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Uplink Noma in UAV-Assisted IoT Networks

Ali Mrad

ABSTRACT

Non-orthogonal multiple access (NOMA) is one of the promising access technolo-

gies to improve spectral efficiency and serve a higher number of users in different

internet of things (IoT) systems. This technology proves important in scenarios

with time-sensitive services when data has to be collected before a set deadline,

otherwise, it is rendered useless, as well as, in scenarios with limited resources and

large number of users. Therefore, this thesis explores the potential of NOMA in

improving the performance of IoT networks served by unmanned aerial vehicles

(UAVs). The first part of the thesis considers the problem of data collection from

time-constrained IoT devices through deploying a UAV with uplink NOMA. This

problem is formulated to determine an optimized UAV trajectory, IoT devices

scheduling, and power allocation in the NOMA clusters that maximize the num-

ber of served devices while considering various constraints including the energy

and flight duration of the UAV and successive interference cancellation (SIC) in

the NOMA cluster. Given the complexity of the problem and the incomplete

knowledge about the environment, the problem is divided into two subproblems:

the first models the UAV trajectory and the selection of the first device in the

NOMA cluster at each time slot as a Markov Decision Process, and uses Proxi-

mal Policy Optimization to solve it. The second device is then selected using a

heuristic algorithm based on prioritizing devices with higher bit rate requirements

and strict deadlines. The second subproblem addresses power allocation inside

the NOMA cluster, and is formulated as an optimization problem for maximizing

the sum rates of the two selected users. Regarding the second part of the the-

sis, uplink NOMA with joint-transmission coordinated multi-point (JT-CoMP)
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is leveraged in a UAV-assisted IoT network. IoT devices with strong channel

conditions utilize NOMA to transmit to a single UAV closest to each device,

while the IoT device with poor channel conditions utilize JT-CoMP NOMA and

transmits to two UAVs. This problem is formulated as an optimization problem

to maximize the sum rate of the IoT devices given the NOMA, UAV, and IoT de-

vices constraints. The obtained problem is non-convex mixed-integer non-linear

program which is difficult to solve in a straightforward manner, hence alternating

optimization technique is used where the original problem is divided into two

subproblems. In the first subproblem the positions of the UAVs are optimized to

maximize the sum rate of the IoT devices and the second subproblem handles IoT

devices transmit power optimization then alternating between the two subprob-

lems is performed to improve the performance. For each subproblem, successive

convex approximation is leveraged to get a solution. Then, simulation results

are presented to demonstrate the performance gains of the proposed solutions as

compared to alternative solution approaches.

Keywords: Non-orthogonal multiple access (NOMA), Deep reinforcement learn-

ing (DRL), Internet of things (IoT), Unmanned Aerial Vehicle (UAV), Timely

data collection, Joint-Transmission Coordinated Multi-Point (JT-CoMP).
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Chapter One

Introduction

1.1 Motivation

Recent research articles on the internet of things (IoT) shows that the number

of IoT devices is expected to exceed one trillion devices by 2022, with the num-

ber of interconnected IoT devices expected to reach 75.44 billion by 2025 [1].

IoT introduced a new paradigm where a large number of devices are expected

to connect to a network, communicate with each other, and share information.

Therefore, different research addressed the integration and enhancement of IoT

with the current available networks and applications (such as wearables, build-

ings, and agriculture) given the different challenges and requirements of the IoT

devices [2] [3].

Moreover, IoT devices can operate in different environments and are utilized

for various applications in, for example, smart cities, agriculture, and infrastruc-

ture; however, these devices have limited capabilities and for many use cases, IoT

devices are constrained by, for example, the deadlines and reliability of the data

and the available resources. Therefore, data collection is necessary for many IoT

applications, especially in remote or inaccessible areas such as forests and rural

areas with little or no infrastructure. In particular, energy- and time-efficient

data collection is required to guarantee the different constraints of the IoT de-

vices; otherwise, the data collected may lose its value. To this end, UAVs are
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considered as a promising technology, for timely data collection from IoT devices,

due to their flexibility, low cost, ease of deployment, and high mobility [4], [5].

UAV-enabled wireless communications can achieve high throughput because of

the high probability of line-of-sight (LOS) between the UAVs and the IoT de-

vices [6]. Moreover, in disaster scenes with affected infrastructure, UAVs can

be deployed to provide wireless connectivity [7], [8], or to relay commands from

a remote server to certain IoT devices when there is no direct communication

link [9], [10]. Other benefits of using UAVs in a network include traffic offloading,

improving the user’s data rate, and improving the quality of service [11], [12].

All these use-cases highlight the role of UAVs in the next-generation mobile com-

munication network. However, UAV communication is limited by the mobility,

flight time, and available energy of the UAV.

Non-orthogonal multiple access (NOMA) is another promising technology for

the next generation networks and IoT applications. With NOMA, a large num-

ber of users (or devices) can be supported using the same available resources,

which is essential for different use cases with a large number of IoT devices and

limited resources. Moreover, NOMA transmissions can be further improved by

using Coordinated multi-point (CoMP) transmissions where the base stations or

UAVs coordinate to further improve the quality of the signal from desired de-

vices or users. Therefore, uplink NOMA in UAV communication can provide

flexibility, efficiency, and support a large number of IoT devices while managing

the challenges caused by the limited resources of the UAV and the constraints of

the IoT devices. Accordingly, in this thesis, we leverage both NOMA techniques

and UAVs services as an enabling technology for IoT applications given the con-

straints of the IoT devices, the UAV deployment and mobility constraints, and the

NOMA constraints. We highlight the importance of NOMA aided uplink commu-

nication by presenting two UAV aided IoT scenarios with various requirements

and comparing against other approaches.
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1.2 Thesis Contributions

In this thesis, we consider UAVs providing services to a set of IoT devices with

different constraints in an uplink NOMA system. In particular, the first part

of this thesis considers a UAV deployed to collect data from time constrained

IoT devices using uplink NOMA. We formulate the problem as an optimization

problem for maximizing the number of served IoT devices, however the obtained

problem is mixed integer non linear program, so we divide it into two subprob-

lems where in the first subproblem we use deep reinforcement learning (DRL)

to determine the trajectory of the UAV and one of the devices to serve, then

we use a heuristic approach to select the second device. In the second subprob-

lem we perform power allocation to maximize the sum rate of the IoT devices

in the NOMA cluster. And we test our solution against four other approaches

to highlight it’s performance, where we achieve two to three more devices served

compared to orthogonal multiple access, 3 times performance gain compared to

a greedy approach based on the distance to the UAV, and 6 times performance

gain compared to other greedy method based on the IoT devices deadlines.

In the second part of this thesis we consider a novel IoT network scenario

with uplink JT-CoMP NOMA, where two UAVs are deployed to serve IoT de-

vices with minimum data rate constraints. In particular the IoT devices with

strong channel transmit to the closest UAV, while the device with weak chan-

nel, leverage JT-CoMP NOMA to transmit to both UAVs, simultaneously. We

formulate the problem as an optimization problem for maximizing the sum rate

of the IoT devices and we use alternating optimization and successive convex

approximation to handle this problem. Then we highlight the performance of our

solution approach by varying the system parameters and comparing with other

solution approaches. In particular our approach achieves an increase in the total

sum rate of the IoT devices by 2 bps/Hz compared to a heuristic algorithm that

uses random locations for the UAVs.

This thesis resulted in two publications where the first (Chapter 3) was pub-
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lished in IEEE International Conference on Communication 2022, and the second

article (Chapter 4) is in progress to be submitted for publication.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we present the ba-

sic concepts, features, and challenges of NOMA by comparing against orthogonal

multiple access techniques. Moreover, we present reinforcement learning and deep

reinforcement learning as one of the promising solutions in communication sys-

tems and describe their fundamental components. Then in chapter 3, we study

the performance of NOMA aided UAV data collection from time constrained IoT

devices and we aim to maximize the number of served devices by optimizing the

trajectory of the UAV, the IoT devices scheduling, and their transmit power.

Chapter 4 handles UAV positioning and IoT transmit power optimization in a

UAV assisted IoT network with JT-CoMP NOMA; we formulate the optimiza-

tion problem as maximizing the sum rate of the IoT devices given the different

constraints of the IoT devices and the UAVs. Finally, in chapter 5, we present

the conclusion and some possible future work for uplink NOMA.
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Chapter Two

Background Information

In this chapter we present the fundamental concepts that are used in this thesis.

We first start by an introduction of non orthogonal multiple access techniques

where we present the features, basic concepts, and challenges of NOMA. Then

we explain the main concepts of reinforcement learning and deep reinforcement

learning (that were used as a solution approaches in Chapter 3 of this thesis) and

highlight their growing importance as solution approaches in the next generation

cellular systems.

2.1 Non-Orthogonal Multiple Access

NOMA is one of the promising multiple access technologies that is expected to

have an important role in the next generation networks. In NOMA, multiple

users can be supported by using the same frequency and time resources by dif-

ferentiating between the different users (or signals) in the power domain or the

code domain [13]. In this chapter of the thesis we present the different features

of NOMA to highlight its importance for the next generation networks. Then we

present a detailed explanation on uplink and downlink NOMA, followed by the

challenges of using NOMA techniques.
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2.1.1 Features of NOMA

Current research shows that the number of IoT devices is expected to rise rapidly,

with different devices having different requirements, resources, and constraints.

