
LEBANESE AMERICAN UNIVERSITY

A Hash-Based Assessment and Recovery Algorithm for Distributed
Healthcare Systems Using Blockchain Technology

By
Mohammad Walid Jaber

A thesis
Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

School of Arts and Sciences

December 2020

© 2020

Mohammad Walid Jaber

All Rights Reserved

 v

Dedication Page

To my loving parents

 vi

ACKNOWLEDGMENT

This project would not have been possible without the support of many people.
Many thanks to my advisor, Dr Ramzi Haraty, who read my numerous revisions and helped
make some sense of the confusion. Also, thanks to
my committee members, Dr Azzam Mourad and Dr Senthil Athithan, who offered guidance
and support.

And finally, thanks to my parents and numerous friends who endured this long process with
me, always offering support and love.

 vii

A Hash-Based Assessment and Recovery Algorithm for Distributed
Healthcare Systems Using Blockchain Technology

Mohammad Walid Jaber

ABSTRACT

The improvement of information technology in the past few years has been encouraging the

healthcare sector to share medical data online without any barriers and between different

parties. Many research works have been done to achieve this goal, and blockchain-based

approaches have proved to be decent solutions. However, security challenges can put such

distributed databases storing sensitive healthcare data under threat. For example, attackers can

access highly sensitive data, altering or deleting some records, or violating the integrity of the

database. Many preventive measures have been applied to protect the databases from attacks.

However, no one can be confident that the system is safe and secure. Here rises the need for an

algorithm that can assess the damage that occurred before recovering the database back to its

consistent state. Numerous damage assessment and recovery algorithms have been proposed

in the literature. In this work, we present a distributed algorithm that uses blockchain

technology and hash tables to solve the information warfare problem in healthcare systems.

The proposed algorithm is compared with different previous works and experimental results

are recorded.

Keywords: Information Warfare, Distributed Databases, Blockchain Technology, Damage
Assessment, Database Recovery, Transactional Dependency.

 viii

TABLE OF CONTENTS

I. Introduction .. 1
1.1 Overview ... 1
1.2 Motivation ... 2
1.3 Blockchain Technology .. 3
1.4 Information Warfare ... 4
1.5 Scope of Work .. 5
1.6 Thesis Organization .. 5

II. Literature Review ... 6
2.1 Overview ... 6
2.2 Traditional Models .. 6
2.3 Graphs in Recovery ... 7
2.4 Clusters and Sub-clusters .. 8
2.5 Before Images ... 10
2.6 Matrices in Recovery .. 11
2.7 Column Dependency ... 13
2.8 Distributed Recovery .. 13
2.9 Fuzzy Dependency .. 15

III. The Model .. 16
3.1 Overview .. 16
3.2 Definitions ... 16
3.3 Assumptions .. 17
3.4 Model Structure ... 17
3.5 Blockchain Methodology .. 20
3.6 Hash Table .. 20
3.7 Damage Assessment Algorithm .. 21
3.8 Example of the damage assessment algorithm ... 23
3.9 Recovery Algorithm .. 26
3.10 Example of the Recovery Algorithm .. 27
3.11 Model Cases .. 28

IV. Performance Analysis ... 35
4.1 Overview .. 35
4.2 Performance Results and Analysis of the Damage Assessment Algorithm 36
4.3 Performance Results and Analysis of the Recovery Algorithm ... 41
4.4 Performance Analysis of the Memory Consumption .. 45

 ix

4.5 Conclusion .. 48

V. Conclusion ... 49

VI. References .. 50

 x

LIST OF FIGURES

Figure 1 - Distributed Database Structure ... 18

Figure 2 - Model Structure ... 19

Figure 3 - Hash Dependency .. 21

Figure 4: Damage Assessment Algorithm ... 22

Figure 5 - Hash Dependency Table H. ... 25

Figure 6: Recovery Algorithm ... 27

Figure 7 - Case 1: Hash Dependency Table ... 29

Figure 8 - Case 2: Hash Dependency Table ... 31

Figure 9 - Case 3: Hash Dependency Table of the Principle Database 32

Figure 10 - Case 3: Hash Dependency Table of a Local Database .. 33

Figure 11 - Damage Assessment Algorithm Execution Period w.r.t. the ID of the Attacking

Entity .. 37

Figure 12 - Damage Assessment Algorithm Execution Period w.r.t Traditional Models 39

Figure 13 - Damage Assessment Algorithm Execution Period w.r.t Recent Algorithms 40

Figure 14 - Recovery Algorithm Execution Period w.r.t. Recovered Transaction Numbers .. 42

