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A Stackelberg Game Inspired Model of Real-Time Economic Dispatch with Demand 

Response 

 

Youssef Shakrina 

 

ABSTRACT 

 

 

Traditional electric power systems have several challenges in maintaining their 

reliability and being able to meet the demand of the consumers at peak hours. 

Additionally, environmental concerns may arise from several physical limitations in 

the network that would increase gas emission besides adding extra generation costs. 

With the advancements in the field of communications amalgamating in the power 

network, smart grids enable electric consumers to take part in changing the load profile 

through demand response (DR) programs to help overcome such challenges. 

 

In some DR programs where the network’s operators inform the consumers about the 

updated prices, predicting the change of the consumption pattern that will occur 

becomes arduous. Especially with the variety of electrical loads and their applications 

like the residential and industrial consumers and their different sensitivity to prices.  

 

For optimal scheduling of generation units, this thesis presents a novel method for the 

operator to predict market prices and electrical loads under real-time pricing (RTP) 

DR program in a microgrid. Inspired by the Stackelberg game, the proposed model 

represents the interaction between the operator and the consumers. The model 

establishes simulated trading between the network’s operator (leader) optimizing the 

generation cost and offering market prices to the customers (followers) who optimize 

their behavior. The interaction is formulated as a one-leader, N-follower iterative game 

where the optimization problems are solved using deterministic global optimization 

techniques. The proposed model considers a detailed representation of the industrial 

and residential loads. Simulations are performed on several microgrid systems where 

results show a significant improvement in the projected retail prices and electrical 

loads. 
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Finally, this thesis also examines the impact of energy storage systems (ESS) on the 

operation of an industrial facility in real-time demand response programs. A model is 

developed to optimally manage the energy storage and operation of the industrial load. 

Additionally, an approach to the sizing of the ESS is proposed. Stochastic modeling 

of electricity prices based on historical data is used to this end. The optimization 

models were tested on a generic industrial unit. Results show the benefits of ESS in 

increasing profit and highlight the impact of its installation cost on its feasibility. 

 

Keywords: Demand Response, Economic Dispatch, Energy Storage, Game Theory, 

Optimization, Smart Grid, Stackelberg Game. 
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Chapter One 

 

Introduction 

1.1 The Need for Smart Grids 

The world’s requirements for energy have been rising throughout the years to meet 

humanity’s need for industrial facilities, transportation usages, residential 

requirements, commercial services, and many more. This increase in energy 

consumption according to the international energy agency (IEA) is demonstrated in 

Figure 1 [1]. An increase of 113.26% in the world’s total final consumption of energy 

has occurred between 1973 and 2018. Noticeably, the percentage of the demand for 

electrical energy among the demand for the total energy doubled in those years from 

9.4% to 19.3%. Also, the total consumption of electrical energy has increased by more 

than four folds in that period [1]. 

 

Figure 1 World Total Final Consumption (TFC) by Source 

With great electric power demand, comes great responsibility. However, several 

incidents have shown how the traditional power grid did fail to provide service at peak 

hours. On July 12th 2004, the failure to supply high demand caused by a heatwave 

damaged the power system in Greece affected millions of citizens [2]. Similarly, on 

the cold day of February 2nd 2011, the increase in the electricity demand led to a 

blackout that lasted for eight hours in Texas [3]. Another reason for blackouts is the 

lag of communication between the network’s operators. The famous 2006 “Europan 
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Blackout” was due to the late signaling to the transmission system’s operator (TSO) 

that a powerline in Germany would be disconnected for other lines to handle the loads 

instead. The analysis for such an event was late and the system could not operate within 

the safety standards [4],[5]. As a result, 15 million houses lost electrical supply in 20 

European countries and few north African countries [5]. Additionally, weather 

conditions and natural events may cause an interruption in the service [6]. 

 

To keep up with the growing demand, the transmission and distribution networks and 

equipment need to be replaced [7]. This physical upgrade in the network in addition to 

being expensive will reoccur more frequently in the future due to the ever-growing 

need for electricity. Moreover, environmental concerns are emerging because of the 

more emissions from the relatively cheap sources of electricity (coal, gas, and petrol) 

[7]. Such events and concerns are numerous and have occurred in the majority of 

nations, and they could have been prevented with better load management and faster 

and more reliable communication. 

 

Bringing information and communication technologies (ICT) to the traditional grids 

for collecting data and communicating it between players involved in the grid, 

modernizes its capabilities to solve its reliability and control issues in a more 

autonomous way [7],[8]. Additionally, it enables the consumers to be active 

participants in the smart grid through demand side management (DSM) and demand 

response (DR) programs [8]. Demand response is defined as the incentives or tariff 

patterns that the power utility or network operators provide to the customers to alter 

their consumption schedule [8]. This shift in the demand would reduce the peak load 

and increase the consumption at a period that does not jeopardize the operation of the 

power network [8].  

 

1.2 Demand Side Management 

1.2.1  Types of demand response programs  

DSM or DR programs can be generally classified into two main categories: 

incentive-based and price-based [8],[9].  
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In incentive-based programs, the electrical consumers are paid to decrease their load 

at peak hours. Incentives and their application can have different types as listed below 

[8],[9]: 

• Direct load control (DLC): the utility has a control on certain appliances that 

can be turned off when necessary. In return for the inconvenience that 

occurred to the customers, they are paid incentives. 

• Interruptible curtailment programs: the utility does not have direct control 

over the load, however, if the consumers agree to shed load when requested 

they earn incentives. 

• Demand bidding programs: high load consumers (typically for loads >1MW) 

are offered these programs so they can profit from reducing their load for a 

certain bid price.  

• Emergency demand reduction: incentives are paid on short notice when the 

network’s reliability is jeopardized. 

 

In price-based programs, the incentives for the customers to shift their loads are not 

payments, but the flat rate tariffs are replaced with prices that vary throughout the day 

or for different consumption levels. These prices may have several forms [8],[9]: 

• Real-time pricing (RTP): the tariffs change at different intervals of time 

during the day. The updates may occur hourly, or even in shorter periods as 

in every 15 minutes for example. 

• Time-of-Use (TOU): prices are not updated as often as the RTP. Typically, 

there may be three or four prices in a day representing the different on-peaks 

and off-peaks loads that can occur. 

• Critical peak pricing (CPP): it follows the same structure as the TOU; 

however, it acts only during emergency events in the network. 

• Inclining block rate (IBR): the prices do not change with time of the day as 

the previous DR programs, but with the consumption level. In this program, 

the tariff charged to the consumers is divided into two level rates. When their 

consumption exceeds a certain threshold, they get charged with the higher 

rate. 
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1.2.2 Implementation 

All the aforementioned programs have been in use. Few examples of these 

employments are mentioned below:  

• DLC programs were utilized by more than 200 utilities in the United States 

by the year 2012 where they pay bill credit incentives to the customers [10]. 

Typical electrical appliances controlled in the residential equipment are 

water heaters, pool pumps, and air conditioners but with a notification to the 

users on warm days [10]. Portland General Electric’s (PGE) in the state of 

Oregon provides such programs where the incentives are lower rate 

structures for the customers who are willing to participate [11]. 

• Demand bidding programs: big utilities are offering such programs like 

“Southern California Edison”, “CPower”, “PG&E” [12]-[14]. 

• Price-based DR programs are more popular. TOU schemes are widely used 

in around 17 European countries, the USA, and India [15]. The dynamic 

pricing methods or RTP are also utilized in the USA [16] and several 

countries in Europe like Estonia, Sweden, U.K, etc. [15]. Similarly, the CPP 

programs are also adapted in those regions [15],[16]. 

 

1.3 Electricity Markets: Towards Liberalization 

The electricity sector was under strict regulations in the past due to its significant 

role on society and the environment. These regulations were either in the form of 

public ownership of the electricity industry or different sorts of financial, 

environmental, or health controls over private ownership [17]. 

However, in recent decades, some countries in the European Union have deregulated 

the electricity industry through the concept of liberalization. These modifications were 

encouraged by the premise that privatization can improve economic efficiency and 

regulations can act as negative incentives for the operation of industries [17]. As a 

result, the state-owned sector was divided into different firms to handle the generation 

of power, its transmission, and distribution [17]. This being said, several opinions were 

against these theories because of the fear of exploiting the market power. However, 

the current status of most of the electricity industry in leading countries is either 

privatized or state-owned with minimal regulations, for what is believed to lead to 

lower prices and high efficiency [17]. 



 

 

5 

1.4 Problem Formulation 

As mentioned before, the change of the consumption patterns and the intelligence 

added to the grid for faster communication have been the interests of researchers to 

further enhance the performance of the power grid. Benefits of DR for the power 

system include: 1) peak load shaving [18]-[20], 2) reducing emissions [21]-[23], 3) 

supporting renewable energy integration [24], 4) enhancing the reliability of the 

network [25],[26], and 5) reducing power losses in the transmission lines [27]. 

Consumers, on the other hand, benefit from 1) primarily cost-saving, as well as, 2) 

greater engagement in the operation of the system. 

 

The different types of objectives in DR programs and the different kinds of consumers 

and loads make the need to model the behavior of the participants, programs, and 

systems essential. Many techniques have been proposed to make the most out of DSM. 

Optimization methods were utilized in addition to game theory models to represent the 

interests of the supply side, the demand side, DR programs, network constraints, 

emission impacts, and more. 

 

This thesis presents a new model to represent the interaction between the network’s 

operator (supply-side) and different types of consumers (demand-side) under the RTP 

program. The proposed model comes around the gap in the previous models by being 

more realistic and more comprehensive. The contribution of this model, techniques 

used, and simulations will be detailed throughout the thesis. 

 

The new model presented is inspired by a game theory model and several optimization 

techniques. It does not only consider the detailed representation of the residential and 

industrial consumers, but it also considers the several limitations of the operator. 

 

Furthermore, more investigations on the industrial consumers’ model are performed 

by developing a model for energy storage system (ESS) management and sizing in 

day-ahead real-time pricing markets. 
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1.5 Thesis Organization 

In Chapter Two, the mathematical tools for modeling in this field will be 

represented, in addition to their applications in the literature. This chapter highlights 

the contribution of the proposed model.  

 

In Chapter Three, the optimization model of the operator is explained: the objective, 

the constraints, and the limitations. In Chapter Four, the detailed optimization models 

of the residential and industrial customers are presented. Moreover, the iterative game 

approach proposed in this work is clarified. 

 

In Chapter Five, simulations of the proposed methods are carried out on several 

networks. Their outcomes are analyzed and compared to other scenarios to illustrate 

the significance of the work. 

 

In Chapter Six, the ESS management models and sizing approaches for the industrial 

loads are presented. Two case studies are performed to analyze the validity of these 

models.  

 

Chapter Seven concludes the thesis and the work. Finally, additional information 

regarding the test systems and their outcome are represented in the Appendices. 
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Chapter Two 

 

Modeling Methods 

This chapter explains the mathematical concepts that will be used throughout the thesis 

to model the interactions in the smart grid. Moreover, it clarifies the contributions of 

the proposed model.  

 

2.1 Mathematical Optimization 

2.1.1 Definition and types 

Optimization is a mathematical model to express an objective with mathematical 

symbols. The goal behind this model is to make the best of the system (e.g. minimizing 

losses, maximizing profit). The generic idea is to write the targeted aim in an 

expression with decision variables that give it its value. This aim is the objective 

function that will be either maximized or minimized. The limitations of the decision 

variables are the constraints that prevent the maximization/minimization of the 

objective function from being +infinity/-infinity [28]. Generally, an optimization 

problem is expressed as:  

max/min objective function 

     subject to: constraint 1 

                        constraint 2 … 

 

Not all optimization models are created equal. The nature of the variables (integers or 

real numbers), the type of the objective function or the constraints (linear, convex, 

non-linear...) leads to diverse methods to find the optimal solution with different 

difficulties and computational burdens [28]. Some of the techniques presented are: 

Linear Programming (LP), Mixed-Integer Programming (MIP), Non-linear 

Programming (NLP), Dynamic Programming (DP)… Heuristic and meta-heuristic 

techniques have been proposed to search for a sufficiently good solution given the 

computation limitations [28]. 
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2.1.2 DR modeling 

In the context of smart grids, the previously mentioned techniques are widely 

exploited to model the behavior of the customers upon the change of the prices or the 

incentives paid. Classic optimization problems modeled real-time pricing (RTP) using 

demand elasticity, defined as the sensitivity of customers’ response to the change in 

price [29],[30]. In [29], demand elasticity is used to maximize social welfare, whereas 

in [30], the authors minimize the cost of generation. More detailed modeling of DR 

with a focus on scheduling or controlling specific appliances with the help of smart 

meters is also considered. In [31], the authors consider direct load control of specific 

buses to decrease losses in the system. The prices of the day-ahead market are assumed 

unknown and are predicted by forecasting modules. Optimally scheduling residential, 

commercial, and industrial equipment in the RTP program is considered in [32], while 

minimizing the squared of differences between the actual and the desired loads. These 

models are solved using deterministic global optimization including LP, NLP, and 

mixed-integer nonlinear programming (MINLP) or using heuristic optimization when 

dealing with a very large number of variables [32]. 

  

With the nature of conflicts and different interests among several players in the smart 

grid, the traditional optimization problems become limited in the representation of 

these players. “Game Theory” came as a nifty mathematical tool to model such 

interactions in the previous century. 

 

2.2 Game Theory 

2.2.1 Definition 

Modern Game Theory was first proposed in 1944 by John von Neumann and Oskar 

Morgenstern in an attempt to model the economic behavior of individuals or 

companies. The key idea is to model the interaction among individuals or players that 

are bounded with specific rules to dictate the moves and the outputs of those players 

[33]. Therefore, game theory is a model for almost all social interaction of aware 

individuals willing to enhance their utility [33]. The moves of the players are noted as 

strategies and the outcome of their moves is called payoff [28]. 

The different interactions lead to different types of games [28],[33]:  
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• Co-operative & non-cooperative games: the difference is whether the 

players have a binding commitment between each other (as in the case of 

co-operative games) that can limit their payoff. 

• Zero-sum game: the payoff of each player is balanced by those of other 

plays. In short, the sum of those payoffs of each move should be zero.  

• Simultaneous & dynamic games: In simultaneous games, the players move 

at the same time or do not know what other players have already played. 

Dynamic games are when each player knows what the other players have 

already performed, and accordingly, they can make informed decisions. 

In addition to other forms of games like infinitely long games, Stackelberg games, 

symmetric & asymmetric games…  

 

2.2.2  Equilibriums and solutions  

To solve a game model means to come up with a reasonable case from the strategies 

of the players, that makes both players satisfied with the outcome and have no 

incentives to deviate. Because of the nature of unwillingness to deviate from the 

solution, the term solution is often interchangeable with the term equilibrium [33]. 