Therefore, NOMA is currently being researched as an enabling technology to

support the large number of devices using the existing resources. The main

advantages of NOMA compared to traditional orthogonal multiple access (OMA)

includes the following:

• Improved Channel Capacity:

In [13], the authors show that the channel capacity of NOMA in the additive

white Gaussian noise (AWGN) channel outperforms that of OMA for both

uplink and downlink test cases. Moreover, in [14] and [15] the authors

show that multiple-input multiple-output NOMA (MIMO NOMA) achieves

higher channel capacity compared to MIMO OMA, and they highlight the

effect of power allocation on the data rate.

• Higher Connectivity:

In OMA, the number of users that can be supported is limited by the

number of available resource blocks. However, in NOMA users are allowed

to share the same resources at the same time which can support a larger

number of devices.

• User Fairness:

NOMA can achieve a better user fairness compared to OMA due to the

different power allocation policies that can be used in NOMA (for example,

more power can be allocated to the user with weak channel compared to

OMA techniques). However, there is a trade off between the total through-

put in the system and the user fairness. Moreover, some applications such

as soil monitoring require low data rates, which can be better supported in

NOMA compared to OMA where a dedicated time and frequency slots are

allocated (so less resources are wasted especially for applications that do

6



not require large or dedicated resources).

• Compatibility:

NOMA can be added on top of the existing multiple access techniques

because in NOMA we exploit the power domain. So it does not affect the

current technologies that utilize the frequency or time domains.

• Low Latency:

Noma offers lower latency because the transmissions of all the users happen

simultaneously rather than specific (scheduled) time slots [16].

2.1.2 NOMA Concepts

All the features of NOMA motivate it’s use as the next generation multiple ac-

cess technology. In wireless communications, multiple access techniques can be

divided into: orthogonal multiple access (OMA) and non-orthogonal multiple ac-

cess (NOMA). In OMA, resources are divided among the users, so for example,

in frequency division multiple access (FDMA) as shown in figure 1a, the band-

width is divided into different frequency bands and each user is assigned certain

frequency, hence this allows all the users to transmit at the same time. On the

other hand, in TDMA (figure 1b) users are assigned certain time slots where only

in these slots they can transmit, however during this period the users can utilize

the whole bandwidth available.

Although in OMA, assigning time or frequency resources reduces the inter-

ference between the IoT devices, the concept of the internet of things and the

demand for more resources that are already scarce are some of the drawbacks of

using OMA techniques. To this end, NOMA was proposed as an enhancement

of OMA for scenarios with large number of IoT devices and limited resources.

As shown in figure 2, devices in NOMA utilize the same frequency and time re-

sources, and differentiating between the devices is in the power domain by varying

the transmit powers of the IoT devices or in the code domain by assigning dis-
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(a) Frequency Division Multiple Access. (b) Time Division Multiple Access.

Figure 1: Orthogonal Multiple Access

similar codes to different devices [17].

First for downlink NOMA with two IoT devices only. The base station (or

UAV) would select the appropriate users to pair together. Usually selecting the

users is based on their channel quality, so ideally we would have a near user with

a strong channel and a far user with a weak channel. The base station performs

superposition coding so both devices will be served using the same time and

frequency resources, however the far user will be assigned a higher transmit power

compared to the near user (to improve its channel). The far user will decode the

NOMA signal directly. On the other hand, the near user would first decode the

signal from the far user. Then perform successive interference cancellation and

remove the far user signal from the overall NOMA signal. Note that in downlink

NOMA the IoT devices can remove interference only from the devices that has

worse channel. So, the transmitted signal by the base station can be expressed

as:

x =
M∑
i

√
Pixi (2.1)

And, the message at the receiver side can be expressed as:

y = hfxf + hnxn + 1 (2.2)
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where hf is the channel of the far user, hn is the channel of the near user, xf

is the message of the far user, and xn is the message of the near user.

The far user message remains the same and interference is present, but the

near user decodes the dominant interference from the far user using SIC, so the

obtained messages becomes:

y = hnxn + 1 (2.3)

Therefore the signal to noise ration (SNR) of the near user and far user can

be expressed as:

SNRnear =
Pnear

N
(2.4)

SNRfar =
Pfar

Pnear +N
(2.5)

where N is the noise. Note that both users utilize the full bandwidth. Conse-

quently, the data rate of IoT device i (given that the IoT devices channel quality

are sorted in descending order) can be expressed as:

Ri = log2(1 +
Piλi∑i−1

j=1 Pjλj +N
) (2.6)

where N is the total number of IoT device and λi is the channel of IoT device i.

Moreover, to perform effective SIC in a M user NOMA cluster, the following

constraints should be satisfied:

Piλi −
i−1∑
j=1

Pjλi ≥ η (2.7)

where η is the minimum power difference to distinguish between the different

IoT devices.

As for uplink NOMA, all IoT devices transmit their data to a base station

using same resources but different transmit power levels, then at the base station

9



Figure 2: Non-Orthogonal Multiple Access.

SIC is performed to differentiate between the different signals. In this thesis, the

UAVs first decode the signal from the near device (which suffer interference from

the devices with weaker channel), then it subtracts the strong device signal from

the overall NOMA signal. Accordingly, the data rate of a device i in a M NOMA

cluster can be expressed as:

Ri = log2

(
1 +

Piλi∑M
j=i+1 Pjλj +N

)
(2.8)

Moreover, the following constraints should be satisfied for effective SIC:

Piλi −
M∑

j=i+1

Pjλj ≥ η (2.9)

In this thesis we focus on the power domain NOMA for uplink transmissions.

2.1.3 Challenges of NOMA

Although NOMA provides many advantages in UAV aided IoT networks, differ-

ent challenges should be considered while using NOMA. The challenges can be
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summarized as following [18]:

• SIC techniques:

Recent literature explored different SIC decoding orders based on several

metrics. This includes decoding messages from IoT devices based on the

channel quality with respect to the UAV or base station (usually, in uplink

NOMA users with strong channel are decoded first followed by users with

lower channel quality). On the other hand, there is also an SIC decoding

orders based on quality of service, and a hybrid SIC order that adapts the

decoding order to achieve higher performance [19]. Therefore, the advan-

tages and disadvantages of each SIC decoding order depends on the use

case itself which makes it difficult to choose the better decoding order. For

example, in a two user system, power domain NOMA is usually preferred

because the performance is better than OMA schemes. However the qual-

ity of service drops for large number of IoT devices. On the other hand,

Cognitive radio NOMA selects the SIC decoding order based on the quality

of service requirements of the IoT devices which in return is better for cases

where devices can be divided into delay tolerant or delay sensitive devices.

• Power allocation:

In power domain NOMA, differentiating between the IoT devices is based on

the difference in their transmit powers and their channel qualities. There-

fore, performing power allocation while ensuring the quality of service con-

straints and the SIC decoding constraints is not a trivial task especially with

a large number of IoT devices in one NOMA cluster. Moreover, the channel

quality of the devices depends on the positioning of the UAVs, which con-

sequently affects the transmit power of the IoT devices and increases the

complexity of the problem.

• IoT devices paring:

An important step in NOMA is dividing the IoT devices into clusters that
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will utilize the same resources. Each NOMA cluster is affected by the

constraints of the IoT devices and with larger number of devices in one

cluster, the interference from the other devices withing the same cluster

increases. Therefore, the process of clustering is not trivial especially with

the varying positions of the UAVs. And with time or resource constrained

application the complexity can increase.

• Increased complexity:

Using NOMA scheme increases the complexity of the considered scenario

because we should consider the clustering of the IoT devices, then we should

perform power allocation for each NOMA cluster in order to guarantee both

the requirement of these devices and SIC techniques requirements, given the

interference in one cluster and between the different clusters.

• Interference:

As mentioned earlier, IoT devices within the same NOMA cluster share the

same resources which results in interference between these devices that can

affect the quality of service. For example, in uplink NOMA the IoT device

with the strong channel will experience interference from all the devices

that have lower channel quality.

2.2 Reinforcement Learning

In this section, we present the basic concepts of reinforcement learning (RL) meth-

ods that were used in the thesis. Moreover, we highlight the general concepts of

RL and it’s importance in IoT applications with randomness in the environment.

Machine learning methods usually rely on existing data to learn patterns and

make inferences. However, in IoT applications this data might not be available

or accessible; therefore, reinforcement learning can be utilized to achieve a high

performance and to generalise for random test cases. The main difference between

RL and other machine learning approaches can be summarized as:
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• In RL, there is no supervisor and no labeled data, instead only a reward

where the agent learns how to maximize the reward function.

• Time matters in reinforcement learning and the feedback or reward is de-

layed not instantaneous.

• The actions of the agent affect the data it receives from the environment,

as well as the reward it receives.

Reinforcement learning can be defined as a mapping from a set of states to

a set of actions with the goal of maximizing the total cumulative reward. As

shown in figure 3, the agent takes as an input the current state St and reward

Rt and then it outputs an action to the environment. Based on the action, the

environment then returns the new state St+1 and the reward Rt+1. These steps

are repeated until the agent converges and learns a good policy. Convergence

occurs when the reward function becomes stable so the difference between the

current and previous reward becomes negligible. The main components of RL

include:

• Policy: which is a mapping from perceived states of the environment to

actions that can be taken in those states.

• Reward: numerical values that defines how good and bad values are, where

defining the reward depends on the scenario considered. For example, in a

scenario that aims to minimize the distance a UAV and an IoT device the

reward can be equal to the negative of the distance between them.

• Value function: The value of a state is the total amount of reward an

agent can expect to accumulate over the future, starting from that state

and following a policy. The agent aims to maximize the discounted sum of

rewards. Accordingly the value of a state s following a policy π is:

Vπ[s] = Eπ

[
T∑

j=0

γjRt+j+1|s = st

]
(2.10)
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Figure 3: Reinforcement Learning.

where γ is the discount factor and R is the reward. Choosing the value of γ

determines the emphasis on the previous states. So, if γ = 0 then we only

focus on the instantaneous state (and reward), and if γ = 1 then we focus

all the previous states.

