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Low-Light Image Enhancement for Object Classification 

using Deep Learning 

    Rayan Abdul Razzak Al Sobbahi 

      ABSTRACT 

Low-light image (LLI) enhancement is an important image processing task that aims at 

improving the illumination of images taken under low-light conditions. Recently, a 

remarkable progress has been made in utilizing deep learning (DL) approaches for LLI 

enhancement. In this thesis, we perform a concise and comprehensive review and 

comparative study of the most recent DL models used for LLI enhancement. We address 

LLI enhancement in two ways: i) standalone, as a separate task, and ii) end-to-end, as a 

pre-processing stage embedded within another high-level computer vision task, namely 

object detection and classification. We also conduct a feature analysis of DL feature maps 

extracted from normal, low-light, and enhanced images, and perform the occlusion 

experiment to better understand the effect of enhancement on object detection and 

classification. We then address a common problem of these models depicted by their 

design as standalone solutions without focusing on the impact of enhancement on high-

level computer vision tasks like object classification. Our review and empirical 

evaluations show that enhancing LLI visual quality does not necessarily correlate with 

improved object detection and classification performance, and may even deteriorate it, 

especially in cases where enhanced images include extreme artifacts. To solve the 

problem, we propose a new LLI enhancement model that performs image-to-frequency 

filter learning and is designed for seamless integration into classification models. Through 

this integration, the classification model is embedded with an internal enhancement 

capability and is jointly trained to optimize both enhancement and classification 

performance. We conduct a large battery of experiments involving 76 testers to evaluate 

our approach’s LLI enhancement quality. When evaluated as a standalone enhancement 

model, our solution consistently ranks first or second among five state of the art 

enhancement techniques both quantitatively and qualitatively. When embedded with a 

classification model, our solution achieves an average of 5.5% improvement in 
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classification accuracy, compared with the traditional pipeline of separate enhancement 

followed by classification. Results clearly produce robust classification performance on 

both low light and normal light images.  

Keywords: Image Enhancement, Low-light Conditions, Deep Learning, Object Detection 

and Classification, Homomorphic Filtering, Empirical Comparison, Comparative Study
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Chapter 1 

 

With the rapid spread of digital devices and photo-taking gadgets such as smart phones, 

pads, and tablets, capturing digital images has become an easy and common trend in our 

world. These images may be influenced by various poor visibility conditions like low-

light, noise, haze, snow, and blur, among others. Low-light is a prominent element of our 

daily life that largely impacts the effectiveness of our vision and our ability to perceive 

meaningful content from badly illuminated objects, especially from Low-Light Images 

(LLIs). Low-light conditions are affected by the time of day (e.g., nighttime or twilight), 

the location (e.g., indoor or outdoor), and the availability of adequate light sources (e.g., 

natural and man-made lights) (Loh and Chan 2019). Modern artificial intelligence-based 

applications like autonomous spacecrafts, drones, autopilot car systems, robots, security 

surveillance systems, among others, essentially rely on visualizing and understanding 

outdoor environments. Such systems use cameras as their vision sensors to perform high-

level computer vision tasks like classification, detection, semantic segmentation, and 

tracking. While these systems show good performance during normal and clear outdoor 

conditions, yet low-light conditions which account to a considerable time of our daily life 

can largely challenge the visual perception of such systems and significantly affect their 

robustness and hinder their market deployment (Yang et al. 2020; VidalMata et al. 2020). 

Hence, LLI enhancement has emerged: i) as a standalone image processing task that aims 

at illuminating LLIs and improving their visual quality, and ii) as a pre-processing step 

embedded within another high-level computer vision task to improve its performance.  

Numerous traditional enhancement techniques have been proposed to tackle LLI 

enhancement. For instance, gamma correction methods, e.g., (Huang et al. 2013; Zhi et 

al. 2018) rely on a nonlinear transformation-based function where the different gray 

regions of the image are stretched or compressed by modifying the gamma correction 

parameter. Histogram equalization methods like CLAHE (Pisano et al. 1998) and DHE 

(Abdullah-Al-Wadud et al. 2007) stretch the histogram of the image to make it uniform 

and enhance its contrast. Other methods rely on the Retinex theory (Land and McCann 
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1971) which splits the image into reflectance and illumination components: reflectance 

describes the intrinsic properties of the image’s objects and is assumed to be constant 

under varying light conditions, while illumination represents the varying lightness in the 

whole image. Typical Retinex-based approaches like MultiScale Retinex (MSR) (Rahman 

et al. 1996), Single Scale Retinex (SSR) (Jobson et al. 1997a), MultiScale Retinex with 

Color Restoration (MSRCR) (Jobson et al. 1997b), LIME (Li et al. 2015) and SRIE (Fu 

et al. 2016) adopt Retinex theory to perform LLI enhancement defined as an illumination 

estimation problem. However, deep learning techniques have demonstrated better 

performance and efficiency when compared with traditional methods (Tao et al. 2017; 

Guo et al. 2020).  

Deep Learning (DL) approaches have been recently utilized to enhance LLIs and have 

shown great success. These approaches are data-driven as they require training datasets of 

LLIs and their corresponding Normal-Light Images (NLIs). Yet most DL approaches face 

two major challenges (Yang et al. 2020): i) the data aspect challenge – state of art 

enhancement models mainly rely on synthetic training datasets which might not be well 

representative of real world LLIs that incorporate nonlinear and complex degradations due 

to their visual quality; and ii) the goal aspect challenge - LLI enhancement is usually 

embedded as a pre-processing step in another high-level computer vision task, while the 

enhancement model itself is not initially designed for the target task. One major question 

is whether a LLI enhancement method – which performs well as a standalone component 

– can improve (or not) the performance of the high-level computer vision task as a whole. 

VidalMata et al. (2020) investigate the effect of image restoration and enhancement on 

object classification performance. The evaluation demonstrates that enhancing the image 

quality does not necessarily improve the classification performance but rather degrades it, 

especially when the enhanced images contain extreme artifacts. 

In this thesis, we address the goal aspect challenge by designing a DL-based LLI 

enhancement model which is tailored for object classification. In the first part of the thesis 

report, we briefly describe and categorize the different models and techniques related to 

the task, while illustrating some of their main characteristics. Then, we empirically 

compare the models in two ways: i) standalone, as a separate task by analyzing the visual 

and perceptual performance of 10 publicly available enhancement models, and ii) end-to-
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end, as a pre-processing stage embedded within another high-level computer vision task: 

by comparing the performance of 4 object detection and classification models, applied on 

images enhanced by each of the 10 LLI enhancement models considered in the previous 

experiment. We also perform a DL feature analysis experiment to compare the feature 

maps extracted from LLIs, NLIs and enhanced images, and run the occlusion experiment 

(Zeiler and Fergus 2014) to better understand the effect of LLI enhancement on preserving 

the semantic features needed by the object detection and classification task. To our 

knowledge, this is the first comparative study dedicated to DL-based models for LLI 

enhancement, and we hope the obtained results will foster and guide further research on 

the subject. 

In the second part of the thesis report, we introduce our approach which consists of 

two contributions: i) introducing a novel LLI Enhancer model based on image-to- 

frequency filter learning, and ii) introducing a LLI Enhancer-Classifier model, which 

integrates the enhancer model into a state of art object classification solution. On the one 

hand, the LLI Enhancer model performs image-to-frequency filter learning, inspired from 

homomorphic filtering traditionally used for LLI enhancement in which a frequency filter 

comprising only two parameters is devised to effectively filter the frequency-based LLI. 

On the other hand, the LLI Enhancer-Classifier model integrates the LLI Enhancer into a 

typical classification model, namely ResNet50 (He et al. 2016), to perform a joint training 

that optimizes both enhancement and classification performance simultaneously. Note 

that our solution is not tied to ResNet50, and is designed to use typical feature extractors 

utilized with existing classification models including VGG16 (Simonyan and Zisserman 

2015), MobileNetv2 (Sandler et al. 2018), and SqueezeNet (Iandola et al. 2016), among 

others, thus making it unconstrained from any special architecture. 

We perform a large battery of experiments to evaluate the performance of our 

approach. One the one hand, quantitative and qualitative evaluations on our LLI Enhancer 

model show competitive results compared with state of the art enhancement models like 

ZeroDCE (Guo et al. 2020), EnlightenGAN (Jiang et al. 2019) and DeepUPE (Wang et 

al. 2019). On the other hand, we compare our LLI Enhancer-Classifier model against the 

traditional pipeline commonly followed in the literature where separately preprocessed 

enhanced LLIs are evaluated on classification models pre-trained on benchmarks with 
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abundant Normal Light Images (NLIs). Enhancer-Classifier results show a robust 

classification against both LLIs and NLIs, producing an average 5.5% improvement in 

classification accuracy on both synthetic LLIs form the Pascal VOC 2007 dataset 

(Everingham et al. 2012) and real-world images of ExDark dataset (Loh and Chan 2019). 

The remainder of this report is organized as follows. Chapter 2 provides an overview 

of the LLI enhancement task. Chapter 3 presents our research motivation, aim, objectives, 

and contributions. Chapter 4 describes and categorizes the most prominent DL-based LLI 

enhancement models. Chapter 5 presents an empirical comparative study of 10 of the most 

recent LLI enhancement models. Chapter 6 describes the design and implementation of 

our LLI Enhancer model, and its empirical results. Chapter 7 describes the design and 

implementation of our LLI Enhancer-Classifier model, and its empirical results. Chapter 

8 highlights the impact and limitations of our research and discusses future work. Finally, 

chapter 9 concludes the report.  
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Chapter 2 

 

The main objective of LLI enhancement is to improve the visual quality of an image by 

boosting its illumination and contrast while avoiding amplified noise or exposed artifacts. 

Formally, a low-light image ILLI is the output of a degradation function: 

       ILLI = D (INLI, δ),                     (1) 

where D denotes a degradation mapping function, INLI the NLI, and δ the parameter of the 

degradation process (e.g. illumination level). Generally, the degradation process is 

complex as it may encompass – in addition to the illumination of the image – other factors 

like artifacts and noise. The enhancement task aims at recovering an approximation of INLI 

denoted by IEnhanced, generated from ILLI as follows: 

           IEnhanced = F (ILLI, θ),                                  (2) 

where F is the LLI enhancement model and θ its adjustment parameters. Here, we 

distinguish between two main categories of LLI enhancement models: i) traditional and 

ii) deep learning. 

2.1    Traditional Approaches 

Most traditional LLI enhancement techniques rely on mathematical or algorithmic models 

to perform the enhancement task. For instance, gamma correction methods, e.g., (Huang 

et al. 2013; Zhi et al. 2018) use a nonlinear transformation-based function in which a 

gamma correction parameter is adjusted to stretch or compress different gray regions of 

the image, aiming to enhance it. Also, histogram equalization methods, e.g., (Abdullah-

Al-Wadud et al. 2007; Pisano et al. 1998; Wang et al. 1999) rely on a cumulative 

distribution function to change the image output gray levels such that they fit into a 

uniform distribution. The original LLI is mapped to its enhanced counterpart with an 

approximately uniform gray-level distribution. Yet the latter methods generally ignore 

spatially varying lightness and usually result in under or over brightened regions. In 

Overview of LLI Enhancement 
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addition, Retinex theory –i.e., the theory of the human retinal cortex (Land and McCann 

1971), has been utilized to perform LLI enhancement. Based on the nature of color 

perception by the human eye and the modeling of color constancy, methods in this 

category aim to remove the effects of illumination from the image leaving it with the 

reflective nature of its objects (Jobson et al. 1997a; Rahman et al. 1996; Jobson et al. 

1997b). According to the theory, the Human Visual System (HVS) perceives the content 

and colors of the image constantly under varying or uneven lighting conditions, and thus 

only the major characteristics of the objects depicted in the reflection component are 

retained by the HVS (Lee et al. 2015). As a result, the reflectance component of the image 

is considered to be constant under varying light conditions and holds the inherent 

characteristics of visual objects. The Retinex model is thus used to estimate the 

illumination component of the image and retain its reflectance component, preserving the 

image’s inherent features to allow more accurate image processing. Typical Retinex-based 

approaches like MultiScale Retinex (MSR) (Rahman et al. 1996), MultiScale Retinex with 

Color Restoration (MSRCR) (Jobson et al. 1997b) and Single Scale Retinex (SSR) 

(Jobson et al. 1997a) try to restore the illumination map and use it for enhancement. More 

recently, Wang et al. (2013) design an enhancement method which preserves the 

naturalness of images with non-uniform illumination. A bright pass filter is used to split 

the image into its reflectance and illumination components which respectively link to the 

details and naturalness of the image. Additionally, a bi-log transformation is applied to 

impose a balance between details and naturalness. Fu et al. (2016) propose a fusion based 

enhancement method. A simple illumination estimating algorithm based on 

morphological closing is used to decompose the image into its Retinex based components. 

The estimated illumination map is then adjusted and improved following an effective 

multi-scale fusion-based approach. Also, Fu et al. (2016) introduce SRIE, a weighted 

variational model that estimates both reflectance and illumination components of the input 

image. The model uses a better prior representation than the logarithmic transformation-

based regularization and an alternating minimization scheme is utilized to solve the model. 

Li et al. (2015) propose a simple yet effective solution namely LIME. First, the 

illumination of each pixel is estimated by finding the maximum pixel of its RGB channels, 

then the illumination map is recovered by applying a structure prior. A joint denoising 



 

7 

 

algorithm namely BM3D (Dabov et al. 2006) is applied as a post processing step for 

LIME. Li et al. (2018) design a robust Retinex model which takes noise into consideration. 

The method simultaneously estimates a structure revealing reflectance along with a 

smoothed illumination map and a noise map. The augmented Lagrange multiplier-based 

algorithm is utilized to solve the involved optimization problem. Yet most of the Retinex-

based approaches assume that enhancement does not affect image reflectance, regardless 

of the color distortions or lost details that result from applying the Retinex model (Wang 

et al. 2019). In addition, Retinex-based enhancement quality is highly dependent on a set 

of carefully hand-crafted parameters allowing to estimate the resulting illumination map 

(Wei et al. 2018).   

2.2     Deep Learning Approaches 

In contrast to the traditional algorithmic or mathematical enhancement approaches, Deep 

Learning (DL) enhancement models are essentially data-driven, where training datasets 

of LLIs and NLIs are used to drive the learning process. DL models are a special kind of 

machine learning algorithms made of multilayered artificial neural networks, inspired by 

the structure and function of the human brain. They aim to find unknown structures or 

patterns in the input distribution so that they discover good representations of the data and 

learn its features through a hierarchical architecture (Deng 2014). DL techniques have 

gained great attention in the past few years as the most effective machine learning 

solutions to perform LLI enhancement, outperforming traditional methods based on 

histogram equalization e.g. (Pisano et al. 1998; Abdullah-Al-Wadud et al. 2007); and 

Retinex theory e.g., (Jobson et al. 1997a; Jobson et al. 1997b; Rahman et al. 1996). They 

accept LLIs as input, and propagate them through the DL model to learn a variety of 

features needed for the enhancement task. Paired labels of LLIs/NLIs are essentially 

needed to train the DL model under a supervised setting, allowing it to learn how to 

perform the enhancement task. A loss function is one of the main elements of a DL 

solution, allowing to evaluate how well a given model fits the training data. Through an 

iterative self-evaluation process, the loss function usually guides the DL model to reduce 

the error in its own predictions. In this context, commonly used DL loss functions like 

Mean Absolute Error (MAE, or L1 loss) and Mean Square Error (MSE, or L2 loss) might 
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not always be suitable to accurately evaluate the visual quality of enhanced LLIs (Wang 

et al. 2004). Given the various elements that affect the quality of the image including 

illumination levels, color deviations, artifacts, noise, etc., recent studies have introduced 

more sophisticated loss functions to improve the quality of enhanced LLIs, including: 

perceptual loss (Lv et al. 2018), illumination smoothness loss (Wei et al. 2018), and 

adversarial loss (Wang et al. 2019), among others.  