 

Nobel prize winner Sir John Nash proposed a so-called beautiful idea to solve non-

cooperative games. A game in Table 1 is expressed in the matrix form (or the normal 

form), player 1 and player 2 have two strategies to choose from R1, R2 and C1, C2 

respectively. Nash proposed to solve such a game, the best reply for the opponent’s 

strategy should be considered. In Table 1, the best response for strategy C1 by player 

2, is for player 1 to go with R1 because 10>9. Therefore 10 is denoted with +. Likewise, 

the best response for strategy R1 by player 1, is for player 2 to play C2 because 5>4. 

Hence it is denoted with -. Following this logic for all strategies shows that the only 

coincidence between both best reply strategies is (R1,C2) and hence the Nash 

equilibrium is found [33]. 

Table 1 Example of Non-Cooperative Game 

C1 C2 

R1 +10,4 +1,5- 

R2 9,9- 0,3 
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The mentioned example is only a simple game, but it shows the general idea behind 

game models and how the player will decide depending on the different interests of 

other players. Interestingly, with mixed strategies (i.e., each player can choose a move 

with a certain probability) at least one Nash equilibrium exists [33].  

 

Other solutions have been proposed throughout the past century to solve the different 

kinds of games. Backward induction proposes that to solve dynamic or sequential 

games one should start thinking backward to find the sequence of optimal strategies. 

In the forward induction technique, how the strategy played now will cause inference 

to other players in the next steps is considered. Nash solution (different from Nash 

equilibrium) and Rubinstein’s solution methods were proposed to solve bargaining 

games [33]. 

 

2.2.3 Game theory and DR 

Game theory was proposed as a convenient technique to represent the different 

interests of players in the smart grid and to better model DR. In [34], a model was 

established to reduce the peak-to-average ratio by sending real-time price signals from 

the power supplier to customers who are aiming to maximize their value. The authors 

in [35] build a model where social welfare is maximized in the RTP scheme, with 

consumers declaring their energy demand information. The payoff function (utility) is 

designed to be concave to better reflect the interests of customers. The Nash 

equilibrium and competitive equilibrium were analyzed. The authors in [36], propose 

a model to set TOU prices to maximize the profit minus the satisfaction cost of the 

company while consumers maximize their utility function. The Nash equilibrium was 

obtained using backward induction. 

 

2.3 The Stackelberg Game 

2.3.1 Definition 

The Stackelberg concept was introduced in 1934 in an attempt to model the 

interaction in markets where some firms dominate others. The competition starts with 

the dominant firm or the leader announcing its strategy and the other firms or followers 

reacting to it. With both companies being rational and the leader having perfect 

knowledge of the other’s objective function, the leader’s best strategy is found with 
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anticipation of the follower’s optimal responses [37]. Typically, the solution is found 

using standard mathematical calculus.  

Later on, the Stackelberg concept was added to the sequential multi-level dynamic 

games. In such cases, the leader has the upper hand in the current state of the sequential 

game. Stackelberg equilibrium (S.E) could be obtained through backward induction. 

However, if the leader has the power to set strategies first throughout the whole 

process, then finding the global Stackelberg solution becomes difficult because the 

solution sets become very large, almost infinite [37]. Lately, the amalgamation of 

Stackelberg games with other modeling concepts continued. 

 

2.3.2 Stackelberg game and DR 

For improved modeling of the interactions between the customers and the utility, 

operators, retailers, or energy centers, the Stackelberg game form is exploited. In a 

Stackelberg game, the utility or operator is the leader who first sets the price of 

electricity for each period, the consumers are followers who act upon the leader’s 

strategy and set their optimal strategies [38]-[41]. The authors in [38] model the 

relationship between a retailer and N residential customers who announce their power 

consumption updates. The retailer aims to maximize his/her profit while the customers 

intend to maximize the quality of their power consumption. Reference [38] proposed 

a distributed algorithm to solve the consumers’ model. Reference [39] utilized the 

Stackelberg game to model the interaction between retailers wanting to maximize their 

profit and customers trying to minimize their bill costs. The leader’s optimization 

problem was solved using a genetic algorithm while the follower’s linear programming 

problem was solved analytically. The prices are announced through smart meters then 

customers react accordingly by automatically rescheduling appliances. In [40], the 

model aims to find the effect that DR can bring to generation companies and 

consumers in the smart grid using the Stackelberg framework, by observing the 

behavior of the consumers optimally adjusting their load to the new prices. The leader 

tries to solve the economic dispatch problem and then submit the bid to the wholesale 

market. Next, the operator finds the optimal prices. With the day ahead prices sent to 

the customers, they maximize their utility accordingly. Reference [40] shows that day 

ahead RTP does not always lead to lower generation costs. The authors in [41] consider 

the virtual (non-physical) power trading model between the energy management center 

and devices to achieve optimal load control of the load. The leader maximizes the 



 

 

12 

benefit from selling electricity while the devices aim to minimize the monetary cost 

and the dissatisfaction from shifting the appliances’ schedule. Each optimization 

problem is solved and then the outputs are used for the other model in an iterative 

process until the S.E is achieved. 

 

2.4 Gaps and Contributions 

The model presented in this thesis is intended to represent the case in electricity 

markets in a very realistic and comprehensive fashion.  

The consumers are diverse, and their consumption patterns will differ under DR 

programs. However, in the existing models, a tradeoff occurs either in not representing 

all types of customers [19],[20],[25],[31],[34],[38] or in simplifying the representation 

of industrial loads [27],[32],[35],[36]. 

The generation capacity and the physical constraints of the grid are essential and can 

cause major changes in the prices. Despite this, as a simplification, some of the models 

ignore power flow [18]-[21],[30],[33],[35].  

Additionally, in the game theory approach, customers are assumed to have perfect 

knowledge [36],[40] and to be capable of making collective decisions and thus 

impacting the electricity/incentive price [35],[38],[40]. This may be true if a direct 

load control DR program is utilized, however, in RTP, each consumer does not alter 

his/her consumption by coordinating with others. Rather he/she reacts to the prices as 

an individual household, company, or an industry. Also, each consumer is not aware 

of the utility’s conditions and generation capacity, and thus no knowledge of how the 

change of the consumption will affect the market prices. 

 

The work in this thesis builds a Stackelberg game model to represent the interaction 

between the network operator and the variety of consumers. The model is from the 

perspective of the microgrid’s operators who are price setters in the market. A 

microgrid is considered because the knowledge of consumers’ parameters cannot be 

generalized to bigger grids.  Residential and industrial consumers are simulated by the 

operator as price takers. This simulated power trading scheme allows the operator to 

better predict consumer response to the RTP program and, consequently, to better 

optimize the microgrid’s economic dispatch.   
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The proposed modified Stackelberg game is then defined as follows: the leader 

(operator) declares the electricity prices after an initial economic dispatch. The 

“simulated” followers (residential and industrial consumers) react to the new prices by 

optimizing their load. The operator then re-calculates the new prices and sends them 

to the followers. The model keeps on iterating until convergence within a predefined 

threshold.  

The major contributions of the thesis are that it presents a non-compromising game 

model to describe the interests and the interactions between the operator and the 

customers, and it further investigates the impact of DR on optimal economic dispatch. 

Compared to most related works in literature, the presented approach is characterized 

by: 1) detailed modeling of residential and industrial consumers without 

compromising the complexity of the modeled power system (by virtue of the presented 

iterative approach), 2) more accurate representation of consumers as price takers 

without the ability of collective decision making to affect electricity prices (as opposed 

to the traditional Stackelberg game approach), and 3) guaranteed convergence of the 

model by controlling the threshold of load changes and prices between iterations. 

 

In the following chapter, the operator side of the Stackelberg game is discussed and 

modeled. 
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Chapter Three 

 

Leader’s Strategies 

In this chapter, the optimization problem for the operator is discussed. The objectives 

and constraints are modeled and analyzed. 

 

3.1 Objective 

In a grid, the role of the operator is to meet the electrical demand with the minimum 

generation costs possible. The operator has to successfully schedule the generating 

units while satisfying the technical and physical limitations of the network [42]. This 

process is known as the economic dispatch. The power network is made up of several 

nodes or busses, where power lines are connected, and certain generations and loads 

may be included. 

 

The goal of the microgrid operator in an economic dispatch problem is to minimize its 

total costs including generation costs and purchase costs from the main grid. The 

objective function OF1 is thus given as follows: 

min 𝑂𝐹1 = ∑ ∑ 𝐶𝑖(𝑃𝑖,𝑡)

𝐼

𝑖=1

𝑇

𝑡=1

+ ∑ ∑ 𝐶𝑖(𝑃𝑟𝑖,𝑡) 

𝐼

𝑖=1

𝑇

𝑡=1

 (1) 

Where 𝑃𝑖,𝑡 is the generator’s active power output on bus i in period t, 𝑃𝑟𝑖,𝑡 is the 

transferred power given on bus i in period t, and sets I and T are the sets of network 

buses and time-periods respectively.  

 

The generation cost is given as: 

𝐶𝑖(𝑃𝑖,𝑡) = 𝑎𝑖𝑃𝑖,𝑡
2 +𝑏𝑖𝑃𝑖,𝑡 , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (2) 

Where ai and bi are generation cost coefficients of the unit at bus i.  

 

The cost of purchasing from the main grid is given as: 

𝐶𝑖(𝑃𝑟𝑖,𝑡) =  𝜏𝑃𝑟𝑖,𝑡 , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (3) 

Where τ is transferred power marginal price. 
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3.2 Constraints 

Line Limits: Real and reactive powers between buses i and j in period t (𝑃𝑖𝑗,𝑡, 𝑄𝑖𝑗,𝑡) are 

given as: 

𝑃𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡|

2

𝑍𝑖𝑗
cos(𝛾𝑖𝑗) −

|𝑉𝑖,𝑡||𝑉𝑗,𝑡|

𝑍𝑖𝑗
cos(𝛾𝑖𝑗 + 𝛿𝑖,𝑡 − 𝛿𝑗,𝑡) , 𝑡 ∈ 𝑇; 𝑖, 𝑗 ∈ 𝐼 (4) 

𝑄𝑖𝑗,𝑡 =
|𝑉𝑖,𝑡|

2

𝑍𝑖𝑗
sin(𝛾𝑖𝑗) −

|𝑉𝑖,𝑡||𝑉𝑗,𝑡|

𝑍𝑖𝑗
sin(𝛾𝑖𝑗 + 𝛿𝑖,𝑡 − 𝛿𝑗,𝑡) −

𝑏𝑠ℎ𝑖𝑗|𝑉𝑖,𝑡|
2

2
, 

𝑡 ∈ 𝑇; 𝑖, 𝑗 ∈ 𝐼 

(5) 

Where Zij is impedance magnitude of branch connecting bus i to j, γij impedance angle 

of branch connecting bus i to j, bshij is the charging susceptance of the line connecting 

buses i and j, and 𝑉𝑖,𝑡 and 𝛿𝑖,𝑡 are the voltage magnitude and the phase angle of a bus i 

in period t respectively. 

 

The total apparent power through a line (𝑆𝑖𝑗,𝑡) at any given time cannot exceed the 

capacity of the line (𝑆𝑖𝑗,𝑚𝑎𝑥): 

𝑆𝑖𝑗,𝑡 = √𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2 ≤ 𝑆𝑖𝑗,𝑚𝑎𝑥 , 𝑡 ∈ 𝑇; 𝑖, 𝑗 ∈ 𝐼 (6) 

 

Voltage and phase limits: 𝑉𝑖,𝑡 and 𝛿𝑖,𝑡 must satisfy power quality and reliability 

constraints: 

0.9 × Vbase ≤ 𝑉𝑖,𝑡 ≤ 1.1 × Vbase, 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (7) 

−𝜋

2
≤ 𝛿𝑖,𝑡 ≤

𝜋

2
, 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (8) 

𝛿𝑠𝑙𝑎𝑐𝑘,𝑡 = 0, 𝑡 ∈ 𝑇 (9) 

Where Vbase is the base voltage of the system. 

 

Power balance: in every period t, the sum of generated power on bus i plus the power 

purchased or sold from the main grid should be equal to demand on the bus, in addition 

to the power in the lines connected to it. 

𝑃𝑖,𝑡 + 𝑃𝑟𝑖,𝑡  = ∑ 𝑃𝑖𝑗,𝑡 

𝐼

𝑗=1

+ 𝑃𝑙𝑖,𝑡 , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (10) 
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𝑄𝑖,𝑡 + 𝑄𝑟𝑖,𝑡 = ∑ 𝑄𝑖𝑗,𝑡 

𝐼

𝑗=1

+ 𝑄𝑙𝑖,𝑡 , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (11) 

Where 𝑃𝑙𝑖,𝑡 and Q𝑙𝑖,𝑡 are the real and reactive loads on bus i in period t. A constant 

power factor is considered for the residential and industrial loads and the transferred 

power. 

 

Generation capacity: The generators have upper (𝑃𝑖,𝑚𝑎𝑥, 𝑄𝑖,𝑚𝑎𝑥) and lower 

(𝑃𝑖,𝑚𝑖𝑛 , 𝑄𝑖,𝑚𝑖𝑛) generation limits. There is also a limit for how much power can be 

transferred from and to the microgrid (𝑃𝑟𝑖,𝑚𝑖𝑛, 𝑃𝑟𝑖,𝑚𝑎𝑥). The constraints are expressed 

in (12) (14). 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥, 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (12) 

𝑃𝑟𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑟𝑖,𝑡 ≤ 𝑃𝑟𝑖,𝑚𝑎𝑥, 𝑡 ∈ 𝑇 ; 𝑖 ∈ 𝐼 (13) 

𝑄𝑖,𝑚𝑖𝑛 ≤ 𝑄𝑖,𝑡 ≤ 𝑄𝑖,𝑚𝑎𝑥, 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (14) 

 

Ramping limits: generators cannot shift their output by a large amount directly, they 

have to abide by lower (DR) and upper (UR) ramping limits.  

−DR ≤  𝑃𝑖,𝑡+1 − 𝑃𝑖,𝑡  ≤  UR, 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (15) 

 

3.3 Market Price 

After the model is solved, the market price in period t is defined as the marginal 

cost of generation of the most expensive unit. Therefore, the market price at period t, 

Pricet, is the marginal cost of the most expensive operating unit at that period.  

𝑃𝑟𝑖𝑐𝑒𝑡 = max (
𝑑𝐶𝑖(𝑃𝑖,𝑡)

𝑑𝑃𝑖,𝑡
,
𝑑𝐶𝑖(𝑃𝑟𝑖,𝑡)

𝑑𝑃𝑟𝑖,𝑡
) , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝐼 (16) 

This price will be the only information from the leader that followers will have to play 

their strategies. In the next chapter, the followers’ objectives, constraints, and 

optimization problems will be modeled. 
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Chapter Four 

 

Follower’s Strategies 

Electricity consumers are divided into residential, commercial, and industrial loads. 