• Model of environment: It can be divided into model free and model based

environments. The model based environments allow inferences to be made

about how the environment will behave. On the other hand, model free

environments are explicitly trial-and-error learners where the agents learn

by interacting with the environment.

The cumulative discounted reward can be defined as:

R =
T∑
t=0

= γtrt (2.11)

where rt is the reward at time slot t. Accordingly the goal of the agent is to find

the optimal policy π∗ that maximizes the expected reward:

π∗ = argmaxπ E[R|π] (2.12)

If we assume Markov property for the environment, then the current state only

depends on the previous one (not the total history). So, first we define the prob-
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lem as a Markov Decision Process (MDP) denoted by a tuple < S,A, γ,R, T >

where:

• S is the state space, where st is the state of the agent at time slot t.

• A is the action space, where at is the set of actions the agent can take at

time slot t from state st.

• γ is the discount faction (0 ≤ γ ≤ 1).

• R is the discounted reward function.

• T is the state transition probabilities. It defines the probability of moving

to a state st + 1 given that the agent is in a state st and take action at

P (st+1|st, at).

However, this requires complete knowledge of the state transition probabilities

which is usually not given. Therefore, deep reinforcement learning (DRL) and

neural networks can be used to learn complex policies by approximating value

functions. PPO [20] starts by initializing a sampling policy pi and value function.

Then it iterates over the number of episodes and then over the number of time

slots. And at each time slot the agent observes the current state and outputs

the required actions. Then the reward is computed. Followed by the advantage

estimate which is the difference between the discounted sum of the rewards and

the estimate discounted sum of rewards. Then the we update the loss function

and update the policy.
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Chapter Three

NOMA-Aided UAV Data

Collection from

Time-Constrained IoT Devices

3.1 Introduction

With the current deployment of the fifth generation (5G) network, the focus of

the research is shifting toward the six generation (6G) network that is expected to

enable different use cases and applications that support a massive number of in-

ternet of things (IoT) devices. These devices are utilized for various applications

in smart cities, remote areas, agriculture, and infrastructure. However, in prac-

tice, IoT devices are constrained by the data deadline, data reliability and their

maximum transmit power. Therefore, energy- and time-efficient data collection

is required to guarantee the different constraints of the IoT devices; otherwise,

the data collected may lose its value. To this end, UAVs are being employed in

the literature, for timely data collection from IoT devices, due to their flexibility,

low cost, ease of deployment, and high mobility [21]. UAVs are also utilized as an

energy-efficient data collection mechanism in wireless sensor networks. In [22],

Zhan et al. jointly optimized the wake-up schedule of the sensor nodes and the

trajectory of the UAV to minimize energy consumption. Similarly, the authors in
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[23] aim to minimize the maximum energy consumption of a rotary-wing UAV

collecting data from a set of IoT devices, given the energy budget of the UAV and

the size of data to be collected. UAVs can also provide connectivity in areas with

disrupted communications due to disastrous events or absence of infrastructure

[24]. All these use-cases highlight the role of UAVs in the next-generation mobile

communication network.

Despite the benefits of using UAVs in IoT systems, UAV communication is

limited by the mobility, flight time, and available energy of the UAV. Therefore,

improving the radio access technology in UAV-based future networks can help

address these limitations. Recently, non-orthogonal multiple access (NOMA)

emerged as a promising technology for wireless communication and IoTs applica-

tions with limited resources. With NOMA, a large number of users (or devices)

can be supported using the same available resources. In Uplink NOMA multiple

IoT devices use the same resources to transmit to the UAV or base station at the

same time. The transmit power of the devices and the channel gain difference are

used to differentiate between the signals of these devices. Then, at the receiver

side (UAV or base station), successive interference cancellation (SIC) is performed

to detect and decode the signals from the different IoT devices. Therefore, the

benefits of uplink NOMA combined with the benefits of UAVs can provide flexi-

bility, efficiency, and support a large number of IoT devices while managing the

challenges caused by the limited UAV resources and the IoT devices’ constraints.

The rest of this chapter is organised as follows: In section 3.1.1 we present

the recent literature on NOMA and UAV data collection for time constrained

applications. Followed by the system model and the problem formulation in

section 3.2. Then in section 3.3 we explain our proposed solution approach to

tackle this problem. And we evaluate the performance of our solution by varying

the system parameters and comparing against four greedy heuristics in section

3.4. Finally, we present our concluding remarks and future work on this topic in

section 3.5.
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3.1.1 Related Literature

Recent literature addressed different scenarios where NOMA and UAVs are used

for IoT applications. The authors in [25] consider UAV-assisted data collection

with NOMA, where the location of the UAV, the grouping of the sensors, and

the power control are jointly optimized to maximize the rate of a wireless sen-

sor network. Similarly, in [26], the authors consider a UAV collecting messages

transmitted by ground sensors. They aim to maximize the sum rate of the users

by optimizing the UAV deployment position and the power control given the

transmission power constraints and the quality of service constraints. In [27],

the authors consider UAVs collecting data from IoT nodes while NOMA is in-

voked in uplink transmission. They aim at maximizing the system capacity by

jointly optimizing the subchannel assignment, the uplink transmit power of the

IoT nodes, and the height of the UAVs. Moreover, the authors in [28] consider

integrating NOMA into UAV communication system to collect data from large

scale IoT devices within the UAV flight time. They aim at minimizing the total

energy consumption of the IoT devices by optimizing the trajectory of the UAV,

the transmit power, and the scheduling of the IoT devices. The work in [29]

maximized the minimum throughput from the ground nodes for both NOMA

and OMA transmission, subject to the energy budget of the ground nodes and

the UAV. Their simulations propose that NOMA have higher performance gain

than OMA when the ground nodes have enough energy budget. Accordingly, in

this chapter, we consider a UAV dispatched to collect data, using Uplink NOMA,

from IoT devices placed in a remote area. The IoT devices are constrained by

their release time and deadline; hence, the data should be fully collected within

this window; otherwise, the devices are not considered served. The UAV is also

limited by the available energy and the flight duration. Therefore, we aim to

maximize the number of served IoT devices by optimizing the UAV trajectory,

the selection of IoT devices in the NOMA cluster and their transmit power.
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3.1.2 Contributions

Existing work on UAV data collection with uplink NOMA transmissions considers

different scenarios where a UAV (mobile or stationary) is used to collect data

from IoT devices. However, using NOMA with energy constrained UAV and

time constrained IoT devices remains uncovered in the literature. Thus, this

chapter aims at bridging this gap through the following contributions:

• We consider a new scenario where a UAV is deployed to collect data using

uplink NOMA from time-constrained IoT devices in a remote area. We aim

at maximizing the number of served devices by optimizing the UAV trajec-

tory, the IoT devices selection as part of a NOMA cluster and their power

allocation, given the available UAV energy, NOMA SIC constraint, IoT de-

vices release time, deadline, target data required and maximum transmit

power. In NOMA, having effective SIC is based on the channel gain differ-

ence between the IoT devices, however, the channel gain varies due to the

UAV mobility which makes the problem more difficult to solve.

• We use deep reinforcement learning to determine the trajectory of the UAV

and select the first IoT device in a NOMA cluster at each time slot. Then,

we develop a heuristic algorithm to select the second device in the NOMA

cluster based on prioritizing devices with higher bit rate requirements to

upload their data before it expires. As for power allocation, we optimize

the transmit power of the selected IoT devices to maximize their sum rate.

• We present different simulations of our solution while varying the system

parameters and we compare with alternative baseline approaches.

3.2 System Model and Problem Formulation

As shown in figure 4, we consider a NOMA-assisted UAV data collection for

time constrained IoT devices. A UAV is dispatched to collect data from M

19



= {1, ...,M} IoT devices that are randomly distributed in a remote area, with

qi = (xi, yi) representing the coordinates of IoT device i. Each IoT device i has a

release time ρi and a deadline δi, with the randomness of the release time modeled

using a uniform distribution. The UAV should collect the data before δi expires,

otherwise the data loses its value [21]. We denote by Pi the transmit power of

IoT device i. Moreover, we use the discrete state model where the time horizon T

is divided into N = {1, 2, ...N} intervals of equal size δt. The UAV flies at a fixed

altitude H above the ground; the position of the UAV is denoted by qu = (xu, yu)

and qu[n] determines the UAV position in the nth time slot. The distance between

the UAV and IoT device i at time n is:

dui [n] =
√
(xu[n]− xi)2 + (yu[n]− yi)2 +H2 ∀n ∈ N (3.1)

Moreover, the UAV has a maximum flight speed Vmax, so the change in posi-

tion of the UAV during one time slot is constrained by:

||qu[n]− qu[n− 1]||2 ≤ (Vmaxδt)
2 (3.2)

The UAV flies at a height that allows a clear line of sight with the IoT devices

[27]. Following the free space model, the channel gain at IoT device i at time slot

n is:

hi[n] =
β0

dui [n]
2

(3.3)

where β0 is the channel gain at reference distance d0 = 1 m.

In figure 4, two users are paired at each time slot and they utilize uplink

NOMA to transmit, using the same channel, to the UAV. Moreover, due to the

time varying position of the UAV, the channel gain of the users vary from one

time slot to another. At the receiver side (i.e. UAV side), successive interference

cancellation (SIC) is done according to the descending order of the channel gain

at the receiver. Therefore, a binary variable αij[n] is used to determine the SIC
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decoding order. αij[n] is set to 1 if the channel gain of the ith user at time slot n

is greater than that of the jth user and it can be expressed as:

αij[n] =


0, if dui ≥ duj .