While they usually require expensive training time and effort (Abu-Khzam et al. 2019; 

Abu-Khzam et al. 2015), yet various reasons have contributed to the leap of DL algorithms 

and their applications, including (Deng 2014): i) the substantial increase in computational 

capabilities (e.g., GPUs), ii) the lower costs of computing hardware, iii) the significant 

advances of machine learning algorithms (Salem et al. 2018; Ebrahimi et al. 2020; Abu-

Khzam et al. 2018), and iv) the increasing availability of training data. In chapter 4, we 

thoroughly describe and categorize the recent DL models for LLI enhancement. 
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Chapter 3 

 

In this chapter we describe the motivation of our work, then state its aim and list its main 

objectives. We finally highlight the major contributions of the research. 

3.1    Motivations 

The motivations behind this research can be summarized as follows: 

Motivation 1:  

The existing literature lacks a comprehensive survey and empirical study that is dedicated 

to reviewing and evaluating DL-based enhancement techniques for images taken under 

low-light conditions (i.e., LLIs). 

Motivation 2:  

Existing DL classification models show impressive accuracy results when processing 

images taken under normal and clear-light conditions (i.e., NLIs), yet their performance 

degrades significantly when challenged by low-light conditions (Yang et al. 2020; 

VidalMata et al. 2020). So, classification models do not provide a robust performance 

against both LLIs and NLIs. Therefore, a dedicated LLI enhancement model is needed to 

help boost the performance of classification models under low-light conditions.  

3.2    Aim 

Given the two motivations mentioned above, this research aims at designing a LLI 

enhancement model tailored for the object classification task.  

3.3    Objectives 

To fulfill our aim, the following five objectives are considered:  

1. Survey and categorize existing DL-based LLI enhancement models. 

   Proposal  
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2. Evaluate the models at three levels: enhancement performance, detection & 

classification performance, and feature preservation performance. 

3. Design a new LLI enhancement solution which is learnable through a DL model, while 

allowing a seamless integration with typical architectures and loss functions used for 

classification models. 

4. Integrate the designed enhancement model into one state of art classification model. 

5. Validate the enhancement and classification performance of the proposed model and 

compare it with recent existing techniques.   

3.4    Contributions 

Our research offers four main contributions:  

1. Surveying and comparing existing DL-based LLI enhancement models at three 

different levels: enhancement, detection & classification, and feature preservation. 

2. Designing an enhancement model tailored for high-level computer vision tasks, 

particularly the object classification task. 

3. Embedding classification models with an internal enhancement capability.  

4. Producing a robust classification performance against varying light conditions.  

 

 

 

 

 

 

 

 

 



 

11 

 

Chapter 4 

 

This chapter provides an in-depth review of most prominent and recent DL-based LLI 

enhancement models. We organize the models in five main categories: i) Encoder-decoder 

and Convolutional Neural Network (CNN)-based models, ii) Retinex theory-based 

models, iii) Fusion-based models, iv) Generative Adversarial Network (GAN)-based 

models, and more recent v) Zero Reference models. 

4.1    Encoder-decoder and CNN-based Models 

Various works have focused on utilizing encoder-decoder models, CNNs, or have 

integrated them together to perform LLI enhancement.  

Encoder-decoder models: An encoder-decoder is a DL model designed to learn a 

mapping from an input domain to an output domain through a two-stage network 

comprising: i) an encoder which encodes the input into a latent feature representation, and 

ii) a decoder which decodes and reconstructs the original features to predict the output. 

While largely used in image-to-image translation applications (Minaee et al. 2020), 

encoder-decoder solutions have been recently developed for image enhancement, where 

the input is a LLI, and the output is its enhanced counterpart, e.g., (Lore et al. 2017; Jiang 

et al. 2018; Xu et al. 2018). An autoencoder is a special type of encoder-decoder which 

aims at learning a reduced encoding for the data, and to generate from the reduced 

encoding a representation as close as possible to its original input (Minaee et al. 2020). 

There are many variants of autoencoders such as: i) sparse autoencoders: extracting sparse 

features from the input data, by penalizing hidden unit biases (Ranzato et al. 2006) or unit 

activations (Le et al. 2011), ii) denoising autoencoders: recovering the correct input from 

a corrupted version of the input data, by forcing the network to learn the structure of the 

input distribution (Vincent et al. 2008), and iii) convolutional autoencoders: combining 

CNNs and autoencoders, where the encoder consists of a series of convolutional and 

pooling layers and the decoder consists of deconvolutional and unpooling layers.  

Deep Learning-based LLI Enhancement: Review 
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LLNet (Lore et al. 2017) is one of the earliest DL approaches for LLI enhancement. It 

uses a stacked-sparse denoising autoencoder (SSDA) as its deep neural network 

architecture with three denoising autoencoder layers comprising hidden units with no use 

of convolutional layers. The model is trained on synthetic LLIs obtained from normal 

images through gamma correction and Gaussian noise induction, and uses the L2 loss 

function. Experimental results by Lore et al. (2017) highlight a tradeoff between the 

sharpness of the enhanced image and its noise levels. The model shows competitive results 

when compared with traditional approaches based on histogram equalization (Abdullah-

Al-Wadud et al. 2007; Pisano et al. 1998) and gamma adjustment.  

CNN models: A Convolutional Neural Network (CNN) is a DL network consisting of a 

regularized version of the multilayer perceptron that uses the linear convolution 

mathematical operation in place of general matrix multiplication in at least one of its 

layers. CNNs are highly effective and have been commonly used in various computer 

vision applications (Guo et al. 2016), allowing to extract, distinguish, and assemble 

complex visual features (patterns) from the images’ visual properties and objects. A 

typical CNN consists of three types of consecutive layers: i) convolutional layers: using 

kernels to convolve the whole image as well as intermediate feature maps and generate 

new feature maps, ii) pooling layers: reducing the feature map dimensions and the number 

of network parameters, and iii) fully connected layers: mapping a 2D feature map into a 

1D feature vector that either refers to a certain number of categories for image 

classification or is utilized for further processing. CNNs have been largely used for the 

image classification task, including famous architectures such as VGG16 and VGG19 

(Simonyan and Zisserman 2015), AlexNet (Krizhevsky et al. 2012), and ResNet (He et al. 

2016). 

LLCNN (Tao et al. 2017) is one of the early CNN-based models for LLI enhancement. 

It is built using specially designed convolutional modules inspired from inception modules 

(convolving an input using different size convolutional layers and then combining their 

outputs to the next layer) and residual modules (employing shortcut connections). It uses 

a Structural Similarity Index (SSIM) (Wang et al. 2004) based loss function and relies on 

synthetic LLIs created through random gamma adjustment for training the network. The 

model demonstrates superior performance compared with LLNet (Lore et al. 2017) and 
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many traditional approaches (Abdullah-Al-Wadud et al. 2007; Pisano et al. 1998; Rahman 

et al. 1996; Jobson et al. 1997a; Fu al et. 2016).  

Gharbi et al. (2017) propose a deep bilateral CNN based model to perform fast real-

time enhancement. The approach aims at processing a low-resolution version of the image 

in which a bilateral grid of affine coefficients is estimated. Then a slicing operation is used 

to up-sample the affine coefficients into the full image resolution. The model is designed 

to learn global and local features and preserve edges. L2 loss is used to train the network 

on the MIT FiveK dataset (Bychkovsk et al. 2011). The results demonstrate the 

effectiveness of the model in real time image enhancement. One limitation mentioned by 

the authors is the network’s strong dependence on the modelling assumptions and 

constraints related to the affine transformations in the bilateral space. 

 Chen et al. (2018) introduce a learning to See In the Dark (SID) model for image 

enhancement and noise suppression designed to process images under extreme low-light 

conditions. The model relies on Fully Convolutional Networks (FCNs) (using 

convolutional layers only) and is trained using L1 loss on a newly collected dataset of raw 

LLIs taken by the imaging sensors of Sony 7SII and Fujifilm X-T2 cameras. Although the 

model is able to suppress noise and produce proper coloring, it is limited to raw data 

obtained using a specific camera sensor and the images of the SID dataset do not contain 

pictures of humans and dynamic objects (Chen et al. 2018).  

Integrated models: Jiang et al. (2018) propose LL-RefineNet, a deep refinement network 

consisting of two symmetrical paths: forward and backward. In the forward path, high-

level features with global content are extracted and then gradually fused with low-level 

features with local content and refined during the backward refinement path. The model 

relies on synthetic LLIs based on impulse and Gaussian noise and guided using a mixed 

loss function of L1 and L2 losses. Results show that the model outperforms LLCNN (Tao 

et al. 2017) and many traditional approaches both quantitatively and qualitatively.  

Xu et al. (2018) introduce LRCNN: a Low-light Residual Connection based 

Convolutional Network, consisting of: i) a convolutional encoder-decoder structure in 

which the encoder is used for feature extraction and the decoder for denoising, connected 

with a ii) sequence of fully connected layers for brightness enhancement. Residual 
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connections are used to better preserve the details of the original image. The network is 

guided by an L2 based loss function and is trained on a synthetic dataset of LLIs simulated 

from the CVG-UGR database. Results show that the model can remove noise and properly 

adjust light intensity.  

Wang et al. (2018) introduce a Global Illumination Aware and Detail-preserving 

NETwork (GLADNET) comprising: i) a global illumination estimation step using an 

encoder-decoder structure where the encoder consists of convolution layers and the 

decoder consists of resize convolutional layers (Odena et al. 2016), followed by ii) a 

reconstruction step through a series of  convolutions where the input image is 

concatenated with the predicted features from the encoder-decoder to better preserve the 

original image features. The network is trained on a synthesized dataset collected from 

RAISE (Dang-Nguyen et al. 2015) and guided by L1 loss. Results show that the model 

produces clear and natural enhanced images with preserved details.  

4.2    Retinex Theory-based Models 

Other DL approaches are inspired by the Retinex theory (Land and McCann 1971) that 

decomposes the image into a constant reflectance map and a light varying illumination 

map (cf. Section 2.1). Multi Scale Retinex Net (MSR-Net) (Shen et al. 2017) is one of the 

early models in this category. It performs LLI enhancement in three stages. The input LLI 

is first processed as a set of multi-scale logarithmic transformations. The transformed 

image is then fed into a CNN, and is finally processed through a dedicated color 

restoration function. The model is trained using the L2 loss function and a synthesized 

dataset obtained from the UCID dataset (Schaefer and Stich 2003), the BSD dataset 

(Arbelaez et al. 2011), and Google Images. While the model is effective in producing 

images with rich colors and clear textures, yet it sometimes fails to properly handle the 

image edge features as it tends to produce some darkness around the edges, especially in 

bright regions (referred to as the “halo effect”) (Shen et al. 2017).  

Another approach is RetinexNet (Wei et al. 2018) which consists of two subnetworks: 

i) DecomNet that aims at learning the decomposition of the image into its reflectance and 

illumination components based on Retinex theory, and ii) EnhanceNet that performs 



 

15 

 

illumination adjustment and enhancement through a dedicated encoder-decoder structure 

which uses multiscale concatenation to maintain the global and local illumination of the 

enhanced image. A joint denoising operation using 3D transform-domain filtering 

(BM3D) denoising algorithm (Dabov et al. 2006) is then applied on the reflectance 

component. Wei et al. (2018) introduce their own training dataset named LOw-Light 

(LOL), consisting of 500 pairs of real LLIs and NLIs. They also put forth a multi-term 

loss function combining reconstruction, invariable reflectance, and illumination losses. 

The resulting enhanced images are produced with a good image decomposition learning 

and are deemed visually pleasing by the authors.  

Li et al. (2018) introduce LightenNet, a CNN model made of 4 convolutional layers 

for i) patch extraction and representation, ii) feature enhancement, iii) non-linear mapping, 

and iv) reconstruction. It is designed to predict the Retinex illumination map component 

from the original LLI, which is then used to produce the enhanced image. The network 

learns through a synthesized dataset obtained by the Retinex model and is guided by the 

L2 loss function. The enhanced images are visually pleasing with well restored content. 

Yet, the method shows a degraded performance while applied on low-quality images due 

to noise or JPG compression resulting in noise and artifacts amplification (Li et al. 2018).   

Wang et al. (2019) describe Retinex Decomposition based Generative Adversarial 

Network (RDGAN) which consists of two subnetworks: i) Retinex Decomposition Net 

(RDNet) that decomposes the LLI into its illumination and reflectance components, and 

ii) Fusion Enhancement Net (FENet) that fuses the decomposed parts into an enhanced 

image. The model is trained using the SICE dataset (Cai et al. 2018) and utilizes a novel 

adversarial loss function based on GANs to improve visual quality. While the model can 

properly recover the details and colors of the original LLI, yet it also tends to amplify 

noise and JPEG artifacts that are not obvious in the LLI, thus possibly degrading the 

quality of the enhanced image (Wang et al. 2019).  

Zhang et al. (2019) introduce KinD (Kindling the Darkness) consisting of three 

networks: i) layer decomposition that decomposes the image into reflectance and 

illumination components, ii) reflectance restoration which aims at removing degradations 

that are concentrated in the dark regions of the reflectance, and iii) illumination adjustment 
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which distributes the illumination across the image. The authors design an integrated loss 

function based on L1, L2, and SSIM (Wang et al. 2004) losses, and train the model on the 

LOL dataset (Wei et al. 2018). Results in (Zhang et al. 2019) show that the model produces 

enhanced images with properly adjusted lightness and suppressed noise.  

Wang et al. (2019) introduce a Deep Underexposed Photo Enhancement (DeepUPE) 

model which performs image-to-illumination map learning. It consists of an encoder 

network (i.e., a pre-trained VGG16 (Simonyan and Zisserman 2015) that extracts the 

image’s local and global features, followed by a bilateral grid based up-sampling allowing 

to produce the image’s full resolution illumination map. The latter is then used to enhance 

the image based on the Retinex model. The authors use an integrated loss function 

combining reconstruction, smoothness, and color losses. A newly proposed dataset of 

underexposed images and expert retouched references is used for training and evaluation. 

Results by Wang et al. (2019) show a good recovery of the image details, contrast, and 

colors. 

4.3    Fusion-based Models   

Some LLI enhancement models consider fusing the derived images or feature maps by 

multiple traditional or DL techniques to combine their advantages into a final enhanced 

image. MBLLEN, a Multi-Branch Low-Light Enhancement Network (Lv et al. 2018) is 

one of the earliest models in this category. It uses a dedicated feature extraction module 

to extract the LLI features at each of its 10 convolutional layers, and then enhances the 

features at each layer using an encoder-decoder based enhancement module. It finally 

fuses the multi-branch enhanced features to form the enhanced image. The model uses a 

loss function composed of structure, context, and region losses. It learns through a 

synthesized dataset of LLIs from the Pascal VOC dataset (Everingham et al. 2012). The 

resulting enhanced images have good brightness and contrast with minimal artifacts.  

Shin et al. (2018) propose ACA-net, an Adversarial Context Aggregation network 

consisting of a Context Aggregation Network (CAN) applied with an adversarial GAN-

based loss function. First, image illumination is boosted using two gamma correction 

functions, then the corresponding feature maps are extracted using convolutional layers 
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and passed through a CAN which uses dilated convolutions to perform an effective 

aggregation of the global contextual information in the image. The network is guided by 

an integrated loss function combining reconstruction and adversarial losses, and the 

training data is synthesized based on aesthetic visual analysis (AVA) dataset (Murray et 

al. 2012). The model shows superior performance compared with MSR-Net (Shen et al. 

2017).  

Another fusion-based approach is DFN (Deep Fusion Network) (Cheng et al. 2019), 

which combines three traditional enhancement techniques: CLAHE (Pisano et al. 1998), 

log correction and bright channel enhancement. It runs the three models on the same input 

LLI and produces the feature confidence maps from the three derived images using an 

encoder-decoder network. It then weights the derived images by the obtained confidence 

maps in an element-wise fusion to output the final enhanced image. The model aims at 

combining the significant features emphasized by the constituent enhancement methods. 

It utilizes an integrated loss function composed of L1 and L2 losses and is trained on a 

dataset synthesized from 600 NLIs using gamma correction. Although it shows good 

performance, yet the authors mention that DFN may add smoothing and artificial edges in 

the fused image as it lacks an edge preserving capability (Cheng et al. 2019).  

Wang et al. (2019) utilize attention modules to selectively enhance useful features 

while suppressing features that are not so important for the network, and use multi-scale 

feature fusion to combine global features with strong semantic features at deeper layers. 

