the Neural Network architecture (i.e., number of hidden layers, number of 

units per layer and the function 𝑓( ) per unit), the network is then trained by determining the 

weights that generate the desired outcome.  

The learning algorithms used to calculate the error include: (1) Least Mean Square, (2) 

Gradient Descent, (3) Newton’s Rule, (4) Conjugate Gradient. The error calculated is 

backpropagated to the whole data-processing units (neurons) in a way that the error at every neuron 

is proportional to the neuron’s contribution towards the total error determined at the output neuron. 

The weights at the connections between the units (neurons) are accordingly adjusted by the 

learning algorithms to minimize the squared difference between the target variables’ actual value 

and the ones determined by the Neural Network. Therefore, the Neural Network can be defined as 

a series of trained, numerical conversions applied to an input data and generate an outcome, 

(Sarle,1994). Increasing the count of the hidden layers will deepen the Neural Network. Deep 

Neural Networks, however, will have thousands to million units and connections.  

5.2 Decision Trees 

Trees have several correspondences in real life, they have also influenced a broad extent of 

Machine Learning (ML), comprising both regression and classification. Fundamentally, regression 

Figure 35: Functioning of a Data-Processing-Unit (Neuron) 



62 

 

refers to predicting a certain quantity while classification refers to predicting a class or a label. In 

the Decision Analysis, Decision trees are used to explicitly and visually represent the decision 

makings and decisions. As the name indicates, it typically considers a tree like structure of 

conclusions and decisions.    

A Decision Tree is mainly a supervised, nonparametric algorithm considered in Machine 

Learning (ML), it can be used to either develop prediction models/algorithms for a specific target 

variable or to establish a classification system that depends on multiple covariates. The method 

used in Decision Trees classifies the population under study into sections – looking like branches 

- that would construct inverted trees having root, internal and leaf nodes. (1) The root node i.e., 

the decision node, mainly represents a specific choice that leads to the subdivision of the entire 

record into several mutually-special subsets. (2) The internal nodes i.e., the chance nodes that 

represent one of the available probable choices at that specific point in the Decision Tree model; 

the node’s top edge is linked to its parent node while the bottom edge is linked to its leaf nodes. 

(3) The end nodes i.e., the leaf nodes that represent the end result of the decision combinations. 

Decision Trees can competently handle complicated and large datasets without the imposition of 

intricate parametric structures. The data is generally divided into a training dataset to build the 

Decision Tree model, and a testing dataset to determine the adequate size of a tree structure 

required to attain the optimal model. The target variables are generally presented in the leaves. It 

is worth mentioning that the branches represent the occurrences or the outcomes that originate 

from the decision and internal nodes. The Decision Tree model is thus formed by the hierarchy of 

the branches. Therefore, a “classification” decision rule is signified by every path from the 

decision node, to the internal nodes and lastly to the end nodes. Initiating at the root node, the 

sample is allowed to propagate throughout the nodes in order to reach the tree leaf. A decision, 

related to which successor node the information should proceed to, is made at each node. This 

decision depends on the selected feature of the sample. In other words, the growth of the tree is 

based on deciding what features must be chosen, which conditions must be used for the data 

splitting and lastly to be aware of stopping (Song & Ying, 2015). Generally, the tree model 

arbitrarily grows, thus it needs to be trimmed for it to be more efficient.  

When building the tree model, the required input variables must be initially identified. Then, 

the records are split at the decision and the subsequent choice nodes into several categories 

depending on the status of the aforementioned variables (Song & Ying, 2015). To select among 
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the various probable input variables, the features associated to the purity degree of the ensuing 

child-nodes are used. The features include the classification error, entropy, information gain, etc. 

(Patel & Upadhyay, 2012). Using the entire training dataset, the critical feature is initially 

identified through a statistical measure after comparing all the features. Based on the resultant 

splitting outcome, the training dataset is then subdivided. For each resultant subset, the second 

critical feature will be identified, thus creating a new split. The splitting process is repeated on 

every resultant subset up until the end nodes in each branch are determined, or it will proceed until 

a stopping principle or a predetermined homogeneity are met. Yet, the robustness and the 

complexity of the model are considered as competing features that must be considered when 

building statistical models. As the complexity increases, the robustness of the model decreases 

when considered for predictions. An intricate Decision Tree model, that can extend sufficiently 

wide to allow for 100% purity in the records at each end note, can be built in extreme cases. This 

tree model, however, will be overfitted to the extant observations and have scarce records in the 

leaf nodes, thus generating poor predictions. For this reason, it is vital to implement stopping rules 

to prevent the tree model from being tremendously complex (Patel & Upadhyay 2012). But, for 

some cases, the stopping rules are not efficient. Hence, initially growing a large-tree model, then 

pruning it to an optimal size through the elimination of unnecessary nodes can be considered as an 

alternative method to build an efficient model (Friedman, 2017).    

5.3 Random Forests 

As previously mentioned, a Decision Tree is considered an easy model for creation. It has the 

ability to handle various types of inputs (numerical and categorical) and is explicable because of 

its form of representation. However, such models are often unreliable when applied to new 

datasets. This can be explained by their propensity to effortlessly fit the samples found in a

training set. Therefore, a weak application performance/quality will be obtained if the dataset 

contains any outliers. Alternatively, Random Forests models are considered the solution for this 

issue. Random Forests are actually part of the Decision Tree algorithm family.  

A forest is mainly considered as a collection of single trees by definition. Each tree model is 

unique, but they form a forest when combined together (Breiman,1996). The Random Forest 

algorithm, in this comparison, creates diverse trees from the same training dataset. In other words, 

the algorithm adopted depends on combining the predictions performed by several Decision Tree 

models of changing depths (Breiman,2001). At each node, a distinct, arbitrarily selected subset 





65 

 

5.4 Reasons Behind Adopting the Random Forest Algorithm 

Neural Networks (NN) are known for their efficient performance in several industry fields when 

compared to other ML algorithms. They remain learning up until the best model, or the finest set 

of the features, that satisfies the predictive performances are generated. Yet, the Neural Network 

scales the variables into a set of numbers whereby features tend to become indiscernible to the 

analyst once the learning phase is complete. Neural Network is a diverse technique that learns in 

a different manner when compared to the Random Forest (RF) algorithm. Yet, both can be 

considered in analogous domains. Moreover, Random Forests are preferred over a Decision Tree 

(DT) model. The ultimate reason behind using an RF model instead of the DT model is the ability 

to combine the outcome (predictions) of several DTs into single robust model. As a result, RFs are 

thus less prone to the problem of overfitting. The latter typically takes place while using flexible 

models such as the DT, whereby the model tends to memorize a training dataset while learning 

any noise, if present, in the dataset. This will therefore hinder the model from making predictions. 

Briefly, random forests have the ability to lessen the large variance resulting from decision trees 

through combining several trees into a single model. Random Forests provide different 

interpretations than a Decision Tree, yet with an improved performance. On the other hand, an 

effective Neural Network performance requires more datasets than an average analyst may have. 

Neural Networks decimate the variables’ interpretability to a point whereby they tend to be 

meaningless for performing. 

From an economical perspective, the costs and the time allocated for building a model, 

whether Neural Network, Random Forest or a Decision Tree, play a significant role. The training 

of the Neural Network is computationally very intensive and time consuming. A great amount of 

preparation effort is required, in addition to the learning mechanism itself, to have the inputs in 

their appropriate format. They should, for example, be in the “number” form and also be 

normalized. Several versions must be calculated and evaluated in order to find the optimal model. 

The various parameters, also known by the hyperparameters, such as the layers number or the 

neurons per each layer, as well as the learning rates, can be changed. A comprehensive model must 

be calculated, tested and evaluated for each combination. The greater the number of 

hyperparameters, the more combinations must be examined. When combined with the time 

required to train a certain model, this therefore results in a significant time and expense investment. 

Random Forests, on the other hand, necessitate far less data preparations for the inputs. They are 
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able to handle categorical, binary, and numerical variables, and they don't require variable 

normalization. Random Forests are easy to learn and tune based on their hyperparameters (Ahmad 

et al. 2017). As a result, the computational time and cost required to train a Random Forest are 

quite minimal. Moreover, a Random Forest may be trained with relatively little data. To reach the 

same degree of accuracy, Neural Networks typically require more data. Random Forests frequently 

gain little performance once a specific quantity of data is achieved, but Neural Networks benefit 

from enormous volumes of data and continuously improve accuracy. For such reasons, and 

knowing that this research project includes enormous amount of data, the Random Forest 

algorithm is adopted to perform the predictions for the necessary variables. 

5.5 Random Forests Variable Importance Measures (VIMs) 

5.5.1 Random Forest Model 

As previously explained in section (5.3), each Random Forest is mainly an ensemble/collection of 

several Decision Trees. According to Breiman (1996), each tree within the Random Forest is 

expanded and grown using a data subset made of random variables subsets and bootstrap. The 

bagging method generally describes the bootstrap sampling process from the original dataset to 

determine the training set for every tree. As for the randomization method, it typically describes 

the variable subset selection process from the original variable set for the tree node split. For the 

new instance classification, the Random Forest places that new instance in each of the forest's 

trees. Each tree delivers a certain predicted label as a prediction vote. Hence, the classification 

with the most votes is chosen by the RF. The so-called “Out-Of-Bag (OOB) dataset” is made up 

of all the excluded samples. In other words, it is a set of the data (observations) that are not utilized 

to build the current or a specific tree. It is mainly used to approximate the error of the prediction 

made and to also evaluate the importance of each variable considered. The accuracy determined 

through the OOB dataset is always produces and applied when evaluating the performance of the 

Random Forest model.  For each tree within the Random Forest model, the prediction error 

obtained on the OOB data sample is recorded and presented as an “error percentage” or as a “Mean 

Square Error” for the classification and the regression analysis, respectively. The same process is 

performed following the permutation of every predictor variable.  
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5.5.2 Variable Selection 

5.5.2.1 Importance of Variable Selection and Strategies Used 

In a variety of applications, variable selection is extensively used to select the discriminating traits 

from a large number of variable datasets. Prediction models are useful for determining the 

relationship between specific variables utilized in a model and a certain outcome obtained, as well 

as for forecasting the future of the projected outcome. The prediction model offers information 

concerning the variables that influence the outcome, as well as their strength of correlation with 

that outcome, and forecast the future of a particular outcome based on their specific values. Several 

methods are present for developing prediction models, yet, an adequate strategy for variable 

section should be followed and adopted each time. The selection of the most promising variables 

for incorporation in the model is frequently considered as the most difficult and significant part 

when building the model. Large datasets often include thousands of features/variables which 

makes it arduous to efficiently handle using the conventional approaches. Subsequently, choosing 

the proper variables must be taken prudently to evade counting any noise in the final/optimal 

model. The main objective of such selections is to discover variables that will offer the better fit 

to the model on hand, thus generating accurate and robust predictions. In other words, variable 

selection provides several benefits such as enhancing the model’s performance in terms of the 

predictions, conveying variables more rapidly, simplifying the visualizations of data, reducing the 

utilization and the training time and lastly presenting an improved understanding of the basic 

process that produced the data (Guyon & Elisseeff, 2003).  

Several reasons that explain the importance of selecting variables do exist in the literature, 

including the practicality problems. Using large variable sets in a certain model is not practical. 

Several variables might negligibly influence an outcome, and thus can be eliminated. Moreover, 

having less variables in the model will definitely reduce the complexity and the computational

time required (Kuhn & Johnson, 2013). Based on the parsimony principle, the simplest models 

with less variables are generally preferred and desired over complex and intricate models having 

several variables. As more variables exist in a certain model, the latter’s dependency in the 

observed datasets increase. Contrarily, simpler models are much easier to analyze, interpret, 

generalize, i.e., to be used in practice. Yet, it is essential to assure that the most significant variables 

are not eliminated from that simple model.  
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Initially selecting the most promising variables, known as the candidate variables, can be 

considered as a strategy to restrict the count of the probable variables. By definition, the candidate 

variables are the ones that have established previous extrapolative performance with a certain 

outcome. Moreover, grouping similar and associated variables based on statistical methods and 

knowledge may also assist in restricting the variables count. Combining the variables into a single 

variable, especially if they exhibit a strong correlation, has been proved to be prudent. 

Additionally, the variable distribution can as well offer a particular indication of the ones to be 

restricted. The variables that exhibit a large count of missing values may be eliminated as imputing 

such variables tend to be doubtful because of the poor estimations. Following the identification of 

the number of the possible “candidate” variables from the list of all accessible variables in the 

dataset, an additional variable selection for inclusion is made in the final/optimal model. For the 

latter, there are several methods for choosing variables. The entire model approach is considered 

when including all the possible “candidate” variables in the model. Moreover, there are several 

suggestions to initiate the variable selection process through “univariate” analysis for every 

variable. Thus, variables with a predefined significance shall be used in the “multivariate”

analysis. However, such method is not practical for use in this research due to the large number of 

variables. Generally, formal variable selection methods should be used when there are several 

candidate variables offered and there is doubt or confusion about which variables to use in 

developing the final model. Forward selection, backward elimination, all possible subset selection 

and stepwise selection are the four significant variable selection strategies that are frequently used.  

For the Random Forest models, on the other hand, several Variable Importance Measures 

(VIMs) are available for selecting the most promising variables and will be subsequently discussed 

in the upcoming section. It is important to note that Random Forests, just like Neural Networks 

and Decision Trees, are not linear and the underlying algorithm used to build the models will 

exclude or minimize the impact of any variable that is not useful in yielding a "pure" prediction. 

Therefore, there is no need to worry about the multicollinearity among the predictor variables. 

5.5.2.2 Variable Selection using Mean Decrease Accuracy (MDA) and Mean Decrease Gini 

(MDG) Measures  

Variable selection is becoming very vital and essential in the statistical learning, and has been 

given great attention as the variables are showing a remarkable increase to thousands and more. 

Hence, new methods are being proposed to address such demanding tasks that involve several 
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redundant and irrelevant variables. The Variable Importance Measures (VIMs) stability, that is 

based on the Random Forest model, has been lately given greater focus and attention (Wang et.al, 

2016). Random Forests offer two VIMs including the Mean Decrease Accuracy (MDA) and Mean 

Decrease Gini (MDG). The variable rankings provided by either the MDA or the MDG, serve as 

a filter-like tool that eliminates any redundant or irrelevant variables of lower importance. The 

MDA and MDG values are considered as the Random Forest’s vital outcomes/measures that can 

be plotted to illustrate the importance of each variable in classifying the dataset. The Mean 

Decrease Accuracy (MDA) plot shows the amount of accuracy lost when each variable is excluded 

from the model. As the accuracy declines, the more critical the variable becomes for a successful 

and effective classification. The variables shown in the plot are generally listed in order of 

decreasing relevance. The MDA index/measure exploits the permuting Out-Of-Bag (OOB) 

samples to determine the variable’s importance. The Mean Decrease in Gini coefficient (MDG), 

however, is a measure of the degree of each variable’s contribution to the homogeneity of the 

leaves and the nodes in the resultant random forest. It is defined as the overall decrease in the 

impurities of each node after splitting on a certain variable. For the classification analysis, the node 

impurities are measured using the Gini index. As for the regression analysis, it is mainly measured 

through the residual sum of squares. The greater the MDA or MDG value, the more significant 

and the purer the variable is in the model.  