Figure 15 - Recovery Algorithm Execution Period w.r.t. Traditional Models 43

Figure 16 - Recovery Algorithm Execution Period w.r.t. Recent Algorithms 44

Figure 17 - Occupied Memory Analysis in Best Case Scenario .. 46

Figure 18 - Occupied Memory Analysis in the Worst Case .. 47

 1

Chapter One

Introduction

1.1 Overview

Nowadays, we live in the era of data. Data are facts and statistics collected for analysis and decision

making. It has become increasingly computerized from paper to electronic form due to the huge

improvement in technology in the past few years. One of the common types of data that have been

stored in electronics forms are medical data. This information summarizes the history of the patient

including medical surgeries, laboratory tests, x-ray images, and much more. If data is corrupted or

attacked, the entire medical system will inevitably be damaged or at least harmed. There rises the need

for securing these data against unauthorized access, and unwanted modifications or changes. The three

key parts of information security are: prevention, detection and correction. Where each part consists of

several techniques. Techniques used in prevention methods include authentication, authorization and

access control while different techniques such as checksums, message digests and intrusion detection

systems are used in detection methods. Finally, backup and logging techniques are mainly applied in

correction methods. The main role of this layered system is to prevent hackers’ attacks or at least

minimize their effects, yet one cannot be confident that the system is safe as hackers can harm the

system after subduing the implemented techniques. Therefore, one must first think about securing their

system by applying as many preventive techniques as possible to gain a step ahead of the attacker. After

an attack happens, detective and recovery techniques must be applied to identify these malicious

transactions and remove their impact on the system. Confidentiality, integrity and availability are the

main attributes of data that must be attained:

1- Confidentiality is the state of securing the data and keeping it private against unauthorized

access.

2- Integrity is protecting the data from being modified or tampered by unauthorized users.

 2

3- Availability means that only authorized users can at any time access requested information.

Due to the advancement of attacking tools nowadays, it’s hard to prevent malicious attacks..

Therefore, instead of just trying to secure systems from these attacks, many research works have been

focusing on recovering databases after the actual attacks.

1.2 Motivation

Sharing medical information online (such as laboratory tests, surgery details, etc.) can help in the

improvement of medical treatment. The interoperability between patients and medical institutions

(hospitals, doctors, etc.) can be effective in many ways, namely:

1- Improve patient’s safety: for example, limiting the number of times the patient can be exposed

to radiation.

2- Decrease medical costs: reducing duplicate medical tests. For example, if a patient undergoes

a heartbeat test in hospital A, he/she is not forced to undergo the same test if he/she entered

hospital B.

3- Minimizing administrative tasks: decrease time and effort spent on administrative tasks.

However, security challenges expose the entire medical system to danger, which seems to be a

major barrier in medical sharing (Azaria et al., 2016). Moreover, the increasing competition in

information warfare, raises the need to secure our data and information against malicious attacks, and

more precisely to recover our system after an attack occurs.

Between 2008 and 2015, the usage of (EHR) increased by around 966% due to the adoption of

Electronic Health Providers (EHR) by the US healthcare providers (Gordon and Catalini, 2018).

A major target for patients, is the ability to share and use all their medical data and test between

multiple hospitals; thus, saving the cost of being forced to repeat the same tests at different hospitals.

Moreover, it can be very beneficial for the patients to access their medical information in any country

or at any hospital; for example, during the current coronavirus pandemic, the patients can avoid

 3

repeating the COVID-19 test in every country they visit. To find a solution for this problem, many

researches have been done, and blockchain-based approaches proved to be decent solutions.

Due to its decentralized nature, blockchain was key in improving the interoperability between

patients and health data systems (Gordon and Catalini, 2018; Jiang et al., 2018; Ali et al., 2016). Due

to increasing success of blockchain solutions, we believe that blockchain-based approaches will prove

to be a success when adopted in the healthcare sector.

1.3 Blockchain Technology

In Satoshi, 2008, blockchain was introduced as a framework for Bitcoin. In other words,

blockchain is literally a series of blocks forming a chain. Each block consists of digital pieces of

information. Every block consists of three parts:

1- Information about the transaction: for example, date, time, price, etc.

2- Information about the participants in the transaction: for example, if John buys an item from

the Apple store, this block will record both John and Apple store website.

3- Information to distinguish blocks: a unique code called “hash” that makes blocks

distinguished.

In the blockchain system, a new block is added when the following conditions are satisfied:

1- A Transaction must exist: back to John’s example, a transaction occurs after John proceeds

with the checkout process.

2- A Transaction must be verified: after John completes his purchase from the Apple store, the

Apple network verifies that the transaction is legal. That is, it confirms the details of the

transaction including its price, the date of purchase, etc.

3- A Transaction must be stored in a block: after being verified, John’s transaction will be

packaged with other transactions in a block.

4 A hash must be assigned to the block: after verifying and storing the transaction to a block, a

unique hash will be assigned to this block.

 4

When a block is added to the blockchain, it becomes publicly available for anyone to view. The use of

smart contracts is another important feature of blockchain. Smart contracts can be defined as self-

verifying, temper resistant and self-executing objects that eliminate the use of trusted third parties

(Zhang et al., 2018; Panda and Haque, 2002; Panda and Ragothaman, 2003). Blockchain has been

proving its success in multiple fields and different applications. Using blockchain technology, users are

now able to preserve a decentralized reliable database (Dai et al., 2017). Many research projects have

been working on deploying blockchain in other systems such as education, cybersecurity, and IoT

(Turkanovi et al., 2018; Chen et al., 2018; Huh et al., 2017). Blockchain has multiple characteristics

that it an attractive solution for medical sharing problem. In addition to its decentralized nature,

blockchain is immutable and trustless (verifiable).

1.4 Information Warfare

The field of Information warfare has been growing rapidly and getting a lot of interest in the past

years from defense planners and policymakers. (Molander et al., 1996). The concept of Information

warfare has become a hot topic in the computational field. The main objectives of information warfare

are:

1- Taking advantage of an exploit or a bug in the system to cause harmful actions to the whole

system such as denial of service.