The model consists of feature extraction blocks (FEB), where each FEB is a convolutional 

block made up of an attention module and two convolutional layers, and a feature fusion 

block (FFB) which fuses multilevel features through pixel-wise addition and channel 

connection. The model uses a Peak Signal to Noise Ratio (PSNR) based loss function and 

is trained on real images from the SID (Chen et al. 2018) and S7ISP (Schwartz et al. 2019) 

datasets, as well as synthetic images produced based on the Pascal VOC dataset 

(Everingham et al. 2012). The model shows competitive results compared with many 

traditional enhancement approaches (Jobson et al. 1997b; Fu et al. 2016; Li et al. 2015). 

Lv et al. (2020) introduce an attention-guided model that aims at handling image 

enhancement and denoising simultaneously by using Under Exposure (UE) attention maps 
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and noise maps that guide the model attention in a region-aware adaptive manner. The 

model consists of four components: i) Attention Net: produces the UE maps used to avoid 

over-enhanced regions, ii) Noise Net: estimates the noise distribution map, iii) 

Enhancement Net: extracts and enhances features then fuses them through a multi-branch 

CNN concatenation and iv) Reinforce Net: uses dilated convolutions to improve the image 

contrast and details. The integrated loss function combines L1, L2, SSIM (Wang et al. 

2004), and VGG19 (Simonyan and Zisserman 2015) based perceptual losses, among 

others. The network is trained on a synthesized dataset from publicly available datasets 

like Pascal VOC (Everingham et al. 2012) and Microsoft (MS) COCO (Lin et al. 2014). 

Extensive evaluation experiments show the superior performance of the proposed model 

compared with LLNet (Lore et al. 2017), MBLLEN (Lv et al. 2018), SRIE (Fu et al. 2016), 

LIME (Li et al. 2015), among others.  

Ren et al. (2019) propose a deep hybrid network consisting of two streams that 

simultaneously learn: i) the global content and ii) the salient edge contents of the input 

image. The first stream uses a residual encoder-decoder and the second stream utilizes a 

novel spatially variant recurrent neural network (RNN) to model the edge details. The 

network is guided by an integrated loss function combining L2, perceptual, and adversarial 

losses, and is trained using MIT-Adobe FiveK dataset (Bychkovsky et al. 2011). The 

enhanced images are shown to be visually pleasing with minimal artifacts and color 

distortions (Ren et al. 2019).  

Xiang et al. (2019) introduce a multi-branch encoder-decoder architecture combining: 

i) DCGAP: a Dilated Convolution and Global Average Pooling module used to better 

learn the image global features, and ii) ConvLSTM: a Convolutional Long Short-Term 

Memory that allows remembering and preserving the features learned at the different 

branches. The model is guided by L1 and SSIM (Wang et al. 2004) losses and is trained 

using the LOL dataset (Wei et al. 2018) and 1000 synthetic images based on RAISE 

(Dang-Nguyen 2015). The model successfully enhances LLI visual quality while 

minimizing noise and artifacts (Xiang et al. 2019).  
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4.4    GAN-based Models 

Recently, Generative Adversarial Networks (GANs) have been attracting attention for 

image-to-image mapping applications (Goodfellow et al. 2014), and have been 

successfully employed for the LLI enhancement task. A typical GAN is made-up of two 

networks: a generator and a discriminator. The generative network is trained to generate 

realistic synthetic data samples from a data distribution of interest, while the 

discriminative network is trained to distinguish fake samples produced by the generator 

form the true data distribution. The generative network's training objective is to increase 

the error rate of the discriminative network, as it attempts to "fool" the discriminator 

network by producing novel candidates that the discriminator thinks are not synthesized. 

DL models like encoder-decoders and CNNs are used for the generator and discriminator 

networks. In the context of image enhancement, LLIs are used as real samples and 

enhanced images as fake samples to be generated. 

Meng et al. (2019) introduce one of the earliest GAN-based models to perform LLI 

enhancement, consisting of an encoder-decoder based generator supplemented by a fusion 

network that combines features from the different layers of the encoder-decoder. Through 

adversarial learning, the discriminator is trained to differentiate a LLI from an enhanced 

image while the generator is trained to fool the discriminator. The model learns using a 

vehicle dataset of daytime and nighttime images that are not exactly taken at the same 

scenes, and is driven by an integrated loss function combining adversarial, perceptual, and 

total variation losses. A major problem highlighted by the authors is the tendency of the 

model to miss objects that are strongly illuminated in nighttime images.  

Hua and Xia (2018) propose a GAN-based approach supported by Image Quality 

Assessment (IQA) techniques, in particular an image quality assessment network NIMA 

(Talebi and Milanfar 2018) which relies on the VGG16 (Simonyan and Zisserman 2015) 

feature extractor to minimize the model’s dependence on the training dataset and boost its 

de-noising and de-blurring performance. The authors use an integrated loss function 

combining IQA, content, and total variation losses, and introduce a synthesized dataset 

based on General100 (Dong et al. 2016) and other image sources by applying Gaussian 

correction, Gaussian blur, and noise induction techniques on the normal images. Results 
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in (Hua and Xia 2018) highlight a certain balance between noise suppression and the 

preservation of image details.  

Kim et al. (2019) introduce Low-LightGAN which applies spectral normalization on 

the network to make the training more stable and accurate. It uses a combination of loss 

functions including adversarial, perceptual, color, and total variation losses, specifically 

tuned to produce visually pleasing images. The authors propose a task-driven training 

dataset based on local illumination synthesis rather than global low-light synthesis, so that 

over-saturated bright regions in the image are avoided. Results show good performance 

although the model may add artifacts in the background of the enhanced images.  

Yangming at al. (2019) combine Retinex theory and GANs. Their generative network 

includes: i) a decomposition part that decomposes the image into its reflectance and 

illumination components, and ii) an enhancement part that enhances the lightness of 

images taken from the CSID dataset (Chen et al. 2018). The loss function combines 

regularization, reconstruction, and adversarial losses, among others. Results by Yangming 

at al. (2019) show that combining Retinex theory and GANs can effectively handle LLI 

enhancement.  

Chen et al. (2018) propose a Deep Photo Enhancer (DPE) model using a GAN-based 

architecture for image enhancement, while considering paired and unpaired training 

settings (i.e., with and without LLI/NLI pairs1). A global feature U-Net (Ronneberger et 

al. 2015) is used to investigate the paired training setting. Two network architectures are 

used for unpaired training: 1-way GAN and 2-way GAN. In addition, two improvements 

are added to stabilize the training: adaptive WGAN (Arjovsky et al. 2017) and individual 

batch normalization for the generator. The loss function is based on L2 and adversarial 

losses. The authors produce a dataset extracted from MIT-Adobe 5K (Bychkovsky et al. 

2011) and HDR images selected from Flickr images. Results mainly show good quality 

enhanced images with natural colors, yet the authors also highlight that the model might 

amplify noise in very dark and noisy images.  

 
1 Unpaired training is increasingly used with GANs and consists in training the model using unmatched training data, e.g., LLIs and 

NLIs which are produced separately, and which do not necessary match. 
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A recent approach by Jiang et al. (2019) introduces EnlightenGAN: a first successful 

attempt at generalizing well to various real-world scenes while using unsupervised 

learning for image enhancement based on GANs. The model undergoes unpaired training, 

uses an attention guided U-Net (Ronneberger et al. 2015) as the backbone for the 

generator, and includes a global relativistic discriminator (Jolicoeur-Martineau 2018) 

along with a local one to handle spatially varying light conditions in the image. Self-

regularization is adopted for the loss function and the attention mechanism, since the 

model is independent from reference training labels. The loss function combines local and 

global discriminator adversarial losses and a self-feature preserving loss. The training 

dataset consists of unpaired LLIs and NLIs sampled from the LOL (Wei et al. 2018), 

RAISE (Dang-Nguyen et al. 2015) and HDR datasets (Gharbi et al. 2017; Kalantari and 

Ramamoorthi 2017). Results by Jiang et al. (2019) demonstrate a successful enhancement 

of dark areas while preserving the texture details and producing naturalistic images with 

no under- or over-exposed regions.  

4.5    Zero Reference Models 

A recent approach by Guo et al. (2020) opens the door for a new category of LLI 

enhancement techniques which does not require paired or unpaired training data (hence 

the name “Zero Reference”). The authors introduce Zero Reference Deep Curve 

Estimation (Zero-DCE) which entirely reformulates the LLI enhancement task: from an 

image-to-image mapping task into an image-to-light curves estimation task. Inspired by 

curve adjustment techniques used in digital photo editing solutions, the authors design 

light enhancement curves that are learned and estimated by a lightweight deep curve 

estimation network (DCE-Net), and are then iteratively applied on the input LLI to 

produce the final enhanced image. The model can be trained in the absence of paired or 

even unpaired training data by using non-reference loss functions such as spatial 

consistency, exposure control, color constancy, and illumination smoothness losses that 

can indirectly evaluate the quality of enhancement. The proposed method is 

computationally efficient and shows superior performance compared with DL 

enhancement models like EnlightenGAN (Jiang et al. 2019), RetinexNet (Wei et al. 2018), 

and LIME (Li et al. 2015), among others.  
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Another recent approach by Zhang et al. (2020) presents a self-supervised DL model 

for LLI enhancement, which can be trained using only LLIs with no need for paired or 

unpaired training data. Relying on the Retinex model and entropy theory, the authors 

devise a well-tuned loss function that includes a new method to compute reflectance loss. 

The method is based on the assumption that the enhanced image should have enough 

information and should comply with the original image. This is achieved by applying 

histogram equalization on the LLI to improve its information entropy. Driven by the newly 

designed referenceless loss function, a CNN model is then trained on the LOL dataset 

(Wei et al. 2018) to perform the enhancement task. Results by Zhang et al. (2020) show 

that the model produces visually pleasing images with short training time, and exhibits 

good real-time performance. 

4.6    Discussion  

Table 1 summarizes the main characteristics of recent DL-based LLI enhancement 

solutions. While many DL enhancement models have been shown to outperform their 

traditional counterparts, e.g., (Lore et al. 2017; Tao et al. 2017; Jiang et al. 2018), yet most 

of them share several challenges.  

Challenge 1: Most approaches consider supervised learning where paired LLIs/NLIs 

are needed to train the models. Yet collecting large datasets of real-world LLIs and their 

corresponding daytime counterparts for the same scenes is difficult and challenging. To 

counter this problem, most techniques utilize synthetic LLIs produced from NLIs using 

light correction and noise induction techniques like gamma correction and Gaussian noise. 

However, synthetic LLIs do not always accurately represent real world low-light 

conditions, which usually encompass non-linear and spatially varying light conditions and 

noise levels, and are difficult to simulate mathematically. In an attempt to ease the 

restriction of paired or unpaired training labels and counter the synthetic LLIs  

performance problem, one recent approach by Guo et al. (2020) redefines the LLI 

enhancement task from an image-to-image learning task where the enhanced image is the 

final output of the network, to an image-to-curve estimation where light curves are learned 

and applied to enhance the image. The model achieves a good performance, thus opening 
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new horizons for formulating the enhancement task. Another study by Jiang et al. (2019) 

describes a GAN-based unsupervised learning method (i.e., EnlightenGAN), performing 

enhancement without the need for training pairs or the LLIs’ daytime counterparts. The 

latter achieves good performance levels and shows a lot of promise since unpaired image 

datasets are much easier to come by compared with paired ones.  

Challenge 2: Most of the approaches tend to struggle whenever low-quality, noisy, or 

very dark images are considered during enhancement. This underlines the need for a 

proper understanding and modeling of the quality and noise elements in an image when 

conducting image enhancement or when designing a new LLI enhancement approach. 

Challenge 3: Most existing techniques are developed as standalone solutions aiming 

to improve the illumination and the quality of LLIs. Yet, the latter’s impact on high-level 

computer vision tasks like object detection and classification remains uncertain, where 

high-level image features might be distorted or lost during the enhancement task, thus 

leading to reduced or non-improving end-to-end performance.  

Challenge 4: It is difficult to fairly compare most existing models for two main 

reasons: i) lack of a large standard dataset of paired LLIs/NLIs that are taken from real-

world scenes and represent various low-light conditions, and ii) lack of a (set of) common 

and standard metric(s) that can accurately evaluate the visual perception of enhanced 

image quality. As can be seen in Table 1, different datasets and evaluation metrics are 

used to train and evaluate the visual performance of different enhancement models. 

In the following empirical study, we further discuss the above challenges aiming to 

acquire a better understanding of the issues at stake and shed light on possible future 

directions. 
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box annotation making the dataset applicable for training and evaluation on object 

detection and classification models. In addition, the dataset is split among 10 types of low-

light conditions found in indoor and outdoor environments, varying from extremely dark 

images to images with spatially varying illumination depending on the location and the 

presence of light sources (Fig. 1b). 

LOL (Low-light) (Wei et al. 2018) is made of 500 LLI/NLI pairs. The NLIs refer to a 

variety of real scenes taken in houses, campuses, clubs, etc. Yet, most of their LLI 

counterparts are created by changing the camera exposure and ISO sensitivity of the image 

sensor in order to simulate low-light conditions and thus they do not represent real low-

light environments (Loh and Chan 2019). Hence, we refer to LOL as a quasi-synthetic 

dataset. Note that LOL images do not contain moving objects (such as people, animals, 

and vehicles) as the image pairs require exact position matching between LLI/NLI pairs 

(sample LOL image pairs are shown in Fig. 2). 
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    Figure 2: Sample pairs of LLIs/NLIs from the LOL dataset (Wei et al. 2018) 

5.1.2    Experiments and Metrics  

Our empirical evaluation consists of three main experiments: i) visual and perceptual 

quality evaluation, ii) detection and classification quality evaluation, and iii) feature 

analysis.  

5.1.2.1    Experiment 1 – Perceptual and Visual Quality 

In this experiment, we perform an image quality assessment (IQA) that aims at evaluating 

whether an image is visually pleasing and how it is visually perceived. Image quality 

refers to the different visual attributes of the image and focuses on the perceptual 
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assessment of viewers. IQA methods are generally either i) quantitative: based on 

objective evaluation metrics, or ii) qualitative: based on the human perception of visual 

quality. In this study, we conduct both quantitative and qualitative evaluations, by 

comparing the visual quality achieved by 10 of the recent DL-based LLI enhancement 

models.  

Quantitative comparison: We evaluate the enhancement models against four objective 

evaluation metrics commonly used in the literature: i) Natural Image Quality Evaluator 

(NIQE) (Mittal et al. 2013), ii) Blind/Reference-less Image Spatial Quality Evaluator 

(BRISQUE) (Mittal et al. 2012), iii) Structural Similarity Index (SSIM) (Wang et al. 2004) 

and iv) Peak Signal to Noise Ratio (PSNR).  

NIQE (Mittal et al. 2013) is a non-reference metric or “blind” evaluation metric in 

which only the LLIs are available for assessment. It measures the deviations from 

statistical regularities seen in natural images without training on human rated distorted 

images or even exposure to distorted images. The quality of the test image represents the 

distance between a multivariate Gaussian (MVG) fit of the natural scene statistic (NSS) 

features derived from the test image, and a MVG model of the quality aware features 

extracted from a corpus of natural images.  

BRISQUE (Mittal et al. 2012) is also a non-reference evaluation metric. It belongs to 

a class of opinion-aware metrics which evaluate the image based on models trained on 

databases of human rated distorted images and associated subjective opinion scores. In 

BRISQUE, the extracted features are derived based on a spatial natural scene statistical 

model. Then, a mapping is learned between the feature space and human based quality 

scores using a regression module, namely a support vector machine regressor (SVM-R) 

(Schölkopf et al. 2000). 