Residential loads are characterized by high responsiveness due to their sheddable, non-

sheddable, and shiftable loads [9]. Commercial loads are the least responsive since 

they operate in fixed hours per day and their load is not flexible [9]. Finally, industrial 

loads involve independent machines operating in manufacturing lines, making their 

DR model more complex [43]. 

In the proposed model, the operator of a microgrid can obtain the parameters of the 

residential and industrial customers by deducing them from historical data or by 

requesting the information of the devices and the manufacturing process as a condition 

for participating in the DR program, or for connecting to the grid. This is a reasonable 

assumption since participation in the DR program is optional and the information will 

be used to improve the operation of the system and enhance the experience and 

interests of the consumers. Commercial loads are ignored in this thesis as their 

interaction with demand response is minimal. 

 

4.1 Residential Consumers 

4.1.1 Objective function 

The main objective of residential customers is to utilize electrical energy in a cost-

effective way. A typical way to model such interest is to build a utility function, 

normally a concave function, that is dependent on price. In this thesis, the proposed 

game represents the payoff of the residential consumers as an electric bill to be 

minimized, however, the bounds on the change of consumption are modeled as 

constraints. Therefore, the objective function of residential consumers OF2 is: 

min 𝑂𝐹2 =  ∑ ∑ 𝑃𝑟𝑖𝑐𝑒𝑡 × (𝑃𝑙𝑖,𝑡 + 𝑋𝑟𝑖,𝑡)

𝑅

𝑖=1

𝑇

𝑡=1

 (17) 

Where Xri,t is the load that can be reduced or increased in period t and R is the subset 

of buses with residential loads.  
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The residential load is divided into non-sheddable loads that cannot be turned off or 

rescheduled, sheddable loads that consumers can give up on using, and shiftable loads 

that consumers can stop using on certain hours and reuse later [9]. These will be 

modeled as constraints to mimic how much customers value electrical energy.  

 

4.1.2 Residential constraints 

Shedding limits: y% of the total load is sheddable in one day. These reflect the 

appliance that residential customers are willing to give up their consumption as air 

compressors, battery chargers, television… So, the total new load in one day can go 

down to (100-y)% of the initial total load of the day, as shown in (18). 

∑(𝑃𝑙𝑖,𝑡 + 𝑋𝑟𝑖,𝑡)

𝑇

𝑡=1

≥ (1 −
𝑦

100
) ∑ 𝑃𝑙𝑖,𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑇

𝑡=1

, 𝑖 ∈ 𝑅 (18) 

Where Pli,t-initial is the initial active power demand at bus i in period t. 

 

Shifting limits: in a period t, a certain percentage of the load can be changed. These 

reflect appliances that can be rescheduled, like dishwashers or dryers, in addition to 

their percentage of the total load during hours of the day. The residential consumers’ 

loads are more flexible during the daytime and less flexible after midnight. Therefore 

the change of the load (Xri,t) is bounded between a percentage ϵt of the initial load as 

shown in (19). 

−ϵtPli,t−initial ≤ Xri,t ≤ ϵtPli,t−initial, t ∈ T; i ∈ R (19) 

 

Non-sheddable loads: in a period t, the load has to be greater than z% of the initial 

load. These reflect appliances that customers are willing to utilize no matter how much 

prices are high. Typically, these appliances consume high power like refrigerators, 

heaters in cold weather, total lighting loads…  

Pli,t + Xri,t  ≥
z

100
Pli,t−initial, t ∈ T; i ∈ R (20) 

 

RTP constraint: the market considered is not a day-ahead price but a real-time market. 

Hence, it is a fair assumption that customers cannot shift their loads to earlier times. 

This can be modeled by making the sum of the new load up to every period t less than 

the initial load up to that period. 



 

 

19 

∑(Pli,t + Xri,t)

n

t=1

≤ ∑ Pli,t−initial

n

t=1

, n ∈ T, i ∈ R (21) 

 

4.2 Industrial Consumers 

4.2.1 Objective function 

The industrial load is a set of machines operating to give items that are fed to the 

next machine until the final product is manufactured. [43] and [44] modeled a general 

form of industrial behavior. Unlike residential consumers, shedding a machine could 

affect the whole consumption pattern throughout the day due to interconnections of 

the appliances. The model in this thesis is adapted from [43]. As mentioned earlier, it 

is assumed that this information is made available to the operator at the time of 

connection.  

Figure 2 shows an example of an assembly line of industry. The rows “r” are numbered 

from 1  S, and each row has 𝑀𝑟 columns “c”. The assembly line combining other 

lines is indexed r=0 and has 𝑀0 columns. Each machine is drawn as a square followed 

by a buffer for storage labeled as a circle. 

 

Figure 2 Industrial Load Scheme Number One 

For more compact equation representation, the dimension considering the network 

buses with industrial loads (set D) is omitted in the below model of the industrial load. 

 

The objective of the industrial consumers is to maximize their profit which is the 

revenue they gain from selling the assembled products minus the costs of the material 

needed for manufacturing and the electricity bill. Therefore, the objective function to 

maximize by the industrial consumers OF3 is: 

max 𝑂𝐹3 =  𝐾𝑠𝐵0𝑀0𝑡24
− ∑ ∑ 𝐾𝑃𝑟𝛽𝑟𝑛𝑟1𝑡

𝑆

𝑟=1

 

𝑇

𝑡=1

− ∑ ∑ ∑ 𝑃𝑟𝑖𝑐𝑒𝑡𝑥𝑟𝑐𝑡𝐸𝑜𝑛𝑟𝑐

𝑀𝑟

𝑐=1

𝑆

𝑟=0

𝑇

𝑡=1

 

 

(22) 

Machine

Buffer
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Where Ks is the price of the product manufactured in the market. 𝐵𝑜𝑀0𝑡24
is what the 

machines produced in a day that is stored at the very end buffer at the end of the day. 

KPr is the price of the material purchased to operate the machines in the first columns. 

𝛽𝑟 is the number of these items needed to manufacture one product by a machine. xrct 

is a variable indicating the on/off status of a machine in row r and column c in a period 

t. Eonrc is the power needed for each machine when it is operating.  

 

4.2.2 Industrial constraints 

The following constraints to model the behavior are used in [43]. The scheduling 

horizon of a day is divided into Ts slots. Here the day is divided into 24 slots. 

  

Machine’s output quantity: Each machine can generate n items in a time slot Ts. CTrc 

is the cycling time of a machine. The number of outputs of each machine in period t 

(nrct) is expressed in (23). 

𝑛𝑟𝑐𝑡 =  
𝑇𝑠

𝐶𝑇𝑟𝑐
𝑥𝑟𝑐𝑡     , 𝑡 ∈ 𝑇; 𝑟 = 0, … , 𝑆; 𝑐 = 1, … , 𝑀𝑟 (23) 

For example, if a machine r1.c1 is turned on, with Ts = 60 mins and CTrc = 50s, then 

machine r1.c1 produces 60*60/50 =72 items per hour. 

 

Buffer storage: After each machine, there is a buffer Brc to store the manufactured 

product that will be fed to the next machine. The buffer storage at given period t (Brct) 

is given by: 

𝐵𝑟𝑐𝑡 =  𝐵𝑟𝑐(𝑡−1) + 𝑛𝑟𝑐𝑡 − 𝛼𝑟𝑐𝑛𝑟(𝑐+1)𝑡 ,

𝑡 ∈ 𝑇; 𝑟 = 0, … , 𝑆; 𝑐 = 1, … 𝑀𝑟 − 1 
(24) 

𝐵𝑟𝑐𝑡 =  𝐵𝑟𝑐(𝑡−1) + 𝑛𝑟𝑐𝑡 − 𝛼𝑟𝑐𝑛01𝑡 , 𝑡 ∈ 𝑇; 𝑟 = 1, … , 𝑆; c = 𝑀𝑟 (25) 

𝐵𝑟𝑐𝑡 =  𝐵𝑟𝑐(𝑡−1) + 𝑛𝑟𝑐𝑡 , 𝑡 ∈ 𝑇; 𝑟 = 0; c = 𝑀0 (26) 

Where αrc is a coefficient describing the number of parts from Brc that is necessary for 

the machine after it to produce one part. 

 

Equation (24) shows that the items in a buffer in period t equals the number of items 

in the previous time slot in addition to what is produced and added to it at the current 

time slot, minus the parts which are taken for the next machine to operate. This 
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equation applies to the buffers in all the rows except the last buffer in them since there 

are no machines left in the same row. 

Equation (25) describes the behavior of the machines at the end of the non-assembly 

lines, where their outputs are used by machine r0.c1. It follows the same logic as (24), 

however, the outputs of those machines are fed to r0.c1. 

Equation (26) describes the behavior of the last buffer where it accumulates all the 

final products. 

 

Machine operation conditions: The machine operates if and only if the previous buffer 

has enough items (except the first machines in every line): 

• If a buffer feeding a machine is empty (Brc(t-1) = 0), then this machine in the 

next period is off (xr(c+1)t = 0). 

•  If a buffer feeding a machine is not empty (Brc(t-1) > 0), then this machine in 

the next period can operate (xr(c+1)t > 0). 

The relation in (27) satisfies these conditions. 

𝑥𝑟(𝑐+1)𝑡 ≤  𝐵𝑟𝑐(𝑡−1), 𝑡 ∈ 𝑇; 𝑟 = 0, … , S; 𝑐 = 1, … , 𝑀𝑟 − 1 (27) 

The first machine at the beginning of the assembly line (r = 0) does not operate if the 

buffers at the end of the rows 1 S are empty, as modeled in (28). It follows the logic 

in (27). 

𝑥01𝑡 ≤  𝐵𝑟𝑐(𝑡−1), 𝑡 ∈ 𝑇; 𝑟 = 1, … , 𝑆; 𝑐 = 𝑀𝑟 (28) 

 

Buffer storage limits: The buffers have upper limits of storage capacity (𝐶𝐴𝑃𝑟𝑐) and 

naturally cannot have negative storage. 

0 ≤ 𝐵𝑟𝑐𝑡 ≤  𝐶𝐴𝑃𝑟𝑐, 𝑡 ∈ 𝑇; 𝑟 = 0, … , 𝑆; 𝑐 = 1, … , 𝑀𝑟 (29) 

 

Full buffer blockage rule: Finally, if the buffer is full, its corresponding machine will 

be blocked from operating: If a buffer feeding a machine is full (Brc(t-1) =𝐶𝐴𝑃𝑟𝑐), then 

the corresponding machine in the next period is off (xrct = 0).  

Equation (30) satisfies this condition. 

𝑥𝑟𝑐𝑡 ≤  𝐶𝐴𝑃𝑟𝑐− 𝐵𝑟𝑐(𝑡−1), 𝑡 ∈ 𝑇; 𝑟 = 0, … , 𝑆; 𝑐 = 1, … , 𝑀𝑟 (30) 
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RTP constraint: like residential loads, industrial loads are assumed to not shift their 

loads to earlier in the real-time pricing market as expressed in (31). It follows the logic 

in (21). 

∑ ∑ ∑ 𝑥𝑟𝑐𝑡,𝑖𝐸𝑜𝑛𝑟𝑐,𝑖

𝑀𝑟

c=1

𝑆

𝑟=0

𝑛

𝑡=1

≤ ∑ 𝑃𝑙𝑖,𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑡=1

, 𝑛 ∈ 𝑇, 𝑖 ∈ D (31) 

Where D is the subset of buses with industrial loads. 

 

Non-binary operation: Brct and nrct are obviously positive integers. In [43], xrct is a 

binary variable indicating if the machine is strictly on/off. In this thesis, to model a 

large power consumption machine that operates in non-discrete mode, xrct is defined 

as a variable bounded between 0 and 1. 

In the case of the elastic operation mode, ramping limits (𝜓) are set: 

−𝜓 ≤ 𝑥𝑟𝑐𝑡 − 𝑥𝑟𝑐(𝑡−1) ≤  𝜓, 𝑡 ∈ 𝑇; 𝑟 = 0, … , 𝑆; 𝑐 = 1, … 𝑀𝑟 (32) 

  

4.3 Iterative Stackelberg Game 

4.3.1  System’s flow 

With the well-defined leader’s and followers’ strategies and objectives, the 

Stackelberg game can be modeled. 

A game is played between the operator as a leader and the residential and industrial 

customers as followers. The operator calculates the economic dispatch for an initial 

load of customers not participating in DR programs. For that, he/she will minimize (1) 

subject to (2)  (15) using NLP. Then, the market price is found with (16).  

 

Next, the system starts iterating by performing the following: 

The operator will try to predict the behavior of the customers and how they will shift 

their loads with the updated prices when participating in the RTP DR program 

considering that:  

1) The residential customers will minimize (17) subject to (18) (21) using NLP. 

The new residential load is then calculated as: 

𝑃𝑙𝑖,𝑡 = 𝑃𝑙𝑖,𝑡 + 𝑋𝑟𝑖,𝑡 , 𝑡 ∈ 𝑇; 𝑖 ∈ 𝑅 (33) 
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2) Industrial customers will maximize (22) subject to (23)  (31) and (32) (for 

non-discrete manufacturing mode) using MIP. The new industrial load is then 

calculated as: 

𝑃𝑙𝑖,𝑡 = ∑ ∑ 𝑥𝑟𝑐𝑡,𝑖𝐸𝑜𝑛𝑟𝑐,𝑖

𝑀𝑟

c=1

𝑆

𝑟=0

, 𝑡 ∈ 𝑇; 𝑖 ∈ D (34) 

If both the residential and industrial load do not change their loads, i.e., every Xri,t is 

0 and all xrct are the same as the previous iteration, then the model stops. If not, another 

iteration is performed.  

3) The operator will re-find the economic dispatch and new prices will emerge. 

 

4.3.2 Discussion on convergence 

Theorem 1 has been previously proposed for the existence of a unique S.E [41],[45]. 

Theorem 1: For the proposed one-leader, N-follower Stackelberg game, a unique SE 

exists between the operator and the customers if the following conditions are satisfied:  

1) The strategy sets of the leader and the followers are nonempty, compact, and 

convex. 

2) Each customer has a unique optimal strategy solution as a best response for the 

operator’s strategy. 

3) The operator has a unique optimal strategy solution as a best response for the 

follower’s best strategies. 

The non-convex AC power flow equations in the leader’s model [46], in addition to 

the integer variables in the industrial load follower’s model, make the analytical proof 

of the existence of the Stackelberg equilibrium arduous.  

 

To ensure convergence of the iterative process of the proposed modified Stackelberg 

approach, the following conditions are considered: 

1) If the followers do not change their consumption from the previous iteration, or 

the change in load is within a specified threshold, rL, iterations stop.  

2) If the followers have more than one unique optimal response for the leader’s 

strategy, then the same electric prices would have different optimal strategies for 

the customers. If two consecutive iterations lead to the same real-time prices, or 

the change in prices is below a specified threshold, rP, the iterations stop. 
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For this simplified case study, the operator minimizes (1) subject to (2), (3), (10), (12), 

(13), and (15). The followers minimize (17) subject to (18) (21) for residential 

customers and maximize (22) subject to (23)  (31). Set I dimension of the constraints 

and power flow analysis equations are removed.  