2- Protecting the system against different types of attacks.

Taking use of the system vulnerabilities and backdoors, the attacker could gain access to the target

system and perform their intended harmful actions that would cause damage to the entire system. Some

of the techniques used are:

1- Denial of Service (DOS): Preventing authorized users to access the system by applying

different types of DOS attacks; thus, will affect the availability of the data.

2- Monitor and Control: Gaining unauthorized access to the system; for example, the attacker

would gain an administrative access to the system; thus, affecting both the confidentiality and

integrity of the data.

 5

3- Physical Disruption: This happens by physically destroying the data stored on a specific

medium; thus, affecting the availability of the data.

4- Data Modification: modification, insertion, and deletion of data; thus, affecting the integrity

and availability of the data.

1.5 Scope of Work

In this paper, we present a distributed algorithm that uses blockchain technology and hash tables

to solve the problem of information warfare in healthcare systems. Mainly we present:

1- An efficient algorithm to solve the problem of information warfare in healthcare systems.

2- A distributed architecture for our model.

3- Using state of art techniques such as hash tables and blockchain technology in our

algorithms.

Our model is implemented, and the results are recorded. We aim is to reach the fastest recovery

time to achieve the lowest database offline time.

1.6 Thesis Organization

The remainder of the thesis is organized as follows: Chapter II presents a review of the previous

work in literature. In chapter III, we describe our proposed algorithm with some examples to

illustrate our approach. Chapter IV presents the computational results with comparisons to similar

previous works In chapter V, we provide concluding remarks and introduce potential future work.

 6

Chapter Two

Literature Review

2.1 Overview

The topic of database recovery from malicious attacks has been studied extensively in the literature

an Some research projects focus on improving existing algorithms in terms of runtime and

memory usage, while others focus on proposing new data structures that would produce better

results than using the traditional ones. Almost all the work done in the literature relies on two

main algorithms: data dependency (Panda and Haque, 2002) and transactional dependency

(Panda and Ragothaman, 2003). Transactional dependency tracks dependency between

transactions without taking into consideration the exact data item, unlike data dependency

which focuses on the data item itself. In each type, many models were proposed using different

data structures such as matrices, clusters, and graphs. In this section, we will review prior

artwork found in the literature about these models.

2.2 Traditional Models

In traditional models, the main log file is usually scanned starting from the beginning of the attack,

where all affected transactions are re-executed after removing all effects caused by the malicious

transactions. In the assessment and recovery phases, traditional approaches adopt full rollback

operations on the database. Liu and Jajodia presents a traditional recovery model known as branching,

which relies on the tree structure of the database versions (Liu and Jajodia, 2002). In case an attack

occurs at any branch, an alternative branch will be used until the attacked branch is returned back to its

consistent state.

In Kumar and Son, 1998, three traditional models were presented by Kumar and Son. The first

model is known as transactions rollback. In this model, after the detection of a malicious attack, the

 7

transactions are rolled back in reverse to their previous logical state before the attack happened. The

second model is called redo recovery that works by scanning the log file to redo all transactions in their

same order. This model will ensure that the database is returned to its initial state preceding the

malicious attack. The third model is known as rollforward recovery. In this model, At every time T, the

method takes a copy of the database as a backup to ensure that the consistent state of the database can

be restored after any potential logical or physical errors.

2.3 Graphs in Recovery

Panda and Zuo (2004) introduce graph-based models for the damage assessment phase and

postponed implementing the recovery phase for future work. These models rely on two main

assumptions: the log file cannot be damaged, and no blind writes are allowed. These models focus on

returning the affected transactions to the recovery algorithm to perform the necessary operations for the

aim of returning the database to a reliable state. In these models, A multi-sites distributed database that

consists is employed, where every site is managed locally and coordinates with the central coordinator

or with the remaining sites. In this work, two main models are presented for the damage assessment

phase: peer-to-peer and centralized models.

In the peer-to-peer model, the detection process doesn’t work as follows: each local site manager

scans the log file to detect affected transactions, and if found, it will notify other site managers that have

executed any sub-transactions in their log files. After that, the log files at every notified site will be

scanned by the local managers to detect new transactions that may have been affected before sending

them to other sites.

On the other hand, a central coordinator is required for the centralized model. Choosing the

coordinator site is done through a voting process, where the coordinator to be elected must meet the

highest number of the following features:

1- The most convenient place with respect to other sites.

2- The site must be equipped with the best performance capabilities to play its coordination role.

3- Fast network links must exist between the site and other sites.

 8

4- Support backups on the site in case the machine fails.

The centralized model consists of three submodels:

1- Forward and receive models: the coordinator receives global affected transactions and forwards

them to other sites with dependent executed sub-transactions.

2- Graph model for local dependency: before building the affected transactions, the coordinator

must receive the local graph of each site.

3- Central graph repository model: the coordinator saves the local graphs that is sent by every site

performs the needed updates when the ` ones.

Another agent-based model that uses graphs was presented by Saba et al. (2018). A single agent is

used to receive and forward messages to other controlled agents. The dependent graph is obtained by

adding a node for each dependent transaction below its parent; for example, a node for transaction T2 is

added below T1’s node if transaction T2 reads data item written by T1.