 SSIM (Wang et al. 2004) is a full reference metric in which a known reference image 

is needed for assessment. It measures the structural similarity between images based on 

independent comparisons of their luminance, contrast, and structure features. Given a 

ground truth image x with N pixels and maximum pixel value L, and given the 

corresponding enhanced image y, a simplified version of SSIM is defined as follows 

(Wang et al. 2004): 
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PSNR is another commonly used full reference evaluation metric. It is defined using 

the maximum pixel value (denoted as L) and the mean squared error (MSE or L2 loss) 

between images. Given a ground truth image x with N pixels and the corresponding 

enhanced image y, the PSNR between x and y is defined as follows:  
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In addition to the above objective metrics, we also evaluate the noise level in the 

enhanced images to acquire a complete viewpoint of the enhancement quality achieved 

by the models. We follow the approach proposed in (Liu et al. 2012) which relies on a 

patch-based noise level estimation algorithm. The algorithm selects weak textured patches 

from a single noisy image based on the gradients of the patches and their statistics. Then 

it estimates the noise level from the selected patches using principal component analysis. 

Qualitative comparison: In addition to the quantitative study, we also perform a 

qualitative evaluation to assess the human visual perception of images enhanced by the 10 

models used in this experiment. To do so, we randomly select 20 LLIs from our test data, 

i.e., 10 from each dataset (ExDark and LOL), and display them along with their enhanced 

counterparts in two dedicated surveys (for the LOL survey, we also display the 

corresponding NLIs)4. Responders are asked to rate each image considering six visual 

 
4 ExDark: https://cutt.ly/0fN4evQ, and LOL: https://cutt.ly/TfN4r6G 
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IQA criteria including: i) level of illumination, ii) level of exposure (over/under-exposed 

regions), iii) level of noise, iv) color deviations, v) clearness of contents and details, and 

vi) overall beauty. A total of 32 testers (senior computer engineering and master’s 

students) were invited to contribute to the experiment, where 16 testers participated in 

each survey and independently rated every enhancement model on an integer scale from 

1 to 10 (i.e., worst to best). A total of 1,600 responses were collected for each dataset, 

with every model receiving 160 rating scores. The ratings are aggregated for every 

enhancement model to evaluate its overall visual perceptual quality. 

5.1.2.2    Experiment 2 – Detection and Classification Quality 

In this experiment, we compare the performance achieved by 4 different object detection 

and classification models applied on the enhanced images from ExDark dataset using the 

10 LLI enhancement methods considered in the previous experiment. We utilize mean 

Average Precision (mAP) as a commonly used metric to assess object detection and 

classification quality. For each object class, we generate the corresponding Precision-

Recall (P-R) curve and compute the Average Precision (AP) per class from the area 

covered under the P-R curve. We then compute mAP for the object detection model as the 

average of the AP scores calculated for all the classes.   

5.1.2.3    Experiment 3 – Feature Analysis 

In this experiment, we compare the feature maps extracted from the LLIs, NLIs, and 

enhanced images from the LOL dataset using one of the object detection models from 

Experiment 2. A feature map is an m×n matrix which represents the output of a filter 

applied to a layer of the object detection model. A layer in a DL-based model usually 

consists of a sequence of feature maps. In this experiment, we consider the feature maps 

from three sample layers of the detection model: i) a sequence of large (e.g., 64×64 cell) 

maps from one of the layers belonging to the model’s backbone, ii) a sequence of smaller 

(e.g., 16×16 cell) maps from an intermediary layer, and iii) a sequence of minimal size 

(e.g, 1×1 cell) maps from the model’s last layer. To our knowledge, this is the first 

quantitative feature map evaluation study of its kind in the literature. We introduce two 

new metrics to compare feature maps: i) Feature Map Matrix Similarity (FMMS), and ii) 
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top-N Active Feature Map Similarity (topN-AFMS). FMMS computes the cosine similarity 

measure between the feature maps of two (sets of) images at a given layer of the DL 

model, highlighting overall image feature similarity. More formally, given two images x 

and y whose feature maps are extracted at layer n of the DL model:  
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𝑦
 are the ith feature maps of images x and y, |n| the number of feature maps 

at layer n, and Simcosine the legacy cosine matrix similarity measure5: 
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where wi(q, r) is the feature map (matrix) Fi position at coordinates q and r. Note that 

FMMS can be extended to compare two sets of pair-wise matching images (e.g., 

comparing sets of LLI/NLI, LLI/enhanced, or NLI/enhanced image pairs) by computing 

the similarity between every matching pair and then averaging over the total number of 

image pairs. 

As for topN-AFMS, it compares the most active feature maps between two sets of pair-

wise matching images, in order to help describe the behavior of a detection model and its 

response activity against the fed images. Identifying the most active feature maps gives 

insight into the features that might be most impactful on object detection and classification 

quality. Given two sets of pair-wise matching images X={x1,…, xt} and Y={y1,…, yt} 

where doublet (xi, yi) designates a matching pair (e.g., LLI/NLI, LLI/enhanced, or 

NLI/enhanced), and given the images’ feature maps extracted at layer n of the DL model, 

we produce two vectors VX =< (1)
X

w ,…, (| |)n
X

w > and VY =< (1)
Y

w ,…, (| |)n
Y

w > of size |n| 

each, where weights wX (i) and wY (i) designate the number of times feature map i at layer 

n occurs among the top-active feature maps (based on their average) in image set X and Y 

 
5  We adopt the cosine measure due to its common usage in the literature (McGill 1983), yet other vector or matrix similarity measures 

could have been used such as Pearson Correlation Coefficient or Dice. 
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respectively. For instance, wX (i)=10 means that feature map i has been identified 10 times 

(i.e., in 10 different images of set X) as one of the top active feature maps at layer n. 

Consequently, computing topN-AFMS between image sets X and Y comes down to 

computing the similarity between their vectors: 

X YCosine
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where N is the number of most active feature maps at a certain layer of the DL model (e.g., 

we consider N=16 and compute the top16-AFMS in our empirical study, cf. Section 5.4.1). 

 In addition to computing FFMS and topN-AFMS, we utilize the occlusion experiment 

proposed in (Zeiler and Fergus 2014), where a black square is used to mask particular 

regions of an image while monitoring the output of the object detection model. The black 

square is slided over all the regions of the image allowing to produce a heatmap describing 

object detection confidence scores (in case of a detection – zero scores are produced 

otherwise). The significance of the experiment lays in the fact that the output of the object 

detection model should not change when the regions that are not so important for detection 

are occluded, and should vanish when the regions responsible of the detection are 

occluded. The occlusion experiment is applied on images containing a single object. If an 

image has a lot of regions that result in a misdetection if occluded, then we say the image 

holds weak features allowing to easily misdetect its object. Contrarily, if an image has no 

specific region that causes misdetection when occluded, then the image maintains strong 

features allowing to detect its object despite occlusion. While the authors in (Zeiler and 

Fergus 2014) describe the occlusion experiment, yet they do not define a quantitative 

approach to evaluate its results. Here, we introduce an objective metric: Occlusion based 

Average Misdetection Regions (OAMR) that quantifies the average number of regions 

contributing to misdetecting objects in a set of images. More formally, given a set of 

images X={x1,…, xn} with n images of same size and a fixed size black box sliding over 

all the regions of the image then: 
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where 𝐶𝑥𝑖
is the count of regions contributing to a misdetection in image 𝑥𝑖. A low OAMR 

indicates that a small number of regions causes misdetections, meaning that the images 

mostly contain strong features contributing to high object detection quality. A high OAMR 

indicates that many regions cause misdetections, and thus the images hold weak features 

leading to low object detection quality. In short, high quality LLI enhancement models 

would minimize OAMR. 

5.2    Experiment 1: Perceptual and Visual Quality 

In this section, we present quantitative and qualitative evaluations of the performance 

achieved by 10 recent DL-based LLI enhancement models, namely: RetinexNet6 (Wei et 

al. 2018), GladNet7 (Wang et al. 2018), LLNet8 (Lore et al. 2017), LightenNet9 (Li et al. 

2018), DPE10 (Chen et al. 2018), EnlightenGAN11 (Jiang et al. 2019), MBLLEN12 (Lv et 

al. 2018), DeepUPE13 (Wang et al. 2019), RDGAN14 (Wang et al. 2019), and Zero-DCE15 

(Guo et al. 2020). We run the latter on both ExDark and LOL datasets using the models’ 

pre-trained weights and author-recommended configurations which are publicly available 

online.   

5.2.1    Quantitative Comparison  

To perform a quantitative evaluation, we process the results produced by each of the 

mentioned DL models through four commonly used metrics in the literature: i) Natural 

Image Quality Evaluator (NIQE) (Mittal et al. 2013), ii) Blind/Reference-less Image 

Spatial Quality Evaluator (BRISQUE) (Mittal et al. 2012), iii) Structural Similarity Index 

(SSIM) (Wang et al. 2004) and iv) Peak Signal to Noise Ratio (PSNR) (cf. Section 5.1.2.1). 

 
6 https://github.com/weichen582/RetinexNet  
7 https://github.com/weichen582/GLADNet 
8 https://github.com/kglore/llnet_color  
9 https://li-chongyi.github.io/sub projects html  
10 https://github.com/UtopiaHu/Deep-Photo-Enhancer  
11 https://github.com/TAMU-VITA/EnlightenGAN  
12 https://github.com/Lvfeifan/MBLLEN  
13 https://github.com/wangruixing/DeepUPE  
14 https://github.com/WangJY06/RDGAN  
15 https://github.com/Li-Chongyi/Zero-DCE  
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Based on the results in Fig. 3, we highlight the following observations: 

- Regarding the ExDark dataset: MBLLEN tends to entirely illuminate the images to 

look visually pleasing and beautiful (e.g. bicycle and cat in Fig. 4a, c) and is ranked as 

the best enhancement model. Images enhanced by Zero-DCE and RDGAN show good 

illumination levels and well-preserved contents, and are ranked as second and third best 

models. EnlightenGAN tends to produce visually pleasing images with no over or under 

exposed regions, and is ranked as the fourth best model. GladNet tends to increase image 

illumination but shows some color deviation and noise, and is ranked as the fifth best 

model. DeepUPE, LightenNet and DPE add minimal touches on the images and tend to 

show low illumination levels. They are ranked at the sixth, seventh, and eighth positions, 

respectively. LLNet increases image illumination, yet it also tends to over-smooth 

certain image details (e.g., pedestrian street in Fig. 4a). It is ranked as the ninth and 

second last model. Finally, RetinexNet is ranked as the tenth and last model as it 

produces significant noise and tends to over-expose certain artifacts in the enhanced 

images (e.g., bicycle in Fig. 4a).  

 

- Regarding the LOL dataset: MBLLEN produces visually pleasing images with vivid 

and natural colors and is ranked as the best model thus demonstrating its good 

enhancement quality. RDGAN, Zero-DCE, and EnlightenGAN show naturalistic colors 

with preserved contents and texture. They are ranked at the second, third, and fourth 

positions, respectively. GladNet sufficiently boosts image illumination but usually 

shows pale colors and tends to add noise. It is ranked at the fifth position. RetinexNet 

boosts image illumination while showing exposed artifacts. It is ranked at the sixth 

position. LLNet tends to highly smoothen image details while showing pale lighting, 

and is ranked at the seventh position. DeepUPE, DPE and LightenNet minimally 

enhance image illumination and tend to incorporate noise into the images. Together as 

a group, they are ranked as the three worst models. 
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5.2.3    Discussion  

To sum up, we review and summarize the results of both quantitative and qualitative tests. 

First, concerning the quantitative evaluation metrics: most metrics used in this study 

fail to produce model rankings which closely match the qualitative (human) evaluation 

rankings. For instance, NIQE results are compatible with the qualitative scores in certain 

aspects, by i) showing that MBLLEN achieves the best/second best enhancement quality 

for ExDark/LOL datasets, ii) showing that RetinexNet and LLNet are amongst the worst 

performing models when applied on the ExDark dataset, and iii) producing very close 

scores for DPE, LightenNet, and DeepUPE which only perform slight enhancement to the 

images of ExDark, in accordance with their sequential human rankings. However, NIQE 

does not show consistent results when it comes to capturing the illumination and noise 

components in the enhanced images. For instance, in the case of the ExDark dataset, Zero-

DCE and RDGAN are ranked among the worst models following NIQE as they produce 

high noise levels (Table 2c). Yet, they are relatively better ranked by human testers, 

producing higher scores than DPE, LightenNet, and DeepUPE which have better NIQE 

scores and lower illumination levels. This might be due to the fact that the noise produced 

by Zero-DCE and RDGAN is not clearly apparent in the images and maybe visually 

overlooked by the users  in favor of good illumination. Moreover, LLNet shows the best 

NIQE score while maintaining the lowest noise level for the LOL dataset, yet it exhibits 

the fourth worst human scores due to the over-smoothing and the exposed artifacts it 

produces. BRISQUE shows similar inconsistencies while quantifying image illumination. 

For example, Zero-DCE shows higher BRISQUE scores compared with DeepUPE, DPE, 

and LightenNet, and yet surpasses the latter models in terms of human tester ratings. This 

is probably due to the seemingly better illumination as perceived by most testers. In 

addition, all considered metrics fail to produce consistent rankings among themselves, 

suggesting the need to design more accurate objective metrics that behave in accordance 

with human visual perception. 

Second, concerning the best performing models: EnlightenGAN is consistently ranked 

among the best enhancement models on both ExDark and LOL datasets. Although its good 

performance on LOL can be due to using it as part of the model’s training dataset, yet its 
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performance on ExDark proves its capability of generalizing to real world scenes. The 

results of this model highlight the potential of unsupervised GAN-based solutions in 

performing LLI enhancement. ZeroDCE is ranked as one of the best models following 

human ratings. It shows good illumination levels and preserves image contents, but tends 

to incorporate noise into the enhanced images (producing the highest noise levels for both 

datasets). The latter highlights the potential of ZeroDCE which reformulates the 

enhancement task using image-to-light curve estimation mapping, while eliminating the 

need for paired and unpaired training data. Also, the supervised MBLLEN model achieves 

some of the best quantitatively and qualitatively enhancement results on both ExDark and 

LOL datasets. This may be due to its large training dataset of synthetic LLIs (16,925 

images) generated based on the Pascal VOC (Everingham et al. 2012) object detection 

and classification benchmark, allowing it to better generalize and handle real-world LLIs 

(namely those in ExDark and LOL). In addition, MBLLEN extracts and enhances the 

features at every layer of the used CNN model thus allowing global and local level feature 

enhancement. 

Third, concerning the noise element: most enhancement models tend to incorporate 

significant noise into the enhanced images, thus distorting their quality. Notably, LLNet 

achieves minimal noise levels on both datasets, while sufficiently boosting image 

illumination. Its underlying Stacked Sparse Denoise Autoencoder (SSDA) (Lore et al. 

2017) seems promising and could be effective if properly tuned and designed to maintain 

a good balance between noise suppression and over-smoothing. Nonetheless, we note that 

the noise factor and de-noising techniques need to be given special attention, especially 

that the present evaluation metrics do not simultaneously quantify illumination and noise 

levels. This might suggest the need for new and more robust metrics that are consistent 

with the humans’ visual perception of enhanced image quality.
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Figure 4: Visual human comparison of enhanced LLIs from ExDark dataset, ordered from best to worst 
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Figure 5: Visual human comparison of enhanced LLIs from the LOL dataset, ordered from best to worst
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5.3    Experiment 2: Detection & Classification Quality 

High-level computer vision tasks like object detection and classification usually suffer 

from a degraded performance when processing LLIs (Yang et al. 2020; VidalMata et al. 

2020). In this experiment, we aim to verify whether enhancing LLI illumination and 

quality would improve the performance of the object detection task. To do so, we perform 

a comparative analysis using 4 object detection models: YOLOv3 (You Only Look Once 

version 3)17 (Redmon and Farhadi 2018), RetinaNet18 (Lin et al. 2017), SSD (Single Shot 

MultiBox Detector)19 (Wei et al. 2016), and Mask RCNN (Region based CNN)20 (He et 

al. 2017). We apply the models on the entire original ExDark dataset as well as its 

enhanced versions produced by the 10 enhancement models considered in our previous 

experiment.  