 

5.1.2 Results and verification. 

This model is tested on GAMS using the SCIP solver, and it took five iterations to 

converge. This means in the fifth iteration the customers did not change their load, so 

the model stopped.  

The simulation shows the following results: 

Generating units: The output of the power sources is the main decision for the operator 

to make. The percentage generation output of the units for the initial loads and last 

loads are shown in Figure 4 and Figure 5 respectively.  

• Initial load dispatch: 

 

 

Figure 4 Percentage Output of The Generation Sources: Case One-Initial Case 

• Final load dispatch: 

 

 

Figure 5 Percentage Output of The Generation Sources: Case One-Final Case 
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Stackelberg game approach. Here, there was no change in the load compared to the 

previous iteration. 

 

Residential load: the change of the residential load is obvious as shown in Figure 7. 

The RTP constraint is verified where the load is lower than how it was in the initial 

iteration at the beginning, then surpasses it at later times. This shows how loads are 

not shifted to earlier times.  

 

Industrial load: As mentioned before, the operation of a machine and equipment in 

the manufacturing scheme will affect the status of other machines. The goal of the 

industrial consumers is to profit the most and hence the machines should be scheduled 

optimally to reduce electric bill costs. The machines' status of the final load is shown 

in Table 2 and their buffer storage is shown in Table 3. 

Table 2 Machines On/Off Status: Case One-Final Case 

  Machine 

  r0.c1 r0.c2 r1.c1 r1.c2 r1.c3 r2.c1 r3.c1 r3.c2 r3.c3 r3.c4 

T
im

e
 

t1 0 0 1 0 0 0 1 0 0 0 

t2 0 0 1 1 0 0 1 1 0 0 

t3 0 0 1 1 0 0 1 1 0 0 

t4 0 0 1 1 0 0 1 1 1 0 

t5 0 0 1 1 0 0 1 1 1 0 

t6 0 0 1 1 0 0 0 1 0 0 

t7 0 0 0 1 0 0 0 0 0 0 

t8 0 0 1 1 0 0 1 0 0 0 

t9 0 0 1 1 1 1 0 1 1 1 

t10 0 0 0 1 0 0 0 0 0 0 

t11 0 0 0 1 0 0 0 0 0 0 

t12 1 0 1 1 1 0 1 0 0 1 

t13 1 0 1 1 0 1 0 1 0 0 

t14 0 0 0 1 0 0 0 0 0 0 

t15 1 0 1 1 1 1 1 0 0 0 

t16 1 0 1 1 0 0 0 1 1 0 

t17 0 0 1 1 0 0 0 0 0 0 

t18 1 0 1 1 1 1 1 0 0 1 

t19 1 0 0 1 0 0 1 1 0 0 

t20 1 0 0 0 0 0 0 0 0 0 

t21 0 0 0 1 0 0 0 0 0 0 

t22 1 1 0 1 1 1 0 1 1 1 

t23 1 1 0 0 0 0 0 0 0 0 

t24 1 1 0 0 0 0 0 0 0 0 
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Table 3 Number of Items in Buffers: Case Number- Final Case 

  Buffer 

  r0.c1 r0.c2 r1.c1 r1.c2 r1.c3 r2.c1 r3.c1 r3.c2 r3.c3 r3.c4 

T
im

e 

t1 0 0 72 0 0 0 24 0 0 0 

t2 0 0 96 12 0 0 24 12 0 0 

t3 0 0 120 24 0 0 24 24 0 0 

t4 0 0 144 36 0 0 24 12 24 0 

t5 0 0 168 48 0 0 24 0 48 0 

t6 0 0 192 60 0 0 0 12 48 0 

t7 0 0 144 72 0 0 0 12 48 0 

t8 0 0 168 84 0 0 24 12 48 0 

t9 0 0 192 48 24 72 0 0 42 30 

t10 0 0 144 60 24 72 0 0 42 30 

t11 0 0 96 72 24 72 0 0 42 30 

t12 12 0 120 36 36 36 24 0 12 48 

t13 24 0 144 48 24 72 0 12 12 36 

t14 24 0 96 60 24 72 0 12 12 36 

t15 36 0 120 24 36 108 24 12 12 24 

t16 48 0 144 36 24 72 0 0 36 12 

t17 48 0 168 48 24 72 0 0 36 12 

t18 60 0 192 12 36 108 24 0 6 30 

t19 72 0 144 24 24 72 24 12 6 18 

t20 84 0 144 24 12 36 24 12 6 6 

t21 84 0 96 36 12 36 24 12 6 6 

t22 56 40 48 0 24 72 0 0 0 24 

t23 28 80 48 0 12 36 0 0 0 12 

t24 0 120 48 0 0 0 0 0 0 0 

 

These patterns and numbers in Table 2 and Table 3 demonstrate the validity of the 

industrial model: 

• A machine does not operate unless the previous machine in the same 

manufacturing line has previously functioned. 

• The buffer storage equations for non-assembly (r>0) and assembly lines (r=0) 

have been verified. For example: 

1) Machine r1.c1 generates 
60×60

50
= 72 units/hour, and the consecutive 

machine r1.c2 generators 12 units/hours and requires 4 units of the previous 

machine to manufacture 1 unit. With the buffer of r1.c1 already having 72 

units at t1, and both machines turned on in t2: then the number of units in 

buffer r1.c2 at t2 = 72 + 72 − 4 × 12 = 96 as verified in Table 3. 

2) Similar analysis on the machine at the beginning of the assembly lines 

shows the change in the buffers at the end of the non-assembly lines. 

3) The constant increase of units of the last buffer shows how the final 

products are accumulated. 
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• The zero or minimal leftovers units in the buffers at t24 verify the optimal 

scheduling of units by utilizing the machines as efficiently as possible and 

optimally purchasing the extra materials needed by machines in the first 

columns. 

 

Objective functions: The variations of the objective functions throughout the iterations 

are shown in Table 4. 

Table 4 Iterations Output: Case One 

Iterations OF2(¢) OF3(¢) OF1(¢)  

Initial - - 770.660  

First 943.290 72980.588 743.036  

Second 1000.86 72831.685 729.598  

Third 922.456 72991.343 754.015  

Fourth 1052.25 72789.226 728.392  

Final 930.068 72886.228 -  

 

5.1.3 Discussion and analysis 

The optimal dispatch without considering demand response (base values) results in 

a total generation cost per day of ¢770.66. As observed in Figure 7, the residential load 

peaks in the afternoon and dips after midnight, whereas the industrial load is initially 

high from 3:00 till 5:00. This results in high generation costs and electricity prices 

during these periods.  

 

After the first iteration, the total generation cost per day is reduced to ¢743.036. This 

outcome is a better optimum than the initial value since the economic dispatch now 

considers a more detailed representation of the loads. In addition, the 5% sheddable 

residential load contributes to a further decrease in OF1. Besides this cut in the total 

load, the residential load drops at peak prices (3:00  5:00) and after 17:00, when the 

prices are higher than previous hours. On the contrary, it spikes during 12:00  13:00 

and 14:00 16:00. Similarly, the industrial customers operate their machines with 

lower capacity at peak price hours. In fact, when the prices are at their maximum (3:00 

 4:00), the industrial load is 0. More machines operate during the day due to the 

lower prices, compared to the initial case. However, the demand response behavior of 

the consumers is still not well represented, since, with the new resulting prices, the 

loads are expected to change. 
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After the iterations converge, economic dispatch results in a total cost of ¢728.392, a 

5.48% drop in cost compared to the initial values, and a 2% drop compared to the first 

iteration As shown in Figure 7 and Figure 8, new residential and industrial peaks 

emerged compared to the base case and the first iteration. By simulating the behavior 

of the consumers and more accurately accounting for demand response, a more optimal 

economic dispatch was achieved. Furthermore, the model indicates that the operator 

is not the only profited player in DR programs. There is a drop of 1.42% in the 

residential bill. The profit of the industrial load, however, decreased from iteration 1 

to the last iteration. It is important to repeat that the primary optimization is from the 

perspective of the operator. 

 

To further assess the impact of DR in reducing the costs, the load factor is studied. The 

load factor is defined as the ratio between the average demand and the peak demand 

in a certain period. A 100% load factor reflects a flat curve of demand, i.e. a fixed 

demand throughout the whole day. With DR programs, a higher load factor can be 

achieved with its potential in load shifting and shedding.  

 

With the presence of zero-cost green energy sources, the operator aims to fully utilize 

them for minimum cost, and hence the goal is to match the load with the green DGs. 

Therefore, to fully understand the impact of DR in load shifting and minimizing the 

generation costs of the conventional units, the generation output of the PVs and the 

wind turbines in the systems are deducted from the total demand when measuring the 

load factor. 

 

The load factor of the total demand in the initial case was 62.23% and increased to 

70.10% in the final case. 

  

5.2 Case Study 2: IEEE 24-RTS 

5.2.1 Network description 

In this case study, the model is tested on the IEEE 24 bus reliability test system with 

bus 13 being the slack bus. The model is restructured from [49] and shown in Figure 

9. A non-discrete industrial load is tested to not only consider more possible scenarios 
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After the first iteration, the total generation cost per day is reduced to $289,358. Again, 

this outcome is a better optimum than the initial value since the economic dispatch 

now considers a more detailed representation of the loads. In addition, the 5% 

sheddable residential load contributes to a further decrease in OF1. Besides this cut in 

the total load, the residential load drops at peak prices (13:00  22:00) and spikes 

noticeably between 12:00 and 13:00 due to the lower prices there compared to close 

hours. Similarly, the industrial customers operate their machines with lower capacity 

at peak price hours and shift most of the load to late hours (after 21:00). Again, the 

demand response behavior of the consumers is still not well represented, since, with 

the new resulting prices, the loads are expected to change. 

 

After the iterations converge, economic dispatch results in a total cost of $288,541, a 

10.62% drop in cost compared to the initial values, and a 0.28% drop compared to the 

first iteration. Despite this minimal change in the generation cost between the first and 

last iteration, the change in the units scheduling and load peaks is significant. As 

shown in Figure 12 and Figure 13, new residential and industrial peaks emerged 

compared to the base case and the first iteration. By simulating the behavior of the 

consumers and more accurately accounting for demand response, a more optimal 

economic dispatch was achieved. Again, the model indicates that the operator is not 

the only profited player in DR programs. There is a drop of 14.8% in the residential 

bill. The profit of the industrial load increased insignificantly by 0.3%. 

 

The load factor of the total demand in the initial case was 76.98% and increased to 

77.99% in the final case. 

 

5.3 Case Study 3: IEEE 123 Bus System 

5.3.1 Network description 

In this case study, the model is tested on the IEEE 123 bus system with bus 1 being 

the slack bus. The system is inspired from [53] and shown in Figure 14. A non-discrete 

industrial load is tested in this system as well. 

 

The network is powered by several distributed generation (DG) sources. In addition, 

this microgrid has two connections to the main grid through buses 1 and 123. The 
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Table 6 Iterations Output: Case Three 

Iterations OF2(¢) OF3(¢) OF1(¢) 

Initial - - 7154.72 

First 26908.44 69759.38 6155.60 

Second 21337.74 69816.41 6393.56 

Third 23706.76 69854.98 6230.71 

Fourth 22312.62 69834.42 6353.53 

Fifth 23084.24 69852.78 6242.46 

Sixth 22552.85 69831.98 6358.37 

Seventh 23087.85 69856.29 6240.31 

Final 22498.96 69838.46 6239.15 

 

More technical results of the system in the final iteration of this case study is 

presented are Appendix E. 

 

5.3.3 Discussion and analysis 

The optimal dispatch without considering demand response (base values) results in 

a total generation cost per day of ¢7154.72. As observed in Figure 15, the residential 

load peaks in the evening and dips after midnight, whereas the industrial load is 

initially high between 7:00 and 9:00. The industrial load is not a significant part of the 

total load, therefore there are high generation costs and electricity prices in the 

evening.  

 

After the first iteration, the total generation cost per day is reduced to ¢6155.60. Again, 

this result is a better optimum than the initial value since the economic dispatch now 

considers a more detailed representation of the loads and due to the 5% dip in the total 

residential load. As a result of the new economic dispatch, the residential loads fall 

significantly after 17:00, and new both residential and industrial loads peak at noon. 

Again, the demand response behavior of the consumers is still not well represented 

because customers are anticipated to optimize based on the new prices. 

 

After the iterations converge, economic dispatch results in a total cost of ¢6239.15, a 

12.8% drop in cost compared to the initial values, and a 1.36% increase compared to 

the first iteration. In this case study too, new residential and industrial peaks emerged 
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compared to the base case and the first iteration. Noticeably, the prices and loads after 

the hour 17:00 did not vary or scarcely altered after the initial iteration. 

  

This model also indicates that the operator is not the only profited player in DR 

programs. There is a significant drop in the residential bill by 16.39%. Lastly, the profit 

of the industrial load barely increased by 0.11% from iteration 1 to the last iteration. 

As a result, the equilibrium generation cost and customers’ loads can considerably 

differ from their base load and their first response to new RTP prices. 

 

The load factor of the total demand in the initial case was 75.2% and increased to 

79.74% in the final case. 
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Chapter Six 

 

Elaborate Energy Management Model for the 

Industrial Consumers  

 
6.1  Energy Storage Applications 

In addition to providing ancillary services to the electricity grid [54],[55]. and 

supporting renewable-energy-based island grids [56],[57], electricity storage can play 

an important role in customer energy management systems [58]. In [59], the authors 

propose an algorithm that schedules the use of electricity storage and heating, 

ventilation, and air conditioning (HVAC) systems of buildings to minimize their costs. 

They show that co-optimizing the two systems together results in a significant decrease 

in energy costs. In [60], Rainfall Counting Algorithm and Particle Swarm 

Optimization techniques are used to model the behavior of thermal and 

electrochemical storage systems and to minimize day-ahead operation costs for 

residential loads. Using peer-to-peer energy trading between residential consumers, 

with energy storage, to coordinate DR schemes is proposed in [61]. The authors 

present a model that optimally schedules household equipment and energy storage 

under day-ahead or hour-ahead intraday markets as well as an optimal bidding strategy 

for these households. In [62], the importance of energy storage for residential 

prosumers with PV systems is discussed. Electrical load and available PV power are 

forecasted using deep learning neural network algorithms for optimal scheduling of 

demand in a day-ahead, time-of-use pricing market. Additionally, a rule-based 

controller is suggested to reduce losses, due to errors in forecasting, in real-time. 