1, if dui [n] < duj [n]. ∀n ∈ N,∀i, j ∈M, i ̸= j

(3.4)

Equation (3.4) can be rewritten as:

αij[n] ∈ {0, 1}, (3.5)

αii[n] = 0, (3.6)

αij[n] + αji[n] = 1, (3.7)

αij[n](||qu[n]− qi||2 +H2) ≤ (||qu[n]− qj||2 +H2), (3.8)

where Constraint (3.5) sets αij[n] to binary. Constraint (3.6) ensures that the

signal of device i is not considered interference when decoding the user message.

(3.7) ensures that for any two users, one user only is considered a strong user

at any time instant when its channel gain is higher than the second user. (3.8)

guarantees that αij[n] is set to 0 if dui [n] > duj [n] and 1 otherwise. Moreover, a

binary variable Γn
ij is introduced to determine if IoT devices i and j are scheduled

at time slot n. At each time slot n, we pair one user with a high channel gain with

another user with a weak channel gain, so Constraint (3.9) is added to ensure a

maximum of two users scheduled at the same time slot as follows:

∑
i,j∈M,i ̸=j

Γn
ij ≤ 1 ∀n ∈ N (3.9)

Accordingly, the data rate of user i scheduled at time slot n in bps/Hz is given

by:

Ri[n] = log2

(
1 +

Pi[n]λi[n]∑M
j=1 αij[n]Γn

ijλj[n]Pj[n] + 1

)
(3.10)
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Figure 4: System model: A NOMA pair (2 IoT-devices) transmit to the UAV
using the same resources at the same time slot.

where λi[n] = (hi[n]/N0) is the normalized channel gain, N0 is the noise power

and
∑M

j=1 αij[n]Γ
n
ijhj[n]Pj[n] is the interference from the IoT device with a weaker

channel gain that is scheduled at the same time slot n.

Moreover, to ensure effective SIC at the UAV the following power constraint

should be satisfied:

Γn
ij

(
Pi[n]λi[n]

αij[n]Pj[n]λj[n]

)
≥ ηΓn

ij ∀i, j ∈M,∀n ∈ N (3.11)

where η is the minimum power difference required to distinguish between the

different users [25].

The service amount Si in bits/Hz of an IoT device i over the flight trajectory

of the UAV is expressed as:

Si = δt

N∑
n=1

sni ∀i ∈M (3.12)

where:

sni =


Ri[n] if ρi ≤ n ≤ δi.

0, otherwise. ∀n ∈ N,∀i ∈M
(3.13)
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We also introduce a binary variable κi that indicates if IoT device i was served

during the flight time of the UAV. Therefore, the following constraints should be

satisfied for κi:

κi >
Si − Smin

i

Sg

,∀i ∈M (3.14)

κi ≤ 1 +
Si − Smin

i

Sg

, ∀i ∈M (3.15)

where Smin
i is the minimum amount of data that needs to be uploaded by

IoT device i (bits/Hz), and Sg is a large constant to ensure the validity of the

equations.

Following [23], the power consumed by a rotary wing UAV at time slot n and

speed vu[n] is expressed as:

P (vu[n]) = c1

(
1 +

3||vu[n]||2
W 2

tip

)
+ Phv

(√
1 +
||vu[n]4||

4v40
− ||vu[n]

2||
2v20

) 1
2

+
1

2
d0Asζ||vu[n]||3 (3.16)

where vu[n] is the speed of the UAV at time slot n. c1 represents the blade

profile power and Phv is the induced power while UAV is hovering. Wtip is the

rotator blade tip speed, d0 is the fuselage drag ratio, v0 is the mean rotor-induced

velocity in hover, A is rotor disc area, ζ is the air density, and s is the rotor

solidity. Therefore, the total energy consumed during the UAV flight can be

estimated as follows:

Etrj =
N∑

n=1

δtP (vu[n]) (3.17)

Accordingly, we formulate the problem as maximizing the number of served

IoT devices by optimizing the trajectory of the UAV, the pairing of the IoT

devices, scheduling of the IoT devices, and the power allocation, while limiting
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the total energy consumed by the UAV to a limited energy budget. The NOMA-

aided UAV data collection problem P can then be formulated as:

P : max
qu[n],Γn

ij ,Pi[n]

∑
i∈M

κi (3.18a)

subject to:

Etrj ≤ Emax (3.18b)∑
i,j∈M,i ̸=j

Γn
ij ≤ 1 ∀n ∈ N (3.18c)

(3.2), (3.5), (3.6), (3.7), (3.8), (3.11), (3.14), (3.15) (3.18d)

κi,Γ
n
ij ∈ {0, 1},∀i ∀n (3.18e)

where (3.18a) is the objective function that aims at maximizing the number of

served IoT-devices. Constraint (3.18b) guarantees that the energy consumed by

the UAV is less than its available energy Emax. (3.18c) ensures that at each time

slot there is a pairing of two different users. (3.18e) sets the variables to binary.

Note that the formulated problem (P) is a mixed integer non-convex problem

due to the constraints (3.11), (3.14), (3.15), and (3.18b). Hence, it is hard to be

solved optimally and we resort to DRL to determine the solution.

3.3 Proposed Solution

Given the complexity of P , we divide it into two subproblems: 1) UAV trajectory

and IoT devices scheduling subproblem, and 2) power allocation subproblem.

3.3.1 UAV Trajectory and IoT Devices Scheduling Sub-

problem

We formulate the first subproblem as a Markov Decision Process (MDP) denoted

by a tuple ⟨S,A, γ,R, T ⟩ where :
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• S is the state space where sn is the state of the agent at time slot n.

The state is a vector that includes the current position of the UAV qu, the

position of the IoT devices qi, the deadline γi of the IoT devices, the amount

of consumed energy, the total available energy of the UAV Emax, and the

percentage of service for each IoT device ( Si

Smin
i
∗ 100).

• A is the action space, and an ∈ A is the action taken by the agent at time

slot n. In our problem, the action is the trajectory of the UAV where the

UAV can move forward, backward, to the left, to the right, or hover in its

current position. The agent also selects the first IoT device in the pair to

be served at each time slot, and the speed of the UAV where we discretize

the speed into different values.

• γ is the discount factor (0 ≤ γ ≤ 1).

• R is the discounted reward function where the agent receives a step reward

of 1 whenever a device is served. R is defined as R =
∑N

n=1 γ
n−1rn , where

rn is the step reward at time slot n.

• T is the state transition probabilities. It denotes the probability of the

agent taking an action a in a state s and moving to a state s′, Pr(sn+1 =

s′ | sn = s, an = a).

For DRL, we use proximal policy optimization (PPO) to develop our agent

and learn the UAV trajectory and the scheduling of the first IoT device as shown

in Algorithm 1. In PPO, the agent first initializes random sampling policy π

and value function. Then for each iteration, the agent observes the state at each

time slot n and selects an action an. Next, we move the UAV if there is enough

available energy and if it stays inside the area of interest. Based on the agent

action, a list of devices with low channel gain is formed and the one with the

most urgent data is selected (Algorithm 2). The latter criterion is based on the

remaining data required by the device (Si
min−Si) divided by the remaining time
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Algorithm 1 Proximal Policy Optimization Proposed Solution

Input: N , Learning Rate,γ,ϵ, Adam Optimizer Parameters,
NOMA Parameters.

Output: UAV Trajectory and IoT Devices Scheduling.
1: Initialize sampling policy π with random parameter θ
2: Initialize value function with random parameter ϕ
3: for Iteration = 0,1,... do
4: while n < N do
5: Observe a State sn.
6: Select the first IoT device to serve, the trajectory and

the speed of the UAV an.
7: Check available energy.
8: if UAV outside the allowed area then
9: Cancel the movement of the UAV.

10: end if
11: SecondIoTDevice = Algorithm2()
12: Perform power Allocation for the selected devices.
13: Compute the reward rn.
14: end while
15: Compute the advantage estimate for all epochs.
16: Use ADAM optimizer to optimize the surrogate loss

function.
17: Update policy: πθold ← πθ

18: end for

Algorithm 2 Second Device Selection

Input: M , λ, S, Smin, ρ α, δ, CurrentTimeSlot
Output: SecondIoT

0: Initialize SecondIoT ← -1, temp ← 0
1: arr, idx ← Sort all IoT devices and their indices in the

descending order of λ.
2: for i ∈ idx[M/2.....M ] do
3: if Si < Si

min and ρi ≤ CurrentTimeSlot < δi then
4: Curr = (Si

min − Si)/(δi − CurrentTimeSlot).
5: if Curr > temp then
6: temp = Curr
7: SecondIoT = i
8: end if
9: end if

10: end for
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in which the device is active (δi − current time step t). After the selection of the

two devices, power allocation is performed as presented in the second subproblem.

The reward is calculated at the end of each time slot. If the service amount of

a selected device exceeds the minimum amount of data, a positive reward of 1 is

given. Finally, PPO computes the estimated advantage function and optimizes

the surrogate loss function (via Adam optimizer).