5.3.1    Experimental Setup 

We use the detection models’ recommended weights, pre-trained on Microsoft COCO 

(Lin et al. 2014): a large-scale object detection, segmentation, and captioning dataset. This 

allows a generic evaluation, rather than training and fine-tuning the detection models using 

ExDark’s LLIs or their enhanced counterparts, which would defeat the purpose of the 

experiment. After all, we aim to enhance LLIs to make them usable by existing detection 

models trained on large benchmark datasets of real world NLIs that are abundantly 

available. To do so, we leverage the ground truth bounding box annotations provided in 

the ExDark dataset to perform our experiments. We post-process the predictions provided 

by the detection models trained on COCO and fit them to ExDark. The COCO dataset 

consists of 80 different classes of objects, and ExDark consists only of 12 classes all of 

which are included in COCO. Few ExDark classes are more generic than their COCO 

counterparts, e.g., couch and bench classes in COCO are annotated as chair in ExDark, 

wine glass in COCO is annotated as cup in ExDark, and truck in COCO is annotated as 

car in ExDark. Hence, we match the classes from both datasets by converting COCO’s 

 
17 https://github.com/ultralytics/yolov3  
18 https://github.com/fizyr/keras-retinanet  
19 https://github.com/pierluigiferrari/ssd_keras 
20 https://github.com/matterport/Mask RCNN  
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predictions to the equivalent class annotations in ExDark and ignoring all the classes 

predicted by COCO that do not exist in ExDark, thus bounding the detections to ExDark’s 

12 classes. As for the comparison task, we utilize the mean Average Precision (mAP) 

metric commonly used to evaluate the performance of object detection and classification 

models in the literature (cf. Section 5.1.2.2). 

5.3.2    Experimental Results 

Table 4 presents the mAP results achieved by the 4 detection models, applied on the 

original ExDark dataset and its enhanced versions produced by the 10 enhancement 

models considered in our study. Results highlight the following observations: 

- The enhancement models produce consistent results: They rank almost the same 

across the 4 considered detection models, with a few fluctuations between the top-ranked 

and bottom-ranked models. Namely, DeepUPE ranks as the top enhancement model 

with 3 out of the 4 detection models (and comes only at 2nd place with YOLOv3), 

whereas MBLLEN ranks at 1st place with YOLOv3 and comes 2nd with the other 3 

models. At the other end of the spectrum, RetinexNet and EnlightenGAN consistently 

share the last two positions among the four detection models. The remaining 

enhancement models mostly rank the same across all detection models. 

 

- Minimal enhancement models produce good detection results: DeepUPE, 

LightenNet, and DPE which perform minimal enhancement and show low illumination 

levels in Experiment 1 (cf. Section 5.2.2), are consistently ranked among the best models 

in terms of detection performance in this experiment. This can be reasoned to their 

minimalistic enhancement, which keep the enhanced images attached to their original 

LLIs, and thereby preserve their original features and semantics.  

 

- Object detection quality does not always correlate with visual enhancement 

quality: A striking example is EnlightenGAN which holds some of the worst object 

detection results in this experiment, despite consistently producing some of the best LLI 

enhancement results in Experiment 1. EnlightenGAN uses a reference-less self-feature 
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preserving loss based on a pre-trained VGG16 model (Simonyan and Zisserman 2015), 

which may not be able to effectively preserve the image features to itself, thus showing 

a degraded detection performance. On the opposite side of the spectrum, DeepUPE 

produces some of the best object detection results in this experiment, despite showing 

non-remarkable LLI enhancement results in Experiment 1. DeepUPE utilizes a pre-

trained VGG16 encoder network to extract the image features before enhancing it. The 

powerful feature extraction capabilities of VGG16 might be a reason behind its good 

detection performance. Hence, an improved LLI visual enhancement quality does not 

seem to directly translate into improved detection and classification quality. 

 

- Few exceptions to the previous observations: Results produced by MBLLEN and 

RetinexNet tend to contradict some of the previous observations. On the one hand, 

MBLLEN boasts some of the best enhancement quality levels on ExDark from 

Experiment 1, and consistently exhibits the second-best mAP levels across most 

detection models in the present experiment. The good mAP results can be attributed to 

MBLLEN’s large-scale training dataset: PASCAL VOC (Everingham et al. 2012) 

consisting of 16,925 images containing dynamic objects and classes similar to those in 

the ExDark dataset, thus probably allowing for a better preservation of the image visual 

contents and semantics. On the other hand, RetinexNet bears some of the worst 

enhancement quality levels and produces the worst object detection quality levels. This 

means that image enhancement quality is not completely disassociated from detection 

quality and can affect the object detection task. 

5.3.3    Discussion 

To summarize the above observations: i) most enhancement models produce consistent 

results and behave similarly across the object detection models evaluated in our study, ii) 

object detection quality does not always correlate with visual enhancement quality, where 

good enhancement models seem to perform badly when used for object detection, and vice 

versa, and iii) a few exceptions to the previous observation show that image enhancement 

quality is not completely disassociated from object detection quality, and can improve the 

object detection task. 
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Interestingly, most detection models tend to perform better on the original LLIs, 

compared with the enhanced images. While this seems counter-intuitive, yet a similar 

observation was made in a recent study in (VidalMata et al. 2020), where the authors 

summarize the results of the UG2 Challenge workshop held at IEEE CVPR 201821, and 

which aims at assessing the influence of image restoration and enhancement techniques in 

improving the performance of classification models like VGG16 and VGG19 (Simonyan 

and Zisserman 2015), InceptionV3 (Szegedy et al. 2016), and ResNet50 (He et al. 2016). 

Extensive experimentation on a new video benchmark dataset representing both ideal 

conditions and common aerial image artifacts, demonstrate that improving image quality 

does not necessarily lead to an improved classification performance, and may even 

degrade it in certain cases where images include extreme artifacts. However, the 

improvement in detection quality that is consistently produced by few enhancement 

models like MBLLEN and DeepUPE suggests that LLI enhancement can help improve 

object detection performance if designed in a special way to highlight and preserve the 

features of interest to the object detection task. 

Also, one aspect that might affect object detection quality is the level of noise added 

in the enhanced images. By comparing with the results of Experiment 1, we realize that 

MBLLEN produces some of the lowest noise levels compared with the other enhancement 

models (Table 2c) while producing some of best detection results in this experiment. 

ZeroDCE and RDGAN which are ranked among the best enhancement models by human 

testers in Experiment 1 (Fig. 3), produce some of the worst noise levels (Table 2c) and 

show a degraded detection performance in this experiment. This suggests that a proper 

balancing between visual features and noise levels should be maintained to improve the 

detection task 
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convolutional and pooling layers, and allowing to easily extract the feature maps of 

interest. In this experiment, we consider the feature maps from three sample layers of the 

detection model: i) a sequence of large maps from conv4_3 (64*64*512) – one of the 

layers belonging to the model’s backbone, ii) a sequence of smaller maps from conv8_2 

(16*16*512) – an intermediary layer, and iii) a sequence of minimal size maps from 

conv11_2 (1*1*256) – the model’s last layer (Fig. 6). 

 

Figure 6: SSD512 architecture: layers marked in yellow are used in the analysis (modified based on (Wei et al. 2016)) 

 

 
 

 
        (a) Activity on LLIs (b) Activity on NLIs 

 

  
 

         (c) Activity on enhanced images using DPE (Chen et al. 2018) 
 

(d) Activity on enhanced images using MBLLEN (Lv et al. 2018) 

Figure 7: Visualizing top-16 active feature maps for layer conv11_2 for the LOL dataset. The labels on top of the bars refer to the 

feature map id within the layer 
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We introduce two new metrics to compare the feature maps at a given layer of the DL 

model: i) Feature Map Matrix Similarity (FMMS), and ii) top N Active Feature Map 

Similarity (topN-AFMS). FMMS computes the cosine similarity measure between the 

feature maps of two (sets of) images at given layer of the DL model, highlighting overall 

image feature similarity (Equation (5) in Section 5.1.2.3). Here, we expect that the 

enhanced images share maximum feature similarity (producing maximum FMMS scores) 

with NLIs, compared with their LLI counterparts. In other words, we expect a high-quality 

enhanced image to share more similar features with a NLI, compared with a LLI. TopN-

AFMS compares the most active feature maps between two sets of pair-wise matching 

images, to help describe the behavior of the detection model and its response activity 

against the input images (Equation (7) in Section 5.1.2.3). The most active and responsive 

feature maps are those having the highest average activation at a certain layer of the DL 

model, while feature maps having zero average activations refer to dead or inactive maps. 

Identifying and comparing the most active feature maps gives insight into the features that 

might be most impactful on object detection and classification quality.  

For instance, Fig. 7 shows the number of occurrences of the top-16 active feature maps 

extracted using SSD at layer conv11_2, considering all the images from the LOL dataset. 

One can see that feature maps 142 and 169 are the most active with about 400 occurrences 

among the LLIs (Fig. 7a), while feature maps 142 and 159 are the most active with about 

350 occurrences among the top-16 active maps for NLIs (Fig. 7b). Note that images 

enhanced using the DPE model (which produced the worst SSIM and PSNR scores for 

LOL and minimal illumination levels in Experiment 1 – Table 3c, d) produce activity maps 

which are similar to those of LLIs, whereas images enhanced using MBLLEN (which 

produced the second best NIQE and the best BRISQUE scores – Table 3a, b – as well as 

the best subjective scores for LOL) produce activity maps which are similar to those of 

NLIs. Here, we expect that enhanced images share more similar active feature maps 

(producing higher top16-AFMS scores) with NLIs, compared with their LLI counterparts. 

In other words, we expect an enhanced image to preserve the most important (active) 

features that would be present in a NLI, compared with a LLI which tends to loosen certain 

image features. 
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- Feature Map Matrix Similarity (FMMS) results for conv4_3 in Fig. 8a show that 

FMMS(LLI, enhanced) > FMMS(NLI, enhanced) for most enhancement models. This 

means that the enhanced images tend to share more features at conv4_3 with their LLI 

counterparts, compared with the corresponding NLIs, and thus remain attached to their 

initial LLIs. Almost the same pattern holds for conv8_2 in Fig. 9a (with the exception of 

MBLLEN). However, results at conv11_2, i.e., the deepest layer of SSD, show that most 

models produce maps which are closer to those of NLIs versus LLIs, except for DPE, 

DeepUPE, and LightenNet which remain largely attached to the initial LLIs. Results for 

the latter three models might be due to their minimal enhancement (Experiment 1 in 

Section 5.2.2) which makes them more faithful to the original LLIs. Additionally, LLNet 

shows the lowest FMMS(NLI, enhanced) and FMMS(LLI, enhanced) levels for all layers 

and more prominently for conv11_2 in Fig. 10a. This can be due to the over smoothing 

applied by LLNet on the enhanced images (Experiment 1) making them loose their fine 

details, especially in the deepest layers of the detection model (i.e., conv11_2) where the 

high-level features incorporated in the fine details are out of interest. Finally, MBLLEN 

shows some of the best results with FMMS(LLI, enhanced) approaching FMMS(LLI, NLI) 

and simultaneously producing approximately the highest FMMS(NLI, enhanced) scores 

compared with all other models and in all three layers. Other models do not share similar 

measures, for example LLNet produces very close FMMS(LLI, enhanced) and 

FMMS(LLI, NLI) scores in both conv4_3 and conv8_2 layers, and yet it shows the lowest 

FMMS(NLI, enhanced) score. Moreover DeepUPE has very close FMMS (NLI, enhanced) 

to that of MBLLEN, yet it shows much higher FMMS(LLI, enhanced). 

- Top 16 Active Feature Map Similarity (top16-AFMS) results show that top16-

AFMS(NLI, enhanced) > top16-AFMS(LLI, enhanced) in all layers and for most 

enhancement models except for DPE, DeepUPE, and LightenNet. This means that most 

enhancement models tend to activate the same feature maps in the detection model (e.g., 

SSD in this case) compared with NLIs, and succeed to diverge from the most active feature 

maps of the LLIs towards those of the NLIs. We also notice from Fig. 8b, 9b and 10b, that 

MBLLEN’s top16-AFMS(LLI, enhanced) is approaching top16-AFMS(LLI, NLI) in all 

layers such that its top16-AFMS(NLI, enhanced) produces high scores compared with all 

other models. This shows that MBLLEN’s enhanced images share very similar active 
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- Most enhancement models (except for RetinexNet) produce high FMMS(LLI, 

enhanced) and top16-AFMS(LLI, enhanced) scores and show minimal variations 

compared with the results produced with the LOL dataset (Fig. 10a, b). This means that 

the enhanced images produced by most models remain mostly faithful to their original 

LLIs and do not diverge enough from the LLIs to promote better features that can be 

more useful for the object detection task. 

5.5    Occlusion Experiment 

To better interpret and understand the effect of enhancement on the preservation of image 

features and what may be lost during enhancement, we utilize the occlusion experiment 

proposed in (Zeiler and Fergus 2014) where: i) a black square is used to mask particular 

sections of the image, ii) the black square is slided over all the possible sections of the 

image, allowing to iii) perform object detection for every slided mask, producing a 

heatmap highlighting the object detection confidence scores (in case of a detection, and 

zero otherwise). The occlusion experiment is performed on images containing a single 

object each, so that the detection model focuses solely on them. Its rationale is two-fold: 

i) if an image contains many regions which may cause a misdetection if occluded, then 

the image is assumed to hold weak features allowing to easily misdetect its object, and ii) 

if an image contains no specific region that might cause a misdetection if occluded – given 

all the masks slided over the entire image, then the image is assumed to hold strong 

features that allow to correctly detect its object.  

In the following, we present both quantitative and qualitative evaluations of the 

occlusion experiment applied on enhanced images produced by the 10 DL-based LLI 

enhancement models used in the previous experiments.  

5.5.1    Quantitative Evaluation 

We perform the occlusion experiment on 100 sample images from the ExDark dataset, 

considering only images containing single objects. All the images are resized equally, and 

the same size of the moving black box is used with all of them. We consider the original 

LLIs and their enhanced counterparts produced by the 10 enhancement models considered 
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in our study, and process each of them through the 4 object detection models used in 

Experiment 2 (cf. Section 5.3). A confidence score of 0.15 is used to limit the number of 

detections produced by all models. We make use of the Occlusion based Average 

Misdetection Regions (OAMR) metric (cf. Section 5.1.2.3), which highlights the ability of 

an enhancement model to include stronger features in the enhanced images by producing 

lower scores (i.e., lower number of regions contributing to misdetections) compared with 

the original LLIs. Results are reported in Table 5 and highlight the following observations:  

- DeepUPE, MBLLEN, and DPE produce some of the best (low) OAMR results, which is 

consistent with their high mAP scores obtained in Experiment 2 (cf. Section 5.3.2), 

despite DeepUPE and DPE’s minimal enhancement quality in Experiment 1 (cf. Section 

5.2.1 and 5.2.2). This corroborates with our observations from Experiment 2, where a 

good enhancement quality does not necessarily translate into better feature preservation 

and improved object detection quality. 

 

- None of the remaining enhancement models (with the exception of DeepUPE, 

MBLLEN, and DPE) produce an OAMR score lower than that of the original LLIs, 

indicating that the models are adding more regions which contribute to misdetections, 

and are thereby loosing significant object features upon image enhancement. 

 

- MBLLEN produces one of the best (lowest) average OAMR scores, reflecting good 

feature preservation in the enhanced images. This seems consistent with its top 

enhancement quality achieved in Experiment 1. On the other end of the spectrum, 

RetinexNet shows the worst (highest) average OAMR scores, which is consistent with 

its bad enhancement quality achieved in Experiment 1. This seems to indicate that visual 

enhancement quality and feature preservation performance might not be completely 

unrelated, and that good visual enhancement balanced with proper feature handling 

could strengthen the object features upon image enhancement. 

 

 

 





 

54 

 

 

 

 

   

   
 

(a) Original 
 

(b) GladNet (Wang et al. 2018) 

 

 

(c) MBLLEN (Lv et al. 2018) 

   

   
 

(d) EnlightenGAN (Jiang et al. 2019) 
 

(e) DPE (Chen et al. 2018) 
 

(f) DeepUPE (Wang et al. 2019) 
                     

 
Figure 12: Occlusion experiment on a sample LLI from ExDark and its enhanced counterparts: case 1 
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      (a) Original   (b) EnlightenGAN (Jiang et al. 2019)   (c) Zero-DCE (Guo et al. 2020) 

   

      
 (d) GladNet (Wang et al. 2018) 

 

  (e) MBLLEN (Lv et al. 2018)    (f) LLNet (Lore et al. 2017) 

Figure 13: Occlusion experiment on a sample LLI from ExDark and its enhanced counterparts: case 2 
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5.5.2    Qualitative Evaluation 

In addition to the quantitative evaluation, and in order to shed further light on the results 

of the occlusion experiment, we qualitatively evaluate and discuss two typical cases using 

the YOLOv3 detection model: i) successful detection in both the LLI and the enhanced 

image, and ii) successful detection in the LLI and misdetection in the enhanced image. 