 

6.2  Related Work 

Energy management of industrial facilities with discrete manufacturing models and 

energy storage is studied in [63] and [64]. In [63], the authors formulate an optimal 

load dispatch problem of industrial consumers, with Distributed Energy Resources 
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(DERs) and energy storage, in response to RTP. Their objective is to minimize the 

cost of these consumers, including fuel, DER maintenance, and electricity purchasing 

cost while meeting a given target for product manufacturing. In [64], a model that 

determines the load reduction capability of industrial consumers in response to 

incentive-based DR is presented. The model minimizes the completion time of the 

manufacturing process for a given set of product orders while reducing electricity 

purchasing costs and considering electricity storage and PV production. In both papers, 

the authors consider a fixed manufacturing output and a pre-determined electricity 

storage capacity. 

 

The objectives of the elaborate model are: 1) to present a model that optimizes the 

energy management and product output of an industrial facility with discrete 

manufacturing processes and electricity storage, 2) to propose an approach for the 

optimal sizing of the electricity storage used by these facilities, and 3) to illustrate the 

role that electricity storage can play in maximizing their profits. 

 

6.3  Energy Management Model with ESS 

6.3.1 Objective function 

The objective of the industrial consumer is similar to the one considered in Chapter 

Four but with the additional consideration of energy storage. Moreover, the elaborate 

model further includes labor costs and the minimal power consumption of the 

machines when they are turned off. The objective function in the elaborate model OF4 

is shown in (35). 

max 𝑂𝐹4 = 𝐵0𝑀0𝑡24
(𝐾𝑠 − 𝑙) − ∑ ∑ 𝐾𝑃𝑟𝛽𝑟𝑛𝑟1𝑡

𝑆

𝑟=1

 

𝑇

𝑡=1

− ∑ 𝑃𝑟𝑖𝑐𝑒𝑡𝐸𝑡

𝑇

𝑡=1

 (35) 

Where l is the labor cost of production per item and Et is the power needed by the 

industrial facility from the grid. 

 

6.3.2 Constraints 

The industrial operation constraints are the same as in (23)  (30). The added 

energy storage constraints are as follows: 
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The State of Charge in a period t of the ESS (SoCt) equals the state of charge in the 

previous period plus the charge added (Ect) minus the charge used (Edt) as illustrated 

in (36).  

SoC𝑡 =  SoC𝑡−1 + Ec𝑡 − Ed𝑡     , 𝑡 ∈ 𝑇 (36) 

The ESS has upper storage capacity (SoC̅̅ ̅̅̅) and naturally cannot be negative. 

0 ≤ SoC𝑡 ≤  SoC̅̅ ̅̅ ̅     , 𝑡 ∈ 𝑇 (37) 

The ESS cannot instantly charge or discharge. These limits (Ec̅̅ ̅ and Ed̅̅̅̅ ) are shown in 

(38) and (39). 

0 ≤ Ec𝑡 ≤  Ec̅̅ ̅ × 𝑥𝑐𝑡     , 𝑡 ∈ 𝑇 (38) 

0 ≤ Ed𝑡 ≤  Ed̅̅̅̅ × 𝑥𝑑𝑡     , 𝑡 ∈ 𝑇 (39) 

Where xct and xdt are binary variables to indicate the charging and discharge statuses 

of the ESS respectively.  

The ESS is assumed not to be able to charge and discharge at the same time. Therefore, 

xct and xdt cannot sum up to 2. 

𝑥𝑐𝑡  + 𝑥𝑑𝑡  ≤  1.     , 𝑡 ∈ 𝑇 (40) 

 

The energy to be charged for electrical bill Et is shown in (41). The first part reflects 

the energy needed by the machines to operate. The machines are assumed to consume 

a small amount of energy even when they are turned off. The second part is the energy 

needed to charge the ESS when necessary. The charging efficiency ηC is to reflect the 

energy consumed to charge the ESS. The last part is the discharging part of the ESS 

which lowers the need for electrical power from the utility. Also, a discharging 

efficiency ηD is considered because not all the charged energy can be consumed. 

𝐸𝑡 =  ∑ ∑(𝑥𝑟𝑐𝑡𝐸𝑜𝑛𝑟𝑐 + (1 − 𝑥𝑟𝑐𝑡)𝐸𝑜𝑓𝑓𝑟𝑐 

𝑀𝑟

c=1

𝑆

𝑟=0

) +
Ec𝑡

𝜂𝐶
⁄ − Ed𝑡 ∙ 𝜂𝐷      , 𝑡 ∈ 𝑇 (41) 

In a period t, the discharged power by the ESS cannot exceed the power needed by the 

industrial load. 

Ed𝑡 ∙ 𝜂𝐷 ≤ ∑ ∑(𝑥𝑟𝑐𝑡 × 𝐸𝑜𝑛𝑟𝑐 + (1 − 𝑥𝑟𝑐𝑡) × 𝐸𝑜𝑓𝑓𝑟𝑐)

𝑀𝑟

c=1

𝑆

𝑟=0

     , 𝑡 ∈ 𝑇 (42) 

Finally, the industrial facility is assumed to not be capable of selling electricity to the 

grid. Therefore, the power consumed cannot be negative. 

0 ≤ 𝐸𝑡     , 𝑡 ∈ 𝑇 (43) 
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Table 8 Day-Ahead Prices 

Hours 
Pricet 

 (€/MWh) 
Hours 

Pricet 

 (€/MWh) 

0:00 - 1:00 10.76 12:00 - 13:00 41.87 

1:00 - 2:00 5.01 13:00 - 14:00 29.75 

2:00 - 3:00 4.04 14:00 - 15:00 25.01 

3:00 - 4:00 3.77 15:00 - 16:00 18.02 

4:00 - 5:00 4.19 16:00 - 17:00 18.02 

5:00 - 6:00 14.7 17:00 - 18:00 22.07 

6:00 - 7:00 23.91 18:00 - 19:00 36.33 

7:00 - 8:00 39.98 19:00 - 20:00 36.54 

8:00 - 9:00 41.99 20:00 - 21:00 33.93 

9:00 - 10:00 42.44 21:00 - 22:00 35.25 

10:00 - 11:00 42.23 22:00 - 23:00 34.25 

11:00 - 12:00 41.31 23:00 - 0:00 19.7 

6.4.2 Results 

Two scenarios were studied: 1) industrial facility without electricity storage (w/o 

ESS), 2) industrial facility with electricity storage (w/ ESS). The optimization 

problems are thus solved by maximizing (35) subject to (23) (30),(36) (43) using 

mixed-integer programming. The SCIP solver on GAMS was utilized for solving the 

models.  

 

Profit: The profit of the industrial facility without an ESS was OF4 = €88.43073, 

compared to OF4 = €103.43589 for the facility with ESS. A 16.968% of profit increase 

in one day is observed. Noticeably, with and without an ESS the industrial facility 

manufactured 120 products, however, with efficient energy storage and management 

a higher profit was achieved. 

 

Electricity demand: The 24-hour demand for electricity from the grid is shown in 

Figure 19. The prices are at their maximum from 7:00 till 13:00 and are relatively high 

from 18:00 till 23:00. The response of the industrial facility to RTP is evident by the 

significantly lower demand during these high price periods compared to the rest of the 

day. 

 

Energy storage: Figure 20 shows the state of charge of the electricity storage unit, as 

well as the charging and discharging at every hour. As expected, electricity charging 

occurs in periods of low energy prices, and discharging occurs in periods of high 

energy prices. This figure also explains the differences in the electricity demand 

between the two scenarios highlighted in Figure 19 and confirms the increased 
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of manufactured products and the power needed from the grid are stochastic as well. 

The new objective function (OF5) is given as:  

 

The first four terms follow the objective function in (35), but due to the stochastic 

nature of some variables (𝐵0𝑀0𝑡24
̃ , 𝑛𝑟1𝑡̃ , 𝑃𝑟𝑖𝑐𝑒𝑡

̃ , 𝐸�̃�) the expected value is computed. The 

fourth term is the installation price of the ESS, where κ is the equivalent cost of 

installation for one day in cents/kWh. 

 

In [65], the authors transformed the stochastic variables into a probability density 

function (PDF). In the proposed model, daily k scenarios are considered each with a 

probability φk. The PDF of these scenarios is thus obtained, and the new objective 

function can now be written as: 

max 𝑂𝐹5 = ∑ 𝜑𝑘(𝐵0𝑀0𝑡24

𝑘(𝐾𝑠 − 𝑙) − ∑ ∑ 𝐾𝑃𝑟𝛽𝑟𝑛𝑟1𝑡
𝑘

𝑆

𝑟=1

 

𝑇

𝑡=1

𝐾

𝑘=1

− ∑(𝑃𝑟𝑖𝑐𝑒𝑡
𝑘𝐸𝑡

𝑘)

𝑇

𝑡=1

) − 𝜅 ∙ 𝑆𝑜𝐶̅̅ ̅̅ ̅ 

(45) 

 

The nature of the discrete manufacturing process with ESS requires finding optimal 

integer variables. With the added decision variable for sizing (𝑆𝑜𝐶̅̅ ̅̅̅) the computational 

burden of solving such an optimization model becomes high. Therefore, considering 

too many scenarios becomes nearly impossible even with state-of-the-art solvers and 

powerful computer hardware. In addition, with unbounded limits on the value of 𝑆𝑜𝐶̅̅ ̅̅̅, 

solvers will take even more considerable duration to come up with the optimal 

solution. 

 

The following approach is proposed to facilitate the optimization burden:  

1) reduce the number of scenarios k by finding the PDF of the hourly prices of 

comparable days. 

2) find the optimal energy storage 𝑆𝑜𝐶̅̅ ̅̅  for each of the new scenarios alone with the 

objective function separately. 

max 𝑂𝐹5 = 𝔼( 𝐵0𝑀0𝑡24
̃ (𝐾𝑠 − 𝑙) − ∑ ∑ 𝐾𝑃𝑟𝛽𝑟𝑛𝑟1𝑡̃

𝑆

𝑟=1

 

𝑇

𝑡=1

− ∑ 𝑃𝑟𝑖𝑐𝑒𝑡
̃ 𝐸�̃�

𝑇

𝑡=1

) − κ ∙ SoC̅̅ ̅̅ ̅ (44) 
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max 𝑂𝐹5 = 𝐵0𝑀0𝑡24
(𝐾𝑠 − 𝑙) − ∑ ∑ 𝐾𝑃𝑟𝛽𝑟𝑛𝑟1𝑡

𝑆

𝑟=1

 

𝑇

𝑡=1

− ∑ ∑ 𝜌𝑡
𝑚 ∙ 𝐸𝑡 ∙ 𝑃𝑟𝑖𝑐𝑒𝑡

𝑚

𝑇

𝑡=1

𝑀

𝑚=1

− 𝜅 ∙ 𝑆𝑜𝐶̅̅ ̅̅ ̅ 

(46) 

 

For every period t, the total probability of the market prices should add to one. 

∑ 𝜌𝑡
𝑚

𝑀

𝑚=1

= 1     , 𝑡 ∈ 𝑇 (47) 

 

3) get the maximum and the minimum of the found 𝑆𝑜𝐶̅̅ ̅̅̅, and use them as upper and 

lower limits on the ESS capacity. 

4) solve the new optimization problem with the fewer scenarios and the new capacity 

constraint. 

 

The intent behind the proposed approach is to keep the diversity of the scenarios but 

with less quantity and to limit the search space and the set of solutions within a 

predefined interval based on optimal values of separate scenarios. 

  

The constraints of the optimization problem remain the same as 6.3.2, however, with 

the additional dimension considering the set of scenarios K. Additionally, 𝐸𝑐̅̅ ̅ and 𝐸𝑑̅̅ ̅̅  

are set as a percentage of 𝑆𝑜𝐶̅̅ ̅̅ ̅. 

 

6.6  Case Study 5 

6.6.1 System description and results 

The industrial facility studied in  Case Study 4 is utilized in this case study as well. 

The charging and discharging limits are set as: Ec̅̅ ̅ =  Ed̅̅̅̅ = 0.3 × SoC̅̅ ̅̅ ̅. In this case study 

κ = 0.01 cents/kWh. 

 

To obtain the PDF of the day-ahead market prices at each hour, the prices in the year 

2020 in Finland were utilized [66]. This yields to k = 366 different sets of data. For the 

purposes of this study, from the data, 12 scenarios were extracted, based on a monthly 

division. Each scenario has a probability φk  = (number of days/366). 
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To obtain the upper storage capacity considering all the scenarios, (45) is maximized 

subject to (23) (30),(36) (43) with the scenario dimension. From Table 9 the 

additional maximum and minimum constraints, shown in (48), are added. 

2183.750 ≤  SoC̅̅ ̅̅ ̅  ≤  4129.167  (48) 

All the optimization models are tested on GAMS with the SCIP solver using mixed-

integer non-linear programming. 

The simulation results in an optimal storage capacity of 4129.167kWh and a daily 

expected profit of OF5 = €108.84841.  

 

6.6.2 Sensitivity analysis 

Sensitivity analysis is carried out for different values of κ to study the impact of 

installation costs on the sizing. The simulation results are illustrated in Table 10. 

Table 10 Profit and Optimal Storage Capacity for Different ESS Installation Prices 

κ  

(cents/kWh) 

OF5 

 (€) 

SoC̅̅ ̅̅ ̅  

(kWh) 

0.005 111.54298 6193.75 

0.01 108.84841   4129.167 

0.05 107.31698   3366.875 

0.1 105.2605 2974.375 

0.3 69.9986 0 

 

The case study results illustrate the significance of energy storage and the importance 

of low ESS costs in increasing profit. 

At low installation costs κ = 0.005cents/kWh the profit was OF5 = €111.54298 with a 

high optimal storage capacity of 6193.75kWh.  

With higher installation prices κ = 0.05 cents/kWh, a lower optimal energy storage 

capacity becomes needed (SoC̅̅ ̅̅̅ = 3366.875kWh) and lower profit becomes attainable 

(OF5= €107.31698). 

If the installation prices become high enough, the ESS will no longer make economic 

sense and therefore the industrial facility is better off without it as in the case when κ 

= 0.3 cents/kWh. The profit in such cases would be the least with OF5 = €69.9986. 

 

6.6.3 Impact of considering several scenarios 

To illustrate the importance of the proposed approach of extracting multiple 

scenarios, a direct comparison is made with the results of taking the entire year as a 
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single scenario, i.e. having a single probability distribution for each hour in the 24-

hour study period.  

With M = 366 days and κ = 0.01 cents/kWh, the optimization model yielded an optimal 

storage size of SoC̅̅ ̅̅̅ = 6193.750 kWh which highly differs from the solution obtained 

when considering 12 scenarios. Calculating profit of the facility with this storage size 

but based on the 12 scenarios, results in OF5 = €97.96336, a 10% drop from the value 

calculated in the previous subsection. It is interesting to note that 6193.750 kWh was 

outside the range of values considered in the case with 12 scenarios.  
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Chapter Seven 

 

Conclusion 

This work presented a new model to help the network operator better predict the 

loads that will occur under a real-time pricing demand response program. The model 

combined an iterative form of the Stackelberg game technique and classic optimization 

methods to come up with the optimal strategies for the operator, the residential 

consumers, and industrial consumers. 