The advantage of using the Random Forest VIMs measures, especially when compared to the 

univariate screening techniques, is their capability of covering the influence of each of the 

predictor variables “individually", in addition to the multivariate interactions and connections with 

the remaining predictor variables (Strobl et.al, 2008). According to Lunetta et.al (2004), the 

correlations among the variables may be efficiently detected through Random Forest models than 

by considering other techniques and approaches. Moreover, the main reasons to select the MDA 

and MDG as measures used to evaluate the importance of each variable mainly falls within the 

following aspects: (1) Even though the OOB error is considered slightly more optimistic, it 

generates fair estimations when compared to the typical alternative testing, (2) The Gini Index is 

suitable for both regression and classification, (3) MDA and MDG measures are considered as the 

Random Forest model default outputs which makes them convenient for usage, (4) Considering 

both measures together is considered to be more robust and reliable than using only one measure. 
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Hence, the most promising variables, that serve as appropriate predictor variables, are selected in 

this research using the MDA and MDG measures. 
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Chapter Six 

 

Methodology 

6.1 Research Program 

The pavement structure is composed of multiple layers – mainly two or three layers - resting 

on top of the natural soil; known as the subgrade layer. For both flexible and rigid pavements, each 

layer, including the subgrade layer, can have one or more properties, referred to as variables. The 

aforementioned properties mainly include the modulus of elasticity and the Rayleigh damping 

coefficients for all layers, except for the asphalt concrete layer that typically include four variables 

representing the master curve sigmoidal function coefficients. For further elaborations, the seed 

variables and the predictor variables considered in this research paper are listed below:  

The seed variables (response variables) under study are the following: 

1. For the Asphalt Concrete (AC) layer in flexible pavements: 

➢ AC master curve sigmoidal function coefficient “alpha (𝛼)” 

➢ AC master curve sigmoidal function coefficient “Beta_prime (𝛽′)”  

➢ AC master curve sigmoidal function coefficient “Delta (𝛿)”  

➢ AC master curve sigmoidal function coefficient “Gamma (𝛾)” 

2. For the Portland Cement Concrete (PCC) layer in rigid pavements: 

➢ Modulus of elasticity (𝐸1)  

➢ Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) and (𝛽𝑅𝑃𝐶𝐶) 

3.  For the unbound layers within both flexible and rigid pavements, 

➢ Modulus of elasticity of the base layer (𝐸2 ) 

➢ Modulus of elasticity of the subgrade layer (𝐸3 )  

➢ Modulus of elasticity of the stiff layer (𝐸4 )  

➢  Rayleigh Damping Parameters (𝛼𝑅) and (𝛽𝑅) 

➢ Stiff layer thickness measured from the surface (ℎ3 ) 

The predictor variables used to build the models for the aforementioned seed variables 

include: 

1. Surface layer thickness (ℎ1 ) 
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2. Base layer thickness (ℎ2) 

3. FWD Pulse Duration 

4. FWD Indices (Discussed in Chapter 4) 

5. FWD Parameters at offsets 0,8”,12” 18”,24”,36”,48”,60”,72”,84”,96”,108”, 120” from 

the center of the applied load (Discussed in Chapter 4) 

6. The difference between individual FWD parameters at subsequent offsets referred to as 

the “difference variables” (Discussed in Chapter 4) 

Generally, the FWD deflection parameters are obtained from the FWD time histories that are 

based on field testing. The models - that shall be built- are expected to predict the initial set of 

layer variables for use in dynamic backcalculation. Those models will be developed based on 

simulated (synthetic) data from the thousands of thousands of combinations that will be 

subsequently discussed.    

In other word, using machine learning and classification analysis, models will be developed 

for predicting each seed layer variable for the use in the dynamic backcalculation. As previously 

mentioned, pavement structures with three and four layers will be considered. For flexible 

pavements, the Asphalt Concrete (AC) Layer is modeled as linear viscoelastic material. As for the 

Portland Cement Concrete layer for the rigid pavements along with all other unbound layers, are 

modeled as linear elastic materials including damping. The flowchart in Figure 39 illustrates the 

steps performed in order to develop the predictive Random Forest (RF) models for the individual 

seed (response/target) variables 

  

 

 

 

 

 

 

 

 

 

 

Figure 37: Multi-Layer Flexible Pavement Figure 38: Multi-Layer Rigid Pavement 
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 6.1.1 Software Used 

 6.1.1.1 Gmsh Software  

Gmsh is a software that generates 2D and 3D finite element meshes. It has a CAD engine and a 

post processor that are built in (Geuzaine and Remacle 2009). Consequently, this software is used 

to yield the discretization of the flexible and rigid pavements models.   

 6.1.1.2 PULSE 2020 Application  

“PULSE 2020” is used in this research project for the determination of the flexible and rigid 

pavement layer variables. The latter is an application that consist of several modules, including 

PULSE_Analyzer, PULSE_FE and optimizer module. It considers the finite element modelling to 

allow the forward calculation, (Bazi and Assi (2020), Bazi et. al, 2021). 

6.1.1.3 R-Studio and R 

R-Studio is used to build the optimal model for each seed variable while providing an elaborate 

statistical analysis. This software is mainly an IDE – Integrated Development Environment – for 

the “R”. Several R-Packages are used in this research project including: “dplyr”, “caret”, 

“randomForest” and “neuralnet”. 

6.1.2 Combinations 

The combinations that are used in the study were developed for both the flexible and the rigid 

pavements (Table 7). 

Meshing the Model  

Pulse_Fe Reads the Nodes of 

the Coordinates and 

Connectivity of Elements 

Produce Surface 

Deflections at Specified 

Nodes/Offsets 

 
Figure 39: Steps for Developing RF Models 

Extract FWD Parameters 

Using Pulse_Analyzer 

Statistical Analysis 

Develop RF Models 

Initiate Dynamic Analysis 
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Table 7:Combinations for the Flexible and Rigid Pavement Structures 

Pavement Type Flexible Rigid 

Surface 
Layer 

Thickness 
3 levels: h1 (inch) = 3, 6 & 

12 
3 levels: h1 (inch) = 9, 15 & 21 

Property [Flexible: 

Linear Viscoelastic & 

Rigid: Linear Elastic] 

2 levels:  = 0.5 & 1 

3 levels: E1 (ksi) = 2000, 4000 & 

6000 

3 levels:  +  = 3.5, 3.6 & 

3.7 

3 levels: ’ (0, 20 and 40°C) 

=  +  *log[a(T)] 

log[a(T)] = 3.066, 0 & -

2.674 at 0, 20 and 40°C, 

respectively 

2 levels:  =-0.46 &-0.51 

Rayleigh Damping 

Parameters (PCC Layer) 

-- 
3 levels: RPCC (1/sec.) = 0, 10 & 

20 

-- 
3 levels: RPCC (sec.) = 0.002, 

0.004 & 0.006 

Base 
Layer 

Thickness 3 levels: h2 (inch) = 6, 12 & 36 

Property [Linear Elastic] 3 levels: E2 (ksi) = 20, 50 & 200 

Subgrade 
Layer 

Property [Linear Elastic] 3 levels: E3 (ksi) = 5, 15 & 30 

Stiff 
Layer 

Thickness 1) and 

Property 

7 levels: None, 10-ft with E4 = 100 ksi, 10-ft with E4 = 250 ksi, 

20-ft with E4 = 100 ksi, 20-ft with E4 = 250 ksi, 50-ft with E4 = 

100 ksi & 50-ft with E4 = 250 ksi  
Rayleigh Damping Parameters (Base, 

Subgrade & Stiff Layers) 

3 levels: R (1/sec.) = 0, 10 & 20 

3 levels: R (sec.) = 0.002, 0.004 & 0.006 

FWD Load 
3 levels: 20, 30 & 40 msec. haversine pulse with the radius of 

the loaded area = 5.906-inch, and Load level = 27 kips 
1) Stiff layer thickness determined from surface. 

In other words, 551,124 combinations are selected for flexible pavements while 413,343 

combinations for the rigid pavements for a total of 964,467 combinations. 

For each response variable, the most relevant values were selected based on the maximum and 

minimum values that each variable can take. However, a different strategy was followed to choose 

the levels needed for the AC master curve sigmoidal coefficients.  

6.1.2.1 AC master curve sigmoidal coefficients 

The asphalt concrete master curves are mainly constructed through the use of frequency- (or 

time-) temperature superpositions signified by the shift factors. A master curve connecting the 

temperature and the load rate can be used to depict their combined effects. This is achieved by 

relating the dynamic modulus (E*) to the reduced frequency through a sigmoidal function. The 
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latter is expressed by Eq. (129). On the other hand, the most used equations for expressing the 

temperature shift factor include the WilliamsLandel-Ferry, Arrhenius and the 2nd order polynomial 

equations (Pellinen et al. 2004, Kutay et al. 2011). It is important to note that the shift factor 

equation utilized by the LTPP is the polynomial equation Eq. (131) while the one used in this 

research is the Arrhenius equation Eq. (132). 

The E* values provided in the TST_ESTAR_MODULUS LTPP table were estimated using 

Artificial Neural Network models at several temperatures (14°- 40°- 143°- 70°- 100°- 130°F) and 

frequencies (0.1- 0.5- 1- 5- 10- 25Hz). The details on the aforementioned estimates are presented 

in the LTPP Computed Parameter: Dynamic Modulus (Kim, et al. 2011) report. The E* estimates 

were used by the LTPP teams to compute the master curve sigmoidal function coefficients and the 

time-temperature shift factors and were stored in the TST_ESTAR_MODULUS_COEFF table. 

log(𝐸) = 𝛿 +
𝛼

1+𝑒𝛽+𝛾 log(𝑓𝑟)
                                                                                                                (129)                                                                                                                                                                                                               

log(𝑓𝑟) = log(𝑓) + log(𝑎𝑇)                                                                                                          (130)    

log(𝑎𝑇) = 𝛼1𝑇
2 + 𝛼2𝑇 + 𝛼3                                                                                                          (131)          

log(𝑎𝑇) =
∆𝐸𝑎

2.303𝑅
(
1

𝑇
− 

1

𝑇𝑜
)                                                                                                               (132)                                                                                                                                   

Whereby, 

➢    and  are the coefficients,  

➢ 10𝛿 is the minimum modulus, 

➢ 10𝛿+𝛼 is the maximum modulus, 

➢ 𝑓𝑟 is the inverse of the loading’s reduced angular frequency, f is the frequency, 

➢  𝛼1, 𝛼2 and 𝛼3 are the shift factor coefficients 

➢ T is the temperature of interest, 𝑇𝑜 is the reference temperature in Kelvin (294.261K in 

this case) 

➢ ∆𝐸𝑎 is the activation energy, R is the universal gas constant (8.314 J/°K-mol), 

The exponent 𝛽 + 𝛾 log(𝑓𝑟) in the sigmoidal function presented in Eq. (129) can be also re-

written as 𝛽′ + 𝛾 log(𝑓) whereby 𝛽′ = 𝛽 + 𝛾 log(𝑎𝑇). This replacement permits the determination 

of the four sigmoidal function coefficients for any temperature and without considering the time-

temperatures superposition models.  

In this study and for the flexible pavement modelling, the limits of the master curve sigmoidal 

function    and  are determined using tables stored in the LTPP database. The master curve 
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Based on the percentage error outcomes and the fact that the TST_ESTAR_MODULUS_COEFF 

coefficients were determined from moduli that were in return obtained using ANN methods, the 

moduli estimates from the TST_ESTAR_MODULUS are considered the most reliable. For this 

reason, the master curve sigmoidal function coefficients are recalculated by the Arrhenius equation 

using the moduli stored in the LTPP database for all the mixes. 1,331 unique datasets were 

identified in the TST_ESTAR_MODULUS, each containing 30 records, for a total of 39,930 data 

points. This was verified by calculating the count, average, minimum, maximum, difference 

between the average and the minimum, difference between the maximum and the average for every 

combination of ESTAR_LINK, temperature and frequency. The average, minimum and maximum 

turned out to be the same for every combination, verifying, thus, the 1,331 unique datasets. A 

sample from the 39,930 data points is shown in Table (10) for ESTAR_LINK 1. Note that the 

ESTAR_LINK variable serves as an associative link between the tables stored in the LTPP 

database. Each set was further linked to the layer type corresponding to it. The layer types 

encountered were as follows: (1) Original Surface Layer, (2) AC Layer Below Surface (Binder 

Course), (3) Overlay, (4) Friction-Course, (5) Seal-Coat, (6) Base Layer. However, the sets 

corresponding to the base layer type are removed as only asphalt concrete mixes shall be 

considered for evaluation. 
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Table 10: ESTAR_LINK 1 Sample Data 

Temperature 

°F 

Frequency 

Hz 

Count Average Minimum Maximum Ave - 

Min 

Max - 

Ave 
14 0.100000001 15 3,060,654 3,060,654 3,060,654 0 0 

14 0.5 15 3,399,437 3,399,437 3,399,437 0 0 

14 1 15 3,525,000 3,525,000 3,525,000 0 0 

14 5 15 3,771,795 3,771,795 3,771,795 0 0 

14 10 15 3,860,307 3,860,307 3,860,307 0 0 

14 25 15 3,962,665 3,962,665 3,962,665 0 0 

40 0.100000001 15 1,503,553 1,503,553 1,503,553 0 0 

40 0.5 15 1,976,677 1,976,677 1,976,677 0 0 

40 1 15 2,181,177 2,181,177 2,181,177 0 0 

40 5 15 2,636,015 2,636,015 2,636,015 0 0 

40 10 15 2,817,848 2,817,848 2,817,848 0 0 

40 25 15 3,041,535 3,041,535 3,041,535 0 0 

70 0.100000001 15 333,509 333,509 333,509 0 0 

70 0.5 15 557,515 557,515 557,515 0 0 

70 1 15 682,813 682,813 682,813 0 0 

70 5 15 1,039,894 1,039,894 1,039,894 0 0 

70 10 15 1,218,727 1,218,727 1,218,727 0 0 

70 25 15 1,472,424 1,472,424 1,472,424 0 0 

100 0.100000001 15 63,670 63,670 63,670 0 0 

100 0.5 15 111,374 111,374 111,374 0 0 

100 1 15 142,552 142,552 142,552 0 0 

100 5 15 251,806 251,806 251,806 0 0 

100 10 15 319,282 319,282 319,282 0 0 

100 25 15 431,672 431,672 431,672 0 0 

130 0.100000001 15 20,565 20,565 20,565 0 0 

130 0.5 15 31,576 31,576 31,576 0 0 

130 1 15 38,797 38,797 38,797 0 0 

130 5 15 65,252 65,252 65,252 0 0 

130 10 15 82,779 82,779 82,779 0 0 

130 25 15 114,285 114,285 114,285 0 0 
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Following the master curve sigmoidal 

coefficients computations, it is essential to 

identify whether any outlier exist within 

each set. The datasets were graphically 

depicted using boxplots based on their 

individual quartiles. Q1 and Q3 represents 

the 25th and the 75th percentiles, 

respectively. The interquartile range (IQR) 

was calculated as the difference between the 

75th and 25th percentiles. Lastly, the upper 

and lower outlier limits were calculated 

using the following equations:  

 

𝐿𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑄1 − (𝐼𝑄𝑅 𝑥 1.5)                                                                                    (133) 

𝑈𝑝𝑝𝑒𝑟 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 = 𝑄3 + (𝐼𝑄𝑅 𝑥 1.5)                                                                                  (134)   

Any data point that fell above or below the upper and lower outlier limit was considered as an 

outlier. After the first trial, the results (Table 11) with their corresponding boxplots (Figure 41) 

showed a number of outliers for each coefficient. Hence, sets that contained an outlier were 

removed.  The same process was repeated for several trials until no more outliers were encountered 

anymore (Table 12, Figure 42).                  

Table 11: Lower and Upper Outlier Limit- First Trial 

              ∆Ea 

Mean 1.54597 2.11312 -0.5258 -0.6327 1015116.577 

Q1 0.84427 1.30682 -0.9988 -0.6316 131269.968 

Q3 2.3317 2.79153 -0.1491 -0.4756 247089.5317 

Interquartile Range (IQR) 1.48743 1.48472 0.84966 0.15606 115819.5636 

Lower Outlier Limit -1.3869 -0.9203 -2.2733 -0.8657 -42459.37737 

Upper Outlier Limit 4.56285 5.01861 1.12539 -0.2415 420818.8771 

Figure 40: Boxplot Explanation 
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The number of sets has significantly dropped from 1,331 sets to 344 sets. The standard deviation, 

maximum, minimum, mean, 16th and 84th percentiles were reported for the 344 sets (Table 13). 