Each agent scans their managed graphs to detect any malicious transaction or activity. If found, the

agent sends back a pointer to the recovery manager. This pointer corresponds to the malicious or

affected transactions. During recovery phase, the scan picks the smallest ID value, and stops when it

reaches a malicious or affected node, then the rollback phase is carried out till it reaches a non-malicious

node. The advantage of this approach is that it only isolates the affected portion of the graph; thus, it

can be expanded easily with affecting the performance of the database.

2.4 Clusters and Sub-clusters

Clustering approach relies on one main concept which is log file segmentation. A clustered log file

is further segmented by the sub-clustering approach to reduce its size.

Haraty and Zeitunlian (2007) presented a new data dependency based log clustering algorithm In

this algorithm, two main factors influence the sub-clustering of clusters: the number of committed

transactions and the cluster size. To make the process faster, only the sub-clusters are scanned. The

proposed algorithm assumes the following for proper operation:

 9

1- Presence of intrusion detection system to detect malicious transactions.

2- Production of customized reads and writes operations by the database scheduler

3- Production of rigorous serializable history

4- Existence of only committed transactions in the clustered log.

5- Sequential incrementation of transaction ID’s.

For enhancement purposes, Haraty and Zeitunlian (2007) proposes two data structures: transaction

sub-cluster list and sub-cluster data list. A sub-cluster list keeps track of the transaction IDs alongside

with the sub-cluster that stores the related data for each transaction. The second data structure stores

both IDs too and adds to them the corresponding read, write, overlooked, predicate or statement data

item. When some malicious transactions are detected by the intrusion detection system, both lists are

checked to identify the affected transactions. During the recovery phase, the scan is done only on sub-

clusters containing affected data items. Two additional data structures are used in the detection phase:

Damaged_DI and Damaged_PB where all data items damaged by the malicious transactions are tracked

by the Damaged_DI, and predicate blocks of all affected transactions are stored in the Damaged_PB

data structure. Initially, both data structures are null. To detect affected transactions, the transaction

sub-cluster is checked throughout the malicious attack. In addition to the previous steps, recovery phase

consists of the following:

1- After assessment, every record in Damaged_PB is scanned.

2- The Obtain the sub-cluster of each transaction is obtained from the transaction sub-cluster list.

3- Every block is evaluated through a new evaluation process.

4- Restored data items are returned to the database.

5- The two data structures, Damaged_DI and Damaged_PB, are set back to null and released.

Panda and Ragothaman (2003) proposes a new cluster-based algorithm where some limitations are

set on the number of committed transactions, and size and window time of the cluster. This model

proposes three ways for log file segmentation:

1- Segment the log file after checking the number of committed transactions.

2- Segment the log file after a time period T.

 10

3- Segment the log file after a specified memory size is occupied.

The presented model assumes the following:

• Using a rigorous two-phase scheduler.

• Identifying the attacker’s identity through an intrusion detection system.

• Purging of the log file is not permitted.

• No blind writes are allowed.

In the detection phase, the affected transactions are determined from both the affected items and

the read items collected before. The log file segmentation proves its efficiency while comparing the

experimental results with that of an unsegmented one.

Tripathy and Panda (2000) proposes a new cluster-based algorithm that relies on a new logging

protocol. This protocol maintains all useful information that is used during the recovery of the database.

This model defines a predicate-based statement block A predicate is a set of preconditions that must

evaluate to true to continue execution. The predicate could be either conditional or unconditional.

The proposed model assumes the following for its assessment and recovery process:

• Usage of log sequence number.

• Usage of write-ahead-logging protocol.

• Application of the steal/no force protocol to the database.

• Usage of check pointing mechanism that is consistent and stable.

• Production of rigorous serializable history

• No modification of the log is allowed. nor purged.

• No nested transactions are permitted.

• Writing a data item is only allowed to a stable database.

2.5 Before Images

Zhu et al. (2008) present a new approach to track damage based on “before images” tables. These

tables check the read operations executed on affected transactions. In this model, no log file is needed

 11

for database recovery with the usage of before images, one can keep track of the history of the

transactions so that the database can be returned to its last consistent state before the attack happened.

After a defined time period T, all the records in the before image table will be deleted; hence, preserving

the size of the table and preventing it from increasing exponentially.

The suggested approach is presented by an inter-transaction dependency graph. In this approach,

the last transactions that wrote and deleted data item x are tracked by two new data items: x.ins_tran

and x.del_tran respectively. These two data items are added by the model. This model also includes

TranDepTab: a table to store inter-transactions. This table consists of three columns where it stores the

transactions dependent on each other, their commit order and the transactions dependent by them.

The algorithm runs after a malicious activity is detected. Moving to the recovery process, it consists

of two main phases:

1- Detect and undo affected transactions

2- Delete effects of such transactions on the database.

The “before images” approach’s main highlights is that it allows fast identification of affected

transactions due due to the presence of the inter-transaction dependency graph that keeps track of

dependency between transactions.

2.6 Matrices in Recovery

Matrices are one of the popular data structures that were used in the damage assessment and

recovery phases. Panda and Lala (2001) a matrix-based algorithm to minimize the time spent during

the damage assessment phase. In this model, the following assumptions are made:

• Malicious transactions are identified directly after an attack

• The history produced by the scheduler is strictly serializable.

• The occurrence order of transactions is preserved when tracked by the log file.

• The log file cannot be purged, and it’s restricted to specific users.