 

The game model considered is the Stackelberg game where the dominant player or the 

leader is the operator who sets the market price, and the followers are the consumers 

who only know the prices in the market. The Stackelberg model considers that 

customers cannot collectively decide on their new consumption patterns to further 

enhance their benefit from DR programs, but a more realistic case where the decision 

is taken on an individual level. In addition, the operator tries to predict the new loads 

under RTP, hence he/she simulates the behavior of the customers. Therefore, the 

model is applied only in microgrids where the customers’ objectives, constraints, and 

parameters could be better retrieved.  

 

To find the optimal strategies of the players, classic optimization techniques are used. 

The model detailed the customers’ constraints depending on the nature of their 

consumption. It also considered the network’s physical constraints and other 

generation limitations for the operator that could highly affect the generation costs. 

The optimization problem solutions can be obtained by using off-the-shelf solvers to 

further simplify the model.  

 

The model is tested on three different networks, where significant differences between 

the initial loads, first response to real-time prices, and the final loads are shown. This 

confirms the advantage of the proposed model that gives the network operator to 

anticipate new peaks and load shifts to help maintain the reliability of the network. 
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Moreover, a detailed model of an industrial facility’s energy management in 

response to real-time pricing and considering energy storage was presented. It was 

shown that energy storage increases the flexibility of industrial demand response, 

resulting in lower electricity purchasing costs and thus greater profits. Furthermore, an 

energy storage sizing approach was presented. The approach relies on stochastic 

modeling of energy prices based on historical data. A detailed case study based on a 

generic industrial consumer with discrete manufacturing lines was presented. It was 

shown that the proposed approach resulted in a more optimal sizing of energy storage. 

Furthermore, a sensitivity analysis was carried out to show the impact of the cost of 

installation of energy storage on its feasibility. 

 

These models can be further extended to study different energy markets like time-

of-use pricing, demand-side bidding, and incentive-based programs. Additionally, 

machine learning could be further utilized to extract scenarios from the historical data. 

Price prediction algorithms can also be used to enhance the PDFs of the scenarios for 

sizing ESS. 
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Appendix A: Simple Microgrid Network 

A.1 Network’s Data 

The network’s characteristics in the first case study are detailed in this appendix. 

The characteristics of the conventional generators are shown in Table 11. The lower 

limits of the wind and solar power are Pwmin = Psmin = 0. Their upper generation 

capacities throughout the day are the same as in [47] and listed in Table 12. The 

transferrable power is limited to: 𝑃𝑟,𝑚𝑖𝑛=-20kW and 𝑃𝑟,𝑚𝑎𝑥=20kW and has a marginal 

cost of: τ = ¢1/kWh. 

Table 11 Conventional Generators Data: Case One 

 G1 G2 G3 G4 G5 

a(¢/kW2) 0.06 0.03 0.04 0.08 0.09 

b(¢/kW) 0.5 0.25 0.3 0.6 0.7 

Pmin(kW) 0 0 0 0 0 

Pmax(kW) 4 6 9 20 30 

Dr(kW) 3 5 8 12 20 

Ur(kW) 3 5 8 12 20 

 

Table 12 Time-Varying Parameters: Case One 

Time 
Pw 

(kW) 

Ps 

(kW) 

Pinitial,t 

(residential) 

(kW) 

ϵt 

t1 7.56 0 31.83 0.07 

t2 7.5 0 31.4 0.07 

t3 8.25 0 31.17 0.06 

t4 8.48 0 31 0.05 

t5 8.48 0 31.17 0.05 

t6 9.42 0 32.1 0.04 

t7 9.82 0 32.97 0.03 

t8 10.35 7.99 34.1 0.05 

t9 10.88 10.56 37.53 0.07 

t10 11.01 13.61 38.33 0.1 

t11 10.94 14.97 40.03 0.12 

t12 10.68 15 41.17 0.15 

t13 10.42 14.78 39.67 0.18 

t14 10.15 14.59 41.7 0.2 

t15 9.67 13.56 42.1 0.2 

t16 8.98 11.83 41.67 0.2 

t17 8.37 10.17 40.7 0.2 

t18 7.61 7.66 40.07 0.2 

t19 6.7 0 38.63 0.2 

t20 5.72 0 36.4 0.2 

t21 7.21 0 34.1 0.15 

t22 7.75 0 32.8 0.1 

t23 7.88 0 32.5 0.1 

t24 7.69 0 32 0.08 
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A.2 Residential Load Data 

The residential loads are equivalent to the values in [47] and the customers’ shifting 

limits ϵt are shown in Table 12. 5% of the load is sheddable and 80% is non-sheddable, 

i.e., y=5 and z=80.  

A.3 Industrial Load Data 

The scheme of the industrial load is the same as in Figure 2 and its characteristics 

are shown in Table 13. The selling price of the final product is Ks = $21.The initial 

status of the machines for the day are shown in Table 14. 

Table 13 Industrial Load Characteristics: Case One 

Machine CTrc(s) 𝐶𝐴𝑃𝑟𝑐 𝐸𝑂𝑛𝑟𝑐(kW) 𝛼𝑟𝑐 𝐾𝑃𝑟(¢) 𝛽𝑟  

r1.c1 50 300 6 4 20 6 

r1.c2 300 100 4 2 0 0 

r1.c3 150 100 3 1 0 0 

r2.c1 50 300 8 3 30 4 

r3.c1 150 300 5 2 20 3 

r3.c2 300 100 6 1 0 0 

r3.c3 150 100 5 1 0 0 

r3.c4 120 100 4 1 0 0 

r0.c1 300 500 5 1 0 0 

r0.c2 90 100 4 - 0 0 

 

Table 14 Machines Status: Case One-Initial Case 

  Machine 

  r0.c1 r0.c2 r1.c1 r1.c2 r1.c3 r2.c1 r3.c1 r3.c2 r3.c3 r3.c4 

T
im

e 

t1 0 0 1 0 0 0 1 0 0 0 

t2 0 0 1 1 0 0 1 1 0 0 

t3 0 0 1 1 0 0 1 1 0 0 

t4 0 0 1 1 0 1 1 1 1 0 

t5 0 0 1 1 1 0 1 1 1 1 

t6 1 0 1 1 0 0 0 1 0 0 

t7 0 0 1 1 0 1 0 0 0 0 

t8 0 0 1 1 0 0 1 0 0 0 

t9 0 0 1 1 0 1 1 0 0 0 

t10 0 0 0 1 0 1 0 1 0 0 

t11 0 0 0 1 0 0 1 1 0 0 

t12 1 0 0 1 1 1 0 1 0 0 

t13 0 0 1 1 0 0 0 0 0 0 

t14 0 0 1 1 0 0 0 0 1 1 

t15 1 0 0 1 1 0 0 0 0 0 

t16 0 0 0 1 0 0 0 0 1 0 

t17 1 0 1 1 1 0 1 0 0 0 

t18 1 1 1 1 0 0 0 1 0 0 

t19 0 0 1 1 0 0 0 0 0 1 

t20 1 0 0 1 0 0 1 0 0 0 

t21 1 0 0 1 1 0 0 0 0 0 

t22 1 1 0 0 0 0 0 1 1 1 

t23 1 0 0 0 0 0 0 0 0 0 

t24 1 1 0 0 0 0 0 0 0 0 



 

 

60 

Appendix B: IEEE 24 Bus RTS Network 

B.1 Network’s Data 

The updated IEEE RTS 24 bus system in Figure 9 has 10 conventional or 

hydropower sources. Their generation capacities, generation cost, and ramping limits 

are shown in Table 15.  The base power is 100 MVA with bus 13 being the slack bus. 

Table 15 Conventional Generators Data: Case Two 

Bus 

number 

Pmax 

(MW) 

Pmin 

(MW) 

a 

($/MW2) 

b 

($/MW) 

Qmax 

(MVA) 

Qmin 

(MVA) 

RU 

(MW) 

RD 

(MW) 

1 152 0 0 13.32 192 -50 21 21 

2 152 0 0 13.32 192 -50 21 21 

7 350 0 0 20.7 300 0 43 43 

13 591 0 0 20.93 591 0 31 31 

15 215 0 0 21 215 -100 31 31 

16 155 0 0 10.52 155 -50 31 31 

18 400 0 0 5.47 400 -50 70 70 

21 400 0 0 5.47 400 -50 70 70 

22 300 0 0 0 300 -60 53 53 

23 360 0 0 10.52 310 -125 31 31 

 

Three wind turbines are located on busses 8, 19, and 21. Their generation outputs 

throughout the day are listed in Table 16. 

Table 16 Time-Varying Parameters: Case Two 

Time 

Wind - Bus 8 

(MW) 

Wind - Bus 19 

(MW) 

Wind - Bus 21 

(MW) 
ϵt Ω 

t1 15.73 11.80 7.87 0.07 0.68 

t2 17.33 13.00 8.67 0.07 0.64 

t3 23.47 17.60 11.73 0.06 0.61 

t4 51.73 38.80 25.87 0.05 0.60 

t5 72.27 54.20 36.13 0.05 0.59 

t6 113.33 85.00 56.67 0.04 0.60 

t7 130.13 97.60 65.07 0.03 0.63 

t8 113.33 85.00 56.67 0.05 0.65 

t9 96.80 72.60 48.40 0.07 0.71 

t10 109.60 82.20 54.80 0.01 0.79 

t11 151.47 113.60 75.73 0.11 0.84 

t12 142.13 106.60 71.07 0.12 0.85 

t13 174.13 130.60 87.07 0.13 0.87 

t14 186.40 139.80 93.20 0.15 0.83 

t15 193.33 145.00 96.67 0.15 0.82 

t16 200.00 150.00 100.00 0.15 0.82 

t17 173.87 130.40 86.93 0.14 0.87 

t18 133.07 99.80 66.53 0.15 1.00 

t19 131.20 98.40 65.60 0.12 0.98 

t20 112.27 84.20 56.13 0.12 0.94 

t21 113.07 84.80 56.53 0.11 0.89 

t22 111.20 83.40 55.60 0.09 0.81 

t23 144.80 108.60 72.40 0.08 0.75 

t24 168.00 126.00 84.00 0.07 0.73 
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The power lines connecting the nodes have the impedances, charging susceptance, and 

capacities shown in Table 17. The sell/purchase price of transferred electricity is 

τ=$11/MWh, with transferring limits of 𝑃𝑟,𝑚𝑖𝑛=-300MW and𝑃𝑟,𝑚𝑎𝑥= +300MW. A 0.9 

power factor is considered for the transferable power and the industrial loads. 

Table 17 Line Data: Case Two 

From To Resistance (p.u) Reactance (p.u) bsh (p.u) Capacity (MVA) 

1 2 0.0026 0.0139 0.4611 175 

1 3 0.0546 0.2112 0.0572 175 

1 5 0.0218 0.0845 0.0229 175 

2 4 0.0328 0.1267 0.0343 175 

2 6 0.0497 0.192 0.052 175 

3 9 0.0308 0.119 0.0322 175 
3 24 0.0023 0.0839 0 400 

4 9 0.0268 0.1037 0.0281 175 

5 10 0.0228 0.0883 0.0239 175 

6 10 0.0139 0.0605 2.459 175 

7 8 0.0159 0.0614 0.0166 175 

8 9 0.0427 0.1651 0.0447 175 

8 10 0.0427 0.1651 0.0447 175 

9 11 0.0023 0.0839 0 400 

9 12 0.0023 0.0839 0 400 

10 11 0.0023 0.0839 0 400 

10 12 0.0023 0.0839 0 400 

11 13 0.0061 0.0476 0.0999 500 

11 14 0.0054 0.0418 0.0879 500 

12 13 0.0061 0.0476 0.0999 500 

12 23 0.0124 0.0966 0.203 500 

13 23 0.0111 0.0865 0.1818 500 

14 16 0.005 0.0389 0.0818 500 

15 16 0.0022 0.0173 0.0364 500 

15 21 0.00315 0.0245 0.206 1000 

15 24 0.0067 0.0519 0.1091 500 

16 17 0.0033 0.0259 0.0545 500 

16 19 0.003 0.0231 0.0485 500 

17 18 0.0018 0.0144 0.0303 500 

17 22 0.0135 0.1053 0.2212 500 

18 21 0.00165 0.01295 0.109 1000 

19 20 0.00255 0.0198 0.1666 1000 

20 23 0.0014 0.0108 0.091 1000 
21 22 0.0087 0.0678 0.1424 500 

 

B.2 Residential Load Data 

The residential loads at peak on each bus are shown in Table 18. To demonstrate 

the load throughout the day this load is multiplied by factor Ω shown in Table 16. The 

shifting limits ϵt are shown in Table 16 as well. 5% of the load is sheddable (y=5) and 

80% is non-sheddable (z = 80).  
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Table 18 Peak Consumption on Buses: Case Two 

Bus 

Number 

Pinitial 

(kW) 

Qinitial 

(kW) 

1 108 22 

2 97 20 

3 180 37 

4 74 15 

5 71 14 

6 136 28 

7 125 25 

8 171 35 

9 175 36 

10 195 40 

13 265 54 

14 194 39 

15 317 64 

16 100 20 

19 181 37 

20 128 26 

 

B.3 Industrial Load Data 

The scheme of the industrial load is the same as in Figure 10 and its characteristics 

are shown in Table 19. The selling price of the final product is Ks =$45000. The 

ramping limit is ψ = 25%. The initial status of the machines for the day are shown in 

Table 20. 