The sigmoidal coefficients showed minimal variability when compared to the activation energy 

Ea. It is important to mention that the maximum values of each of the sigmoidal coefficients cannot 

be selected for the finite element modeling. If the maximum values for Delta and Alpha are taken 

from the 344 sets to compute the maximum modulus, a modulus value of 101.2019+3.0766  = 

18,990ksi is obtained which is not realistic as the modulus of steel is 29,000 ksi. 

 

 

 

 

Figure 42: Box Plots for after (   and ) Last Trial 
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Table 13:  Statistics Values for the Sigmoidal Coefficients from the 344 Sets 

Statistic             Ea  +  

Mean 0.876692 2.75266 -0.7148 -0.4876 235508 3.6294 

Minimum 0.5864 2.4371 -1.3782 -0.5110 234796 3.5375 

Maximum 1.2019 3.0766 -0.1797 -0.4651 236205 3.7204 

Standard Deviation  0.1289 0.1335 0.2373 0.0091 271.25 0.0417 

16th Percentile 0.7478 2.6191 -0.9521 -0.4966 235237 3.5876 

84th Percentile 1.0056 2.8862 -0.4775 -0.4785 235779 3.6711 

However, calculating the maximum modulus for each of the 344 combinations, the following 

values (Table 14) are obtained where the average modulus is 4,279 ksi and the maximum is 5,253 

ksi (as high as the PCC). For this reason, delta and alpha were combined into one variable for the 

finite element modeling selection process. 

Table 14: Maximum Modulus Values 

Statistic Maximum Modulus (ksi) 

Average 4279 

Minimum 3448 

Maximum 5253 

 

As a result, the sigmoidal coefficients selected for the finite element modeling of the flexible 

pavement structure are shown in Table 15. This selection generates 12 sets whereby each set was 

evaluated at 3 temperatures (0, 20 and 40°C), hence, ending with a total of 36 combinations 

(Table16). 

Table 15:Sigmoidal Coefficients Selected for FE Modeling 

2 levels:  = 0.5 & 1.0 

3 levels:  +  = 3.5, 3.6 & 3.7 

3 levels:  = ( + ) -  

  Beta = -0.70 

3 levels: ’ (0, 20 and 40°C) = 

Beta + Gamma*log[a(T)] 

  

log[a(T)] = 3.066, 0 & -

2.674 at 0, 20 and 40°C, 

respectively 

  

2 levels:  = -0.46 &-0.51 
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The 12 sets (36 combinations) were plotted as illustrated in Figure 43.  

Table 16: The 12 Sets Resulting after the Sigmoidal Coefficients' Selection 

Set     +  ( + ) -  Beta   

1 0.5 3.6 3.1 -0.7 -0.51 

2 0.5 3.5 3 -0.7 -0.46 

3 0.5 3.6 3.1 -0.7 -0.46 

4 0.5 3.7 3.2 -0.7 -0.46 

5 0.5 3.5 3 -0.7 -0.51 

6 0.5 3.7 3.2 -0.7 -0.51 

7 1 3.5 2.5 -0.7 -0.46 

8 1 3.6 2.6 -0.7 -0.46 

9 1 3.7 2.7 -0.7 -0.46 

10 1 3.5 2.5 -0.7 -0.51 

11 1 3.6 2.6 -0.7 -0.51 

12 1 3.7 2.7 -0.7 -0.51 

 

 

Figure 43: Master Curve showing the 12 Sets, each at 3 Temperatures 

Consequently, the levels (classes) of the AC master curve sigmoidal coefficients used in this 

research project are shown in Table 17.  
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Table 17: AC Master Curve Sigmoidal Coefficients Classes 

Seed 

Variable 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Alpha (𝛼) 2.5 2.6 2.7 3 3.1 3.2 

Beta_prime 

(𝛽′) 
-2.263 -2.1101 -0.7 0.53001 0.6637 - 

Delta (𝛿) 0.5 1 - - - - 

Gamma (𝛾) -0.51 -0.46 - - - - 

 

6.2 Model Development and Optimal Mesh Selection 

The initial step in the finite element computations is to discretize the domain of the problem into 

a set of elements that could either be of the same or different types. In this study, only linear 

triangular elements are used. Analyzing the mesh density (size of the finite element) is considered 

as a critical task in the finite element computations as it leads to the selection of the optimal model. 

In other words, the accuracy, the precision as well as the complexity level of the finite element 

model are directly related to the mesh density (Liu, Y., & Glass, G. 2013). The finite element 

models having a small sized elements (fine mesh) will generate vastly accurate output yet it will 

have a longer computational time and will increase the complexity of the model. Hence, it is 

preferably to be used only when high precision and accuracy are needed. On the other hand, models 

having a large sized elements (coarse mesh) may end up with less likely accurate results but it will 

surely save much more computational time and will reduce the size of the model under study. 

Hence, it is rather substantially used in more simplified FE models to provide a rough and a fast 

design estimation (Liu, Y., & Glass, G. 2013). For this reason, it is essential to select the most 

optimal model with the element sizes that are capable of providing accurate results while at the 

same time saving computational time as much as possible.  

The mesh of the flexible and rigid pavement models is generated using a Gmsh software. In 

order to simulate the infinite media in this research, the far boundary was chosen.  

The main objective is to obtain one mesh that is applicable for all the combinations previously 

discussed. As the thicknesses of the combinations are in order of 3-inches, the model was 

developed on Gmsh by having the first 57-inch in increments of 3-inch followed by the 10/20-ft 

rigid layer as shown in Figure 44. As a result, a total of 23 surfaces were drawn in Gmsh to model 

the pavement structure along with the subgrade layer and a stiff layer if any. Hence, once the model 
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is discretized into an infinite number of elements, the element limits separating one surface from 

another can be determined to be used later on when generating the vertical deflection for each 

combination. 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 represents a flexible pavement structure that consist of an asphalt concrete (AC) surface 

layer of 3-inch thickness, an aggregate base of 6-inch thickness and lastly a subgrade layer that 

expands to 3000-inch (250- ft) for the infinite media simulation employing the far boundary 

method. The optimal model, in terms of the accuracy and the mesh density, was generated by 

performing a sensitivity analysis by testing the pavement model without and with a rigid layer 

(Testing No.1 and testing No.2 respectively) while checking the validity of the optimal mesh. 

Table 18: Combinations used for Sensitivity Analysis 

 Surface Layer Base Layer Subgrade Layer Rigid Layer 

 

Testing 

No. 

 
Thickness 

(in) 
 

 

 
Modulus 

(ksi) 

 
Thickness 

(in) 

 
Modulus 

(ksi) 

 
Thickness 

(in) 

 
Modulus 

(ksi) 

 
Thickness 

from 

Surface 

(ft) 

 
Modulus 

(ksi) 

1 3 500 6 50 - 5 None 

2 3 500 6 50 111 5 10 100 

 

Figure 44: Model Development Initial Steps on AUTOCAD 





87 

 

The parameters for the various meshes are plotted versus the mesh density to visualize the 

variations. To determine the optimal mesh, the coarsest mesh must be chosen whereby the FWD 

parameters would not change if a finer mesh is selected. In other words, the minimum deflection 

and the time that corresponds to that minimum were extracted from the time histories and 

compared separately for offsets 0, 24-inches, 48-inches, and 72-inches from the center (Figures 

46,48,50,52).  Moreover, the percentage difference in deflection relative to the densest mesh 

(143,947 elements) was determined (Figures 47,49,51,53). It is observed in latter that the finite 

element model with a mesh of 15,233 elements to have the least percentage error when compared 

to the densest mesh (between ~0.0003 and 0.0007% difference i.e., 0.0186% ~ 0.074% error). For 

this reason, this finite element mesh was tested versus the denser (finer) meshes for the same 

structure but with a 10-ft rigid layer measured from the surface (Testing No.2 -Table 18) to check 

the validity of the 15,233 elements. According to Liu, Y., & Glass, G. (2013), an acceptable error 

can range between 0.5% and 1%. It was noticed that the percentage error relative to the densest 

mesh started to increase as the offset from the center increases to reach 27.64% at offset 120-inch. 

As a result, the model with 15,233 elements was eliminated and replaced by a mesh with 25,383 

elements which resulted in an acceptable percentage error (Table 19). 
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Table 19:Percentage Error in Minimum Deflection Relative to Densest Mesh 

 Min Deflection at Offsets (inch) 

Mesh 

Density 

0 24 48 72 96 120 

25,383 -0.1085 -0.04619 -0.02103 -0.0119 -0.00756 -0.005412 

143,947 -0.1088 -0.04635 -0.0211 -0.012 -0.00766 -0.005500 

 Absolute Percentage Error (%) 

0.2875 0.335 0.3690 0.6659 1.2433 1.6032 

 

The finite element model with a mesh of 25,383 elements was tested using different combinations 

along with the finest mesh (143,947 elements): 

➢ Thick flexible pavement with and without rigid layer 

➢ Thin rigid pavement with and without rigid layer 

➢ Thick rigid pavement with and without rigid layer’ 

Whereby the thickness of the rigid layer is measured from the surface in ft.  

The average error from offsets 0 till 72-inches was calculated for the different combinations tested.  

It was observed that the last combination in Table 20 is the critical one as the error exceeded 1%; 

thus, the model is optimized to a mesh of 29,462 elements that was optimal to all combinations 

with an error less than 1% (Table 21). 

 

 

Table 20: Testing 25,383 Elements using Different Combinations 



93 

 

 

 

6.3 Output Generation for Rigid and Flexible Pavement Structures 

Following the optimal mesh selection, the input file generated by Gmsh, which contains the nodes 

and the 29,462 elements, is read by Pulse_FE.  

For the rigid pavement structure, several inputs are required to initiate the run including the 

Layer properties (Modulus, Rayleigh Damping Parameters), elements for each layer from the FE 

model as well as the nodes sets for the far boundary, axis of symmetry and the surface loading.  

The same applies for the flexible pavement structure, however, the AC master curve sigmoidal 

coefficient “Delta ()”, “Gamma (𝛾)”,  +  and the temperature are inputs instead of the surface 

layer modulus of elasticity. 

The code generates a CSV file that contains the vertical deflections at specified offsets for 

each combination. For one combination, the surface deflections obtained were further tested to 

ensure correct values. After verification, the surface deflections are generated for the rigid and the 

flexible pavement structures, i.e., surface deflections for the 413,343 rigid pavement combinations 

and 551,124 flexible combinations. 

For a mesh of 29,462 elements, the time taken to run each combination on Visual Studio was 

ranging between 7 to 9 seconds including the build time. Therefore, to speed up the process, the 

code for the rigid combinations was run on four different computers while that for the flexible 

combinations was run on five different computers simultaneously (Tables 22 and 23). For example, 

and for the rigid pavement, computer 1 was responsible for the all the combinations excluding the 

ones with a stiff layer (59,049 combinations). On the other hand, each of computers 2, 3 and 4 

Table 21: Testing the Optimal Mesh with 29,462 Elements 
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were responsible for running the combinations with a stiff layer and layer 1 thickness of 9-inches, 

15-inches and 21-inches respectively (118,098 combination each). The same logic applies to the 

distribution of the combinations for the flexible pavement. 

Table 22: Distribution of the Rigid Pavement Combinations 

Computer From  To Count 

1 1 59,049 59,049 

2 59,050 177,147 118,098 

3 177,148 295,245 118,098 

4 295,246 413,343 118,098 

Sum 413,343 

 

Table 23: Distribution of the Flexible Pavement Combinations 

Computer From  To Count 

1 1 78,732 78,732 

2 78,733 183,708 104,976 

3 183,709 288,684 104,976 

4 288,685 393,660 104,976 

5 393,661 551,124 157,464 

Sum 551,124 

 

6.4 Extracting FWD Parameters 

The PULSE_Analyzer module is used to determine the FWD parameters for use in the statistical 

and classification analysis. The PULSE_Analyzer module has two components that smoothens the 

data through Local regression and extracts the FWD parameters. In other words, it considers 

polynomial fittings to smoothen the deflections.  

After running the PULSE_Analyzer, the following FWD parameters are obtained whereby an 

“_D” denotes a discrete value. If a value is not available, a double.NaN is reported. 

TPeak_D, DPeak_D, TDminL_D, DminL_D, TDminR_D, DminR_D, T25L_D, T50L_D, 

T75L_D, T25R_D, T50R_D, T75R_D, Dur25_D, Dur50_D, Dur75_D, TVPeak_D, VPeak_D, 

TVPeak, VPeak, TVminR_D, VminR_D, TVminR, VminR. 
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selecting better predictor variables. Following the same strategy, and using the “evtree” package 

in R, Decision Trees were modeled for each response variable. 

The outcomes from both models were not promising, thus a classification model was 

considered instead of a regression model. 

6.6 Building Random Forests through Classification Analysis 

Since the Radom Forests are mainly considered to be more powerful and effective in the 

classification when compared to the regression, the RF algorithm is adopted in this research 

project. To achieve the goal of this research, the R-package “randomForest” was used. After 

bringing the data into R, the seed (response) variables, including (ℎ3), (𝐸1), (𝐸2), (𝐸3), (𝐸4), the 

Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) and (𝛽𝑅𝑃𝐶𝐶) of the PCC layer, the Rayleigh Damping 

Parameters (𝛼𝑅) and (𝛽𝑅) of the unbound layers and lastly the sigmoidal coefficients: alpha (𝛼), 

Beta_prime (𝛽′), Delta (𝛿), Gamma (𝛾) were converted to factors.  For each response variable, 

the candidate predictor variables were selected to create a vector with the names of the variables 

desired for the model. Then, the reference vector with the predictor and the response variables was 

setup to pull a subset of the data for use in the model. The data, in this case, was then divided into 

training and testing sets which constitute a randomly selected 65% and 35% of the whole data, 

respectively. A Random Forest model is built for each response variables using the optimal number 

of trees and the default splitting value. The variable importance is then examined and stored as 

data frame, while being ordered based on the MDA accuracy. The variable importance is further 

plotted for visual representation of the response variables. The quality of the model was assessed 

using the testing dataset by evaluating the MDA and MDG measures for each variable. In other 

words, variables with higher importance were selected for building a new Random Forest model. 

The variable selection process consisted of the following steps:  

1. Run the RF algorithm and record the MDA and MDG values for each predictor variable.  

2. Rank the predictor variables based on the MDA accuracy. 

3. Assign a score for each predictor variable depending on the MDA and MDG values. For 

efficient scoring, the MDA and MDG values were scaled and rounded up. Thus, each 

predictor variable will have two individual scores, one for each measure. 

4. The total score is computed for each predictor variable and sorted in descending order. 

5. The first fifty percent of the variables with the highest scores are selected for building a 

new model. If a decimal value was obtained, then the number is rounded up. 
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6. The RF algorithm is run again using the newly selected variables, and the error rate for the 

new model is then recorded. 

Note that step 5 may be adjusted depending on the accuracy and the error rate obtained. For 

example, if an accuracy of 100% was obtained for a certain model, and for the variables that have 

the same total score, the variable that has a lower importance based on the MDA score is excluded. 

The aforementioned procedure is iteratively implemented until achieving an acceptable accuracy 

and error rate. In other words, the same process was repeated for several iteration, and for each 

response variable, until the best model is obtained. 
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Chapter Seven 

 

Results 

The results for the response variables (seed variables) under study are presented in the upcoming 

section. For each seed variable within the flexible and rigid pavement layers, the optimal model 

that generates the highest prediction accuracy was found. 

The seed variables for the AC layer in the flexible pavement structure are the AC master curve 

sigmoidal function coefficients: alpha (𝛼), Beta_prime (𝛽′), Delta (𝛿), Gamma (𝛾). The seed 

variables for the PCC layer in the rigid pavement structure are the modulus of elasticity (𝐸1) and 

the Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) and (𝛽𝑅𝑃𝐶𝐶). For the base, subgrade and the stiff layers 

underlying both flexible and rigid pavements, the seed variables are the moduli of elasticity (𝐸2 ), 

(𝐸3 ) and (𝐸4 ) respectively, as well as the Rayleigh Damping Parameters (𝛼𝑅) and (𝛽𝑅). Lastly, 

the stiff layer thickness measured from the surface (ℎ3 ). Hence, a total of 13 seed variables.  