The cases where we have a misdetection in the LLI are not beneficial for this experiment 

since they do not reflect any information about the initial LLI features. 

Case 1 – Successful detection in the LLI and the enhanced image: 

 Fig. 12 shows the occlusion heatmaps obtained on a sample LLI and its enhanced 

counterparts. 

Results in Fig. 12 highlight the following observations: 

- The heatmap of the original LLI shows 4 zero-confidence score (dark) regions 

concentrated around the face of the cat object, which seem to contribute to its 

misdetection. In contrast, the heatmaps of the enhanced images show a lesser number of 

zero-score (dark) regions contributing to the misdetection of the cat object. This means 

that the enhancement models seem to integrate better features into the enhanced images, 

allowing to improve their detection confidence scores.   

 

- MBLLEN shows the best features with only one region resulting in a misdetection. In 

other words, regions which were initially responsible for misdetecting the cat object in 

the original image are no longer causing a misdetection after MBLLEN’ s enhancement.  

 

- Although EnlightenGAN shows one of the best visual quality results among all 

enhancement models in Experiment 1 (Section 5.2.1), yet it produces 3 zero-confidence 

(dark) regions resulting in misdetections (Fig. 12d). In contrast, DeepUPE which shows 

a minimal enhancement quality in Experiment 1 produces only 2 regions resulting in 

misdetections (Fig. 12f). Similarly, DPE shows low illumination while producing only 

3 misdetection regions (Fig. 12e), identically to EnlightenGAN which seemingly shows 

better illumination and enhancement quality (Fig. 12d). The latter observations show 
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that a good visual enhancement quality does not necessarily translate into better object 

detection features. This corroborates the results from Experiments 1 and 2, where 

EnlightenGAN on the one hand, and DeepUPE and DPE on the other hand, respectively 

show high/low visual enhancement quality versus low/high object detection 

performance.  

 

Case 2 – Successful detection in the LLI and misdetection in the enhanced image. 

 Fig. 13 shows the occlusion heatmaps obtained on another sample LLI from the ExDark 

dataset, and its enhanced counterparts. Results highlight the following observations: 

- Although object cat is successfully detected in the original LLI, yet it contains 11 regions 

contributing to a misdetection. This shows that the LLI initially holds weak features that 

poorly contribute to the object detection task.  

 

- The enhanced images produced by EnlightenGAN, ZeroDCE, and GladNet, result in a 

complete misdetection of object cat, showing that the enhancement models have 

loosened the few features that were contributing to the object detection task in the 

original LLI. 

 

- The enhanced image produced by MBLLEN allows a successful object detection. 

However, it includes 22 regions contributing to a misdetection, which is double the 

number of misdetection regions present in the original LLI (=11). This shows that 

MBLLEN loosened some of the features while preserving others that were most 

important to the detection task.  

 

- LLNet allows a successful object detection and shows better feature preservation 

compared with its counterparts. This can be due to the minimal noise incorporated by 

LLNet in comparison with its counterparts (Experiment 1, Table 2c). This shows that 

the amplification or integration of noise into the enhanced image seems to loosen the 

features that are useful for object detection.  
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5.5.3    Discussion 

To sum up, we review and discuss the results of our feature analysis experiment. 

First, the enhanced images produced by most enhancement models tend to activate the 

same detection model feature maps compared with LLIs. In other words, enhanced images 

produced by most models tend to share more features with their LLI counterparts, 

compared with the corresponding NLIs. They fail to diverge from the features of the LLIs 

towards those of the NLIs and remain attached to their initial LLIs.  

Second, results of the occlusion experiment show that successful object detection in 

enhanced images seems to be related to the number of (mis)detection regions in the 

occlusion heatmap, which in turn highlights the number of (loosened and) preserved 

features in the resulting enhanced image, compared with its original LLI. OAMR results 

show that most of the enhancement models tend to produce enhanced images with more 

regions contributing to misdetections and thus showing weakly embodied semantic 

features.   

Third, an important aspect to be considered here is the level of noise added in the 

enhanced images. Referring to the results of Experiments 1 and 2, we realize that 

MBLLEN produces some of the lowest noise levels (cf. Section 5.2.1) and some of the 

best mAP results (cf. Section 5.3.2) compared with the other enhancement models, and 

accordingly produces good OAMR scores in this experiment. On the other side of the 

spectrum, ZeroDCE produces the highest noise level amongst the enhancement models 

(cf. Section 5.2.1) with uncompetitive mAP results (cf. Section 5.3.2), and accordingly 

produces some of the worst OAMR scores. This suggests that preserving the image features 

that are useful for object detection, coupled with a reduction in noise levels, can help 

improve detection performance. 
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5.6    Recap and Directions  

5.6.1    Recap of Empirical Results 

To sum up, we recap our observations and findings as follows. 

From Experiment 1 - Visual and Perceptual Quality: 

- Most of the LLI enhancement models evaluated in our study still fall short of producing 

properly illuminated enhanced images with good visual quality. They fail to strike a 

good balance between image illumination level, noise level, exposure level, and color 

deviation. Some models successfully improve one aspect while ignoring others and tend 

to incorporate significant noise into the enhanced images, thus distorting their quality. 

 

- Results for the IQA (Image Quality Assessment) objective metrics used in this study do 

not closely match human evaluation ratings. The metrics also fail to produce consistent 

rankings among themselves. 

 

From Experiment 2 – Detection and Classification quality: 

- Improving LLI visual quality does not necessarily boost object detection and 

classification quality. Many models evaluated in our study tend to produce enhanced 

images which deteriorate object detection performance rather than improving it. This 

can be attributed to the fact that most existing enhancement models were developed as 

standalone solutions, and were not designed to be embedded as a pre-processing step for 

high-level computer vision tasks like object detection. 

 

- The level of noise added in the enhanced images seems to affect detection quality. By 

comparing with the results of Experiment 1, we realize that many models producing low 

noise levels tend to produce some of the best detection results in Experiment 2. This 

suggests that a proper balancing between noise level and visual features could improve 

the detection task. 
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From Experiment 3 – Feature Analysis: 

- Enhanced images produced by most models tend to share more features with their LLI 

counterparts, compared with the corresponding NLIs. They fail to diverge from the 

features of the LLIs towards those of the NLIs, and remain attached to their initial LLIs. 

This contributes to a drop in detection performance, which is usually further exacerbated 

by the added artifacts and noise resulting from the enhancement process. 

 

- Most enhancement models tend to produce enhanced images with more regions 

contributing to misdetections and thus show weakly embodied semantic features. The 

enhancement task should consider enriching enhanced images with strong features that 

make detection models more robust and confident in their predictions.   

5.6.2    Potential Directions 

Based on our literature review and empirical observations, we highlight a few potential 

directions: 

- There is a need to design more accurate IQA objective metrics that simultaneously 

quantify illumination and noise levels and behave in accordance with the human visual 

perception of image quality. 

 

- There is a need to produce LLI enhancement models that can be used as a pre-processing 

step for other high-level computer vision task such as object detection and classification. 

In this context, LLI enhancement should be formulated while considering the 

preservation of the semantic features necessary for the high-level task at hand. 

 

- The preservation of semantic features should consider decoupling the LLI from the 

enhanced image such that it does not diverge beyond the actual similarity between the 

NLI and LLI, while maintaining at the same time high similarity with the NLI. While 

most supervised learning models tend to use a perceptual loss between the enhanced 

image and the NLI, they should also consider limiting the loss between the LLI and the 

enhanced image to that between the LLI and NLI. 
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- The noise factor and de-noising techniques need to be given special attention when 

designing new LLI enhancement models, especially that noise seems to consistently 

affect visual enhancement quality as well as object detection quality. 

 

- One of the best enhancement models in our empirical evaluation: EnlightenGAN (Jiang 

et al. 2019), follows the unsupervised learning paradigm, and thus highlights the 

potential of unsupervised LLI enhancement techniques. This would eliminate the need 

for paired training images, and would allow the use of real-world datasets which are 

increasingly available, rather than relying on synthetic datasets which are scarce and fail 

to mimic real LLIs.  

 

- Another promising direction is presented by Zero-DCE (Guo et al. 2020), which entirely 

reformulates the LLI enhancement task to learn a mapping between LLIs and estimated 

light curves, thus releasing the need of paired and unpaired training data. The model 

achieved good object detection quality compared with many other DL enhancement 

models and was qualitatively favored by human testers as it sufficiently boosted image 

illumination albeit adding more noise. Such an approach could be revolutionary if 

properly extended or fine-tuned to maintain a good balance between illumination level, 

noise level, and semantic feature preservation. 
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Chapter 6 

 

While the reviewed and evaluated enhancement models show success when used as 

standalone for only the purpose of enhancement, yet they all share a common limitation: 

they are not tailored for high-level computer vision tasks like object classification while 

they are expected to produce enhanced images which boost the tasks performance. In our 

in-depth evaluation study for the performance of state of art classification and detection 

models on LLI datasets preprocessed by recent enhancement models, the results in section 

5.3.2 show that the involved enhancement adds slight improvement or even does not 

improve the detection and classification performance. The study shows that a good 

enhancement quality is not necessarily correlated with an improved detection and 

classification quality. Therefore, the enhancement task should essentially consider into 

account high-level computer vision tasks like object classification to make them more 

robust against low light and normal light conditions. In what follows, we elaborate on the 

detailed steps involved in the design of our enhancement model which is feasible to 

integration into classification models and evaluate its enhancement performance 

quantitatively and qualitatively.  

6.1    Methodology 

We design an enhancement model which performs an image to frequency filter learning 

instead of an image-to-image learning. The enhancement is based on homomorphic 

filtering where a special filter of only two parameters is devised to filter the image 

frequency components in the Fourier transform domain. The two parameters are estimated 

using any of the feature extractors usually used in classification models. We call our 

model: Low Light Homomorphic Filtering Network (LLHFNet). We next detail the key 

elements of the enhancement model namely: homomorphic filtering, enhancement filter 

design, network architecture and loss function.  

 

    LLI Enhancer Model 
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6.1.1    Homomorphic Filtering (HF) 

HF based enhancement methods use the Retinex model representation of the image to 

convert the illumination and reflectance components which combine multiplicatively to 

an additive form in the logarithmic domain. The additive components are separated 

linearly in the Fourier transform frequency domain in which high frequency components 

are associated with reflectance while low frequency components correspond to 

illumination. A high pass filter is used to suppress low frequencies and amplify high 

frequencies. 

The steps for HF are as follows:  

1. The logarithm of both sides of the Retinex model is taken to convert from 

multiplicative form to additive form as follows: 

 Retinex Model: 

𝑀(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) × 𝑅(𝑥, 𝑦),   (9) 

  

 where 𝑀(𝑥, 𝑦) is the original image, 𝐼(𝑥, 𝑦) is the illumination component, 

and 𝑅(𝑥, 𝑦) is the reflectance component. 

Logarithm:  

ln 𝑀(𝑥, 𝑦) = ln 𝐼(𝑥, 𝑦) + ln 𝑅(𝑥, 𝑦)    (10) 

 

2. The Fourier transform is applied to convert the image from the spatial domain to 

the frequency domain:  

 

𝐹[ln 𝑀(𝑥, 𝑦)] = 𝐹[ln 𝐼(𝑥, 𝑦) + ln 𝑅(𝑥, 𝑦)] (11) 

 

And more concisely equation (11) can be written as:  

𝑀(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) + 𝑅(𝑢, 𝑣),      (12) 
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where 𝑀(𝑢, 𝑣), 𝐼(𝑢, 𝑣) and 𝑅(𝑢, 𝑣) are the Fourier transforms of 𝑀(𝑥, 𝑦), 𝐼(𝑥, 𝑦) 

and 𝑅(𝑥, 𝑦). 𝐼(𝑢, 𝑣) is mainly concentrated in the low frequency range while 

𝑅(𝑢, 𝑣) is concentrated in the high frequency range.  

3.  For enhancement, an appropriate high pass filter with transfer function 𝐻(𝑢, 𝑣) is 

applied: 

 

𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) × 𝑀(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣) + 𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣)   (13) 

 

4. The inverse Fourier transform is employed to transform the image from the 

frequency domain to the spatial domain. Let 𝑠(𝑥, 𝑦) be the inverse Fourier transform 

of 𝑆(𝑢, 𝑣), then the inverse Fourier transform of equation (13) is: 

 

𝑠(𝑥, 𝑦) = 𝐹−1(𝐻(𝑢, 𝑣)𝐼(𝑢, 𝑣)) + 𝐹−1(𝐻(𝑢, 𝑣)𝑅(𝑢, 𝑣))

= ℎ𝐼(𝑥, 𝑦) +  ℎ𝑅(𝑥, 𝑦) 

 

(14) 

 

5. Finally, the exponential or logarithmic inverse is applied on equation (14) to obtain 

the final enhanced image denoted by 𝐸(𝑥, 𝑦) as below:  

 

𝐸(𝑥, 𝑦) = exp[𝑠(𝑥, 𝑦)  = exp[ℎ𝐼(𝑥, 𝑦)] exp[ℎ𝑅(𝑥, 𝑦)] (15) 

 

The HF algorithm flow is shown in Fig. 14. In this figure, Log is the logarithmic 

transform, FFT and IFFT are the fast Fourier transform and its inverse respectively, 

𝐻(𝑢, 𝑣) is the frequency filtering function and Exp is the exponential operation.  

 

 

Figure 14: HF algorithm flow (modified based on (Wang et al. 2020))   

M(x,y) E(x,y) 

     H(u,v) FFT Log IFFT Exp 
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6.1.2    Enhancement Filter Design 

A core part of the HF algorithm is 𝐻(𝑢, 𝑣), the frequency filtering transform. We want 

our filter to be simple and effective in performing the enhancement. The Fourier transform 

of the original image i.e., 𝑀(𝑢, 𝑣) at (0,0) represents its DC-term which corresponds to its 

average brightness in the spatial domain (Gonzalez and Woods, 2018). It is noticeable that 

for LLIs, 𝑀(0,0) is a large negative value which reflects the low brightness of these 

images and so the brightness can be enhanced by increasing 𝑀(0,0). This leads to the first 

parameter of the enhancement filter denoted by 𝛾𝐿 ∈ [0,1] placed at 𝐻(0,0). The smaller 

the value of 𝛾𝐿, the higher is the brightness level. The remaining frequency components 

of 𝑀(𝑢, 𝑣) correspond to the image variations and are filtered using the second parameter 

of the enhancement filter denoted by 𝛾𝐻 ∈ [0,1]. The larger the value of 𝛾𝐻, the sharper 

are the contents of the image. Finally, the enhancement filter is as follows: 

𝐻(𝑢, 𝑣) =  {
𝛾𝐿      (0,0)           
𝛾𝐻     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(16) 

 

We run the HF algorithm on the Value channel of the HSV (Hue-Saturation-Value) 

color domain instead of using the RGB domain. We follow this step for four reasons: i) it 

is more efficient to apply FFT and its inverse on only one channel instead of three, ii) the 

Value channel corresponds to the lightness of the image which we aim to improve and this 

channel will be only affected while the Hue and Saturation will remain preserved, iii) the 

obtained enhancement quality on the Value channel is better than that on the RGB 

channels as noticed experimentally and iv) more simplicity is maintained for the 

enhancement filter in HSV domain compared to the RGB domain which may need two 

parameters per each of its channels to achieve a good enhancement quality. 

We show in Figures 15 and 16 the correspondence of the designed enhancement filter 

for different exposure levels. In Fig.15, the LLI has a very low exposure level, so by using 

an enhancement filter of parameters (𝛾𝐿 =  0.25, 𝛾𝐻 = 0.45), the HF algorithm produces 

a visually pleasing image with minimal artifacts. While in Fig.16 the image has a medium 

exposure level so larger values of 𝛾𝐿 and 𝛾𝐻 are used to perform a minimal enhancement 

and avoid overexposure. Therefore, a learner is needed to estimate the values of 𝛾𝐿 and 𝛾𝐻 
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which produce the best enhancement quality and handle the different exposure levels of 

input images.  