Table 19 Industrial Load Characteristics: Case Two 

Machine CTrc (s) 𝐶𝐴𝑃𝑟𝑐  𝐸𝑂𝑛𝑟𝑐  (MW) 𝛼𝑟𝑐 𝐾𝑃𝑟($) 𝛽𝑟 

r1.c1 50 300 60 4 120 6 

r1.c2 120 100 40 2 0 0 

r1.c3 150 100 24 1 0 0 

r2.c1 50 300 30 3 150 4 

r2.c2 50 300 40 3 0 0 

r3.c1 150 300 20 2 200 3 

r3.c2 80 100 20 2 0 0 

r3.c3 90 100 30 1 0 0 

r3.c4 120 100 20 1 0 0 

r3.c5 120 100 20 2 0 0 

r4.c1 90 300 10 2 120 3 

r4.c2 120 100 20 1 0 0 

r4.c3 150 100 30 3 0 0 

r0.c1 90 500 50 1 240 2 

r0.c2 120 500 40 2 0 0 

r0.c3 150 2000 30 - 0 0 

 

 

. 
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Table 20 Machines Status: Case Two-Initial Case 

  Machine 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 

T
im

e
 

t1 0 0 0 0.194 0 0 0 0 0.25 0 0 0 0 0.225 0 0 

t2 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.45 0.167 0 

t3 0 0 0 0.208 0.2 0 0.097 0 0.625 0.2 0 0 0 0.2 0.4 0.25 

t4 0 0 0 0.458 0.1 0 0 0.014 0.75 0.222 0 0 0 0.425 0.233 0.5 

t5 0 0 0 0.708 0 0 0 0 1 0.378 0.15 0 0 0.675 0.433 0.75 

t6 0 0 0 0.5 0 0 0.083 0 1 0.156 0.35 0.1 0 0.9 0.667 0.667 

t7 0 0 0 0.75 0 0.083 0 0 1 0.2 0.125 0.233 0.033 1 0.667 0.875 

t8 0.025 0 0 0.986 0 0 0.25 0.069 1 0.422 0.25 0 0.267 1 0.5 0.667 

t9 0.05 0.1 0 0.736 0.033 0.083 0.486 0.222 1 0.2 0.025 0.233 0.233 1 0.333 0.458 

t10 0.1 0 0 0.486 0.267 0.125 0.514 0 1 0.356 0.275 0 0 1 0.367 0.5 

t11 0 0 0 0.236 0.5 0.375 0.708 0.25 1 0.111 0.075 0.067 0 1 0.6 0.25 

t12 0 0 0 0 0.733 0.375 0.542 0.014 1 0.356 0 0 0.033 0.75 0.4 0 

t13 0.05 0.133 0 0 0.733 0.208 0.292 0 1 0.111 0.25 0.233 0.233 0.5 0.467 0.25 

t14 0.1 0.033 0 0.167 0.567 0 0.542 0 1 0.267 0.175 0.433 0.467 0.25 0.233 0.417 

t15 0.05 0.233 0 0.417 0.367 0.083 0.333 0.222 1 0.489 0 0.567 0.233 0 0 0.292 

t16 0.25 0 0 0.653 0.367 0.333 0.5 0.25 1 0.267 0.25 0.433 0.233 0 0 0.542 

t17 0 0 0 0.417 0.167 0.542 0.75 0 1 0.267 0 0.233 0 0.025 0 0.375 

t18 0 0 0 0.194 0 0.292 1 0 1 0.156 0.2 0.267 0 0.25 0.1 0.125 

t19 0 0 0.167 0 0.233 0.125 0.847 0.014 1 0.4 0.4 0.233 0.033 0 0.333 0.125 

t20 0.075 0 0 0.222 0 0 0.597 0.125 1 0.244 0.15 0.4 0.167 0 0.1 0.375 

t21 0 0.2 0.125 0 0.133 0.125 0.347 0.375 1 0.289 0.125 0.267 0.4 0 0.333 0.167 

t22 0.2 0.433 0.333 0 0 0 0.111 0.583 1 0.267 0.2 0.033 0.633 0 0.1 0.083 

t23 0.425 0.6 0.25 0 0 0 0 0.431 0.917 0.133 0.025 0.267 0.833 0.25 0 0.333 

t24 0.325 0.467 0.5 0 0 0 0.25 0.181 0.958 0.378 0.275 0.4 0.6 0 0.167 0.25 
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Appendix C: Case Study 2 Results 

C.1  Generation Units 

The percentage output of the generation units and the percentage power transferred 

for the initial and final cases are shown in Figure 22 and Figure 23 respectively. 

  

 
Figure 22 Percentage Output of The Generation Sources: Case Two-Initial Case 

 

 
Figure 23 Percentage Output of The Generation Sources: Case Two-Final Case 

The generation units on buses 16,18,21,22, and 23 are the cheapest to run, hence they 

are operating fully all day long in both cases. The units on buses 13 and 15 have the 

highest generation costs and therefore operate partially when needed. For example, in 

periods t18  t20 in the initial case and in period t21 in the final case, when all the 

cheaper units are fully running units and the system requires more power, units on 

buses 13 and 15 operate, unlike previous periods.  

In this case study, with the selling/purchasing prices being between the marginal costs 

of generating, the operator decides to sell power to the grid at several periods when 

the demand is not too high. On peak hours more power is needed and hence the 

operator decides to purchase electricity from the main grid to supply the loads in the 

most cost-effective way. 
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C.2  Industrial Load 
Table 21 Machines Status: Case Two-Final Case 

  Machine 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 

T
im

e 
t1 0 0 0 0 0 0 0 0 0.21 0 0 0 0 0 0 0 

t2 0 0 0 0.01 0 0 0 0 0.46 0.02 0 0 0 0.23 0 0 

t3 0 0 0 0.26 0.03 0 0 0 0.71 0.16 0.08 0 0 0.48 0.23 0 

t4 0 0 0 0.36 0.17 0.13 0.13 0 0.96 0.33 0.03 0.03 0 0.63 0.47 0 

t5 0 0 0 0.61 0.33 0 0.38 0 1 0.09 0.23 0.2 0.23 0.88 0.23 0.25 

t6 0 0 0 0.86 0.1 0.08 0.25 0.24 1 0.24 0.1 0.27 0 1 0 0.33 

t7 0 0 0 1 0.03 0 0 0.01 1 0.47 0.3 0.43 0.17 1 0.2 0.25 

t8 0.15 0 0 0.97 0.2 0.25 0.24 0 0.96 0.31 0.18 0.23 0.23 1 0.43 0 

t9 0 0.13 0 0.88 0.27 0.25 0.49 0.08 1 0.29 0.15 0 0.47 1 0.23 0.04 

t10 0 0 0 0.7 0 0 0.7 0 1 0.3 0.1 0.2 0.2 1 0 0 

t11 0.05 0.13 0 0.44 0.27 0.04 0.92 0 1 0.29 0.05 0 0 0.75 0.03 0.25 

t12 0 0 0 0.19 0.3 0.25 1 0 0.88 0.22 0 0.23 0 0.5 0.27 0.5 

t13 0 0 0 0 0.17 0.04 0.86 0 0.83 0.13 0 0 0.23 0.25 0.5 0.75 

t14 0 0 0 0 0.4 0 0.64 0.25 1 0.36 0.18 0 0 0 0.73 1 

t15 0.15 0 0 0 0.63 0 0.89 0.5 0.96 0.16 0.43 0.23 0 0 0.9 1 

t16 0.3 0 0.1 0.1 0.4 0 0.6 0.3 1 0.4 0.2 0.5 0.2 0.2 0.7 1 

t17 0 0.2 0 0 0.2 0.3 0.4 0 1 0.2 0 0.4 0.5 0.1 0.5 0.8 

t18 0 0.27 0 0 0 0.04 0.24 0 0.83 0.24 0.18 0.23 0.37 0 0.23 0.5 

t19 0.23 0.03 0.08 0.01 0 0.08 0 0.14 1 0.27 0.25 0 0.23 0.15 0.23 0.25 

t20 0 0 0 0 0 0 0 0 0.92 0.02 0 0 0 0 0 0.08 

t21 0 0 0 0 0 0 0 0 0.75 0 0 0.03 0 0 0 0 

t22 0.03 0.23 0.17 0 0 0.17 0 0.15 0.92 0.18 0.03 0.2 0.23 0 0 0.13 

t23 0.25 0.47 0.42 0.22 0.23 0.42 0 0.4 1 0.42 0.23 0.43 0.47 0.1 0.2 0.38 

t24 0.5 0.7 0.58 0.47 0.47 0.67 0.19 0.64 1 0.67 0.48 0.67 0.7 0.35 0.33 0.54 
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Table 22 Number of Items in Buffers: Case Two-Final Case 

  Buffer 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 

T
im

e
 

t1 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

t2 0 0 0 1 0 0 0 0 14 1 0 0 0 9 0 0 

t3 0 0 0 16 1 0 0 0 17 2 3 0 0 14 7 0 

t4 0 0 0 22 0 3 9 0 10 15 3 1 0 11 21 0 

t5 0 0 0 26 10 3 36 0 26 1 6 0 7 32 22 6 

t6 0 0 0 76 9 5 3 17 28 4 2 8 7 72 14 14 

t7 0 0 0 144 10 5 0 18 10 1 1 16 12 100 14 20 

t8 6 0 0 190 4 5 17 0 5 1 1 16 7 114 27 2 

t9 2 4 0 221 0 11 34 6 3 2 7 2 21 140 33 3 

t10 2 4 0 265 1 11 86 6 3 4 6 1 28 180 33 3 

t11 0 8 0 265 7 10 152 0 1 13 8 1 24 208 28 3 

t12 0 8 0 243 4 16 224 0 2 23 1 8 24 212 24 15 

t13 0 8 0 223 7 17 286 0 10 29 1 1 31 192 21 33 

t14 0 8 0 175 19 17 278 18 2 31 8 1 31 148 19 57 

t15 6 8 0 99 38 11 234 36 11 4 18 8 19 94 22 63 

t16 16 4 2 56 51 1 226 24 3 2 13 15 6 60 19 57 

t17 11 9 2 33 45 7 257 24 8 11 1 13 20 36 15 75 

t18 3 17 2 33 43 8 274 24 6 8 1 9 31 22 10 87 

t19 11 14 4 34 39 1 244 7 6 0 11 2 20 14 11 66 

t20 11 14 4 34 39 1 244 7 26 1 11 2 20 14 9 68 

t21 11 14 4 34 39 1 244 7 44 1 10 3 20 14 9 68 

t22 5 13 8 34 31 4 211 15 50 7 5 2 25 14 6 68 

t23 1 7 18 22 18 4 124 14 36 8 1 1 19 6 3 47 

t24 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 
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The status of the machines in the final iteration are shown in Table 21. The number of 

items in the buffer is shown in Table 22. As in case study one, the machines abide by 

the work order and no machine operates unless the previous machine has produced 

enough items for it to function.  

The non-binary nature of the machines’ operation makes the industrial consumers 

better optimize their manufacturing lines as evidenced by the empty buffers in the 

machines at period t24, except the final buffer that accumulates all the final products. 

This shows that all resources are used efficiently, with a maximum number of outputs 

possible to make products to sell and a minimum purchase of items to start the 

manufacturing. Additionally, the ramping limits of the non-discrete operations are 

shown where the maximum difference is 0.25. 
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Appendix D: IEEE 123 Bus System 

D.1  Network’s Data 

The updated IEEE 123 bus system in Figure 14 has 6 fuel-based generators. Their 

generation capacities, generation cost, and ramping limits are shown in Table 23. The 

base voltage is 4.16 kV with bus 1 being the slack bus. 

Table 23 Fuel Based Generators Data: Case Three 

DG number 1 2 3 4 5 6 

Bus number 3 36 39 63 83 103 

Pmax (kW) 1500 450 800 550 600 600 

Pmin (kW) 0 0 0 0 0 0 

Qmax (kvar) 726 250 387 265 289 289 

Qmin (kvar) 0 0 0 0 0 0 

Dr (kW) 750 112.5 320 165 180 180 

Ur (kW) 750 112.5 320 165 180 180 

a (¢/kW2) 0.08 0.01 0.06 0.02 0.03 0.03 

b (¢/kW) 0.70 0.08 0.45 0.20 0.23 0.20 

 

Two wind turbines are connected at buses 71 and 113 and two PV systems are 

connected at buses 51 and 77. Their generation outputs throughout the day are listed 

in Table 24. 

Table 24 Time-Varying Parameters: Case Three 

Time 
Wind - Bus 71 

(kW) 

Wind - Bus 113 

(kW) 

PV- Bus 51 

(kW) 

PV- Bus 77 

(kW) 
Ω ϵt 

t1 31.6 23.7 0 0 0.685 0.07 

t2 34.8 26.1 0 0 0.644 0.07 

t3 46.8 35.1 0 0 0.613 0.06 

t4 103.6 77.7 0 0 0.6 0.05 

t5 144.4 108.3 0 0 0.589 0.05 

t6 226.8 170.1 0 0 0.598 0.06 

t7 260.4 195.3 0 0 0.627 0.07 

t8 226.8 170.1 106.6 80 0.652 0.08 

t9 193.6 145.2 140.8 106 0.706 0.09 

t10 219.2 164.4 181.4 136 0.787 0.12 

t11 302.8 227.1 199.6 150 0.839 0.13 

t12 284.4 213.3 200 150 0.853 0.14 

t13 348.4 261.3 197 148 0.871 0.15 

t14 372.8 279.6 194.6 146 0.834 0.16 

t15 386.8 290.1 180.8 136 0.817 0.17 

t16 400 300 157.8 118 0.819 0.18 

t17 347.6 260.7 135.6 102 0.874 0.19 

t18 266 199.5 102.2 76.7 1 0.18 

t19 262.4 196.8 0 0 0.984 0.15 

t20 224.4 168.3 0 0 0.936 0.13 

t21 226 169.5 0 0 0.888 0.11 

t22 222.4 166.8 0 0 0.809 0.09 

t23 289.6 217.2 0 0 0.746 0.08 

t24 336 252 0 0 0.733 0.07 
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Table 25 Line Data: Case Three 

From To r(Ω) x(Ω) From To r(Ω) x(Ω) From To r(Ω) x(Ω) From To r(Ω) x(Ω) 

1 2 0.1605 1.6052 29 32 0.0566 0.0575 63 64 0.1258 0.1262 94 95 0.0692 0.0701 

2 3 0.0350 0.0807 30 31 0.1258 0.1276 63 65 0.0175 0.0403 94 84 0.0175 0.0403 

3 4 0.0441 0.0441 32 33 0.0755 0.0765 65 66 0.0504 0.0511 95 96 0.0881 0.0893 

3 5 0.0628 0.0639 34 35 0.0261 0.0606 65 68 0.0218 0.0504 96 97 0.1006 0.1021 

3 9 0.0261 0.0606 35 36 0.0306 0.0706 66 67 0.0755 0.0765 98 99 0.0504 0.0511 

5 8 0.0504 0.0511 37 38 0.0350 0.0807 68 69 0.0132 0.0303 98 94 0.0241 0.0554 

5 6 0.0817 0.0829 38 39 0.0175 0.0403 68 70 0.0218 0.0504 98 98 0.0218 0.0504 

6 7 0.0628 0.0639 39 40 0.0109 0.0253 70 71 0.0218 0.0504 98 119 0.0241 0.0554 

9 10 0.0175 0.0403 40 41 0.0241 0.0554 71 72 0.0218 0.0504 99 100 0.0692 0.0701 

10 11 0.0566 0.0568 40 43 0.0306 0.0706 72 73 0.0436 0.1009 100 101 0.0817 0.0829 

10 12 0.0566 0.0575 41 42 0.0241 0.0554 74 76 0.0692 0.0701 101 102 0.0692 0.0701 

10 16 0.0261 0.0606 43 44 0.0630 0.0630 74 75 0.0261 0.0606 103 104 0.1132 0.1148 

12 13 0.1070 0.1085 43 46 0.0656 0.1513 75 76 0.0504 0.0504 104 105 0.0755 0.0765 

13 15 0.0628 0.0639 44 45 0.0630 0.0630 77 78 0.0755 0.0765 105 106 0.1447 0.1468 

13 14 0.0628 0.0639 46 47 0.0481 0.1110 77 74 0.0197 0.0454 105 107 0.0315 0.0319 

16 17 0.0377 0.0383 46 49 0.0720 0.0357 79 80 0.0566 0.0568 107 108 0.1321 0.1340 

16 21 0.0722 0.1663 46 54 0.0054 0.1224 79 77 0.0197 0.0454 108 109 0.0817 0.0829 

17 18 0.0251 0.0254 49 50 0.0504 0.0249 81 82 0.0440 0.0447 110 111 0.0566 0.0568 

18 19 0.0943 0.0957 50 51 0.1007 0.0499 81 79 0.0241 0.0554 110 103 0.0284 0.0656 

18 20 0.0881 0.0893 51 52 0.1224 0.0606 83 81 0.0393 0.0907 111 112 0.1447 0.1451 

21 22 0.0628 0.0639 52 53 0.0936 0.0462 84 85 0.0350 0.0807 113 114 0.0566 0.0575 

21 24 0.0261 0.0606 54 98 0.0306 0.0706 84 83 0.0611 0.1412 113 110 0.0241 0.0554 

22 23 0.0817 0.0829 55 56 0.0327 0.0756 85 86 0.0087 0.0203 114 115 0.0817 0.0829 

24 25 0.1322 0.1324 56 57 0.0568 0.1310 86 87 0.0197 0.0454 115 116 0.1760 0.1786 

24 26 0.0218 0.0504 56 61 0.0218 0.0504 86 88 0.0415 0.0957 117 113 0.0218 0.0504 

26 27 0.1383 0.1404 57 58 0.0755 0.0765 88 89 0.0415 0.0957 119 120 0.0481 0.1110 

26 28 0.0241 0.0554 57 59 0.0630 0.0630 89 92 0.0218 0.0504 120 121 0.0261 0.0606 

28 29 0.0306 0.0706 59 60 0.0819 0.0820 89 90 0.1698 0.1722 121 122 0.0699 0.1613 

28 34 0.0175 0.0403 61 62 0.0817 0.0829 90 91 0.1194 0.1212 122 123 0.1605 1.6052 

29 30 0.0241 0.0554 61 63 0.0218 0.0504 92 93 0.0218 0.0504     
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The resistance (r) and the reactance (x) of the power lines are shown in Table 25. 