Several models with various combinations of predictor variables were tested for each seed 

variable. The model’s accuracy along with other characteristics are shown in Tables 25 and 26. 

Table 25: Time taken to Build RF-Model and to Predict the Seed Variables 

Seed Variable Time to Build RF Model Prediction Time 

Alpha (𝛼) 18 min 16 sec. 

Beta_prime (𝛽′) 39 min, 40 sec 21 sec. 

Delta (𝛿) 42 min 18 sec. 

Gamma (𝛾) 77 min, 53 sec 32 sec. 

𝐸1 3 min, 57 sec. 1 sec. 

𝛼𝑅𝑃𝐶𝐶  53 min, 28 sec. 46 sec. 

𝛽𝑅𝑃𝐶𝐶  5 min 3 sec. 

𝐸2  84 min, 37 sec. 23 sec. 

𝐸3  24 min, 22sec. 7 sec. 

𝐸4  5 hrs, 24min 38 sec. 

𝛼𝑅 ~ 19 hrs 1 min, 26 sec. 

𝛽𝑅  10 hrs, 24 min 59 sec. 

ℎ3  26 min, 19 sec. 6 sec. 
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Table 26: Optimal Model Characteristics for each Seed Variable 

Seed Variable Number of 

Trials/Models Tested 

Number of Predictor 

Variables in Optimal 

Model 

Optimal Model 

Accuracy (%)   

Alpha (𝛼) 200 12 97.38 

Beta_prime (𝛽′) 191 19 98.14 

Delta (𝛿) 167 20 97.86 

Gamma (𝛾) 166 25 97.85 

𝐸1 16 9 100 

𝛼𝑅𝑃𝐶𝐶  30 14 58.65 

𝛽𝑅𝑃𝐶𝐶  42 11 100 

𝐸2  121 24 99.84 

𝐸3  59 17 100 

𝐸4  80 65 99.67 

𝛼𝑅 33 175 98.48 

𝛽𝑅  83 124 99.82 

ℎ3  80 21 99.99 

 

The detailed results, the Variable Importance Measures (VIM) plots and the statistical analysis  

generated by R-Studio for each seed variable are presented in the subsequent sections as follows: 

➢ Section 7.1 Seed Variables for the Asphalt Concrete (AC) Layer 

➢ Section 7.2 Seed Variables for the Portland Cement Concrete (PCC) Layer 

➢ Section 7.3 Seed Variables for Unbound Layers 

Note that due to the large count of predictor variables needed to build the RF models for (𝐸4 ),(𝛼𝑅) 

and (𝛽𝑅), only 30 predictor variables are shown by R-studio in the VIM plots. 

7.1 Seed Variables for the Asphalt Concrete (AC) Layer 

7.1.1 AC Master Curve Sigmoidal Coefficient “Alpha (𝜶)” 

The predictor variables that built up the optimal model for “Alpha (𝛼)” are: 

"DminL_D.0","DminL_D.60","DminL_D.72", "DminL_D.96","TDminL_D.48", "T75R_D.0", 

"SCI", "Dp08", "D25_08" ,"T25L08" ,"T50L08","T75L08" 
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As per the plots displaying the Mean Decrease Accuracy (MDA) and Mean Decrease Gini 

(MDG) measures (Figure 57), the predictor variable that showed the highest importance for the 

MDA measure is "T75R_D.0" with a value of 393 while that for the MDG measures is "SCI" with 

a value of 38,164.                                                                                                     

For each predictor variable, a total score was 

determined by summing the values of the MDA and 

MDG measures. The variables that are essential to 

predict the AC Master Curve Sigmoidal Coefficient 

“Alpha (𝛼)” are arranged in descending order of 

importance (Figure 58). As the color intensity 

decreases, the importance of the corresponding 

predictor variable decreases.  

 T75R_D.0 
 SCI 
 D25_08 
 Dp08 
 DminL_D.96 
 DminL_D.72 
 DminL_D.60 
 TDminL_D.48 
 DminL_D.0 
 T25L08 
 T75L08 
 T50L08 

         
Figure 57: MDA and MDG Plots for “Alpha (𝛼)” 
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Figure 59: Training Data Confusion Matrix and OOB Estimate for “Alpha (α)” 

 
Figure 60: Testing Data Confusion Matrix and Statistics for “Alpha (𝛼)” 

 

 

 

Figure 58: Importance of each Predictor Variable for Predicting “Alpha (𝛼)” based on MDA and MDG Total Score  
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7.1.2 AC Master Curve Sigmoidal Coefficient “Beta_prime (𝜷′)” 

The predictor variables that built up the optimal model for “Beta_prime (𝛽′)” are: 

"DminL_D.0","DminL_D.48","DminL_D.60","DminL_D.72","DminL_D.84","DminL_D.96", 

"DminL_D.108","DminL_D.120","TDminL_D.48","TDminL_D.60","TPeak_D.0","h1","BI", 

"SCI","Dp08", "VP08", "TVP08", "T50L08","T25L08" 

Based on the MDA and MDG plots (Figure 61), the predictor variables that showed the highest 

importance for the MDA measure is "h1" with a value of 193 while that for the MDG measures is 

"Dp08" with a value of 50,384. 

 

 

 

 

 

 

Figure 61:MDA and MDG Plots for “Beta_prime (β')” 
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Based on the total score calculated for each predictor variable, 

the color for the predictor variable “Dp08” showed the 

strongest intensity (Figure 62), indicating that this variable is 

the most important for  predicting the AC Master Curve 

Sigmoidal Coefficient “Beta_prime (𝛽′)”. Moving towards 

“DminL_D.48”, the color intensity starts fading away, 

indicating a decrease in the corresponding variable importance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Dp08 

 VP08 

 SCI 

 h1 

 TPeak_D.0 

 TVP08 

 T25L08 

 BI 

 TDminL_D.48 

 DminL_D.96 

 DminL_D.84 

 DminL_D.108 

 DminL_D.72 

 DminL_D.120 

 DminL_D.0 

 TDminL_D.60 

 DminL_D.60 

 T50L08 

 DminL_D.48 

Figure 62: Importance of each Predictor Variable for Predicting “Beta_prime (𝛽′)” based on MDA and MDG Total Score  

Figure 63: Training Data Confusion Matrix and OOB Estimate for “Beta_prime (𝛽′)” 
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7.1.3 AC Master Curve Sigmoidal Coefficient “Delta (𝜹)” 

The predictor variables that built up the optimal model for “Delta (𝛿)” are: 

"DminL_D.60", "DminL_D.72", "TPeak_D.0" ,"TVPeak.0", "T75R_D.0", "h1","SCI","Dp08", 

"Dmr08","Dmr812", "Dml7284","Tml7284","D25_08", "D25_812","VPD08","VP08","TVP08", 

"T25R08",  "T25R812", "T25L1218" 

For the MDA measure, "TVPeak.0" showed the highest importance with a value of 159. As 

for the MDG measure, "T25R08" showed the highest value of 14,197 (Figure 65). 

 

 

 

 

 

 

 

Figure 64: Testing Data Confusion Matrix and Statistics for “Beta_prime (𝛽′)”   
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Figure 67: Training Data Confusion Matrix and OOB Estimate for “Delta (𝛿)” 

 

 

Figure 68: Testing Data Confusion Matrix and Statistics for “Delta (𝛿)” 

7.1.4 AC Master Curve Sigmoidal Coefficient “Gamma (𝜸)” 

The predictor variables that built up the optimal model for “Gamma (𝛾)” are: 

"DPeak_D.0", "DminL_D.36", "DminL_D.48", "DminL_D.60", "DminL_D.72", "DminL_D.84", 

"DminL_D.96","DminL_D.120","TDminL_D.48","TDminL_D.60","TDminL_D.72", 

"TDminL_D.108", "VPeak_D.0", "TVPeak_D.0", "RoC", "SCI", "Dp08","Dp812", "Dp1218", 

"VMD08", "VPD08", "VP08", "T25L08", "T50L08", "D25_08" 
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As per the graphs observed in Figure 69, the predictor variables that showed the highest 

importance based on the MDA and MDG measures are "TVPeak_D.0" and "VPD08" respectively, 

with values of 182 for MDA and 12,082 for MDG. 

 

 

 

 

 

 

 

Figure 69: MDA and MDG Plots for “Gamma (𝛾)” 



109 

 

According to the total score calculated for each predictor 

variable, the color for the predictor variable “VP08” showed 

the strongest intensity, indicating that this variable is the 

most important for  predicting the AC Master Curve 

Sigmoidal Coefficient “Gamma (𝛾)”. Moving towards 

“DminL_D.36”, the color intensity starts fading away, 

indicating a decrease in the corresponding variable 

importance. 

 

 

 

 

 

Figure 71: Training Data Confusion Matrix and OOB Estimate for “Gamma (𝛾)” 

 VP08 

 VPD08 

 VMD08 

 TVPeak_D.0 

 Dp812 

 D25_08 

 Dp08 

 SCI 

 RoC 

 VPeak_D.0 

 Dp1218 
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 DminL_D.120 

 DminL_D.96 

 T25L08 

 DminL_D.60 

 DPeak_D.0 

 DminL_D.72 

 T50L08 

 TDminL_D.60 

 TDminL_D.108 

 DminL_D.48 

 TDminL_D.72 

 TDminL_D.48 

 DminL_D.36 

Figure 70: Importance of each Predictor Variable for Predicting “Gamma (𝛾)” based on MDA and MDG Total Score  
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Figure 72: Testing Data Confusion Matrix and Statistics for “Gamma (𝛾)” 

7.2 Seed Variables for the Portland Cement Concrete (PCC) Layer 

7.2.1 Modulus of Elasticity (𝑬𝟏) 

The predictor variables that built up the optimal model for “𝐸1” are: 

"RoC", "SCI", "BDI", "BCI", "AUPP", "AL1", "SD", "h1", "T75L_D.18" 
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As per the graphs shown in Figure 73, the predictor variables that showed the highest 

importance based on the MDA and MDG measures are "T75L_D.18" and "RoC" respectively, 

with values of 203 for MDA and 66,621 for MDG. 

According to the total score calculated for each predictor 

variable, the color for the predictor variable “RoC” showed the 

strongest intensity, indicating that this variable is the most 

important for  predicting the modulus of elasticity “𝐸1” of the 

PCC layer. Moving towards “BCI”, the color intensity starts 

fading away, indicating a decrease in the corresponding 

variable importance (Figure 74). 

 

 RoC 
 SCI 
 h1 
 T75L_D.18 
 BDI 

 AUPP 
 SD 
 AL1 
 BCI 

Figure 74: Importance of each Predictor Variable for Predicting “𝐸1”  based on MDA and MDG Total Score 

        

Figure 73: MDA and MDG Plots for “𝐸1” 
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Figure 75: Training Data Confusion Matrix and OOB Estimate for “𝐸1”   

 
 

Figure 76: Testing Data Confusion Matrix and Statistics for “𝐸1” 

7.2.2 Rayleigh Damping Parameters (𝜶𝑹𝑷𝑪𝑪)  

The predictor variables that built up the optimal model for “𝛼𝑅𝑃𝐶𝐶” are: 

"DPeak_D.0", "DPeak_D.18", "DPeak_D.36", "RoC", "AL4","Qr", "SCI", "AL1", "f1", "S", 

"AREA", "D8_2550","D12_2550", "D24_2550" 
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The predictor variable "D24_2550" showed the highest importance for both, MDA and 

MDG measures with values of 486 and 18,350, respectively. 

Based on the total score calculated for each predictor variable, 

the color for the predictor variable “D24_2550” showed the 

strongest intensity, indicating that this variable is the most 

important for  predicting the Rayleigh Damping Parameter 

(𝛼𝑅𝑃𝐶𝐶) of the PCC layer. Moving towards “DPeak_D.36”, 

the color intensity starts fading away, indicating a decrease in 

the corresponding variable importance (Figure 78). 

 D24_2550 

 AL4 

 Qr 

 RoC 

 S 

 AL1 

 f1 

 AREA 

 SCI 

 DPeak_D.0 

 D8_2550 

 D12_2550 

 DPeak_D.18 

 DPeak_D.36 

Figure 78: Importance of each Predictor Variable for Predicting “𝛼𝑅𝑃𝐶𝐶” based on MDA and MDG Total Score 

Figure 77: MDA and MDG Plots for “𝛼𝑅𝑃𝐶𝐶” 
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Figure 79: Training Data Confusion Matrix and OOB Estimate for “𝛼𝑅𝑃𝐶𝐶” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80:Testing Data Confusion Matrix and Statistics for “𝛼𝑅𝑃𝐶𝐶” 
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7.2.3 Rayleigh Damping Parameters (𝜷𝑹𝑷𝑪𝑪) 

The predictor variables that built up the optimal model for “𝛽𝑅𝑃𝐶𝐶” are: 

"T25L_D.0", "T25L_D.48", "RoC","Dp08","Dp6072","Dp8496", "Dp96108", "Dp108120", 

"Tp08","Tp812","Tp1218" 

For the MDA and MDG measures, "T25L_D.0" predictor variable showed the highest 

importance with a value of 199 and 53,747, respectively. 

 

 

 

 

 

 

 

Figure 81: MDA and MDG Plots for “𝛽𝑅𝑃𝐶𝐶” 
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Based on the total score calculated for each predictor variable, 

the color for the predictor variable “T25L_D.0” showed the 

strongest intensity. Moving towards “Tp1218”, the color 

intensity starts fading away, indicating a decrease in the 

corresponding variable importance (Figure 82). 

 

Figure 82: Importance of each Predictor Variable for Predicting “𝛽𝑅𝑃𝐶𝐶” based on MDA and MDG Total Score 

 

 
 
Figure 83: Training Data Confusion Matrix and OOB Estimate for “𝛽𝑅𝑃𝐶𝐶” 
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Figure 84: Testing Data Confusion Matrix and Statistics for “𝛽𝑅𝑃𝐶𝐶” 

7.3 Seed Variables for Unbound Layers 

7.3.1 Base Layer Modulus of Elasticity (𝐸2) 

        The predictor variables that built up the optimal model for “𝐸2” are: 

"DPeak_D.8", "DminL_D.120", "DminL_D.108", "TPeak_D.8", "TPeak_D.12", 

"TDminL_D.120", "h2", "BDI", "BCI", "RoC", "SCI", "AL1", "Tp08", "T25R1218" 

"T25L108120", "T50L08", "T50L1218", "T50L1824", "T50L2436", "T75L08", "Dml7284", 

"Dml108120", "Tml108120", "D25_1218" 
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As per the  MDA and MDG plots (Figure 85), the predictor variables that showed the 

highest importance for the MDA measure is "h2" with a value of 169 while that for the MDG 

measures is "D25_1218" with a value of 30,345. 

 

 

 

 

 

 

 

 

Figure 85: MDA and MDG Plots for “𝐸2” 



119 

 

Based the total score calculated for each predictor 

variable, the color for the predictor variable “h2” 

showed the strongest intensity, indicating that this 

variable is the most important for  predicting the 

modulus of elasticity “𝐸2” of the base layer. Moving 

towards “Tp08”, the color intensity starts fading 

away, indicating a decrease in the corresponding 

variable importance (Figure 86). 