 12

Another matrix-based approach for database recovery is presented by Haraty and Zbib (2014) and

Haraty et al. (2015). In this approach, an external intrusion detection system is necessary to detect

malicious transactions and forward them to the proposed model. Also, the history produced is assumed

to be rigorously serializable. Moreover, the model uses a checkpoint mechanism on the log file version

preventing its size from increasing vastly and thus affecting the overall performance of the proposed

model.

In this approach, a two-dimensional array represents the matrix used with columns representing

data items and rows representing the committed transactions up to time T. The matrix is filled by values

00, 01 or -Ti to represent the interaction between the transaction and the data item. Interactions taking

place between a transaction T and a data item x is one of the following:

1- T blindly writes x.

2- Committed transaction T modifies x.

3- T reads x, or in other words T do not modify x.

Two more data structures are used in this model: a two-dimensional array to keep track of the

committed transactions that affect a data item x. While transactions that will be recovered in the

recovery phase are tracked by another one-dimensional array. Following a malicious attack i.e. in the

detection phase, the algorithm traverses the matrix and checks all the transactions that proceed the

attack. If 01 is found, then the algorithm checks if the transaction is malicious or affected. If a negative

value is found, the algorithm similarly traverses the second matrix to check for any further malicious

or affected transactions.

After obtaining the list of both affected and malicious transactions, the recovery phase starts with

the recovery algorithm undoing the malicious transactions and re-executing the affected ones. Similar

to any algorithm, the proposed algorithm has strengths and weaknesses. By using a simple matrix, the

detection and recovery algorithms of this model are fast, however, the memory is significantly

consumed due to the usage of multiple data structures

 13

2.7 Column Dependency

Chakraborty et al., (2010) presents a column dependency-based technique. The aim of this model

is to detect the affected transactions and to apply recovery measures to return the database back to its

consistent state. The algorithm presented has two versions: a static version and an online version. In the

static version, the database is set offline and becomes unavailable to users during the recovery process.

The algorithm takes as inputs:

1- List of committed transactions.

2- Execution schedule of these transactions.

3- Set of detected malicious transactions

In the online recovery version, users can access the database thus allowing transactions to continue

running. The three phases that comprise the online recovery version are: assessment, recovery and

confinement phases.

In the online version, transactions remain executing, thus allowing the possibility of having new

malicious transactions contrary to the static recovery where the database is set offline, and transactions

are aborted.

2.8 Distributed Recovery

Panda and Zou (2006) presents a distributed approach for database recovery. The authors propose

two approaches: peer to peer and centralized.

 In the first approach, affected transactions are shared by every site manager with every site that

executed related sub-transactions. The main highlights of this approach:

• Avoid single point of failure.

• Process distribution where each site will run the same algorithm with balanced data.

• Load distribution where the load is distributed among all sites offering a faster assessment.

However, this model has two challenges that needs to overcome:

1- Huge network traffic due to information sharing.

 14

2- Synchronization between all sites.

On the other hand, the centralized model applies a voting process to select a coordinator. Each site

manager will forward the affected transactions to the coordinator which in turns, will forwards them to

The main highlights of this approach:

1- Low network traffic

2- Assessment is only done by the coordinator

However, this model has some major drawbacks:

1- The coordinator will be placed under huge load.

2- The recovery process will be delayed until the coordinator receives the list of all affected

transactions.

A new damage assessment and recovery model is presented by Liu and Yu (2011) The work done

contributes to the following:

1- Avoiding single point of failure by distributing the whole process.

2- Incoming transactions are continuously handled.

3- Simultaneous execution of damage assessment and recovery.

4- Easy integration within DBMS.

5- The proposed models are completely transparent.

Each site contains two processes: a local damage assessment and repair (DAR) and a DAR executor.

that scans the log file to identify affected sub-transactions. The local DAR manager handles the

coordination between the processes at each site.

During the recovery process, the DAR manager and executor produce cleaning transactions and

sub-transactions respectively to recover all malicious transactions and sub-transactions.

 15

2.9 Fuzzy Dependency

Fuzzy dependency describes a new type of logical dependency that cannot be expressed by

functional dependencies. “It reflects a kind of semantic knowledge about the real world” (Chen, 1995).

The three main scenarios for using fuzzy dependency:

1- Fuzzy integrity checking where constraints are applied on a list of relations’ instances. This can

be beneficial in case these roles were violated, the modifications can be aborted.

2- Playing the role of an intrusion detection system.

3- Producing fuzzy values for affected data items after a denial of service attack.

Yanjun Zou and Panda (2004) introduce a fuzzy dependency approach for detecting affected

transactions and repairing the database. The proposed model is faster than the traditional approaches as

it does not require a detailed scanning of the log file.

 16

Chapter Three

The Model

3.1 Overview

In this section we present a hash-based technique for damage assessment and recovery that uses

blockchain technology. We optimize our model to increase both accuracy and efficiency and to decrease

memory utilization during assessment and recovery phases.

The algorithm starts with the assessment phase. The malicious transactions, identified by intrusion

detection system, are assessed in order to detect their effects. Then, all transactions are marked as either

clean or affected that need to be recovered. After that, the algorithm redoes the affected transaction and

undo the malicious ones in order to recover the database to its consistent state.