3.3.2 Power Allocation Subproblem

Let Rs and Rw be the data rates of the strong/near user and the weak/far user,

respectively. Given the current position of the UAV and the two selected IoT

devices at each time slot (from the previous subproblem), this subproblem deter-

mines the channel gain at the current time slot and performs power allocation

to maximize the sum rates of the two users and achieve the most gain, given the

maximum transmit power constraints for the IoT devices and the effective SIC

constraint. Therefore, we formulate the problem as follows:

max
Ps,Pw

Rs +Rw (3.19)

subject to:

Psλs/(Pwλw) ≥ η

Ps ≤ Pmax

Pw ≤ Pmax

Equation (3.19) can be rewritten as:

Rs +Rw = log2

(
1 +

Psλs

Pwλw + 1

)
+ log2(1 + Pwλw)

=log2(Pwλw + 1 + Psλs)− log2(Pwλw + 1) + log2(1 + Pwλw)

=log2(Pwλw + Psλs + 1) (3.20)
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Maximizing (3.20) is equivalent to maximizing the sum of the powers of the

strong user and the weak user. Therefore, we can rewrite (3.19) as follows:

max
Ps,Pw

Ps + Pw (3.21)

subject to:

Psλs ≥ ηPwλw

Ps ≤ Ptotal

Pw ≤ Ptotal

The obtained problem (3.21) is a linear problem, so we use Python revised

simplex method to solve this problem.

3.4 Performance Results and Analysis

In this section, we study the performance of our solution approach under various

circumstances and compare it with 4 baseline methods. In our simulations, we

consider 15 IoT devices that are randomly distributed. The total number of time

slots is 90 with each time slot set to 1. For the UAV, it flies at a fixed altitude of

100 meters with a maximum speed of 50 m/s. Since the agent selects the speed

of the UAV, the values are discretized to [0, 30, 50] m/s. Further, the parameters

used for the energy consumption model of the UAV are present in table 3.1 [29].

For the wireless channel, we set β0 = −50 dB, N0 = −110 dBm/hz, and η = 5 dB.

For the DRL, we use 3 layers with the activation functions Tanh and Softmax.

The number of variables in the hidden layer is 64 and Adam optimizer is used to

minimize the loss function. The learning rate is set to 0.002, γ = 0.99, and the

clip parameter is 0.2. The remaining parameters are presented in each subsection

of the results. Moreover, all the simulation results are generated using Python

and PyTorch and they are averaged over 100 data samples to ensure consistency.

For the training of the DRL agent, we consider a geographical area of size
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Parameter Value

UAV Max Speed (Vmax) 50 m/s
Blade Profile Power (c1) 79.86

Induced Power while Hovering (Phv) 88.63
Rotor Blade tip Speed (Wtip) 120
Fuselage Drag Ratio (d0) 0.6

Mean Rotor Induced Velocity in Hover (v0) 4.03
Rotor Disc Area (A) 0.503

Air Density (ζ) 1.225
Rotor Solidity (s) 0.05

Table 3.1: UAV energy parameters

1.5 × 1.5 km2 where the IoT devices are randomly distributed. The available

energy of the UAV is set to 20 Kilo-joules (kJ), and the minimum amount of data

required by the IoT devices is 10 bits/Hz. The initial location of the UAV is set

to the center of the considered area.

As shown in figure 5. the cumulative reward (number of served IoT devices)

increases with the increase of the number of iterations and it starts to converge

before reaching 1000 iterations. At the beginning of the learning, the agent

wastes resources by moving the UAV randomly and depleting the available energy,

while the IoT devices are not properly scheduled. With training, the number of

served devices increases (reward increases), which indicates that the agent starts

adapting to the randomness in the release time of the IoT devices and learns how

to move the UAV given the deadline constraints of the IoT devices, the effective

SIC constraints, and the UAV available energy.

To validate the performance of our proposed solution, we develop four methods

to compare with:

• Orthogonal Multiple Access (OMA): we use DRL with time division multiple

access to determine the trajectory of the UAV and the selection of one IoT

device only.

• NOMA Stationary UAV : The UAV is placed at the center of the area, and

DRL is used to select the devices in the NOMA cluster at each time slot.
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Algorithm 3 NOMA Greedy Algorithms

Input: qu[0], Vmax, qi, Smin
i ,ρi, δi, Emax, NOMA parame-

ters
Output: UAV Trajectory and Served IoT Devices

1: for t = 0, 1, ..., T do
2: if Energy Consumed > Emax then
3: return
4: end if
5: Deadline-based approach: Sort all IoT devices in the

increasing order of their deadline.
6: Distance-based approach: Sort all IoT devices in the

increasing order of their distance.
7: if No IoT devices are active at time t then
8: Move the UAV to the IoT device that will first become

active.
9: Update energy consumed

10: else
11: Deadline-based approach: Select the first active IoT

device with the shortest deadline.
12: Distance-based approach: Select the first active IoT

device with the shortest distance to the UAV.
13: Update location of the UAV.
14: Update energy consumed.
15: SecondIoTDevice = Algorithm2()
16: Perform power allocation for the selected devices.
17: Update service amount of the selected devices.
18: end if
19: end for

• NOMA Greedy Distance: The UAV moves to and selects the closest IoT

device in each time slot as shown in Algorithm 3.

• NOMA Greedy Deadline: The UAV moves to and selects the devices with

the shortest deadline in each time slot as shown in Algorithm 3.

3.4.1 Effect of the Area Size

In figure 6, the UAV available energy is 30 kJ, the maximum transmit power of

the IoT devices is 1 mW, and the minimum amount of required data Smin
i = 10

bits/Hz for all the devices. We compare the number of served IoT devices using
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Figure 5: DRL convergence.

each approach while varying the size of the considered area. Accordingly, the

increase in the size of the area leads to a decrease in the number of served devices

for all the approaches. However, our proposed solution (NOMA with mobile

UAV) provides better performance compared to the other approaches for all the

considered test cases. Compared to NOMA with stationary UAV, our method

yields an increase in performance by 1 to 2 served devices. The gain compared

to OMA is clear, where an increase in 2 to 3 served devices is present. Moreover,

the advantages of using DRL for UAV trajectory and selection of IoT devices are

present compared to the greedy approaches, where our algorithm serves 6 to 7

more devices compared to the greedy distance and greedy deadline when the size

of the area is between 500 × 500 m2 and 2×2 km2. This is mainly because greedy

methods waste the UAV available energy and have a bad scheduling of the IoT

devices. However, the greedy approach based on the distance performs better

than the one based on the deadline, because the selection of the IoT devices that

are closer to the UAV results in higher data rates. Further, with a small area

size (< 1.5× 1.5 km2), the performance of stationary UAV with NOMA is better
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mizing the number of served devices, but due to its complexity, we used DRL to

determine the trajectory of the UAV and the selection of the first IoT devices

in the NOMA cluster. The second IoT device is selected based on prioritizing

devices with higher bit rate requirements to upload their data before it expires.

Power allocation is then optimized to maximize the sum rate of the selected IoT

devices. Simulation results show the advantages of our proposed method against

four alternative methods. Mainly, NOMA achieves an improvement of 10%−30%

more served devices compared to OMA. Future works can investigate using mul-

tiple UAVs and planing their trajectories to avoid collisions and maximize the

number of served IoT devices. Further, future work can also consider pairing

more than 2 devices in one NOMA cluster.
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Chapter Four

UAV Assisted Joint Transmission

in Uplink NOMA Systems

4.1 Introduction

Non-orthogonal multiple access (NOMA) is regarded as one of the enabling tech-

nologies in the next generation networks. Compared to orthogonal multiple access

(OMA) techniques, in NOMA multiple users or IoT devices transmit their data

at the same time using the same resources by varying the transmit power of these

devices. In particular, the users use different power levels to transmit to the

receiver at the same time using the same resources, then successive interference

cancellation is done at the receivers side to decode these signals [30]. Therefore

in NOMA we have an improved spectral efficiency, improved fairness between the

users (especially users with weak channels), and massive connectivity compared

to OMA [31]. However, the drawbacks of using NOMA is the interference from

the other devices within the same NOMA cluster, and the increasing complexity

of SIC with the increase of the number of devices to serve [32]. A good candi-

date to overcome the previous challenges is using joint transmission coordinated

multi-point transmission (JT-CoMP) scheme with the NOMA scheme where IoT

devices can transmit to multiple UAVs, simultaneously. CoMP scheme was first

proposed as an improvement for LTE-A [33], and it can enhance the channel of
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the cell edge users and increase the cell coverage. Therefore, with such scheme,

the users in the network can be divided into cell center users and cell edge users,

where the cell edge users (users with weak channel) transmit to more than one

base station or unmanned aerial vehicles (UAVs) mounted base stations. At the

receiver side, coordination is performed to improve the signal from cell edge users.

Moreover, UAVs have different application and use cases in the literature to

aid the current networks and to provide services in areas that lack infrastructure

such as forests and remote areas. The flexibility of the UAVs and their ease of

deployment can improve the wireless connectivity and improve the channel of

users with weak channel; UAVs can also be used to collect data from IoT devices

and to relay data between far away targets [5] [34]. All these test cases emphasize

the importance of integrating UAVs with the current and future networks. How-

ever, UAVs are subject to different constraints (such as movement and energy

constraints) that should be taken into consideration.

4.1.1 Related Literature

Recent literature addressed different use cases where a NOMA aided UAV is

used to provide different services for users (or IoT devices). The authors in [35],

optimize the location of the UAV and power allocation in the NOMA cluster to

improve the performance of the NOMA aided UAV networks. Similarly, in [36],

the authors propose using NOMA to increase the capability of accommodating

users in a network. They use a UAV to assist the base station and they formulate

the problem as maximizing the sum rate by jointly optimizing the trajectory

of the UAV and the NOMA decoding order. In [37], a multi-UAV system is

considered to serve IoT devices via uplink NOMA; the height of the UAVs, the

IoT devices transmit power and subchannel assignments are optimized in order to

maximize the system capacity. And, the authors in [38] analyse the performance

of NOMA with an imperfect channel state information between the UAV and the

users; they optimize the scheduling of the users and power allocation to maximize
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the energy efficiency.