 

 

 

Figure 87: Training Data Confusion Matrix and OOB Estimate for “𝐸2” 
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Figure 86: Importance of each Predictor Variable for Predicting “𝐸2” based on MDA and MDG Total Score 
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Figure 88: Testing Data Confusion Matrix and Statistics for “𝐸2” 

7.3.2 Subgrade Layer Modulus of Elasticity (𝑬𝟑) 

The predictor variables that built up the optimal model for “𝐸3” are: 

"DPeak_D.48", "DPeak_D.84", "DPeak_D.108", "DPeak_D.120", "T25L_D.120", "T50L_D.24", 

"T50R_D.48", "T50R_D.108", "T50R_D.120", "T75L_D.24", "T75R_D.60", "Dur50_D.108", 

"Dur75_D.36", "Dur75_D.120", "AL3", "AL4", "f2". 

According to the MDA and MDG plots (Figure 89), the predictor variables that showed the 

highest importance for the MDA measure is "T75L_D.24" with a value of 61 while that for the 

MDG measure is "DPeak_D.84" with a value of 64,781. 
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Based the total score calculated for each predictor variable, 

the color for the predictor variable “DPeak_D.84” showed 

the strongest intensity, indicating that this variable is the 

most important for  predicting the modulus of elasticity 

“𝐸3” of the subgrade layer. Moving towards “AL4”, the 

color intensity starts fading away, indicating a decrease in 

the corresponding variable importance (Figure 90). 
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Figure 90: Importance of each Predictor Variable for Predicting “𝐸3”  based on MDA and MDG Total Score 

Figure 89: MDA and MDG Plots for “𝐸3” 
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Figure 91: Training Data Confusion Matrix and OOB Estimate for “𝐸3” 

 
Figure 92: Testing Data Confusion Matrix and Statistics “𝐸3” 

7.3.3 Stiff Layer Modulus of Elasticity (𝑬𝟒) 

The predictor variables that built up the optimal model for “𝐸4” are: 

"DPeak_D.0", "DPeak_D.24", "DPeak_D.72", "DPeak_D.96", "DPeak_D.108", "DPeak_D.120", 

"DminR_D.36","DminR_D.48","DminR_D.60","DminR_D.72","DminR_D.84","DminR_D.96", 

"DminR_D.108", "DminR_D.120", "TDminR_D.84", "TDminR_D.96", "TDminR_D.108", 

"TDminR_D.120", "T25R_D.96", "T25R_D.120", "Dur25_D.48", "Dur25_D.60", "Dur25_D.96", 
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"Dur25_D.108", "Dur25_D.120", "Dur75_D.0", "Dur75_D.120","Dur50_D.120", 

"T25L108120", "T50L812", "T50L108120", "T25L_D.8", "T25L_D.12", "T25L_D.60", 

"T25L_D.96", "T25L_D.120", "T75L08", "T75L812", "T75L1218", "T75L96108", 

"T75L108120", "T25R1218", "T25R1824", "T25R6072", "T25R7284", "T25R8496", 

"T25R96108", "T25R108120", "T50R6072", "T50R7284", "T50R8496", "T50R96108", 

"T50R108120", "T75R08", "T75R6072", "T75R7284", "T75R108120", "D25_08", "D25_4860", 

"D25_8496", "D0_2550", "D84_2550", "D96_2550", "D108_2550", "D120_2550" 

"T75L08" showed the highest importance for the MDA measure with a value of 104 while is 

"T25R108120" was the most important predictor variable for the MDG measure with a value of 

20,790. 

 

Figure 93: MDA and MDG Plots for “𝐸4” 
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Figure 94: Importance of each Predictor Variable for Predicting “𝐸4” based on MDA and MDG Total Score (2 Sections) 

Based the total score calculated for each predictor variable, the color for the predictor variable 

“T25R108120” showed the strongest intensity, indicating that this variable is the most important 

for  predicting the modulus of elasticity “𝐸4” of the stiff layer. Moving towards “D0_2550”, the 

color intensity starts fading away, indicating a decrease in the corresponding variable importance 

(Figure 94). Note that the variables are divided into 2 sections in descending order of importance 

from left to right. 
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Figure 95: Training Data Confusion Matrix and OOB Estimate for “𝐸4” 

 

 

Figure 96: Testing Data Confusion Matrix and Statistics “𝐸4” 

7.3.4 Rayleigh Damping Parameters (𝜶𝑹) 

The predictor variables that built up the optimal model for “𝛼𝑅” are: 

"DPeak_D.0","DPeak_D.8", "DPeak_D.12", "DPeak_D.18","DPeak_D.24","DPeak_D.36", 

"DPeak_D.48", "DPeak_D.60", "DPeak_D.72", "DPeak_D.84", "DPeak_D.96", "DPeak_D.108", 

"DPeak_D.120", "TPeak_D.0", "TPeak_D.8", "TPeak_D.12", "TPeak_D.18", "TPeak_D.24", 

"TPeak_D.36","TPeak_D.48","TPeak_D.60", "TPeak_D.72", "TPeak_D.84", "TPeak_D.96", 
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"TPeak_D.108", "DminR_D.12", "DminR_D.18", "DminR_D.24", "DminR_D.36", 

"DminR_D.48","DminR_D.60", "DminR_D.72", "DminR_D.84", "DminR_D.96", 

"DminR_D.108", "DminR_D.120", "TDminR_D.24", "TDminR_D.36", "TDminR_D.48", 

"TDminR_D.60", "TDminR_D.84", "TDminR_D.72","TDminR_D.96","TDminR_D.108", 

"TDminR_D.120", "T25R_D.0", "T25R_D.12", "T25R_D.18", "T25R_D.24", "T25R_D.36", 

"T25R_D.48", "T25R_D.60", "T25R_D.72", "T25R_D.84", "T25R_D.96", "T25R_D.108", 

"T25R_D.120", "T50R_D.0","T50R_D.12","T50R_D.18","T50R_D.24", "T50R_D.36", 

"T50R_D.48", "T50R_D.60", "T50R_D.72","T50R_D.84", "T50R_D.8", "T50R_D.96", 

"T50R_D.108", "T50R_D.120", "T75R_D.0", "T75R_D.8","T75R_D.12", "T75R_D.18", 

"T75R_D.24","T75R_D.36", "T75R_D.48", "T75R_D.60", "T75R_D.72", "T75R_D.84", 

"T75R_D.96", "T75R_D.108", "T75R_D.120","T25L_D.0","T25L_D.8", "T25L_D.12", 

"T25L_D.18", "T25L_D.24", "T25L_D.36", "T25L_D.48", "T25L_D.60", "T25L_D.72", 

"T25L_D.84","T25L_D.96","T25L_D.108", "T25L_D.120", "T50L_D.0", "T50L_D.8", 

"T50L_D.18", "T50L_D.12", "T50L_D.24", "T50L_D.36", "T50L_D.48", "T50L_D.60", 

"T50L_D.72","T50L_D.84","T50L_D.120", "T75L_D.0", "T75L_D.8", "T75L_D.12", 

"T75L_D.18", "T75L_D.24", "T75L_D.36", "T75L_D.48", "T75L_D.60", "T75L_D.72", 

"T75L_D.84", "T75L_D.108",  "T75L_D.120", "Dur25_D.60", "Dur25_D.72", "Dur25_D.84", 

"Dur25_D.96", "Dur25_D.108", "Dur25_D.120","Dur50_D.12","Dur50_D.18","Dur50_D.24", 

"Dur50_D.36", "Dur50_D.48", "Dur50_D.60", "Dur50_D.72", "Dur50_D.84", "Dur50_D.120", 

"Dur75_D.0", "Dur75_D.8", "Dur75_D.12", "Dur75_D.18", "Dur75_D.24", "Dur75_D.36", 

"Dur75_D.48", "Dur75_D.60", "Dur75_D.72", "Dur75_D.84", "Dur75_D.96", "Dur75_D.108", 

"Dur75_D.120", "AREA", "AL1", "AL2", "AL3", "AL4", "f1", "Qr", "f2", "RoC", "S", "Dp6072", 

"Dp7284", "Dp8496", "Dp96108", "Dp108120", "Tp3648", "Tp4860", "Tp7284", "Tp108120", 

"D25_08", "D25_812", "D25_1824","D25_108120", "D24_2550", "D84_2550", "D96_2550", 

"D108_2550","D120_2550" 

"Qr" showed the highest importance for the MDA measure with a value of 85 while is 

"DminR_D.120" was the most important predictor variable for the MDG measure with a value of 

13,128 (Figure 97).  
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Figure 97: MDA and MDG Plots for “𝛼𝑅” 
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 DminR_D.120  T25L_D.48  T75R_D.72  
 D120_2550  T50L_D.0  Tp4860  T50R_D.24 
 DPeak_D.120  f2  T50R_D.96  T75R_D.60 
 DminR_D.108  D25_812  Dur75_D.0  TDminR_D.36 
 DminR_D.96  T25L_D.60  T75R_D.8  T50L_D.48 
 D108_2550  T50R_D.84  T75L_D.72  Dur75_D.48 
 DPeak_D.108  Dp96108  T75L_D.24  Dur50_D.36 
 DminR_D.84  AL1  Dur75_D.36  Dur50_D.60 
 DminR_D.72  TPeak_D.0  Dur50_D.24  Tp108120 
 D96_2550  T75L_D.60  T75R_D.96  T50R_D.18 
 DPeak_D.96  T75L_D.8  T75R_D.108  T50L_D.24 
 DminR_D.60  T50L_D.60  Dur75_D.108  DPeak_D.12 
 Qr  T50R_D.120  Dur25_D.108  Dur25_D.84 
 AL4  T50R_D.8  T50R_D.0  Dp7284 
 S  T50L_D.72  T25L_D.36  TPeak_D.108 
 T25R_D.72  TPeak_D.84  DPeak_D.8  T25L_D.84 
 AL2  T75R_D.0  T75R_D.12  T25L_D.108 
 DminR_D.48  T50L_D.84  Dur75_D.18  Dur75_D.96 
 AREA  T75R_D.84  TPeak_D.60  T75L_D.12 
 T25R_D.96  T75L_D.36  T50L_D.18  TPeak_D.72 

 T25R_D.108  T25L_D.24  T25L_D.72  Dur50_D.18 
 D84_2550  T50L_D.8  T75R_D.24  Dur75_D.84 
 f1  T25L_D.12  T75R_D.36  T25L_D.120 
 T25R_D.84  T50R_D.36  Dur25_D.96  Dur75_D.60 
 T25R_D.60  T50R_D.108  DPeak_D.60  Dur50_D.48 
 DPeak_D.84  Dur75_D.120  DPeak_D.0  Dur25_D.60 
 T25R_D.120  Dur50_D.120  T50L_D.36  Dur50_D.84 
 DminR_D.36  T75R_D.18  TPeak_D.12  Dur50_D.72 
 RoC  Dur75_D.24  TPeak_D.36  TDminR_D.24 
 T50R_D.60  TDminR_D.96  DPeak_D.18  T25L_D.96 
 TDminR_D.120  TPeak_D.8  Tp7284  T50R_D.12 
 D25_108120  T50L_D.12  T25R_D.36  T75R_D.120 
 AL3  Tp3648  TDminR_D.72  DPeak_D.48 
 T25L_D.0  Dur25_D.120  Dur50_D.12  T25R_D.24 

 T50R_D.48  DminR_D.18  T75L_D.18  Dp6072 
 T25L_D.8  Dur75_D.8  D24_2550  T25R_D.18 
 T25R_D.48  T75R_D.48  TDminR_D.60  T75L_D.84 
 Dp108120  Dp8496  DminR_D.12  T50L_D.120 
 D25_08  T25R_D.0  Dur75_D.12  Dur75_D.72 

 T75L_D.0  D25_1824  TPeak_D.96  T75L_D.108 
 T50R_D.72  T75L_D.48  TPeak_D.48  T25R_D.12 

 TDminR_D.108  TPeak_D.18  Dur25_D.72  DPeak_D.24 
 DPeak_D.72  T25L_D.18  TDminR_D.84  T75L_D.120 
 DminR_D.24  TPeak_D.24  TDminR_D.48  DPeak_D.36 

Figure 98: Importance of each Predictor Variable for Predicting “𝛼𝑅”  based on MDA and MDG Total Score (4 Sections) 
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Based the total score calculated for each predictor variable, the color for the predictor variable 

“DminR_D.120” showed the strongest intensity, indicating that this variable is the most important 

for  predicting the Rayleigh Damping Parameter “𝛼𝑅” for the unbound layer. Moving towards 

“DPeak_D.36”, the color intensity starts fading away, indicating a decrease in the corresponding 

variable importance (Figure 98). Note that the variables are divided into 4 sections in descending 

order of importance from left to right. 

 

Figure 99: Training Data Confusion Matrix and OOB Estimate for “𝛼𝑅” 

 

Figure 100:Testing Data Confusion Matrix and Statistics for “𝛼𝑅” 
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7.3.5 Rayleigh Damping Parameters (𝜷𝑹) 

The predictor variables that built up the optimal model for “𝛽𝑅” are: 

"DPeak_D.60","DPeak_D.72", "DPeak_D.84", "DPeak_D.96", "DPeak_D.108", "TPeak_D.0", 

"TPeak_D.8", "TPeak_D.12", "TPeak_D.18", "TPeak_D.24", "TPeak_D.36", "TPeak_D.48", 

"TPeak_D.60", "DminR_D.96", "DminR_D.108", "DminR_D.120", "DminL_D.96", 

"DminL_D.108", "DminL_D.120", "TDminR_D.120", "T25R_D.12", "T25R_D.18", 

"T25R_D.24", "T25R_D.36", "T25R_D.48", "T25R_D.60", "T25R_D.72", "T25R_D.84", 

"T25R_D.96", "T25R_D.108", "T25R_D.120", "T25L_D.0", "T25L_D.8", "T25L_D.12", 

"T25L_D.48", "T25L_D.60", "T25L_D.72", "T25L_D.96", "T25L_D.120","T50L_D.0", 

"T50L_D.8", "T50L_D.36", "T50L_D.72", "T75L_D.0", "T75L_D.8", "T75L_D.24", 

"T75L_D.36","T75L_D.48", "Dur25_D.120", "Dur50_D.12", "Dur50_D.18", "Dur75_D.12", 

"Dur75_D.18", "Dur75_D.24",  "Dur75_D.120", ","RoC", "BDI", "AUPP", "AL1", "f2", "Qr", 

"SD", "BI", "SCI", "BCI", "S", "AREA", "AUPP", "AL2", "AL3","T25L08", "T25L1218", 

"T25L1824", "T25L2436", "T25L3648", "T25L4860", "T25L7284", "T25L8496", "T25L96108", 

"T25L108120","T50L08", "T501218", "T50L1824", "T50L2436", "T50L3648", "T50L4860", 

"T50L6072", "T50L7284", "T50L8496","T50L96108", "T50L108120", "T75L08", "T75L812", 

"T75L1218", "T75L1824", "T75L2436", "T75L3648", "T75L4860", "T75L6072", "T75L7284", 

"T75L8496", "T75L96108", "T75L108120", "T25R108120", "T75R08", "T25R96108", 

"T50R08", "T25R2436",  "T50R3648", "T50R2436", "T75R2436", "T25R8496", "T75R8496", 

"T25R3648", "T75R4860", "T50R1824", "T75R108120", "T75R3648", "Dp96108"," Dp108120", 

"Dml96108", "Dml108120", "Tr08", "Tml108120" 

 

"T25L108120" showed the highest importance for the MDA measure with a value of 58 while 

is "DPeak_D.108" was the most important predictor variable for the MDG measure with a value 

of 14,371 (Figure 101). 
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Figure 101:MDA and MDG Plots for “𝛽𝑅” 
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 DPeak_D.108    
 DminR_D.120  T75L_D.8  T25L96108 
 DPeak_D.96  Dur75_D.24  T25L4860 
 DminR_D.108  T50L_D.0  T25R8496 
 Tr08  Dur75_D.18  T50L2436 
 DminR_D.96  Dur50_D.18  T50L3648 
 DminL_D.120  T50L108120  AL1 
 DPeak_D.84  T25R96108  T75L96108 
 DminL_D.108  T50L_D.8  T25L7284 
 DminL_D.96  TPeak_D.8  T75L3648 
 T25R_D.48  TDminR_D.120  T25L8496 
 Dml108120  T25L_D.0  T75L2436 
 Dur75_D.120  T25L_D.8  Qr 
 T25R_D.60  TPeak_D.0  T50L8496 
 T25R_D.36  Dur75_D.12  T75L08 

 T25R_D.72  Dur25_D.120  SCI 
 Tml108120  Dp108120  BI 

 TPeak_D.36  Dur50_D.12  BDI 
 T25R_D.96  T50L_D.72  T50L4860 
 T25L_D.48  T75R108120  T75L7284 
 T25R_D.84  T25R_D.18  T75L4860 

 T25R108120  T25L_D.72  T25L1824 
 T50L_D.36  T25L_D.12  AREA 

 T75L_D.24  T75R4860  T50L6072 
 TPeak_D.24  T50R08  AUPP 
 T75L_D.36  T50R2436  T75L6072 
 T25L108120  T75R2436  T50L1824 
 T25L_D.60  T75L108120  S 
 T75L_D.48  T75R8496  AUPP.1 
 T25R_D.120  T25R_D.12  SD 
 TPeak_D.48  T25R2436  T25L1218 
 T25R_D.108  T25L_D.96  AL2 

 TPeak_D.60  BCI  T50L96108 
 Dml96108  DPeak_D.60  T50L08 
 TPeak_D.18  T25L_D.120  T75L1824 
 Dp96108  T75R3648  T50L7284 
 T25R_D.24  T25L3648  T751218 
 T75R08  f2  AL3 

 DPeak_D.72  RoC  T501218 
 TPeak_D.12  T50R1824  T75L8496 
 T50R3648  T25R3648  T25L08 

 T75L_D.0  T25L2436  T75L812 
 

Figure 102:Importance of each Predictor Variable for Predicting “𝛽𝑅” based on MDA and MDG Total Score (3 Sections) 
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Based the total score calculated for each predictor variable, the color for the predictor variable 

“DPeak_D.108” showed the strongest intensity, indicating that this variable is the most important 

for  predicting “𝛽𝑅”. Moving towards “T75L812”, the color intensity starts fading away, indicating 

a decrease in the corresponding variable importance (Figure 102).  Note that the variables are 

divided into 3 sections in descending order of importance from left to right. 