  
(a) LLI (b) Enhanced Image (𝛾𝐿 =  0.25, 𝛾𝐻 = 0.45)   

Figure 15: LLI from LOL (Wei et al. 2018) dataset and its enhanced counterpart using HF algorithm  

 

  
(a) LLI (b) Enhanced Image (𝛾𝐿 =  0.60, 𝛾𝐻 = 0.70)   

     Figure 16: LLI from SICE (Cai et al. 2018) dataset and its enhanced counterpart using HF algorithm  

6.1.3    Network Architecture 

Since the enhancement filter is formed of two parameters 𝛾𝐿 and 𝛾𝐻 which are to be 

estimated via a deep learner, then we can benefit from existing feature extractors to 

perform the task. Our HF based enhancement algorithm eases the restriction of using 

custom architectures like in the case of image-to-image learning and rather allows using 

any feature extractor to perform an image to only 2 frequency filter parameters mapping.   
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perception and so MS-SSIM (Wang et al. 2003) may produce wrong measures for the 

enhancement quality during training. Since our enhancement model optimizes only two 

parameters using MS-SSIM loss, then the glitches in IQA can be easily monitored. It is 

noticed that the model has sometimes a tendency to predict values of 𝛾𝐿 greater than that 

of 𝛾𝐻, which in turn produce an enhanced image that is over smoothed and has color 

deviations making it not perceptually pleasing, yet at the same time this tendency is 

encouraged by lower MS-SSIM loss values. To minimize the impact of this miscorrelation 

between the quantitative measure and the qualitative perception, a regularize term 𝑙 =

 𝛾𝐿 −  𝛾𝐻  is added to the loss function. This term encourages the model to maintain 

𝛾𝐻 values greater than 𝛾𝐿 allowing to produce better enhanced images. Finally, our loss 

function equation is as follows:  

𝑙𝑜𝑠𝑠 (𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑, 𝑁𝐿𝐼) = 1 − 𝑀𝑆𝑆𝑆𝐼𝑀 (𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑, 𝑁𝐿𝐼) +  𝛼 𝑙  

                                                  = 1 −  𝑀𝑆𝑆𝑆𝐼𝑀 (𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑, 𝑁𝐿𝐼) +  𝛼  (𝛾𝐿 −  𝛾𝐻) 

(17) 

The 𝛼 term is used to weight the impact of the regularize term on the overall loss. It is 

found empirically that values of 𝛼 in the range [0.05 − 0.1] produce good results in 

overall.  

We show in Fig. 18 the overall framework of our enhancement model. 
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data as it relies on powerful pre-trained feature extractors for its backbone. All training 

images are resized to 512x512. We utilize five pre-trained feature extractors namely: 

VGG16 (Simonyan and Zisserman 2015), ResNet50 (He et al. 2016),  MobileNetv2 

(Sandler et al. 2018), SqueezeNet (Iandola et al. 2016) and DenseNet (Huang et al. 2017), 

and train all the architectures on the formed dataset.  

LLHFNet is implemented using PyTorch on a P100 Tesla Nvidia GPU. A batch size 

of 8 is used. Adam optimizer with default parameters and a reduce on plateau based 

decaying learning rate with initial value of 1e-4 are used for network optimization.  

For our empirical evaluation we use 767 paired LLIs/NLIs from Part2 of SICE (Cai et 

al. 2018) dataset collected similar to the approach followed by Guo et al. (2020). The 

images are resized to size 1200x900x3. We compare our enhancement model to two state 

of art traditional approaches: SRIE (Fu et al. 2016) and LIME (Li et al. 2015), and three 

most recent DL based approaches: ZeroDCE (Guo et al. 2020), EnlightenGAN (Jiang et 

al. 2019) and DeepUPE (Wang et al. 2019).  

6.2.2    Quantitative Evaluations 

To perform a quantitative image quality assessment, we employ the commonly used full 

reference metrics: Peak Signal to Noise Ratio (PSNR), Structural Similarity index (SSIM) 

(Wang et al. 2004) and Mean Absolute Error (MAE) on the Part2 SICE subset (Cai et al. 

2018). In table 6 our enhancement model using MobileNetv2 (Sandler et al. 2018) as its 

feature extractor ranks second best following SSIM (Wang et al. 2004) metric and best 

following PSNR and MAE. The results show that our model is competitive compared to 

the recent state of art enhancement solutions despite following an image to only 2 

frequency filter parameters learning.  
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Table 6: Quantitative comparison for the enhancement quality of different 

models. The best result is in red and second best is in green. LLHFNet uses 

MobileNetv2 (Sandler et al. 2018) as its feature extractor. 

Model SSIM ↑ PSNR ↑ MAE ↓ 

SRIE  0.54 14.41 127.08 

LIME 0.57 16.17 108.12 

DeepUPE  0.49 13.52 142.01 

EnlightenGAN  0.59 16.21 102.78 

ZeroDCE  0.59 16.57 98.78 

LLHFNet 0.58 16.89 94.99 

 

We show in table 7 the quantitative assessment results for our enhancement model 

while using different feature extractors. It is noticeable that all the architectures achieve 

good and competitive results when compared to state of art enhancement solutions in table 

6. VGG16 (Simonyan and Zisserman 2015)  which has a very dense architecture provides 

some of the best measures and similarly MobileNetv2 (Sandler et al. 2018) is ranked 

among the best architectures while providing a good compromise between model size and 

efficiency. SqueezeNet (Iandola et al. 2016) is ranked as the worst model compared to the 

given feature extractors possibly due to its lightweight architecture, yet it still shows 

competitive results when compared to the enhancement solutions in table 6. Thus, our 

enhancement approach can be used with different feature extractors making it independent 

of a custom architecture and feasible to integration with object classification models.   

Table 7: Quantitative comparison of different feature extractors used for the 

enhancement model. The best result is in red and second best is in green. 

Feature Extractor SSIM ↑ PSNR ↑ MAE ↓ 

MobileNetv2  0.583 16.896 94.992 

VGG16  0.582 16.897 94.064 

ResNet50  0.577 16.686 96.152 

DenseNet  0.576 16.716 97.253 

SqueezeNet  0.575 16.593 99.129 
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Table 8 shows the runtimes of different models averaged on 100 images of size 

1200×900×3 using Tesla P100 GPU. As can be seen, LLHFNet runtime is associated with 

the feature extractor architecture it uses. For instance, it ranks as third best model while 

using SqueezeNet (Iandola et al. 2016) which has a lightweight architecture, and it drops 

in rank with denser architectures like VGG16 (Simonyan and Zisserman 2015). Our model 

is also much more efficient in all its architectures when compared to traditional 

enhancement approaches like SRIE (Fu et al. 2016) and LIME (Li et al. 2015). While 

recent DL based enhancement models like ZeroDCE (Guo et al. 2020) and EnlightenGAN 

(Jiang et al. 2019) show faster runtimes than LLHFNet, yet our approach is targeted for 

the object classification task rather than only the enhancement task, and so it relies on 

feature extractors used by classification models thus affecting its inference performance.  

 

Table 8: Runtime comparisons of different enhancement models. LLHFNet (M) refers to our 

enhancement model with feature extractor M. Models are ranked from best to worst.  

Model 
Runtime  

(in seconds) 
Platform 

ZeroDCE 0.0014 PyTorch (GPU) 

EnlightenGAN 
 

PyTorch (GPU) 0.0055 

LLHFNet (SqueezeNet) 0.0117 PyTorch (GPU) 

DeepUPE 0.0183 TensorFlow (GPU) 

LLHFNet (MobileNetv2) 0.0213 PyTorch (GPU) 

LLHFNet (ResNet50) 0.0507 PyTorch (GPU) 

LLHFNet (DenseNet) 0.0606 PyTorch (GPU) 

LLHFNet (VGG16) 0.0763 PyTorch (GPU) 

LIME 0.4914 MATLAB (CPU) 

SRIE 12.1865 MATLAB (CPU) 

 

 

6.2.3    Qualitative and Perceptual Evaluations 
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Input 

   

LIME  

 

(Li et al. 2015) 

   

SRIE  

(Fu et al. 2016) 

   

DeepUPE 

(Wang et al. 2019) 

   

EnlightenGAN (Jiang 

et al. 2019) 

   

ZeroDCE  

(Guo et al. 2020) 

   

LLHFNet  

   
 (a) Sample 1 (b) Sample 2 (c) Sample 3 

Figure 19: Visual comparison of sample LLIs from SICE part2 subset (Cai et al. 2018) and their enhanced versions. LLHFNet is 

based on MobileNetv2 (Sandler et al. 2018) feature extractor 
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Input LIME (Li et al. 2015) SRIE (Fu et al. 2016) DeepUPE (Wang et al. 2019) 

            
                                       EnlightenGAN (Jiang et al. 2019)                     ZeroDCE (Guo et al. 2020)                                         LLHFNet 

Figure 20: Visual comparison of an input image with normal exposure level and its enhanced versions. LLHFNet is 

based on MobileNetv2 (Sandler et al. 2018) feature extractor 

 

We show in Fig. 19 a visual comparison of sample LLIs enhanced by the different 

models used in our evaluation. As can be seen LLHFNet produces visually pleasing 

images with minimal artifacts. In the first and second images (Fig.19.a and b) our model 

shows the best green color restoration for the trees and grass. Moreover, in the first image 

our model is able to uncover the dark regions of the fence and in the second image it 

properly restores the white cloud without overexposing it like in the case with 

EnlightenGAN (Jiang et al. 2019) enhancement or deviating its color to look blue like in 

ZeroDCE (Guo et al. 2020) and SRIE (Fu et al. 2016) enhancements. In the third image 

(Fig.19.c) our model shows a good illumination level and produces results similar to 

ZeroDCE (Guo et al. 2020) and SRIE (Fu et al. 2016). In Fig.20, we show the 

enhancements obtained while using an input image with almost a normal exposure level. 

While models like LIME (Li et al. 2015) and EnlightenGAN (Jiang et al. 2019) tend to 

overexpose the image especially the light from the windows, our model performs a slight 

and minimal enhancement. It is worth noting that our enhancement approach properly 

handles normal exposure levels in input images, and it can pass the image without any 

enhancement by producing filter parameters 𝛾𝐿 = 𝛾𝐻 = 1 . 

We additionally perform a qualitative user study to evaluate the human’s perception 

of the results produced by our model and the models considered in our evaluation. A total 
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of 20 images from Part2 of SICE dataset (Cai et al. 2018) are used in our study in which 

the reference input LLI and the enhanced image are placed side by side. A total of 76 users 

(senior master and computer engineering students) are invited to independently assign 

scores for the visual quality of the enhanced images. The scores range from 0 to 10 (worst 

to best) and users are asked to give scores based on three criteria: i) level of exposure 

(over- or under- exposed), ii) color deviations and iii) overall beauty of the image. Each 

model received at least 60 scores as we filtered certain outliers identified in the responses. 

These outliers correspond to scores which are either extremely low for images which have 

a good quality or extremely high for images which are not very visually pleasing. We 

show in Fig 21. the scores obtained for the different enhancement models. It is notable 

that our model is ranked second best, and its results are favored by the human users thus 

indicating its capability of producing perceptually pleasing enhanced images.  

 

 

Figure 21: Average user scores for the enhancement models ranked from best to worst 
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6.2.4    Limitations 

Similar to many enhancement models, our approach fails to handle extremely LLIs and 

tends to produce artifacts. It also shows exposed artifacts in certain very dark regions in 

the image as can be seen in the samples in Fig. 22 where the highlighted red boxes in our 

model enhancement show some of these artifacts. Yet, our model properly restores images 

with low to medium exposure levels and can perfectly handle normal exposed images 

making it a good enhancement approach whose final goal is to be integrated into 

classification models.  

 

    
Input LIME (Li et al. 2015) SRIE (Fu et al. 2016) DeepUPE (Wang et al. 2019) 

                    
                                  EnlightenGAN (Jiang et al. 2019)                          ZeroDCE (Guo et al. 2020)                                              LLHFNet 

Figure 22: Visual comparison on a challenging LLI where artifacts may appear 
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Chapter 7 

 

In this chapter we describe the design of the integration of our enhancement model into 

one classification model specifically ResNet50 (He et al. 2016) and call it Enhancer-

Classifier model. ResNet50 (He et al. 2016) is based on residual blocks which have 

shortcut connections and is made up of 50 layers for feature extraction and one fully 

connected (FC) layer for classification. We choose ResNet50 (He et al. 2016) as it is very 

effective for the classification task and has smaller model size and lower training time 

compared to VGG16 (Simonyan and Zisserman 2015) for example. This allows faster fine 

tuning and evaluation for the combined models. We aim by integrating our enhancement 

model into ResNet50 (He et al. 2016) to perform a joint learning and optimization for both 

enhancement and classification performance simultaneously. Such an approach will 

embed an internal enhancement capability to the classifier allowing it to handle LLIs and 

NLIs and at the same time it will adapt to the enhanced images thus resulting in a robust 

classification.  

7.1    Methodology 

7.1.1    Designs Tried 

In our first approach to perform the integration, the network architecture is designed as 

follows: we feed the input image into the ResNet50 (He et al. 2016) feature extractor then 

pass its output feature maps to the enhancement head which estimates the frequency filter 

parameters and then use the HF algorithm to produce the enhanced image which will be 

optimized through the enhancement loss. We then use another extractor network made up 

of six convolutional layers followed by ReLU activation layers and maxpooling layers to 

downsize the feature maps of the enhanced image to the same size of those obtained at the 

output of ResNet50 (He et al. 2016). Then we merge both feature maps and pass them to 

the FC layer used by ResNet50 (He et al. 2016) classifier to predict the classification 

     LLI Enhancer-Classifier Model 
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scores for the given image and optimize them through a dedicated classification loss 

function. The architecture is shown in Fig. 23.  

 

 
 

Figure 23: Architecture of the first design of the Enhancer-Classifier model 

After training the network, the obtained classification accuracy values were not good 

compared to ResNet50 (He et al. 2016) classification model with no integrated 

enhancement capability. We attribute this to the fact that the feature maps obtained 

through the extractor using only six convolutional layers are not at the same feature level 

of those extracted through the deeper 50 layers of ResNet50 (He et al. 2016). So, the 

performed merging operation may be distorting the high-level features at the output of the 

feature extractor and thus degrading the classification results.  

In the second approach, we overcome the issue of different feature levels by feeding 

the enhanced image back to ResNet50 (He et al. 2016) in a second stage of feature 

extraction. We then pass the output feature maps to a FC layer for classification. The 

architecture is shown in Fig. 24. After training the network, the classification accuracy 

improved and exceeded that of the classification model alone indicating a better 
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performance. Yet, the issue with this architecture is the stability over each experiment as 

we noticed that the classification accuracy was fluctuating largely with each experiment. 

We attribute this to the fact that the feature extractor is performing dual feature extraction 

tasks as it first processes the input image then at a second stage handles the enhanced 

image and is optimized to improve both enhancement and classification. This may 

overload the extractor and alienate the feature maps from what they are expected to be.  

 
 
 
 
 
 

 
  

Figure 24: Architecture of the second design of the Enhancer-Classifier model 

7.1.2    Final Design 

In our final approach, we design the Enhancer-Classifier model as follows: the input image 

is fed into a first ResNet50 (He et al. 2016) feature extractor whose output feature maps 

are then passed to the enhancement head to estimate the frequency filter parameters and 

finally process them through the HF algorithm to produce the enhanced image which will 

be optimized by the enhancement loss. We then feed the enhanced image into a second 

ResNet50 (He et al. 2016) feature extractor to extract features which are at the same level 

of those obtained from the first extractor. Then both feature maps are merged in an element 

wise addition and passed to the FC layer of the second ResNet50 (He et al. 2016) to 

produce the classification scores which represent the output of the Enhancer-Classifier 

model along with the enhanced image. Moreover, we add the FC layer of the first 
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𝑙𝑜𝑠𝑠 = 𝑐𝑙𝑠𝐿𝑜𝑠𝑠 + 𝑒𝑛ℎ𝐿𝑜𝑠𝑠 

                              = 𝑐𝑙𝑠𝐿𝑜𝑠𝑠1 + 𝑐𝑙𝑠𝐿𝑜𝑠𝑠2 + 𝑒𝑛ℎ𝐿𝑜𝑠𝑠 

(18) 

 

7.2    Experimental Results 

7.2.1    Datasets 

Since two tasks are joint together in a supervised training setting, our Enhancer-Classifier 

model requires paired LLIs/NLIs for enhancement and class labels for classification. So, 

we use Pascal VOC dataset (2012+2007) (Everingham et al. 2012) for training the model. 