3.2 Definitions

Definition 1: If a write operation writei[x] is done based on the read value of operation readj[y], then

writei[x] is dependent on readj[y]. Where writei[x] denotes write operation of a transaction Ti, and

readj[y] denotes read operation of another transaction Tj (Panda and Tripathy, 2000).

Definition 2: If a data item x is modified by a write operation writei[x] of a transaction Ti before

reading its latest value, then writei[x] is considered a blind write.

Definition 3: If a schedule’s effects on a consistent database are similar to that of a a serial

one, then it this schedule is serializable (Sumathi and Esakkirajan, 2010).

Definition 4: If uncommitted or unaborted transactions alter a data item, this data item becomes un-

accessible (Bernstein et al., 1986). This is because a schedule follows strict property i.e. a strict

schedule (Breitbart et al., 1991).

Definition 5: A rigorous schedule is a strict schedule that assert the following: A transaction cannot

write a data item, if this data item is already being read by another transaction, unless the latter is either

committed or aborted.

 17

3.3 Assumptions

The first assumption in our model is the presence of an intrusion detection system that continuously

checks if an attack exists. This intrusion detection system sends a list of malicious transactions during

the assessment phase. We also assume the rigorous serializability of history produced where no

transaction T2, that proceed and depends on T1, can exist

The transactions are assigned unique and sequential IDs. The ID = 1 is given for the first

transaction, ID = 2 for the second one and so on. Therefore, no two transactions can have the same ID.

Our damage assessment algorithm follows the transaction dependency paradigm (Panda and

Ragothaman, 2003) for building the dependencies, which means that a transaction T2 is dependent on

transaction T1, if a data item read by T2 is already being written by T1. if a transaction T2 reads a data

item being written by another transaction T1, regardless of the exact data item being read, T2 is

dependent on T1 since the read operation is based on the previously written value by T1.

Another assumption in our model is the safety of the log file of every database and its inaccessibility

by the users. Moreover, we assume the existence of certification before the committed transactions are

uploaded to the principle database.

The proposed hash-based technique is suggested by Haraty and Bokhari (2019). This technique

uses a hash table to enhance assessment and recovery phases by allowing swift access and search time.

In addition to that, we aim to reduce the recovery time. Also, reducing the recovery time is one of our

main objectives. Due to the high demands of accessing the medical databases, one must reduce the

database’s offline time

3.4 Model Structure

In figure 1, our distributed database structure is sketched. In our model, we assume that the Ministry

of Health owns the Principle Database. The doctors/hospitals will upload their patients’ data to the

 18

replicated database, and at some time (checkpoint T) the changes will be uploaded to the principle

database.

Based on blockchain technology, the transactions need to be certified by the government before

their commitment. Since some transactions are still upfront, and they are not uploaded to the principle

database, so we need to recover locally, and others must be recovered on the principle database.

In figure 2 our model is sketched. Our solution is formed of three main components: an Intrusion

Detection System (IDS), to detect malicious transactions, damage assessment algorithm to detect and

assess the damaged transactions, and a recovery algorithm that removes the effects of malicious

transactions, redoes the damaged transactions and returns the database back to its previous consistent

state. After detecting malicious transactions, the IDS will send a list of these transactions which will be

received in the damage

assessment phase. In this phase, the first malicious transaction to be handled is the one with minimum

ID. Then, based on the list received by the IDS, the algorithm outputs the respective damaged

transactions.

Figure 1 - Distributed Database Structure

 20

3.5 Blockchain Methodology

As mentioned before, our model presents an assessment and recovery algorithm for distributed

healthcare systems using blockchain technology. So, based on blockchain methodology, and due to its

decentralized nature, we are motivated to achieve much success in the healthcare sector on all levels.

In order to guarantee authentication and privacy of information, the results of the committed

transactions are certified, encrypted and then saved in the secure database at a particular address.

Then, instead of saving actual results in the blockchain, only the addresses are encrypted and then

saved for the following reasons:

1- Saving more space, since saving the actual results requires much more space than saving the

encrypted addresses.

2- Improving security, since an attacker who gains access to this record will have an encrypted

address which will be incomprehensible. However, if the actual results are saved and the

attacker accesses to our database, it will be easy for him/her to see the actual results and maybe

alter or modify them.

Thus, each database in our model will contain encrypted pointers to the medical results in the

secure database.

3.6 Hash Table

In our model, a hash table is used for both damage assessment and recovery algorithms. The hash

table is built during transactions’ execution to store transactions’ dependencies. For memory purposes,

only dependent transactions are stored in the hash table.

Our algorithm follows the transaction dependency paradigm, so we only care about which

transactions are dependent on each other. For example, if some data items, already modified by a

previous committed transaction T2, were read by a transaction T1, the hash table will keep track of this

 21

dependency (T1 dependent on T2). The details of this dependency are not required since we are focusing

on transaction dependency and not on data dependency, which means if T2 is malicious.

The hash table stores a number of transactions where every stored transaction can be accessed by

referring to its ID’s hash value (Haraty and Bokhari, 2019), and has a corresponding list that contains

the transactions dependent it. Figure 3 presents an example of the hash dependency.

Figure 3 - Hash Dependency

Moreover, the log file is stored in a hash table to improve execution time and to minimize the

resources used. Therefore, both damage assessment and recovery phases use only hash tables as data

structures. Also, previous logs are deleted using checkpoint mechanism in order to maintain the size of

the log file.