 

Figure 103: Training Data Confusion Matrix and OOB Estimate for “𝛽𝑅”   

 

Figure 104:Testing Data Confusion Matrix and Statistics for “𝛽𝑅”   
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7.3.6 Stiff Layer Thickness measured from Surface (𝒉𝟑) 

The predictor variables that built up the optimal model for “ℎ3” are: 

"DPeak_D.108","DPeak_D.120","TPeak_D.120","DminR_D.18","DminR_D.48", 

"DminR_D.60","DminR_D.72","DminR_D.84", "DminR_D.108", 

"DminR_D.120","Dur25_D.48","Dur25_D.108","Dur25_D.120","Dur50_D.120","Dp108120", 

"Tp108120", "T25R3648", "T25R8496", "T25R108120", "T50R96108", "T50L108120" 

According to the MDA and MDG plots (Figure 105), the predictor variables that showed the 

highest importance for the MDA measure is "Dp108120" with a value of 70 while that for the 

MDG measures is "T25R3648" with a value of 28,755. 

 

 

Figure 105: MDA and MDG Plots for “ℎ3” 
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Based the total score calculated for each predictor variable, 

the color for the predictor variable “T25R3648” showed the 

strongest intensity, indicating that this variable is the most 

important for  predicting the stiff layer thickness measured 

from the surface “ℎ3” of the subgrade layer. Moving towards 

“TPeak_D.120”, the color intensity starts fading away, 

indicating a decrease in the corresponding variable 

importance (Figure 106). 

 

 

 

Figure 107: Training Data Confusion Matrix and OOB Estimate for “ℎ3” 

 

 

 T25R3648 

 Dur50_D.120 

 T25R108120 

 DPeak_D.120 

 DminR_D.48 

 T25R8496 

 DminR_D.120 

 DminR_D.72 

 T50R96108 

 DminR_D.18 

 Dur25_D.120 

 DminR_D.84 

 DminR_D.108 

 DminR_D.60 

 Dur25_D.48 

 Dp108120 

 DPeak_D.108 

 Dur25_D.108 

 T50L108120 

 Tp108120 

 TPeak_D.120 

Figure 106: Importance of each Predictor Variable for Predicting “h3” based on MDA and MDG Total Score 
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Figure 108: Testing Data Confusion Matrix and Statistics for “ℎ3” 
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Chapter Eight 

 

Discussion and Conclusion 

8.1 Building Neural Networks (NN) and Decision Trees (DT) 

The main objective of this research project was to build a predictive model for the seed (response) 

variables. Using the training dataset, two strategies were initially tested for regression: (1) Building 

a Neural network (NN), (2) Building a Decision Tree. Once the model is built, its efficacy can be 

assessed using the testing dataset. Specifically, the testing data will be run through the model (the 

built NN or DT) to predict values for each response variable. The Root Mean Square Error (RMSE) 

is then calculated as a mean to compare the actual versus the predicted values. Note that Neural 

Networks were built to predict the full vector of response variables while Decision Tree models 

were built individually for each response variable. 

Several hardships were encountered by following these strategies. First, the data itself is large; 

bringing it into the environment was consuming a lot of time. Second, building the models 

consistently hits hard memory bounds that regularly crashed R-Studio. Moreover, the algorithm 

erroneously used the response variables to predict the other response variables, leading therefore 

to illogical results. Interestingly, even being fed the target variables as part of the predictor set, the 

algorithm failed to return an RMSE value of zero. This implied that the categorical structure of the 

target variables, as a result of the simulation design and some of the predictors, is posing problems 

when they are treated as continuous variable inputs to the machine learning algorithms.    

As previously mentioned, the biggest hardship in all of this work is that, building these models 

required several iterations.  Each iteration took more than 24 hours to run and generate an outcome 

given no access to sufficient computing resources. For this reason, a classification model using 

Random Forests was adopted instead of a regression model.  

8.2 Building Random Forests 

The Random Forest (RF) model is considered as a prevalent method in statistics because of its 

simple applicability to both regression and classification problems. Such models show high 

applicability and accuracy especially in problems with large dimensions and with correlated 

predictor variables. Moreover, variable selection is essential for prediction and interpretations, 
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specifically for large sets such as the ones used in this research project. The most promising 

predictor variables are selected by a method based on RF that uses the (MDA) and the (MDG). 

When a variable is omitted from a training dataset, the MDA provides an estimation of the loss in 

the prediction or the model’s performance. Note that if two variables are relatively redundant, then 

eliminating one of these variables may not result in significant improvements in the performance, 

but it will make the other variable more relevant and important. As for the MDG, the GINI is 

mainly a measure of the node impurities. In other words, it defines the degree of the nodes’ purity 

if that variable was used to separate the data. The greatest purity indicates that each node includes 

only components that belong to one class. After omitting a variable, evaluating the decrease in the 

MDG values helps in realizing how crucial that variable is for accurately splitting the data. 

Generally, researchers only use the Out-Of-Bag (OOB) impurity or error as a mean to estimate 

and evaluate the importance of each predictor variable under study, thus considering only one of 

the MDA or MDG measures. In this research paper, however, both measures are taken into 

account. The two measures are mainly considered as equally significant, which means that the rule 

followed when scoring the two measures is identical. A higher score is given for the variable of 

higher importance. To approach this method from a simpler perspective, the MDA value obtained 

for each variable is rounded up and considered as the MDA score. As for the MDG, and since the 

values are generated in thousands, they are scaled by dividing the obtained value by a hundred and 

rounded up, and then assigned as the MDG score. For example, when predicting the AC Master 

Curve Sigmoidal Coefficient “Alpha (𝛼)”, the MDA and MDG values for the predictor variable 

"T75R_D.0" were 392.21784 and 37,373.69, respectively. Consequently, "T75R_D.0" was 

awarded an MDA score of 393 and an MDG score of 374. Then the total score is determined by 

summing up the aforementioned scores. The predictor variables are therefore sorted in descending 

order of importance whereby the higher total score matches higher importance. Based on that, the 

first fifty percent of the variables’ count are selected as the new variables to build a new RF model. 

The process is repeated as the error rate keeps on decreasing. Once the error rate starts increasing, 

a new set of predictor variables is tested while following the aforementioned process. 

Consequently, the final set of predictor variables that build the best RF model is determined for 

each seed variable. Note that the total score value of a predictor variable shall only be compared 

to the total score value of the other predictor variables that build the model for one seed variable. 

It is meaningless to compare the total score values between different seed variables. For this 



139 

 

reason, the total score values for each seed variable are visualized by color rather by a numeric 

value (Figures 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106). As the color intensity decreases, 

the total score corresponding to that predictor variable decreases, i.e., the importance of this 

predictor variable also decreases.  

The error rate is mainly computed from the overall accuracy value which is extracted from 

the confusion matrix. By definition, the latter categorizes the actual values against the predictions 

made. It mainly includes 2-dimentions, whereby the first dimension represents the predicted values 

while the other indicates the actual values. The individual rows within the confusion matrix 

represents the actual values while each column is responsible for the predictor variables. This may 

also be presented in an opposite manner as it is the case in this research project. Normally in a 

confusion matrix, the target class is known by the positive class while all the other classes are 

referred to as the negative classes. The relationship between both, the positive class and the 

negative classes, is expressed in the confusion matrix through four categories: (1) TP 

(True Positive) whereby the class is classified correctly as a target class, (2) TN (True Negative) 

whereby the class is classified correctly as a negative class, (3) FP (False Positive) whereby the 

class is classified wrongly as a target class, (4) FN (False Negative) whereby the class is 

classified wrongly as a negative class. The items placed on the diagonal of the confusion matrix 

designate the correct classifications/predictions i.e., (TP) and (TN), while the off- diagonal items 

designate the wrong classifications/predictions i.e., (FP) and (FN).  However, in this research, the 

main objective is to have correct classifications whereby the predictions match the actual values 

irrespective of the class type. For this reason, the true negatives and the true positives are both 

vital. Though it is important to mention that R-studio sets, by default, the first level as a positive-

class for the seed variables (response variables) that only have two levels such as the AC Master 

Curve Sigmoidal Coefficients “Delta (𝛿)” (0.5, 1) and “Gamma (𝛾)” (-0.51, -0.46). The positive 

class was therefore selected by R-Studio to be class “0.5” for “Delta (𝛿)” and class “-0.51” for 

“Gamma (𝛾)”, (Figures 68 and 72). Additionally, the specificity, sensitivity, Positive Predictive 

Values (PPV) and Negative Predictive Values (NPV) are statistical measures generated by R-

Studio. The proportion of the TNs and the TPs are expressed by the specificity and sensitivity, 

respectively. The PPV (also known by precision) is the ratio of the TPs over the total predicted 

results while the NPV is the ratio of the TNs over the total predicted results. The difference 

between PPV and the sensitivity is that the PPV refers to the certainty degree of the TPs while the 
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sensitivity refers to the certainty degree of not excluding the positives. High values for the 

aforementioned statistical measures correspond to correct predictions, which is the case for all the 

seed variables except for the Rayleigh Damping Parameter of the PCC layer “𝛼𝑅𝑃𝐶𝐶”. For seed 

variables with more than 2 classes, the aforementioned statistical measures are determined by 

comparing each class to the other classes. For each case, the Kappa statistic and the overall 

accuracy are computed. Note that the latter is mainly calculated while considering a 95% 

confidence and a 1-sided test to check whether the overall accuracy exceeds the No Information 

Rate (NIR). By definition, the class with the highest percentage in the testing dataset is deemed to 

represent the NIR. The significance of the RF models created for each seed variable was confirmed 

as the overall accuracy was found to be greater than the No Information Rate. This is also validated 

by the small P-values generated for the models built. Additionally, the Kappa (Cohen's k-

coefficient) determines the agreement degree between the variables. The values normally range 

between -1 ≤ Kappa value ≤ 1 whereby a value of 0 indicates no agreement while a value of 1 

indicates a full agreement. However, a negative value indicates an agreement that is deemed worse 

than the random. The Kappa values generated by the RF models built showed values closer or 

equal to 1 for all the seed variables except for “𝛼𝑅𝑃𝐶𝐶”. Thus, indicating a good agreement between 

the variables. Lastly, the McNemar’s Test P-value is computed to compare the classifiers’ 

performance from the testing dataset. The McNemar test generated NA values for the following 

seed variables alpha (𝛼), Beta_prime (𝛽′), 𝐸1 , 𝐸2  , 𝛽𝑅𝑃𝐶𝐶  , , 𝛽𝑅 and ℎ3 . 

As previously mentioned, the dataset was divided into testing and training sets. Several 

practices have been considered for data-preprocessing. Once the data is relatively fully-

preprocessed, the analysis can be initiated. Yet, if the entire dataset is used to run the model and is 

reused to evaluate the results, a rather too optimistic outcome is most likely generated. Therefore, 

it is essential to divide the dataset into a training set that can be used to build the model and a 

testing set to test and evaluate the results. The most common division was applied in this research 

project which considers a training dataset that constitute around two-thirds of the data (~65%) and 

a testing dataset that contains around one-thirds of the data (~35%). The number of observations 

differed between the seed variables that belong to the AC layer in the flexible pavements, the PCC 

layer in the rigid pavements and in the unbound layers underlying both AC and PCC layers.  
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Table 27: Number of Observations for AC Layer in Flexible Pavements 

 Number of observations for AC Layer 

Entire Dataset 551,124 

Training Dataset  358,230 

Testing Dataset 192,894 

 

Table 28: Number of Observations for PCC Layer in Rigid Pavements 

 Number of observations for PPC Layer 

Entire Dataset 413,343 

Training Dataset  268,672 

Testing Dataset 114,671 

 

Table 29:Number of Observations for Unbound Layer Underlying AC and PCC Layers 

 Number of observations for Unbound Layers 

Entire Dataset 964,467 

Training Dataset  626,903 

Testing Dataset 337,564 

 

For the random forest algorithm, the “randomForest” package is used in R-studio to initiate 

the running process. To build a random forest model, several parameters shall be initially defined 

including the “target variable”, “ntree”, “mtry”, and the “importance”.  In this case, the target 

variable are the seed variables: alpha (𝛼), Beta_prime (𝛽′), Delta (𝛿), Gamma (𝛾), 𝐸1 , 𝐸2 , 𝐸3  , 

𝐸4 , 𝛼𝑅𝑃𝐶𝐶  , 𝛽𝑅𝑃𝐶𝐶  , 𝛼𝑅 , 𝛽𝑅  and ℎ3 . Each variable was tested individually using its corresponding 

testing dataset and therefore, a total of 13 RF models were created. The “ntree” parameter identifies 

the number of trees required to build the model. As the number of trees increases, the 

computational or the building time increases. For this reason, the “ntree” value that tend to 

minimize the OOB error rate was chosen. For example, 450 trees were selected to build the random 

forest model for the AC master curve sigmoidal function coefficient “Delta (𝛿)”. Choosing a lower 

count than 450 trees will increase the error (Figure 109). However, a model with a higher count 

will generate the same result as the model with 450 trees but with a longer computational time. 

Therefore, 450 trees build the optimal random forest model for the seed variable “Delta (𝛿)”. On 
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the other hand, 200 trees were enough to build an optimal RF model to predict the modulus of 

elasticity of the subgrade layer “𝐸3” (Figure 110). The same logic was followed to select the 

optimal number of trees to build the Random Forest models for each seed variable (Table 4 in 

discussion doc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 109: Variation of OOB-Estimate of Error Rate versus Number of Trees for rf_Delta Model 

Figure 110: Variation of OOB-Estimate of Error Rate versus Number of Trees for rf_𝐸3 Model 
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OOB error is a valuable measure used to differentiate between the different RF classifiers. It is 

computed through counting, however, several observations found in the training datasets are 

misclassified. For example, the off-diagonal items in Figure 67 for the seed variable “Delta (𝛿)” 

showed values of 4,291 and 3,882 for a total of 8,173 wrong classifications in the training dataset. 