Moreover, integrating CoMP transmissions with NOMA is also being re-

searched to improve the performance of traditional NOMA techniques. The

authors in [39], utilize JT-CoMP NOMA transmissions to help the users with

high channel gain in a multiple base stations network, mainly because these users

experience high inter cell interference. On the other hand, in [40] the authors

utilize CoMP transmissions with cooperative NOMA to improve the channel of

the cell edge users because these users has a low channel quality with respect to

the base station (due to the large distance between them). In [41], a novel NOMA

scheme is proposed using JT-CoMP NOMA following an opportunistic strategy.

Compared to traditional JT-CoMP NOMA scheme, it achieves higher capacity

and reduces the superposition coding (SC) decoding complexity under high signal

to interference scenarios. Moreover, in [42], the authors deploy a UAV in a two

cell system where one of the cells is damaged. The UAV position is optimized to

reduce the interference by leveraging the interference cancellation techniques in

CoMP NOMA. Further, in [43], the authors study the performance of JT-CoMP

uplink NOMA in a two cell network where the cell edge users transmit to both

base stations simultaneously. They aim to minimize the total transmit power by

optimizing the precoding scheme power allocation subject to the signal to inter-

ference plus noise ratio. A similar system model was considered in [44], where

JT-CoMP NOMA and intelligent reflecting surfaces (IRS) are used to improve

the performance of the cell edge user. A joint power allocation and phase shift

optimization problem is formulated to minimize the uplink power. Furthermore,

the authors in [45], consider a multiple base station scenario where each base

station serves a near user then all the base stations collaborate to serve a far user

via CoMP NOMA. A stochastic geometry approach is presented to gain insights

on the outage probabilities and ergodic rates.

All these scenarios and use cases highlight the importance of CoMP, NOMA,

and UAVs in the next generation networks and for the scenarios with a large
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number of IoT devices. Therefore, in this chapter, we consider two UAVs deployed

to serve IoT devices in a network. The devices with strong channel leverage

NOMA only, meanwhile the devices with weak channel leverage JT-CoMP NOMA

to transmit to both UAVs. We formulate the problem as maximizing the sum

rate of the IoT devices by optimizing the positioning of the UAVs and power

allocation in the NOMA clusters given the constraints of the IoT devices, UAVs

constraints, and NOMA constraints.

4.1.2 Contributions

Existing work on JT-CoMP NOMA mainly addressed use cases with a terrestrial

base station or with downlink transmissions. However, the problem of UAV

assisted JT-CoMP uplink NOMA transmissions from IoT devices with target

data rate constraints remains uncovered in the literature. Therefore, the main

contributions of this chapter can be summarized as follows:

• We consider a new scenario where two UAVs are deployed to serve con-

strained IoT devices. We formulate the problem as maximizing the sum rate

of the devices by optimizing the positioning of the UAVs and the transmit

power of the IoT devices.

• Given the complexity of the obtained problem, we leverage alternating op-

timization to handle it, where the original optimization problem is divided

into UAV positioning subproblem and power allocation subproblem, then

we alternate between them to improve the performance. For each subprob-

lem, we use successive convex approximation to generate a solution.

• We highlight the performance of our solution approach by varying the sys-

tem parameters and comparing with baseline methods.

The rest of this chapter is organized as follows. Section 4.2, we presents the system

model of our problem and the problem formulation, followed by the proposed
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solution approach in section 4.3 and the analysis of the performance in section

4.4. Finally, we present our concluding remarks in section 4.5.

4.2 System Model and Problem Formulation

As shown in figure 9, we examine uplink non-orthogonal multiple access with

joint-transmission coordinated multi-point (JT-CoMP) in a UAV-assisted net-

work. In particular, we consider two UAVs, two near IoT devices and one far

IoT device, where the UAVs are deployed to ensure that these devices achieve a

minimum required data rate. The near IoT devices send their data only to one

UAV closest to these devices, on the other hand, the far IoT device sends data to

both UAVs simultaneously through JT-CoMP NOMA transmission. The three

devices utilize NOMA to send their data to the UAV using the same resources

at the same time; then, at each UAV, the signals are decoded and removed from

the overall signal in the descending order of the channel gain using successive

interference cancellation (SIC) technique.

We denote by U = {1, 2} the indices of the UAVs and M = {1, 2, 3} the

indices of the IoT devices. Qu = (xu, yu) represents the planar position of the

UAV u, qi = (xi, yi) denotes the position of the IoT device i, and Pi is the transmit

power of IoT device i. We denote by X and Y the size of the area considered,

and we assume that the UAVs fly at a fixed altitude H that allows a clear line of

sight with the IoT devices. The distance between a UAV u and IoT device i can

be expressed as:

di,u =
√
H2 + ||Qu − qi||2 ∀i ∈M,∀u ∈ U (4.1)

Moreover, the channel gain at IoT device i, following the free space model, is:

hi,u =
β0

d2i,u
∀u ∈ U (4.2)

40



where β0 is the channel gain at reference distance d0 = 1 m. Accordingly, the

received signal at UAV u from the IoT devices is:

yu =
M∑
i=1,

hi,u

√
Pixi +N0 (4.3)

where xi is the signal from the IoT device i and N0 is the additive white Gaussian

noise.

Then we introduce the following binary variables that indicate to which UAV

the IoT devices are connected, and to indicate if the devices have a strong channel

gain or a weak channel gain. First we introduce a binary variable αu
i that indicates

if a device i is connected to UAV u. Accordingly, the following constraints are

introduced:

αu
i ∈ {0, 1} ∀i∀u (4.4)

M∑
i

αu
i = 2, ∀u ∈ U (4.5)

1 ≤
U∑
u

αu
i ≤ 2 ∀i ∈M (4.6)

where (4.5) ensures that each UAV has two devices connected to it; and (4.6)

ensures that each device should be connected to at least one UAV or a maximum

of two UAVs (for the case of joint transmission).

Moreover, we use a binary variable βu
i that indicates if device i has a strong

channel with respect to UAV u. Accordingly:

βu
i ∈ {0, 1} ∀i∀u (4.7)

βu
i ≤ αu

i (4.8)

∑
u

αu
i β

u
i ≤ 1 (4.9)

αu
i ≥ 1−

∑
u

βu
i ∀i ∈M,∀u ∈ U (4.10)
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∑
i

βu
i = 1 ∀u ∈ U (4.11)

di,uβ
u
i ≤ dj,u ∀j ∈M, j ̸= i (4.12)

where constraint (4.7) sets the variable βu
i to binary, (4.8) ensures that devices

that are not connected to the UAV can not be considered strong devices. Con-

straint (4.9) ensures that if IoT device i is a strong user with UAV u, it cannot be

associated with other UAVs. (4.10) guarantees that the user with weak channel

should connect to both UAVs. Constraint (4.11) guarantees that only one UAV

can only have one strong user, and (4.12) ensures that the device closest to the

UAV is considered the strong user (i.e. the user with high channel gain).

Note that the UAVs decode the signal from the near users first that will suffer

from interference form the other devices. Then, for the far user, the UAV decodes

and removes the signal from the IoT devices closest to them. Then maximum

ratio combining (MRC) is used to process the signal to both UAVs from the far

device. Therefore the data rate of a user i can be expressed as:

Ri = log

(
1 +

∑
u

αi,u
Piλi,u∑M

j=1,i ̸=j(1− βu
j )Pjλj,u + 1

)
(4.13)

where λi,u = (hi,u/N0) is the normalized channel gain. Therefore, in Fig 9, the

data rate of user 1 connected to UAV 1 and has a strong channel is:

R1 = log

(
1 +

P1λ1,1

λ2,1P2 + λ3,1P3 + 1

)
(4.14)

Similarly, the data rate of IoT device 3 connected to UAV 2 (and has a strong

channel) is:

R3 = log

(
1 +

P3λ3,2

λ2,2P2 + λ1,2P1 + 1

)
(4.15)

Then, for IoT device 2 the data rate can be expressed as:

R2 = log

(
1 +

P2λ2,1

P3λ3,1 + 1
+

P2λ2,2

P1λ1,2 + 1

)
(4.16)
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4.3 Proposed Solution

The obtained problem (P) is mixed integer non linear (MINLP) which is NP hard

and hence difficult to solve, therefore we divide the problem into two subprob-

lems where in the first subproblem we determine the positioning of the UAVs

using successive convex approximation (SCA), then in the second subproblem

we determine the transmit power of the IoT devices using also SCA. Then we

alternate between the two subproblem to improve the performance. Given the

varying positions of the UAVs, there are three possibilities for determining which

IoT device is considered weak. Therefore, to determine the best association, we

compare these possibilities against each other and select the one that maximizes

the performance.