The sell/purchase price of transferred electricity is τ=¢18/kWh, with transferring 

limits of 𝑃𝑟,𝑚𝑖𝑛=-300kW and𝑃𝑟,𝑚𝑎𝑥= +300kW on both transfer buses.  

 

D.2  Residential Load Data 

The residential loads at peak on each bus are shown in Table 26. To demonstrate 

the load throughout the day this load is multiplied by factor Ω shown in Table 24. The 

shifting limits ϵt are shown in Table 24 as well. 5% of the load is sheddable (y=5) and 

80% is non-sheddable (z = 80). 

Table 26 Peak Consumption on Buses: Case Three 

Bus 

number 

Pinitial 

(kW) 

Qinitial 

(kW) 

Bus 

number 

Pinitial 

(kW) 

Qinitial 

(kW) 

Bus 

number 

Pinitial 

(kW) 

Qinitial 

(kW) 

3 40 20 46 20 10 84 245 180 

4 20 10 49 40 20 85 40 20 

6 20 10 50 40 20 87 40 20 

7 40 20 51 75 35 88 40 20 

8 40 20 52 140 100 90 20 10 

9 20 10 53 75 35 91 40 20 

11 20 10 56 40 20 92 40 20 

12 40 20 58 40 20 93 20 10 

14 20 10 59 20 10 95 40 20 

15 40 20 60 20 10 96 40 20 

17 40 20 62 20 10 97 40 20 

19 40 20 63 20 10 99 20 10 

20 20 10 64 40 20 100 40 20 

22 40 20 66 20 10 101 20 10 

23 40 20 67 20 10 102 40 20 

25 40 20 68 105 75 104 40 20 

27 40 20 69 210 150 106 20 10 

31 40 20 70 140 95 107 20 10 

32 20 10 71 40 20 108 40 20 

33 20 10 72 20 10 109 20 10 

34 40 20 75 20 10 111 40 20 

35 40 20 76 40 20 112 40 20 

36 40 20 73 20 10 114 20 10 

38 40 20 78 40 20 115 40 20 

39 40 20 80 40 20 116 40 20 
41 20 10 81 40 20 119 40 20 

42 20 10 82 40 20 120 40 20 

44 20 10 83 20 10 121 40 20 

45 20 10       

 

D.3  Industrial Load Data 

The scheme of the industrial load is shown in Figure 10 and its characteristics are 

shown in Table 27. The selling price of the final product is Ks =¢2500. The ramping 
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limit is 𝜓 = 45%. The load is connected to bus number 5. The initial status of the 

machines for the day are shown in  Table 28. 

 

Table 27 Industrial Load Characteristics: Case Three 

Machine CTrc (s) 𝐶𝐴𝑃𝑟𝑐 𝐸𝑂𝑛𝑟𝑐(kW) 𝛼𝑟𝑐 𝐾𝑃𝑟(¢) 𝛽𝑟  

r1.c1 50 300 60 4 1.2 6 

r1.c2 120 100 40 2 0 0 

r1.c3 150 100 24 1 0 0 

r2.c1 50 300 30 3 1.5 4 

r2.c2 50 300 40 3 0 0 

r3.c1 150 300 20 2 2 3 

r3.c2 80 100 20 2 0 0 

r3.c3 90 100 30 1 0 0 

r3.c4 120 100 20 1 0 0 

r3.c5 120 100 20 2 0 0 

r4.c1 90 300 10 2 1.2 3 

r4.c2 120 100 20 1 0 0 

r4.c3 150 100 30 3 0 0 

r0.c1 90 500 50 1 2.4 2 

r0.c2 120 500 40 2 0 0 

r0.c3 150 2000 30 - 0 0 
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 Table 28 Machines Status: Case Three-Initial Case 

  Machine 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 
T

im
e
 

t1 0 0 0 0 0 0 0 0 0.417 0 0 0 0 0.025 0 0 

t2 0 0 0 0 0 0 0.139 0 0.833 0 0 0 0 0.475 0.033 0 

t3 0 0 0 0.444 0 0 0.583 0.014 1 0.067 0 0 0 0.925 0.467 0.333 

t4 0 0 0 0.889 0.433 0 1 0 1 0 0.025 0 0 1 0.9 0.75 

t5 0 0 0 1 0 0 1 0 1 0.244 0.15 0.067 0 1 0.467 0.792 

t6 0 0 0 1 0.433 0.042 1 0 1 0.022 0 0 0.033 1 0.467 1 

t7 0.025 0 0 0.556 0.567 0.458 0.556 0.292 1 0.467 0.175 0.367 0.333 0.975 0.567 0.583 

t8 0.3 0.1 0 1 1 0.875 1 0.736 1 0.911 0.6 0.8 0.767 1 1 1 

t9 0.25 0.533 0.375 1 1 0.75 1 0.889 1 0.467 0.25 0.367 0.433 1 1 1 

t10 0.025 0.167 0 0.861 0.567 0.375 0.889 0.444 1 0.178 0.125 0 0.033 1 0.6 0.917 

t11 0 0 0 0.431 0.133 0 0.444 0 1 0.378 0 0 0 0.7 0.433 0.5 

t12 0 0 0 0 0 0 0 0 1 0 0 0.1 0 0.25 0 0.083 

t13 0 0 0 0 0 0 0 0 0.875 0.022 0 0 0.033 0 0 0 

t14 0.05 0 0 0 0.167 0 0.444 0.014 1 0.422 0.45 0.367 0.333 0.45 0.433 0.375 

t15 0.3 0.333 0.292 0.375 0.233 0.292 0.444 0.444 1 0.578 0.325 0.633 0.667 0.4 0.433 0.792 

t16 0.125 0.233 0.125 0 0 0 0 0 0.708 0.133 0.075 0.2 0.233 0 0 0.375 

t17 0 0 0 0 0 0.042 0 0 1 0.333 0.2 0 0 0 0 0 

t18 0 0 0 0 0 0 0 0 1 0 0 0.167 0.167 0 0 0 

t19 0 0 0 0 0 0 0 0 0.833 0.022 0 0 0 0 0 0 

t20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

t21 0 0 0 0 0 0 0 0 1 0.156 0.1 0 0 0 0 0 

t22 0 0 0 0 0 0 0 0 1 0.111 0 0.167 0.133 0 0 0 

t23 0.15 0.233 0.125 0 0 0 0 0 1 0.556 0.325 0.467 0.467 0 0 0 

t24 0.475 0.667 0.5 0 0 0 0 0 1 0.978 0.6 0.833 0.9 0 0 0 
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Appendix E: Case Study 3 Results 

E.1  Generation Units 

The percentage output of the generation units and the percentage power transferred 

for the initial and final cases are shown in Figure 24 and Figure 25 respectively. 

 

 
Figure 24 Percentage Output of The Generation Sources: Case Three-Initial Case 

 

 
Figure 25 Percentage Output of The Generation Sources: Case Three-Final Case 

The PV and wind turbine units on buses 71,113,51, and 77 operate almost fully 

throughout the day due to their zero generation costs. Interestingly, the wind turbines 

on buses 71 and 113 do not always operate at full capacity due to the physical 

constraints of the network. The units on buses 3 and 103 have the highest generation 

costs and therefore operate partially when needed. The other units in addition to the 

transferred power bus have power costs between the previously mentioned power 

sources and therefore their generation output varies the most throughout the day. 
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E.2  Industrial Load 

The status of the machines in the final iteration is are shown in Table 29. The 

number of items in the buffer is shown in Table 30. Again, the outputs verify the 

optimal behavior of industrial load in the elastic mode of operations. The buffers at the 

last period are empty except the last buffer that contains the whole outputs. The 45% 

ramping limits are abided in addition to the order of operation and items generation. 
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Table 29 Machines Status: Case Three-Final Case 

  Machine 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 

T
im

e
 

t1 0 0 0 0 0 0 0 0 0.417 0 0 0 0 0.025 0 0 

t2 0 0 0 0.014 0 0 0.083 0 0.833 0.044 0 0 0 0.45 0.033 0 

t3 0 0 0 0.444 0.033 0 0.528 0 1 0.111 0.075 0 0 0.9 0.367 0.333 

t4 0 0 0 0.556 0 0 0.556 0 1 0 0 0.033 0 0.925 0.367 0.583 

t5 0 0 0 1 0.433 0.083 1 0.069 1 0.444 0.075 0.1 0.1 1 0.8 1 

t6 0.025 0 0 1 0.3 0 1 0 1 0 0.05 0 0 1 1 1 

t7 0.025 0.033 0 0.681 0.433 0.292 1 0.292 1 0.378 0.175 0.333 0.333 1 0.567 0.958 

t8 0.4 0.433 0.25 0.889 0.867 0.708 0.889 0.736 1 0.822 0.625 0.767 0.767 0.9 0.867 0.833 

t9 0 0 0 0.444 0.433 0.292 0.444 0.292 1 0.378 0.225 0.367 0.333 0.45 0.433 0.417 

t10 0 0 0 0 0 0 0 0 0.917 0.133 0 0 0 0 0 0 

t11 0 0 0 0 0 0 0.153 0 1 0.022 0.025 0 0 0.375 0 0.25 

t12 0.25 0.4 0.208 0.444 0.433 0.417 0.597 0.444 1 0.467 0.275 0.4 0.433 0.825 0.433 0.667 

t13 0.175 0.267 0 0.444 0.433 0.292 0.444 0.389 1 0.444 0.3 0.4 0.4 0.45 0.433 0.417 

t14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

t15 0 0 0 0 0 0 0 0 1 0.111 0 0 0 0 0 0 

t16 0 0 0 0.444 0.267 0.125 0.444 0 1 0.356 0.25 0.333 0.333 0.45 0.333 0.417 

t17 0.3 0.367 0.375 0.708 0.6 0.417 0.778 0.417 1 0.578 0.325 0.433 0.433 0.8 0.7 0.833 

t18 0 0 0.042 0.264 0.167 0 0.333 0 1 0.133 0.05 0.067 0.033 0.35 0.267 0.417 

t19 0 0 0 0 0 0 0 0 0.583 0 0 0 0.033 0 0 0 

t20 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 

t21 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

t22 0 0 0 0 0 0 0 0 1 0.067 0 0 0 0 0 0 

t23 0.125 0.167 0.083 0 0 0 0 0 0.958 0.511 0.35 0.433 0.4 0 0 0 

t24 0.35 0.533 0.417 0 0 0.125 0 0.111 0.542 0.867 0.5 0.733 0.8 0 0 0.125 
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Table 30 Number of Items in Buffers: Case Two-Final Case 

  Buffer 

  r0.c1 r0.c2 r0.c3 r1.c1 r1.c2 r1.c3 r2.c1 r2.c2 r3.c1 r3.c2 r3.c3 r3.c4 r3.c5 r4.c1 r4.c2 r4.c3 

T
im

e
 

t1 0 0 0 0 0 0 0 0 10 0 0 0 0 1 0 0 

t2 0 0 0 1 0 0 6 0 26 2 0 0 0 17 1 0 

t3 0 0 0 29 1 0 44 0 40 1 3 0 0 31 4 8 

t4 0 0 0 69 1 0 84 0 64 1 2 1 0 46 1 22 

t5 0 0 0 89 10 2 141 5 48 15 2 1 3 38 1 46 

t6 1 0 0 125 19 1 213 2 72 11 4 1 1 18 7 67 

t7 1 1 0 122 18 7 222 20 62 14 1 1 9 24 1 87 

t8 4 2 6 82 10 8 127 25 12 1 3 1 0 8 7 59 

t9 4 2 6 62 9 15 96 46 2 0 1 2 10 0 10 69 

t10 4 2 6 62 9 15 96 46 12 6 1 2 10 0 10 69 

t11 4 2 6 62 9 15 107 46 34 5 2 2 10 15 4 75 

t12 2 4 11 42 2 15 54 48 16 4 1 1 3 22 1 61 

t13 1 12 11 22 1 15 2 55 0 0 1 1 1 14 4 50 

t14 1 12 11 22 1 15 2 55 24 0 1 1 1 14 4 50 

t15 1 12 11 22 1 15 2 55 38 5 1 1 1 14 4 50 

t16 1 12 11 22 3 18 34 55 30 1 1 1 11 12 4 60 

t17 2 5 20 1 1 16 0 49 2 1 1 1 0 2 5 44 

t18 2 3 21 0 6 16 24 49 14 3 1 2 1 0 3 54 

t19 2 3 21 0 6 16 24 49 28 3 1 1 2 0 3 54 

t20 2 3 21 0 6 16 24 49 46 3 1 1 2 0 3 54 

t21 2 3 21 0 6 16 24 49 70 3 1 1 2 0 3 54 

t22 2 3 21 0 6 16 24 49 88 6 1 1 2 0 3 54 

t23 2 4 23 0 6 11 24 34 65 1 2 2 4 0 3 39 

t24 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 
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