Dividing the number of wrong classifications (8,173) by the number of observations in the training 

dataset (358,231; Table 27), the OOB estimate of error rate is obtained (2.28%) as shown in Figure 

67. Therefore, the accuracy of the training dataset is 97.72% (100% - 2.28%) which is slightly 

lower than the overall accuracy which is 97.86% (Figure 68). 

Moving toward the testing data confusion matrix. As previously mentioned, the main 

objective of a confusion matrix is to provide the comparison between the predictions done from 

the built model with known outcomes A two-class confusion matrix, that demonstrates the 

distribution of the predicted and the actual values of the testing dataset, is observed in Figure 68. 

An example on how to read a confusion matrix in Figure 68 is discussed afterwards. 

➢ 94,282 items are correctly predicted as class “0.5”, thus the predictions match the 

actual values  

➢ 94,479 items are correctly predicted as class “1”, thus the predictions match the actual 

values 

➢ 2,207 items are wrongly predicted as class “1”. This indicate that the actual values 

belong to class “0.5” but they are wrongly predicted as class “1”. 

➢ 1,926 items are wrongly predicted as class “0.5”. This indicate that the actual values 

belong to class “1” but they are wrongly predicted as class “0.5”. 

In other words, the RF model predicted 0.5 as 0.5, 94,282 times, 0.5 as 1, 2,207 times, 1 as 1, 

94,479 times as 1 as 0.5, 1,926 times. From these results, one can conclude that a total of 188,761 

predictions matched the actual values from the testing dataset that constitute 192,894 observations 

(Table 27). Thereby, the ratio of the correct predictions over the number of observations gives the 

overall accuracy of 97.86% (Figure 68). Similarly, a 3-class confusion matrix is observed for the 

RF-model built to predict the PCC Rayleigh Damping Parameter “𝛽𝑅𝑃𝐶𝐶” (Figure 84). As shown, 

the off-diagonal items are found to be zero signifying that the predictions match the actual values. 

This therefore explains the 100% overall accuracy for this RF model.  

Normally, a certain threshold should be set to define an acceptable error rate.  However, in 

the case of this research project, all the available predictor variables (a total of 569 variables) were 
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tested to achieve the highest possible accuracy for each seed variable. Note that the latter differ 

from one seed variable to another. The set that generates the lowest OOB-error rate and the highest 

overall accuracy while meeting the proper characteristics of the aforementioned statistical 

measures was selected. This was mainly achieved by testing several trials; each trial includes a 

different set of predictor variables. Consequently, the chosen set (in Chapter 7: Results) is essential 

to build the best RF model for its corresponding seed variable. Omitting any variable will lead to 

an increase in the OOB-error rate and a decrease in the overall accuracy.   

The OOB-Estimate of error rate and the overall accuracy values obtained dictate that the 

predictor variables selected to build the RF models are properly trained and generate accurate 

predictions. This was the case for all the seed variables under study except for the for the Rayleigh 

Damping Parameter of the PCC layer “𝛼𝑅𝑃𝐶𝐶” whereby an accuracy of 58.65% was observed. 

Such results, however, are logical. To visualize the effect of “𝛼𝑅𝑃𝐶𝐶” on the deflection, the 

combinations that only show a variation in the “𝛼𝑅𝑃𝐶𝐶” variable were selected (Table 31). Their 

corresponding deflections generated by Pulse_FE are plotted accordingly at different offsets from 

the applied load (Figure 114).  

Table 31: Rigid Pavement Combinations with Varying “𝛼𝑅𝑃𝐶𝐶” 

Combination ℎ1  ℎ2 𝐸1 𝐸2 𝐸3 𝛼𝑅𝑃𝐶𝐶  𝛽𝑅𝑃𝐶𝐶  𝛼𝑅 𝛽𝑅  

FWD 

Pulse 

Duration 

R000001 9 6 2000 20 5 0 0.002 0 0.002 20 

R000082 9 6 2000 20 5 10 0.002 0 0.002 20 

R000163 9 6 2000 20 5 20 0.002 0 0.002 20 
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Figure 112: Density Plot for three Combinations 

Figure 113: Deflection Plots for three Combinations 
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At each offset, the deflections showed minimal variations for the three different 

combinations/experiments. Moreover, the density plot displayed that the distribution of the 

deflection values formed a cluster at values equal or close to zero. Therefore, one can conclude 

that the Rayleigh Damping Parameter of the PCC layer “𝛼𝑅𝑃𝐶𝐶” has slight effect on the deflection 

and consequently on the velocity. Such behavior can be correlated to the low accuracy obtained. 

This also explains the fact why the “𝛼𝑅𝑃𝐶𝐶”  variable is sometimes kept as zero. The latter may 

also be applied to the Rayleigh Damping Parameter of the unbound layers “𝛼𝑅”. Unlike other seed 

variables, “𝛼𝑅” recorded the highest count of predictor variables needed to achieve an accuracy of 

98.48%.  

8.3 Validation 

For validation purposes, the performance of the random forest models was further tested using 

new synthetic data of known target values and with real-life deflection data. 

8.3.1 Original Combinations  

Initially, deflection files were randomly selected from the original combinations and the 

predictions matched the original values for flexible and rigid pavement structures. 

1. Flexible Pavement, ℎ1= 3 inches, ℎ2= 6 inches, FWD Pulse Duration = 20 msec. haversine. 

Table 32: Prediction Vs. Original for Combination 1 – Flexible Pavement 

Comb 1 Delta (𝛿) Alpha (𝛼) 
Beta_prime 

(𝛽′) 
Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

Original 0.5 3 -2.11013 -0.46 20 5 0 0.002 

Predicted 0.5 3 -2.11013 -0.46 20 5 0 0.002 

Time to 

predict (sec) 
2.4 3.1 0.1 2 

2.3

2 
0.01 5 3.2 

 

2. Flexible Pavement, ℎ1= 3 inches, ℎ2= 12 inches, FWD Pulse Duration = 40 msec. haversine. 

Table 33: Prediction Vs. Original for Combination 10,200 – Flexible Pavement 

Comb10200 Delta (𝛿) Alpha (𝛼) 
Beta_prime 

(𝛽′) 
Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

Original 0.5 3 0.663709 -0.51 200 30 20 0.002 

Predicted 0.5 3 0.663709 -0.51 200 30 20 0.002 

Time to 

predict (sec) 
1.42 4.5 0.1 1.86 1.48 0.01 3.19 2.56 
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3. Flexible Pavement, ℎ1= 6 inches, ℎ2= 12 inches, FWD Pulse Duration = 30 msec. haversine 

Table 34: Prediction Vs. Original for Combination 36,619 – Flexible Pavement 

Comb 36,619 Delta (𝛿) Alpha (𝛼) 
Beta_prime 

(𝛽′) 
Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

Original 0.5 3.1 -2.11013 -0.46 200 5 0 0.006 

Predicted 0.5 3.1 -2.11013 -0.46 200 5 0 0.006 

Time to 

predict (sec) 
1.42 2.91 0.1 1.86 1.48 0.01 2.1 1.9 

 

4. Rigid Pavement, ℎ1= 9 inches, ℎ2= 6 inches, FWD Pulse Duration = 20 msec. haversine 

Table 35:Prediction Vs. Original for Combination 1 – Rigid Pavement 

 Comb 1 E1 E2 E3 𝛼𝑅𝑃𝐶𝐶  𝛽𝑅𝑃𝐶𝐶  𝛼𝑅 𝛽𝑅 

Original 2000 20 5 0 0.002 0 0.002 

Predicted 2000 200 5 10 0.002 0 0.002 

Time to 

predict (sec) 
2 1.2 0.01 2 2.31 4.1 3 

 

5. Rigid Pavement, ℎ1= 21 inches, ℎ2= 36 inches, FWD Pulse Duration = 40 msec. haversine 

Table 36: Prediction Vs. Original for Combination 413,343 – Rigid Pavement 

 Comb413343 E1 E2 E3 E4 𝛼𝑅𝑃𝐶𝐶  𝛽𝑅𝑃𝐶𝐶  𝛼𝑅 𝛽𝑅 h3 

Original 6000 200 30 250 20 0.006 20 0.006 600 

Predicted 6000 200 30 250 20 0.006 20 0.006 600 

Time to 
predict (sec) 

2 1.2 0.01 2.1 2.3 1.9 3.1 2 1.2 

 

8.3.2 Synthetic Data_2 

A new pavement structure was tested using synthetic data that contains deflections up to offset 72- 

inches. However, the models were built while considering predictor variables that correspond to 

offsets beyond offset 72- inches. For the models to work, such predictors must be assigned a certain 

value. Consequently, 4 methods were tested by assigning the predictor variables that correspond 

to offsets 84-inches through 120-inches as such:  

1. Predictor Variables assigned equal to zero (File A10_0) 

2. Predictor Variables assigned equal to those at offset 72-inches (File A10_72) 

3. Regenerate deflections at offsets 84-inches through 120-inches using Pulse_FE and extract 

their corresponding parameters (A10_120) 
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4. Re-build new RF Models that exclude the predictor variables at offsets 84-inches through 

120-inches (A10) 

Method 4 was tested because in real-life, sensors do not exist beyond offset 72-inches. Therefore, 

by comparing the predictions obtained from this method to the prediction where all sensors up to 

120-inches are included, one can determine if there is any benefit of using additional sensors 

beyond the 72-inch offset.  

As previously mentioned, excluding any predictor variables from the chosen set will cause a 

slight decrease in the model’s accuracy. The predictions, on the other hand, might or might not be 

affected depending on how important that specific variable is in predicting. As shown below, the 

accuracy experienced a slight decrease, yet it remained high. 

Table 37: New Accuracy Vs. Original Accuracy 

Seed Variable  Original Accuracy (%) New Accuracy (%) 

Delta (𝛿) 97.86 97.84 

Alpha (𝛼) 97.38 97.32 

Beta_prime (𝛽′) 98.14 98.12 

Gamma (𝛾) 97.85 97.65 

E2 99.84 99.73 

E3 100 99.96 

𝛼𝑅 98.48 98.07 

𝛽𝑅  99.82 99.63 

𝛽𝑅𝑃𝐶𝐶  100 99.99 

h3 99.99 96.16 

E4 99.67 97.9 

 

Table 38: Number of Predictor Variables Corresponding to Offsets 84 through 120-inches in the Optimal Model 

 Seed Variable  
Number of Variables at Offset 

beyond 72-inches in Optimal Model 

Total Number of Predictor 

Variables in Optimal Model 

Delta (𝛿) 2 20 

Alpha (𝛼) 1 12 

Beta prime (𝛽′) 4 19 

Gamma (𝛾) 4 25 

E2 6 24 

E3 8 17 

𝛼𝑅 54 175 

𝛽𝑅  40 124 

𝛽𝑅𝑃𝐶𝐶  3 11 

h3 15 21 

E4 39 65 
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The predictions matched the target values for all the seed variables except for “E2”, “E3” and “𝛼𝑅” 

(Table 38). This behavior is related to the fact that around 50% of the predictors used to build their 

models correspond to predictors at offsets 84 through 120- inches (Table 38); which are mainly 

experiencing variation from method to method. Note that “E1” and “𝛼𝑅𝑃𝐶𝐶” do not include 

predictor variables that correspond to offset beyond the 72-inches. 

Table 39: Predictions Vs. Target Values for the 4 Methods 

Seed Variable  Target A10_0 A10_72 A10_120 A10 

Delta (𝛿) 1 1 1 1 1 

Alpha (𝛼) 2.6 2.6 2.6 2.6 2.6 

Beta_prime (𝛽′) -0.7 -0.7 -0.7 -0.7 -0.7 

Gamma (𝛾) -0.51 -0.51 -0.51 -0.51 -0.51 

E2 50 20 20 50 50 

E3 5 30 5 5 5 

𝛼𝑅 10 20 0 10 10 

𝛽𝑅  0.006 0.006 0.006 0.006 0.006 

 

The predictions showed that choosing arbitrary values from the predictors at offsets beyond 72-

inches will not match the target values (Methods 1 and 2). However, selecting relevant values 

(Method 3) or excluding those specific predictors (Method 4) will result in correct predictions that 

match the target values. This proves that the models perform properly based on how they are 

trained. The deflections in the FE generated A10 file were further tested by including random 

errors up to 5, 10 and 25% and reported in A15, A20, and A35, respectively. The models that 

excluded the predictor variables beyond offset 72-inches were used to perform the predictions. For 

the A35 file, the predictions matched the target values of all the seed variables except for 

“Gamma (𝛾)”. The same applies for files A15 and A20 except for the predictions of “Delta (𝛿)”, 

and “Alpha (𝛼)” where the predictions did not match the target values. 

Table 40: Predictions for A10, A15, A20 & A35 Vs. Target Values 

Seed Variable  Target A10 A15 A20 A35 

Delta (𝛿) 1 1 0.5 0.5 1 

Alpha (𝛼) 2.6 2.6 3.2 3 2.6 

Beta_prime (𝛽′) -0.7 -0.7 -0.7 -0.7 -0.7 

Gamma (𝛾) -0.51 -0.51 -0.51 -0.46 -0.46 

E2 50 50 50 50 50 

E3 5 5 5 5 5 

𝛼𝑅 10 10 10 10 10 

𝛽𝑅 0.006 0.006 0.006 0.006 0.006 
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8.3.3 Synthetic Data_3 at 3 Different Temperatures (68,104 and 392˚F) 

For this set of synthetic data, the target values do not belong to any of the classes or limits initially 

used. The RF categorical models built will only predict values from the set included in the input 

data. Hence, being limited to a specific set makes the predictions somehow far from the target 

values in some cases. Consequently, the predictions made by each individual tree within the 

random forest model were reported from R-Studio to calculate the average prediction. This step 

was performed for the purpose of imitating a random forest Regressor while having a random 

forest classifier. When compared to the classifier, the average prediction is closer to the target 

values for some seed variables.  

Table 41: Predictions Using Classifier & Average Vs. Target for Temp. 68˚F 

Seed Variable  Target Classifier Average  

Delta (𝛿) 0.6991 1 0.8133 

Alpha (𝛼) 2.7761 2.7 2.7507 

Beta_prime (𝛽′) -0.72193 -0.7 -0.5778 

Gamma (𝛾) -0.5887 -0.46 -0.4813 

E2 35 20 27.65 

E3 7 5 5 

𝛼𝑅 30 20 15.88 

𝛽𝑅 0.003 0.002 0.0039 
Table 42: Predictions Using Classifier & Average Vs. Target for Temp. 104˚F 

Seed Variable  Target  Classifier Average  

Delta (𝛿) 0.6991 0.5 0.634444 

Alpha (𝛼) 2.7761 3 3.035333 

Beta_prime (𝛽′) 0.445651 0.530012 0.406001 

Gamma (𝛾) -0.5887 -0.51 -0.4949 

E2 35 20 22.325 

E3 7 5 5 

𝛼𝑅 30 20 16.26 

𝛽𝑅 0.003 0.006 0.004032 
Table 43: Predictions Using Classifier & Average Vs. Target for Temp. 392˚F 

Seed Variable  Target  Classifier Average  

Delta (𝛿) 0.6991 0.5 0.716667 

Alpha (𝛼) 2.7761 3.1 2.879667 

Beta_prime (𝛽′) -2.1746 -2.11013 -2.09678 

Gamma (𝛾) -0.5887 -0.46 -0.474 

E2 35 50 40.925 

E3 7 5 5 

𝛼𝑅 30 20 15.22 

𝛽𝑅 0.003 0.002 0.003756 
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8.3.4 Synthetic Data Including Random Errors 

The deflection files for the rigid and flexible pavement structures tested in section 8.3.1 are further 

used while including random errors inside them. The latter was achieved by multiplying the 

deflection at each offset by an error equal to ( 1 + 
𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟

100
 ). Note that the random number 

generator in Microsoft Excel was used to generate the random numbers. Therefore, the effect of 

such random errors on the predictions can be analyzed.  