4.3.1 UAV Positioning Subproblem

To solve the UAV positioning subproblem, we first solve the power allocation

subproblem to get the initial transmit power of the IoT devices. Using these

values, we get the UAVs positions, and then alternate between the two subprob-

lems until convergence. So the UAV positioning subproblem can be formulated

as maximizing the sum rate by optimizing the positions of the UAVs. However,

we introduce a new variable µi to make the data rate a constraint and remove

it from the objective. Hence the optimization problem for the UAV positioning

subproblem is formulated as:
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P1 : max
Qu

∑
i

µi (4.18a)

subject to

Ri ≥ µi (4.18b)

0 ≤ xu ≤ X ∀u ∈ U (4.18c)

0 ≤ yu ≤ Y ∀u ∈ U (4.18d)

µi ≥ Rmin
i ∀i ∈M (4.18e)

The data rate of the first strong IoT devices can be expressed as:

R1 = log

(
1 +

P1λ1,1

λ2,1P2 + λ3,1P3 + 1

)
(4.19)

Therefore, we introduce new variables z1 and v1, with the following con-

straints:

log(1 + ez1−v1) ≥ µ1 (4.20)

cP1
1

H2 + ||Q1 − q1||2
≥ ez1 (4.21)

cP2
1

H2 + ||Q1 − q2||2
+ cP3

1

H2 + ||Q1 − q3||2
+ 1 ≤ ev1 (4.22)

where c = β0/N0. Constraint (4.20) can the be rewritten as:

1 + ez1−v1 ≥ eµ1 (4.23)

Then we use first order Taylor approximation to transform the constraint into

a convex constraint:

1 + ez̄1−v̄1(1 + z1 − v1 − z̄1 + v̄1) ≥ eµ1 (4.24)
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Similarly, we rewrite constraint (4.21) and use first order Taylor approxima-

tion as:

1

cP1

H2 +
1

cP1

||Q1 − q1||2 ≤ e−z̄1(z̄1 − z1 + 1) (4.25)

Moreover, for constraint (4.22), we introduce new variables s and y as:

H2 + ||Q1 − q2||2 ≥ s1,2 (4.26)

H2 + ||Q1 − q3||2 ≥ s1,3 (4.27)

c
P2

s1,2
≤ y1,2 (4.28)

c
P3

s1,3
≤ y1,3 (4.29)

Hence constraint (4.22) can be replaced by:

1 + y1,2 + y1,3 ≤ ev1 (4.30)

Moreover, constraints (4.28) and (4.29) can be replaced by the following con-

straints, respectively:

c(1 + P2)
2 + (y1,2 − s1,2)

2 ≤ c(1− P2)
2 + (y1,2 + s1,2)

2 (4.31)

cP 2
3 + (y1,3 − s1,3)

2 ≤ cP 2
3 + (y1,3 + s1,3)

2 (4.32)

However constraints (4.26), (4.27), (4.31), (4.32), and (4.30) are still non

convex, therefore we use first order Taylor approximation, accordingly:

H2 + ||Q̄1 − q2||2 + 2(Q̄1 − q2)
T (Q1 − Q̄1) ≥ s1,2 (4.33)
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H2 + ||Q̄1 − q3||2 + 2(Q̄1 − q3)
T (Q1 − Q̄1) ≥ s1,3 (4.34)

c(1+P2)
2+(y1,2− s1,2)

2 ≤ c(1−P2)
2+2( ¯y1,2+ ¯s1,2)(y1,2+ s1,2)− ( ¯y1,2+ ¯s1,2)

2

(4.35)

cP 2
3 + (y1,3 − s1,3)

2 ≤ cP 2
3 + 2( ¯y1,3 + ¯s1,3)(y1,3 + s1,3)− ( ¯y1,3 + ¯s1,3)

2 (4.36)

1 + y1,2 + y1,3 ≤ ev̄1(v1 − v̄1 + 1) (4.37)

Similarly, the data rate of the third IoT device can be expressed as:

R3 = log

(
1 +

P3λ3,2

λ2,2P2 + λ1,2P1 + 1

)
(4.38)

Then we introduce the following constraints:

log(1 + ez2−v2) ≥ µ3 (4.39)

cP3
1

H2 + ||Q2 − q3||2
≥ ez2 (4.40)

cP2
1

H2 + ||Q2 − q2||2
+ cP1

1

H2 + ||Q2 − q1||2
+ 1 ≤ ev2 (4.41)

Similar to the constraints of the first IoT device, the above constraints related

to the third IoT device are convexified as follows:

1 + ez̄2−v̄2(1 + z2 − v2 − z̄2 + v̄2) ≥ eµ3 (4.42)

1

cP3

H2 +
1

cP3

||Q2 − q3||2 ≤ e−z̄2(z̄2 − z2 + 1) (4.43)
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H2 + ||Q̄2 − q2||2 + 2(Q̄2 − q2)
T (Q2 − Q̄2) ≥ s2,2 (4.44)

H2 + ||Q̄2 − q1||2 + 2(Q̄2 − q1)
T (Q2 − Q̄2) ≥ s2,1 (4.45)

c(1+P2)
2+(y2,2− s2,2)

2 ≤ c(1−P2)
2+2( ¯y2,2+ ¯s2,2)(y2,2+ s2,2)− ( ¯y2,2+ ¯s2,2)

2

(4.46)

cP 2
3 + (y2,1 − s2,1)

2 ≤ cP 2
3 + 2( ¯y2,1 + ¯s2,1)(y2,1 + s2,1)− ( ¯y2,1 + ¯s2,1)

2 (4.47)

1 + y2,2 + y2,1 ≤ ev̄2(v2 − v̄2 + 1) (4.48)

Now for the far IoT device that utilizes JT-CoMP uplink NOMA to transmit

to both UAVs, the data rate can be expressed as:

R2 = log

(
1 +

P2λ2,1

P3λ3,1 + 1
+

P2λ2,2

P1λ1,2 + 1

)
(4.49)

Hence we introduce the following constraints:

1 + ez3−v3 + ez4−v4 ≥ eµ2 (4.50)

To transform this constraint into an convex constraint we perform first order

Taylor approximation for the two terms ez3−v3 and ez4−v4 :

1 + ez̄3−v̄3(1 + z3 − v3 − z̄3 + v̄3) + ez̄4−v̄4(1 + z4 − v4 − z̄4 + v̄4) ≥ eµ2 (4.51)
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Then for the first term ez3−v3 we need the following constraints:

1

cP2

H2 +
1

cP2

||Q1 − q2||2 ≤ e−z̄3(z̄3 − z3 + 1) (4.52)

1 + y1,3 ≤ ev̄3(v3 − v̄3 + 1) (4.53)

Similarly the following constraints are required for ez4−v4

1

cP2

H2 +
1

cP2

||Q2 − q2||2 ≤ e−z̄4(z̄4 − z4 + 1) (4.54)

1 + y1,2 ≤ ev̄4(v4 − v̄4 + 1) (4.55)

Therefore, the UAV positioning subproblem can be rewritten as:

P1 : max
zi,vi,Qu,s,y

∑
i

µi (4.56a)

subject to

0 ≤ xu ≤ X ∀u ∈ U (4.56b)

0 ≤ yu ≤ Y ∀u ∈ U (4.56c)

µi ≥ Rmin
i ∀i ∈M (4.56d)

(4.24), (4.25), (4.33), (4.34), (4.35), (4.36), (4.37), (4.42).

(4.43), (4.44), (4.45), (4.46), (4.47), (4.48), (4.51), (4.52).

(4.53), (4.54), (4.55).

4.3.2 Power Allocation Subproblem

Maximizing the sum rate of the IoT devices is non convex. Therefore we start

by defining the following exponential slack variables for the users with strong
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channel:

ex1 = λ2,1P2 + λ3,1P3 + 1 + P1λ1,1 (4.57)

ey1 = λ2,1P2 + λ3,1P3 + 1 (4.58)

ex3 = λ2,2P2 + λ1,2P1 + 1 + P3λ3,2 (4.59)

ey3 = λ2,2P2 + λ1,2P1 + 1 (4.60)

As for the users with weak channel that transmits to both UAVs:

ex2 =P3P1λ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 + P2P1λ1,2λ2,1 + P2λ2,1 + P2P3λ3,1λ2,2 + P2λ2,2

(4.61)

ey2 = P3P1λ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 (4.62)

Equation (4.61) is non-convex due to the multiplication of the transmit powers

of the users. Therefore, we introduce three auxiliary variables A, B, and C.

Accordingly, the following constraints are introduced:

P3P1 ≥ A2 (4.63)

P2P1 ≥ B2 (4.64)

P2P3 ≥ C2 (4.65)

Therefore, equation (4.61) can be rewritten as:

ex2 =A2λ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 +B2λ1,2λ2,1 + P2λ2,1 + C2λ3,1λ2,2 + P2λ2,2

(4.66)

Similarly, for equation (4.62), the approximation of the product of the trans-

mit power is done by introducing a new auxiliary variable D. Accordingly we
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rewrite (4.62) as follows:

ey2 = Dλ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 (4.67)

with the variable D satisfying the following constraints:

(
P3

b

)2

+ (P1b)
2 ≤ 2D (4.68)

where:

b =

√√√√P
[r]
3

P
[r]
1

(4.69)

where P
[r]
3 and P

[r]
1 are the values of P3 and P1 in the rth iteration, respectively.

Now we formulate the optimization problem as maximizing the sum rate of all

the IoT devices:

P2 : max
Pi,xi,yi,A,B,C,D

∑
i

xi − yi (4.70a)

subject to

0 ≤ Pi ≤ Pmax ∀i ∈M (4.70b)

xi − yi ≥ Rmin
i ∀i ∈M (4.70c)

λ2,1P2 + λ3,1P3 + 1 + P1λ1,1 ≥ ex1 (4.70d)

λ2,1P2 + λ3,1P3 + 1 ≤ ey1 (4.70e)

λ2,2P2 + λ1,2P1 + 1 + P3λ3,2 ≥ ex3 (4.70f)

λ2,2P2 + λ1,2P1 + 1 ≤ ey3 (4.70g)

A2λ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1+

B2λ1,2λ2,1 + P2λ2,1 + C2λ3,1λ2,2 + P2λ2,2 ≥ ex2 (4.70h)

Dλ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 ≤ ey2 (4.70i)

(4.63)(4.64)(4.65)(4.68)
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The optimization problem P1 is still non convex due to the constraints (4.71e),

(4.70g), (4.70i). Therefore we use first order Taylor approximation to linearize

the constraints. Therefore, ey1 = eȳ1(y1 − ȳ1 + 1), ey2 = eȳ2(y2 − ȳ2 + 1), and

ey3 = eȳ3(y3 − ȳ3 + 1), around the points ȳ1, ȳ2, and ȳ3 respectively.