First, we synthetically generate five different exposure levels using gamma correction 

with gamma values {4.5, 3.5, 2.5} correspond to low exposure levels and gamma values 

{0.5, 0.8} correspond to over exposure levels. The reason for using a mixture of five levels 

ranging from underexposed to overexposed is to allow the enhancement algorithm to learn 

handling various input exposure levels. In total the training dataset consists of 8500 

images and the validation dataset of 1125 images equally divided among the used 

exposure levels along with their reference NLIs and class labels. The images are converted 

to HSV domain where only the Value channel-based image is used in training.  

For our evaluation, we form a test only subset from Pascal VOC2007 (Everingham et 

al. 2012) dataset made up of 3000 images divided equally among the used exposure levels. 

In addition to the synthetic images, we use 3000 real world LLIs from ExDark dataset 

(Loh and Chan 2019) to further evaluate the performance of the Enhancer-Classifier 

model. All the images for training and evaluation are resized to 512x512. 

7.2.2    Implementation Details 

Our Enhancer-Classifier is implemented using PyTorch on a P100 Tesla Nvidia GPU. A 

batch size of 8 is used. Adam optimizer with default parameters and a reduce on plateau 

based decaying learning rate with initial value of 1e-5 are used for network optimization. 

For the first epoch, we multiply the classification loss by 0.1 to give it less weight to the 

advantage of stabilizing enhancement and warming up the joint models. Furthermore, a 

pre-trained ResNet50 (He et al. 2016) on ImageNet (Deng et al. 2009) database is used. 
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We train three different models as follows: i) the Enhancer-Classifier on the 8500 gamma 

corrected images (five exposure levels) of the training dataset (referred to as EnhCls (ϒ 

corrected)), ii) ResNet50 (He et al. 2016) classifier with no enhancement capability on 

the same dataset (referred to as Cls (ϒ corrected)) and iii) ResNet50 (He et al. 2016) 

classifier with no enhancement capability on the 8500 NLIs of the training dataset 

(referred to as Cls (NLIs)).  

7.2.3    Results 

We show in table 9 the classification accuracy results obtained by the three trained models 

evaluated on the ExDark (Loh and Chan 2019) subset, the mixed exposure levels (ϒ 

corrected) based Pascal VOC2007 (Everingham et al. 2012) test only subset and their 

reference NLIs subset. The following observations can be highlighted from the results:  

1. The EnhCls (ϒ corrected) model which has an internal enhancement capability 

shows an improvement of 3.86% compared to the Cls (ϒ corrected) model alone 

trained on the same dataset of mixed exposure levels (3/5 have low exposure) 

and evaluated on the Pascal VOC2007 test only subset of similar exposure levels 

distribution.  

2. The EnhCls (ϒ corrected) model evaluated on the gamma corrected images of 

Pascal VOC2007 test only subset achieves approximately a similar accuracy to 

the Cls (NLIs) trained and evaluated on the NLIs of the same subset. This 

indicates that the embedded enhancement contributes to an improvement 

equivalent to training the classifier on NLIs only.   

3. The EnhCls (ϒ corrected) model achieves the best accuracy on the NLIs of 

Pascal VOC2007 test only subset even better than the Cls (NLIs) model which 

is trained and evaluated on the NLIs. This is due to the ability of our 

enhancement algorithm to handle NLIs by adding only a minor enhancement and 

avoiding over exposure as indicated in section 6.2.3.  

4. The Cls (NLIs) model trained on NLIs shows a highly degraded performance 

when evaluated on gamma corrected images of Pascal VOC2007 test only 

subset, while the Cls (ϒ corrected) model trained on gamma corrected images 
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shows a better performance on gamma corrected images and approximately 

similar performance on NLIs. This indicates that the Cls (ϒ corrected) model 

has a better robustness against varying light conditions. Therefore, training a 

classifier model on varying exposure levels is better than limiting the training to 

normal light conditions.  

5. The EnhCls (ϒ corrected) model depicts the best classification accuracy on the 

3000 images of ExDark test subset confirming the model good performance on 

real-world LLIs.  

6. The Enhancer-Classifier model shows robust classification performance on both 

LLIs and NLIs.  

Table 9: Classification accuracy (in %) of the three trained models evaluated using Pascal VOC2007 (Everingham 

et al. 2012) test only subset and ExDark (Loh and Chan 2019) subset. 

Dataset 
EnhCls  

(ϒ corrected) 
Cls (ϒ corrected) Cls (NLIs) 

VOC2007 test only 

  (ϒ corrected) 
86.22 82.36 78.09 

VOC2007 test only 

(NLIs) 
88.42 86.26 86.54 

ExDark 71.73 68.48 61.17 

 

We show in tables 10 and 11 the classification results obtained by ResNet50 (He et al. 

2016) classifier trained on NLIs of our training dataset and evaluated on enhanced images 

of Pascal VOC2007 (Everingham et al. 2012) test only (ϒ corrected) subset and ExDark 

(Loh and Chan 2019) subset. The original images are enhanced using EnlightenGAN 

(Jiang et al. 2019), DeepUPE (Wang et al. 2019), ZeroDCE (Guo et al. 2020) and our 

proposed enhancement model based on ResNet50 (He et al. 2016) feature extractor. We 

aim from this evaluation to compare our joint models (Enhancer-Classifier model) against 

the normal pipeline usually followed in the literature and based on using the LLI 

enhancement model separately as a preprocessing step after which classification is 

performed on the enhanced images using a classifier pre-trained on NLIs. This pipeline 

may result in a slight or even no improvement on the classification performance as 

mentioned by VidalMata et al. (2020) and we want to validate our Enhancer-Classifier 

against it. The results highlight the following observations:  
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1. Our enhancement model (LLHFNet) shows the best classification accuracy values 

on both Pascal VOC2007 (Everingham et al. 2012) test only subset and ExDark 

(Loh and Chan 2019) subset (80.81% and 66.18% respectively) compared with 

other enhancement solutions. Thus, our enhancement model as standalone model 

is able to significantly improve the target classification task.  

2. The EnhCls (ϒ corrected) model (table 9) shows an improvement of almost 5.5% 

compared to the best performing enhancement solution on both Pascal VOC2007 

(Everingham et al. 2012) test only subset and ExDark (Loh and Chan 2019) subset 

following the normal pipeline in tables 10 and 11. Thus, the joint optimization and 

training of enhancement and classification models proves to be efficient and better 

than the normal pipeline depicted by separate enhancement followed by 

classification.  

Table 10: Classification accuracy (in %) of the classifier 

trained on NLIs and evaluated on original and enhanced 

Pascal VOC2007 (Everingham et al. 2012) test only (ϒ 

corrected) subset by different enhancement models. 

LLHFNet uses ResNet50 (He et al. 2016) feature 

extractor. 

Table 11: Classification accuracy (in %) of the 

classifier trained on NLIs and evaluated on original 

and enhanced ExDark (Loh and Chan 2019) subset by 

different enhancement model. LLHFNet uses 

ResNet50 (He et al. 2016) feature extractor. 

Model Cls (NLIs) 

Original 78.09 

LIME  75.90 

EnlightenGAN  78.40 

DeepUPE  79.53 

SRIE 79.71 

ZeroDCE  79.87 

LLHFNet 80.81 
 

Model Cls (NLIs) 

Original 61.17 

LIME  61.51 

EnlightenGAN  62.17 

DeepUPE  64.34 

SRIE  63.27 

ZeroDCE  65.30 

LLHFNet 66.18 
 

 

In our third evaluation, we compare the three trained models using enhanced Pascal 

VOC2007 (Everingham et al. 2012) test only subset and enhanced ExDark (Loh and Chan 

2019) subset by the different enhancement models. We show the results in tables 12 and 

13 and the following observations can be drawn:  

1. The EnhCls (ϒ corrected) model depicts the best classification results although it 

is internally performing a second enhancement in addition to the separate 

enhancement performed by the considered enhancement models. This indicates 

that the Enhancer-Classifier can perfectly adapt to the data domain of enhanced 
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We finally evaluate the enhancement performance achieved by the EnhCls (ϒ 

corrected) model having the maximum classification accuracy to better understand if 

there is a relation between the best classification performance and the involved 

enhancement. For the Pascal VOC2007 (Everingham et al. 2012) test only subset we use 

full reference metrics: SSIM (Wang et al. 2004), PSNR and MAE, but for ExDark (Loh 

and Chan 2019) subset which does not have reference NLIs we use non reference metrics: 

NIQE (Mittal et al. 2013) and BRISQUE (Mittal et al. 2012). The results are shown in 

tables 14 and 15 and the following points can be noted:  

1. The EnhCls (ϒ corrected) model achieves the best performance following all 

three metrics on the Pascal VOC2007 (Everingham et al. 2012) test only subset 

thus indicating the effectiveness of the internally embedded enhancement. 

Moreover, the EnhCls (ϒ corrected) has the best classification performance 

compared to the other models (tables 9 and 10) thus reflecting that the joint 

optimization used in the EnhCls (ϒ corrected) has created a possible correlation 

between the best achieved classification and the involved best enhancement 

quality.  

2. The EnhCls (ϒ corrected) model shows the third worst performance on the 

ExDark (Loh and Chan 2019) subset following NIQE (Mittal et al. 2013) metric, 

although it has the best classification performance (tables 9 and 11). In contrast, 

EnlightenGAN (Jiang et al. 2019) is ranked as the best enhancement model 

following BRISQUE (Mittal et al. 2012) metric and second best following NIQE 

(Mittal et al. 2013) metric, yet it possesses some of the worst classification 

accuracy results (table 11). Thus, the best classification performance is not 

associated with the best enhancement quality. 

3. Although we performed a joint optimization for both enhancement and 

classification tasks, yet it remains uncertain whether a good classification 

performance is consistent with a good enhancement quality.  

4. It is notable that our proposed enhancement model alone achieves second best 

performance on Pascal VOC2007 (Everingham et al. 2012) test only subset 

following all three metrics and fourth best on ExDark (Loh and Chan 2019) subset 

following NIQE (Mittal et al. 2013) metric. This shows that the designed 
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enhancement algorithm is competitive compared to existing state of art 

enhancement models.  

 

Table 14: Quantitative evaluation of enhancement performance on 

Pascal VOC2007 (Everingham et al. 2012) test only subset using the 

EnhCls (ϒ corrected) and other enhancement models. LLHFNet uses 

ResNet50 (He et al. 2016) feature extractor. The best result is in red 

and second best is in green. Models are ranked from best to worst 

following SSIM. 

Table 15: Quantitative evaluation of enhancement 

performance on ExDark (Loh and Chan 2019) subset using 

the EnhCls (ϒ corrected) and other enhancement models. 

LLHFNet uses ResNet50 (He et al. 2016) feature extractor. 

The best result is in red and second best is in green. Model are 

ranked from best to worst following NIQE. 

 

Model SSIM ↑ PSNR ↑ MAE ↓ 

EnhCls (ϒ corrected) 0.76 16.96 105.64 

LLHFNet 0.731 15.69 119.92 

DeepUPE 0.730 14.30 143.89 

ZeroDCE  0.67 14.96 139.05 

SRIE  0.629 13.50 154.69 

LIME  0.6286 13.33 159.68 

EnlightenGAN  0.6284 13.63 152.32 
 

Model NIQE ↓ BRISQUE ↓ 

SRIE 3.54 29.33 

EnlightenGAN  3.71 27.29 

DeepUPE 3.87 28.92 

LLHFNet 3.95 29.95 

EnhCls (ϒ corrected) 3.96 29.31 

LIME  4.01 30.50 

ZeroDCE  4.14 30.64 
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Chapter 8 

 

This chapter presents the limitations of our research, future works that can be investigated, 

and impact of our designed model.  

8.1    Limitations 

We point out two major limitations of our enhancement approach:  

1. Our LLI Enhancer, LLHFNet, used as a standalone enhancement solution, does not 

produce top enhancement performance. While it properly restores low and medium 

exposure levels, and properly handles normal exposure levels, yet it tends to produce 

exposed artifacts on extremely dark images, as discussed in section 6.2.4. Note that 

this is a common limitation with most existing enhancement solutions, and remains a 

major challenge in the literature. 

2. The involved homomorphic filtering-based enhancement algorithm uses Fourier 

transform and its inverse, thus imposing additional computational overhead, which 

might hinder real-time LLI enhancement.  

8.2    Future work 

In the future, we plan to further investigate the below possible improvements:  

1. Boosting the computational performance of the enhancement algorithm by using 

spatial domain-based homomorphic filtering instead of relying on the frequency 

domain-based approach.  

2. Tackling the issue of exposed artifacts produced by the enhancement algorithm on 

LLIs with extremely low exposure levels. 

3. Transforming the enhancement model into an unsupervised or semi-supervised 

solution, as an attempt to ease the dependence on paired LLIs/NLIs.   

4. Integrating the enhancement model into other high-level computer vision tasks like 

object detection, semantic segmentation, and tracking.  

Limitations, Future Works, and Impact 
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8.3    Impact   

Since nighttime accounts for a considerable time of our daily life, deploying any computer 

vision model that performs classification remains limited as such a system will struggle 

with low-light conditions. Our designed LLI Enhancer-Classifier model can perfectly 

tackle this critical issue as it performs a robust classification under both normal and low 

light conditions. This model can be integrated as a computer vision system into modern 

artificial intelligence-based applications like autopilot car systems, robot visual systems, 

security surveillance cameras, among others, in order to improve their operation in 

nighttime. 
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Chapter 9 

 

In this report, we address the problem of LLI enhancement in two ways: i) standalone, as 

a separate task, and ii) end-to-end, as a pre-processing stage embedded within another 

high-level computer vision task, namely object classification.  

First, we gave an overview of current DL-based LLI enhancement models, which we 

organized in five main categories: encoder-decoder and CNN-based, Retinex-based, 

Fusion-based, GAN-based, and more recent Zero Reference models. Then, we described 

the experimental evaluation and results comparing 10 of the most recent DL-based LLI 

enhancement models. We conducted three main experiments evaluating: i) visual and 

perceptual quality, where LLI enhancement models were evaluated as standalone 

applications, ii) detection and classification quality, achieved by 4 different object 

detection models applied on LLIs and their enhanced counterparts, where LLI 

enhancement models were embedded as a pre-processing step in the overall pipeline, and 

iii) feature analysis, considering the effect of LLI enhancement on the resulting image 

features and its impact on object detection performance. We then summarized our 

empirical observations and highlighted various potential research directions hoping that 

the unified presentation of DL-based LLI enhancement will contribute to strengthen 

further research on the subject.  

Inspired by the results of the comparative study we proposed a DL-based LLI 

Enhancer model which is tailored for the object classification task. The model performs 

an image to a special designed frequency filter learning. The filter parameters are 

estimated via any of the feature extractors commonly deployed in the classification task 

and are then fed to a HF algorithm to enhance the original LLI. We then designed a LLI 

Enhancer-Classifier model which integrates our enhancement model into ResNet50 (He 

et al. 2016) to perform a joint optimization for both image enhancement and classification 

tasks. Experimental results show that the enhancement model possesses a competitive 

performance compared to state of art enhancement solutions. Moreover, the Enhancer-

      Conclusion 
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Classifier model shows a robust classification performance against varying light 

conditions. It also significantly boosts the classification accuracy when compared with the 

traditional pipeline followed in the literature consisting of separate enhancement followed 

by classification. Furthermore, our results show that NLIs may have a different data 

domain from enhanced images, and processing enhanced images on classification models 

pre-trained on NLIs may not be a successful and effective approach to improve the 

classification task. 
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