For comparison purposes, the predictions were generated using RF classifier and RF regressor 

(average predictions of the trees) models that: 

1. Include sensors up to 72-inches 

2. Include sensors beyond 72-inches 

The predictions are shown below for the Flexible and Rigid Pavement Structures. 

8.3.4.1 Flexible Pavement Structure  

 
Table 44: Predictions from RF Classifier Vs. Average Predictions for Combination 1 – Flexible Pavement  

Combination 1 RF Classifier Average Predictions 

 Seed Variable Target 72-inches 120-inches 72-inches 120-inches 

Delta (𝛿) 0.5 1 1 0.782222 0.754444 

Alpha (𝛼) 3 2.5 2.5 2.729 2.733 

Beta_prime (𝛽′) -2.11013 -2.11013 -2.11013 -1.92307 -1.91009 

Gamma (𝛾) -0.46 -0.46 -0.46 -0.477 -0.4758 

E2 20 20 20 26.75 31.175 

E3 5 5 5 5 5 

𝛼𝑅 0 0 0 0.8 1.82 

𝛽𝑅  0.002 0.002 0.002 0.002028 0.002004 
Table 45: Predictions from RF Classifier Vs. Average Predictions for Combination 36,619 

Combination 36,619 RF Classifier Average Predictions 

 Seed Variable Target 72-inches 120-inches 72-inches 120-inches 

Delta (𝛿) 0.5 1 1 0.816667 0.794444 

Alpha (𝛼) 3.1 3 3 2.841667 2.818667 

Beta prime (𝛽′) -2.11013 -2.11013 -2.11013 -2.15816 -2.14958 

Gamma (𝛾) -0.46 -0.46 -0.46 -0.4811 -0.4824 

E2 200 200 200 154.025 152.525 

E3 5 5 5 5 5.04 

𝛼𝑅 0 0 0 1.68 0.9 

𝛽𝑅  0.006 0.006 0.006 0.00584 0.005856 
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8.3.4.2 Rigid Pavement Structure  

 
Table 46: Predictions from RF Classifier Vs. Average Predictions for Combination 1 – Rigid Pavement  

Combination 1 RF Classifier Average Predictions 

 Seed Variable Target 72-inches 120-inches 72-inches 120-inches 

E1 2000 6000 NA 4080 NA 

E2 20 200 200 160.925 148.625 

E3 5 5 5 10.7 9.07 

𝛼𝑅𝑃𝐶𝐶  0 20 NA 10.14 NA 

𝛽𝑅𝑃𝐶𝐶  0.002 0.006 0.006 0.005656 0.005656 

𝛼𝑅 0 20 0 14.56 8.78 

𝛽𝑅  0.002 0.002 0.002 0.002848 0.002748 

 
Table 47: Predictions from RF Classifier Vs. Average Predictions for Combination 413,343 

Combination 413,343 RF Classifier Average Predictions 

 Seed Variable Target 72-inches 120-inches 72-inches 120-inches 

E1 6000 2000 NA 3733.333 NA 

E2 200 200 200 142.775 118.325 

E3 30 5 5 8.1 15.5 

E4 250 250 250 196 182.9 

𝛼𝑅𝑃𝐶𝐶  20 0 NA 3.86 NA 

𝛽𝑅𝑃𝐶𝐶  0.006 0.006 0.006 0.005652 0.00562 

𝛼𝑅 20 20 20 16.14 17.26 

𝛽𝑅  0.006 0.002 0.004 0.002632 0.003688 

h3 600 120 120 96.8 103.8 

Including random errors in the deflection files has affected the predictions for the rigid 

pavement more than that of the flexible pavement where some values were far from the target. Yet 

the average predictions of all trees generated a value that is closer to the target. The predictions for 

the flexible pavement matched the target values for all seed variables except for “Delta (𝛿)” and 

“Alpha (𝛼)”. 

8.3.5 Real-Life Data 

The FWD data for a testing performed on an LTPP section was used. The section consisted of 7.1-

inch AC layer (ℎ1 = 7.1 inch) and a 12-inch unbound granular base layer (ℎ2 = 12 inch) built 

over an untreated silty clayey subgrade. The section is subject to six different peak loadings, hence 

a total of 6 deflection files were used.  The deflections are further normalized to account for the 

27 kips load that is originally used in the analysis. Note that the files included deflections measured 
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at offsets 0, 8, 12, 18, 24, 36 and 60 inches from the center. Hence, to account for deflections at 

offsets 48 and 72 inches, interpolations and extrapolations were done. While using the RF classifier 

and the average predictions, two strategies were followed: 

1. Interpolating and extrapolating the deflections 

2. Interpolating and extrapolating the FWD Parameters 

The predictions of the sigmoidal coefficients are then used in the sigmoidal function to determine 

the dynamic modulus “𝐸1”. 

By following the first strategy, the predictions and the “𝐸1” values are as follows:  

Table 48: RF Classifier Predictions using Strategy 1 

Data Set 
RF Classifier 

Delta (𝛿) Alpha (𝛼) Beta_prime (𝛽′) Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

199406080909 0.5 2.7 -0.7 -0.46 20 5 0 0.006 

199407141004 0.5 3.2 -0.7 -0.46 20 5 20 0.004 

199407150812 0.5 3.2 -0.7 -0.51 20 5 10 0.004 

199407151014 1 3 0.53001232 -0.51 20 5 20 0.006 

199407151156 0.5 2.6 0.53001232 -0.46 20 5 0 0.006 

199407151329 0.5 3 0.53001232 -0.51 20 5 0 0.006 

 

Table 49: “𝐸1” Values from Sigmoidal Coefficients predicted by RF Classifier in Strategy 1 

Data Set E1 at 17 Hz (ksi) 

199406080909 403.792 

199407141004 991.258 

199407150812 1069.99 

199407151014 374.179 

199407151156 66.5877 

199407151329 118.326 
Table 50: Average Predictions using Strategy 1 

Data Set 

Average Predictions 

Delta (𝛿) Alpha (𝛼) 
Beta_prime 

(𝛽′) 
Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

199406080909 0.5955556 2.815 -0.8837606 -0.4834 32.225 5.15 8.38 0.004552 

199407141004 0.6988889 2.985667 -0.8046465 -0.4817 28.55 5.2 12.24 0.004344 

199407150812 0.67 2.970667 -0.8887981 -0.4854 29.15 5.15 9.88 0.004252 

199407151014 0.7944444 2.917 -0.2284067 -0.4852 29.675 5.15 13.26 0.00442 

199407151156 0.7455556 2.821333 0.2459763 -0.4847 27.2 5.05 8.18 0.004428 

199407151329 0.5511111 2.877333 0.4815562 -0.4882 26.825 5.05 8.88 0.004772 
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Table 51: “𝐸1” Values from Sigmoidal Coefficients using Average Predictions in Strategy 1 

Data Set E1 at 17 Hz (ksi) 

199406080909 772.618 

199407141004 1237.91 

199407150812 1237.48 

199407151014 665.096 

199407151156 251.703 

199407151329 118.955 

 

By following the second strategy, the predictions and the “𝐸1” values are as follows:  

Table 52: RF Classifier Predictions using Strategy 2 

Data Set 
RF Classifier 

Delta (𝛿) Alpha (𝛼) Beta_prime (𝛽′) Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

199406080909 0.5 2.7 -0.7 -0.46 20 5 0 0.006 

199407141004 0.5 3.2 -0.7 -0.46 20 5 20 0.006 

199407150812 0.5 3.2 -0.7 -0.51 20 5 10 0.004 

199407151014 1 3 0.53001232 -0.51 20 5 20 0.006 

199407151156 0.5 2.6 0.53001232 -0.51 20 5 0 0.006 

199407151329 0.5 3 0.53001232 -0.51 20 5 0 0.006 

 

Table 53: “𝐸1” Values from Sigmoidal Coefficients predicted by RF Classifier in Strategy 2 

Data Set E1 at 17 Hz (ksi) 

199406080909 403.792 

199407141004 991.258 

199407150812 1069.99 

199407151014 374.179 

199407151156 73.0021 

199407151329 118.326 
Table 54: Average Predictions using Strategy 2 

Data Set 

Average Predictions 

Delta (𝛿) Alpha (𝛼) 
Beta_prime 

(𝛽′) 
Gamma (𝛾) E2 E3 𝛼𝑅 𝛽𝑅 

199406080909 0.5911111 2.837 -0.8680412 -0.4831 32 6 9.18 0.004688 

199407141004 0.6955556 2.979 -0.8344 -0.4808 27.875 6.6 11.94 0.004396 

199407150812 0.6677778 2.977333 -0.9112826 -0.4854 28.4 6.05 9.44 0.004404 

199407151014 0.7955556 2.907 -0.2735121 -0.4851 28.4 6 13.46 0.004436 

199407151156 0.7477778 2.820667 0.2485083 -0.4851 25.85 5.4 7.68 0.004452 

199407151329 0.5544444 2.884667 0.4650529 -0.487 24.65 5.35 8.76 0.004772 
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Table 55: “𝐸1”  Values from Sigmoidal Coefficients using Average Predictions in Strategy 2 

Data Set E1 at 17 Hz (ksi) 

199406080909 784.333 

199407141004 1251.57 

199407150812 1275.71 

199407151014 699.029 

199407151156 251.956 

199407151329 123.993 

 

The RF Classifier generated the same predictions while following the two strategies, while the 

average predictions showed variations. 

The actual values for “𝐸1”, “𝐸2” and “𝐸3” are provided in Table 56. After comparison, the 

predictions for “𝐸1”and “𝐸2” are relatively close to the actual values. However, the predictions for 

the subgrade modulus “𝐸3” were far from the actual values.   

Table 56: Actual Values for the Moduli of Elasticity 

Data Set E1 E2 E3 

199406080909 580 39.2 13 

199407141004 314 31.4 13.2 

199407150812 338 34.5 13.4 

199407151014 244 28.8 13.1 

199407151156 156 29.3 12.7 

199407151329 107 30.4 12.6 

8.3.6 General Observations and Deductions  

8.3.6.1 RF Classifier vs. Average Predictions of all Trees 

Using models that include sensors up to 72-inches and beyond the 72-inches:  

➢ When the target values belong to the classes that are used to build the RF models, the 

predictions from the RF classifier match the target values. 

➢ When the target values do not belong to the classes that are used to build the RF models, 

the average predictions of the trees within the RF model are closer to the target than the 

ones from the classifier. 

This proves that the models are properly trained and have significant performance knowing that 

they are built on the categorical level. The predictions are further improved when considering the 

outcome from the individual trees. Therefore, generating more accurate predictions when 

analyzing existing pavement structures.  
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8.3.6.2 Predictions with Synthetic Data including Random Errors 

Using models that include sensors up to 72-inches and beyond the 72-inches: 

➢ Including random errors in the deflection files affected the predictions for the rigid 

pavement more than that of the flexible pavements. 

➢ The average predictions of all trees are sometimes closer to the target when compared to 

the RF classifier. 

The same behaviour was encountered when including the sensors up to and beyond the 72-inch 

offset. The predictions are even better sometimes when excluding the predictor variables 

corresponding to offsets 84 through 120-inches. This proves that the sensors located beyond the 

72-inch offset did not add any benefit nor did it improve the prediction.  

8.3.6.3 Predictions with Real-Life Data 

For some seed variables, the predictions generated by the RF models generated close predictions 

to the actual value. However, for the remaining seed variables, the RF models appeared to be very 

sensitive and not robust, even if they have a high fit. Consequently, the seed variables shall be 

further improved using other methods as they largely affect the backcalculation results.  

8.4 Summary 

As a brief summary, the dynamic approach was adopted in this research project to perform 

the analysis on 3- to 4-layered rigid and flexible pavement structures. For flexible pavements, the 

AC layer was modelled as an LVE material. However, the PCC layer and the unbound layers 

underlying both pavement types were modelled as LE materials while including the damping. The 

optimal mesh was determined using Gmsh for both pavement structures. Generally, three methods 

exist to simulate the infinite media, yet, the far boundary method was selected due to its time 

efficiency. A study was further performed to check and evaluate the impact of certain parameters 

on the seed variables. Generally, the FWD parameters (also known by deflection parameters) are 

mainly obtained from FWD time histories based on actual testing. In this research project, the data 

was simulated (synthetized) by Pulse_FE through running thousands of combinations, simulating 

the different pavement structures and various properties. The FWD parameters were then extracted 

by Pulse_Analyzer and were used to calculate the FWD Indices and the Difference Variables. 

Consequently, and by following a classification strategy, Random Forest models were built using 

those parameters to predict the seed variables. For robust analysis, the most promising predictor 

variables that significantly affect the response variables were selected. The variable selection 



158 

 

process was mainly based on the Variable Importance Measures, including the MDA and the MDG 

measures, that the Random Forest models offer. 

Random forest models were built for each of the AC master curve sigmoidal function 

coefficients: alpha (𝛼), Beta_prime (𝛽′), Delta (𝛿), Gamma (𝛾), the modulus of elasticity (𝐸1) 

and the Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) and (𝛽𝑅𝑃𝐶𝐶) of the PCC layer, the moduli of 

elasticity and the Rayleigh Damping Parameters (𝛼𝑅) and (𝛽𝑅) of the unbound layers and lastly 

for the stiff layer thickness measured from the surface (ℎ3 ). The significance of each model was 

quantified and evaluated based on several statistical measures. The developed models accurately 

predicted the aforementioned seed variables except for the Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) 

of the PCC layer. The significance and performance of the models were further validated by using 

new synthetic data as well as real-life data. Models with predictor variables corresponding to 

sensors up to 72-inches are compared to predictions where all sensors up to 120-inch are included. 

8.5 Conclusion 

The backcalculation process is not only laborious but also holds several discrepencies associated 

to the software features and to the user’s experience specifically when it comes to selecting seed 

variables. The chosen algorithm and its corresponding regularization techniques dictates the 

effectiveness of the analysis. For the backcalculation analysis of multi-layer rigid and flexible 

pavement structures, the selected seed variables may hold significant consequences on the final 

backcalculated outcomes and on the software’s performance. Additionally, the user also has a 

substantial impact on the results in terms of choosing seed variables to initiate the analysis, the

number of iterations performed and the termination norms. 

Previous records showed no valid solutions for estimating seed variables using the deflection 

time histories for flexible and rigid pavement structures. Using Machine Learning algorithms along 

with a classification analysis, this research project filled such gaps by developing prediction 

models for the seed variables within each layer of the pavement structure. The developed models 

accurately predicted all the seed variables except for the Rayleigh Damping Parameters (𝛼𝑅𝑃𝐶𝐶) 

of the PCC layer, yet such results were expected. It is important to note that such models do not 

necessitate the user’s subjective decisions and judgments. Due to their high prediction accuracy, 

creating such models will facilitate the analysis process for pavement engineers while obtaining 

reliable and reasonable backcalculation results. For the synthetic data, the model validation 

showed that the predictions done by the RF classifier were good, and are further improved when 
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using the average of all the trees within the RF. The predictions for the real FWD data, however, 

were not consistent for all the seed variables; some predictions were close while others were far. 

It is important to mention that classification models force the response variables to take only 

one value of a limited set of values. This implies that good predictions are obtained in the training 

dataset, but bad predictions might be potentially generated in reality. Moreover, and due to the 

large amount of data used, the lack of sufficient and powerful computing resources had largely 

affected the work flow and rendered the statistical analysis more challenging. This had also 

restricted the use of continuous or regression models. It is important to note that considering 

additional sensors beyond the 72-inches offset did not improve the prediction, hence there is no 

need to consider them in real life. For future work, the seed variables can be further improved by 

other methods including the Newton-Raphson Method or the models can be rebuilt on the 

continuous level using Neural Networks and regression analysis prior to their use in the 

backcalculation analysis.  
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