Moreover, we also perform first order Taylor approximation for A2, B2, and

C2. Therefore, A2 = Ā2 + 2Ā(A − Ā), B2 = B̄2 + 2B̄(B − B̄), and C2 =

C̄2 + 2C̄(C − C̄) around the points Ā, B̄, and C̄ respectively.

Consequently, P2 can be rewritten as:

P2 : max
Pi,xi,yi,A,B,C,D

∑
i

xi − yi (4.71a)

subject to

0 ≤ Pi ≤ Pmax ∀i ∈M (4.71b)

xi − yi ≥ Rmin
i ∀i ∈M (4.71c)

λ2,1P2 + λ3,1P3 + 1 + P1λ1,1 ≥ ex1 (4.71d)

λ2,1P2 + λ3,1P3 + 1 ≤ eȳ1(y1 − ȳ1 + 1) (4.71e)

λ2,2P2 + λ1,2P1 + 1 + P3λ3,2 ≥ ex3 (4.71f)

λ2,2P2 + λ1,2P1 + 1 ≤ eȳ3(y3 − ȳ3 + 1) (4.71g)

(Ā2 + 2Ā(A− Ā))λ1,2λ3,1 + P3λ3,1 + P1λ1,2+

1 + (B̄2 + 2B̄(B − B̄))λ1,2λ2,1 + P2λ2,1+

(C̄2 + 2C̄(C − C̄))λ3,1λ2,2 + P2λ2,2 ≥ ex2 (4.71h)

Dλ1,2λ3,1 + P3λ3,1 + P1λ1,2 + 1 ≤ eȳ2(y2 − ȳ2 + 1) (4.71i)

(4.63)(4.64)(4.65)(4.68)

The obtained optimization problem is convex, hence we use successive convex

approximation to solve it.
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4.4 Performance Results and Analysis

In this section we analyse the performance of our solution approach by varying

the system parameters and comparing with baseline approaches. We consider two

UAVs deployed to ensure minimum data rate requirements of three IoT devices

that are randomly placed in a 1000 × 1000 m2 area. The maximum transmit

power of the devices is set to 10 milliwatt (mW) and the minimum data rate

required by all the IoT devices is set to 1 bps/Hz. We assume that the UAVs

hover over a fixed altitude of 100 meters, and for the wireless channel, we set the

channel gain at reference distance d0 = 1m to -50 dB, and the power spectral

density of noise to -110 dBm/hz. The remaining parameters are presented in

each subsection of the results. Moreover, we use CVX and MATLAB to solve the

optimization problem.

Given the different possibilities for the deployment positions of the two UAVs,

the channel quality of the IoT devices can vary and hence the IoT device with

weak channel to both UAVs also varies. Accordingly, in the simulations, we first

determine the best IoT devices to UAVs associations by comparing the 3 options

for the IoT device with weak channel. For example, consider a simple scenario

where q1 = (400, 800), q2 = (50, 300), and q3 = (750, 100). If we assume that the

IoT device with weak channel is IoT 1 then the sum rate will be 8.44 bps/Hz.

Similarly, if IoT 2 is considered weak the sum rate will be 9.3 bps/Hz and if IoT

3 is considered weak the sum rate is 7.1 bps/Hz. Consequently, we select IoT

device 2 as the weak device in order to maximize the performance.

4.4.1 Solution Approach Convergence

In figure 10, we present the convergence of the alternating optimization proposed

solution with the increasing number of iterations averaged over different real-

izations. It is clear that with more iterations, alternating between the power

allocation and UAV positioning subproblems increases the total sum rate of the

IoT devices from 5.1 bps/Hz to 9.3 bps/Hz. We also notice that the algorithm
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(a) Rmin
2 = 1bps/Hz (b) Rmin

2 = 3bps/Hz (c) Rmin
2 = 5bps/Hz

Figure 11: Effect of minimum required rate on the UAVs positions

data is required by the far IoT device, we notice that one of the two UAVs moves

toward the middle device until the minimum required rate is achieved. However,

the other UAV moves further from the far IoT device to decrease the interference

from this UAV and improves the overall performance of all the IoT devices in the

system. Increasing the minimum rate required to 5 bps/Hz, we notice in figure

11c, that both UAVs move toward the far IoT device to achieve the minimum

rate required by this device.

In figure 12, we further investigate the effect of varying the minimum data

rate requirements of the far IoT device on the distance between this device and

both UAVs. Starting with a minimum rate value of 0 bps/Hz, the UAVs move to

a position directly above the near devices because the highest data rate for these

two devices can be achieved at these positions; hence this results in the farthest

distance from the IoT device with weak channel to both UAVs. Increasing the

required rate leads to a decrease in the distance of one or both UAVs to the

far IoT device because moving closer to this device will allow them to serve

it by achieving the minimum rate required. For example, when the minimum

rate is set to 3 bps/Hz the distance from the far IoT device to the first UAV is

approximately 390 meters and 310 meters from the second UAV. For high values

of minimum rate (≥ 5) both UAVs move toward the far IoT device to achieve

its requirements while considering the minimum required rates for both devices

with strong channel quality.
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Figure 12: Effect of far IoT device minimum rate on UAVs positioning

4.4.3 Effect of IoT Devices Maximum Transmit Power

In this section, we analyse the effect of the maximum transmit power of the IoT

devices on the total sum rate of all devices. We compare our solution approach

against a heuristic algorithm that generates 200 random locations for the UAVs,

then selects the position that maximizes the total sum rate. We also compare

with the another approach that select a sub optimal weak IoT device (i.e. sub

optimal UAVs-to-IoT devices association) that helps in showing the effect of far

IoT device selection on the total performance.

As shown in figure 13, increasing the maximum transmit power of the IoT

devices results in an increase in the total sum rate of the IoT devices for all

the solution approaches, because more resources are available for these devices.

In our proposed solution approach the sum rate increases from 10.4 bps/Hz at

a maximum transmit power of 10 milliwatt to a 12.5 bps/Hz at 50 milliwatt,

and for a transmit power of 150 milliwatt we are able to acheive approximately

14 bps/Hz. Moreover, our proposed solution approach yields approximately an

increase (in the sum rate) of 2 bps/Hz compared to the random positioning of

the UAVs and 3 bps/Hz compared to the approach that selects a different IoT

56



Figure 13: Effect of IoT devices maximum transmit power

device as weak device. Furthermore, comparing the three approaches shows the

importance of selecting the appropriate weak IoT device, because a sub optimal

assignment will lead to a decrease in the performance due to the high interference

between the IoT devices.

4.5 Conclusion

In this chapter, we investigate the performance of joint-transmission coordinated

multipoint (JT-CoMP) uplink non-orthogonal multiple access (NOMA) in a un-

manned aerial vehicles (UAVs) aided network. Specifically, two UAVs are de-

ployed to serve IoT devices in a network where the devices with weak channel

leverage JT-CoMP NOMA to transmit to both UAVs simultaneously. We aim

to maximize the sum rate of all the devices while considering the different con-

straints, so we use alternating optimization on two subproblems that handle UAVs

positions and IoT devices transmit power respectively. The output of one sub-

problem is the input for the other, and for each subproblem, we use successive

convex approximation to get a solution. Simulation results show the performance
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of our solution approach compared to other baseline approaches where we achieve

an increase of 2 bps/Hz compared to the random UAVs location approach and 3

bps/Hz compared to a method that selects a non optimal weak IoT device.
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Chapter Five

Conclusions and Future Work

In conclusion, in this thesis we analyzed the performance of uplink NOMA in

a UAV aided network for constrained IoT applications. We motivated the use

of NOMA by presenting two scenarios that highlights its performance and we

discussed the challenges and different solution approaches to tackle each problem.

In the first part of the thesis, we leverage Non-orthogonal multiple access and

the mobility of UAVs to collect data from time constrained IoT devices. We aim

to maximize the number of served devices by optimizing the UAV trajectory, IoT

device scheduling, and power allocation. Given the complexity of the obtained

problem we divide it into UAV trajectory and IoT device paring subproblem

and power allocation subproblem. The first subproblem is solved using deep

reinforcement learning that determines the UAV trajectory and one of the IoT

devices. Then we use a heuristic algorithm do determine the second IoT device

to select and pair with the first one. The Second subproblem is power allocation

for the paired devices where we formulate it as an optimization problem for

maximizing the sum rate in the NOMA cluster. Our suggested solution approach

achieves higher performance compared to other greedy methods and compared

to orthogonal multiple access technique.

Then in the second part of this thesis, we leverage JT-CoMP NOMA and

UAVs to ensure minimum data rate requirements of the IoT devices. We aim

to maximize the sum rate of the devices by optimizing UAV positions, IoT as-
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sociation and transmit power. The obtained problem is MINLP so we divide

the it into UAV trajectory and IoT association subproblem and power allocation

subproblem. The output of one subproblem is the input for the other. And we

alternate between the two until the solution converges. We highlight the perfor-

mance of our solution approach by varying the system parameters and comparing

with baseline approaches.

Indeed, NOMA is a promising technology for the next generation networks.

For a future work we are considering the use of multi-agent deep reinforcement

learning to control the trajectories of multiple UAVs in the same scenarios dis-

cussed in chapters 3 and 4. Another possible direction is to consider pairing a

large number of IoT devices together where a clustering technique can be devel-

oped to determine which IoT device form a NOMA cluster. It is also interesting

to study the performance of uplink cooperative NOMA that is being recently

studied and researched in different IoT use cases.
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