3.7 Damage Assessment Algorithm

In assessment phase, the IDS send a list of malicious transactions If multiple transactions were

identified as malicious, the algorithm starts with the one with the smallest ID. As we mentioned earlier,

we assume that the schedule’s history is rigorously serializable, so Tj cannot depend on Ti with j < i.

Also, the transactions committed after the commitment of malicious transaction are considered by the

algorithm. So, the assessment phase will spend less time to finish as the affected transactions are

 22

considered. For instance, a malicious transaction with ID = 10 requires the damage assessment

algorithm to consider the transactions with ID greater than 10.

The affected transactions are clean transactions that can be classified into two categories:

1- Directly affected: after reading some data item(s) previously inserted by a malicious

transaction.

2- Indirectly affected; after reading some data item(s) previously written by an affected

transaction.

To collect both directly and indirectly affected transactions, the hash table is scanned.

To get the index of a malicious transaction from the hash table, the assessment algorithm receives

its ID from the IDS. Then, the algorithm creates copies of the malicious transaction’s dependency and

affected lists. The algorithm loops over all transactions in the affected list and copies their dependency

list to cover all affected transactions (directly and indirectly). Figure 4 presents Algorithm 1, that

summarizes the damage assessment algorithm. For example, based on Figure 2 if malicious transaction

T1 is detected by the IDS, then its index is pinpointed by the assessment algorithm and then T3 is copied

to the affected list. This process is repeated and T9, T10, and T12 are copied to the affected list. Since T9,

T10, and T12 has no dependent transactions, the algorithm terminates and outputs T1 as the malicious

transaction and T3, T9, T10, and T12 as the affected list.

Figure 4: Damage Assessment Algorithm

 23

3.8 Example of the damage assessment algorithm

Suppose we have a database for health sharing management system that stores the following tables:

1- Doctors

• DID: doctor’s identification number. This number is distinctive for every doctor.

• DName: doctor’s name.

• DMajor: doctor’s major.

• DExperience: doctor’s experience years

2- Patients

• PID: distinctive identification number of a patient.

• PName: name of a patient

• PDOB: date of birth of a patient

• PAddress: address of a patient

3- Types

• TID: distinctive identification number of a medication type.

• TName: name of the medication type.

4- Medication

• MID: distinctive identification number of a medication.

• MName: name of medication

• MType: type of medication

5- Prescriptions

• PrID: distinctive identification number of each a prescription.

• PID: Id of patients holding this prescription.

• DID: Id of doctor who described this prescription.

• PrDate: prescription’s date.

6- PrescriptionDetails

• PDID: distinctive identification number of a prescription’s detail.

 24

• PrID: id of the prescription containing this detail

• MID: Id of medication containing this detail

• PDFrequency: number of times this prescription must be taken per day.

• PDDays: treatment duration in days.

The below transactions modify the above stated database:

• T1 = Doctors (‘11’, ‘Peter’, ‘Heart,’8’);

• T2 = Types (‘2’, ‘Heart Medication’)

• T3 = Medication (‘5, ‘Aspirin’, ‘2’)

• T4 = Types (‘18’, ‘Pain Killers’)

• T5 = Medication (‘12’, ‘Paracetamol’, ‘18’)

• T6 = Doctors (‘17’, ‘John’, ‘Dermatology’, ‘10’)

• T7 = Patients (‘3’, ‘Merry’, ‘1-1-1995’, ’California’)

• T8 = Patients (‘4’, ‘Frank’, ‘9-9-1985’, ‘Madrid’)

• T9 = Prescription (‘21’, ‘4’, ‘17’, ‘1-2-2017’)

• T10 = Prescription (‘22’, ‘3’, ‘11’, ’23-12-2015’)

• T11 = Prescription (‘23’, ‘4’, ‘11’, ’15-2-2017’)

• T12 = Prescription_details (‘31’, ‘21’, ‘12’, ‘2’, ‘7’)

• T13 = Prescription_details (‘32’, ‘22’, ‘12’, ‘2’, ‘21’)

• T14 = Prescription_details (‘33’, ‘23’, ‘5’, ‘3’, ‘14’)

While the above transactions are executed, the hash table H is formed. Before inserting T3 into

the database, it reads the type with ID = 2, previously inserted by T2. T3 is dependent on T2, so H saves

both transactions where T2.’s dependency list adds T3. Moreover, category with ID = 18, previously

inserted by T4, is read before T5 is inserted into the database, so H inserts a new row for T4 and T5 is

added to T4’s dependency list.

 25

T6 inserts new records into Doctors while T7, and T8 insert records into Patients, but none of

these transactions are added to H as they depend on no other transactions. It is also clear that T9, T10 and

T11 depends on T6 and T8, T1 and T7, T1 and T8 respectively. Therefore, T9 is added to T6 and T8

dependency lists, T10 is added to T1 and T7 dependency lists and T11 is added to T1 and T8 dependency

lists.

Considering the last three transactions, T12 reads from T5 and T9, so it is added to their

dependency lists. T13 reads from T5 and T10 and is added to their dependency lists. Similarly, T14 is

added to T3 and T11 dependency lists as it reads from them. Figure 5 presents the hash table H

Figure 5 - Hash Dependency Table H.

 26

The list of malicious transactions alongside H are sent to the assessment algorithm. The results

obtained from the assessment algorithm are forwarded to the recovery algorithm, to recover the database

to its previous consistent state.. One of our assumptions is the rigorous serializability of history so, as

an example, the IDS ignores transactions with ID ≤ 6 whenever T6 is detected by the IDS as a malicious

transaction. The algorithm copies the dependency list of T6 which contains only transaction T9 to the

affected list. The algorithm repeats this process with all affected transactions in order for all indirect

damaged transactions to be covered. So, the algorithm copies the dependency list of T9 and adds it to

the affected list that contains now T12 and T9. Since T12 has no dependent transactions, the algorithm

terminates and outputs a malicious list that contains only T6 and an affected list that consists of T9 and

T12.

3.9 Recovery Algorithm

The end of the assessment process marks the start of the recovery phase where results of the

assessment phase are taken as inputs by the recovery algorithm. At the end of the recovery phase, the

database will be recovered back to its consistent state.

As mentioned earlier, the log file is stored in a hash table to enhance the recovery time. In this

phase, the malicious transaction with smallest ID is picked by the recovery algorithm. The transactions

that occurred before the malicious transaction are ignored since they have smaller IDs, as we assume

the rigorous serializability of history.

First, any effects of malicious transactions are removed by the recovery algorithm. Using the

recovery hash table, the algorithm selects all operations done by the malicious transaction to remove

their effects. As an example, the recovery algorithm deletes any record in the database that is entered

by a malicious transaction; thus, undoing this operation.

Next, the recovery algorithm redoes the affected transactions. Similarly, the recovery algorithm

selects all operations done by the affected transactions from the hash table to redo them. An example

of these operations is updating a record, where the algorithm re-executes this operation that was

 27

executed by an affected transaction. Figure 6 presents Algorithm 2 that summarizes the recovery

algorithm.

Figure 6: Recovery Algorithm

The recovery algorithm stops when the last affected transaction is re-executed. At this stage, the

database is recovered back to its consistent state.

3.10 Example of the Recovery Algorithm

Based on the example presented in section 3.7, a malicious list that contains only T6 and an affected

list that consists of T9 and T12 were output by the damage assessment algorithm. The first member in

the malicious list, transaction T6, (in our case it is the first and the only transaction in the malicious list)

is picked by the recovery algorithm.

The recovery algorithm retrieves all the operations done by T6 from the hash table. The selected

operation is as follows:

Insert a new record into Doctors table with the corresponding values (‘17’, ‘John’, ‘Dermatology’, ‘10’)

So to remove any effects of T6, the algorithm removes from doctors table the inserted doctor with

ID = 17. Then, all the damaged transactions are redone by the algorithm that retrieves all the operations

done by each affected transaction from the hash table.

The stored operation for the first affected transaction T9 is as follows:

Insert a new record into Prescriptions table with the corresponding values (‘21’, ‘4’, ‘17’, ‘1-2-2017’)

 28

In order to re-execute this operation, a new record should be added for patient with ID = 4 in

Prescription table. However, there is no doctor with ID = 17 since this record was deleted in the previous

step. Therefore, the prescription with ID = 21 is deleted from the Prescriptions table.

The stored operation for the last affected transaction T12 is as follows:

Insert a new record into PrescriptionDetails table with the corresponding values (‘31’, ‘21’, ‘12’, ‘2’,

‘7’)

In order to re-execute this operation, a new record should be added for prescription with ID = 21 in

PrescriptionDetails table. However, the prescription with ID = 17 was deleted. Therefore, the

prescriptiondetail with ID = 31 is also deleted from the PrescriptionDetails table.

By this point, the algorithm re-executed any affected transaction and redid any malicious ones thus

returning the database to its previous consistent state. Hence, the database can be set back online.

3.11 Model Cases

In our model, there are three cases for the attack to happen, below we list them and how our

algorithm will tackle them. As mentioned previously, we are dealing with a distributed database, so we

need to check for possible attacks on each level.

3.10.1 Case 1: Malicious transaction T1 is present in the log file of the

principle database

First, we consider the transactions listed below modifying the principle database. Given that data

items X, N, Y, Z, M and K are modified by these transactions. We assume that the IDS identifies T1 as

the malicious transaction, and that T1 is only present in the log file of the principle database. In other

words, none of the replicated database has T1 in its log file.

• T1: N=K+1

• T2: K=K-5

• T3: X=N+1

 29

• T4: Y=X -4

• T5: M=N+1

• T6: Z= Y + 2

The hash table for the following list of transactions is shown in Figure 7.

Figure 7 - Case 1: Hash Dependency Table

The principle database will be set offline. The damage assessment algorithm will receive the hash

dependency table alongside with list of malicious transactions identified by the IDS. In this case, the

algorithm copies the dependency list corresponding to T1 which contains transactions T3 and T5 to the

affected list. The algorithm repeats this process with all affected transactions to cover all indirectly

affected ones. So, the algorithm copies the dependency list of T3 and added it to the affected list.

Therefore, the affected list becomes {T3, T4, T5}. Moreover, the algorithm copies the dependency list of

T4 and added it to the affected list to become {T3, T4, T5, T6}. Since T5 and T6 has no dependent

transactions, the algorithm terminates and outputs {T1} as the malicious list and {T3, T4, T5, T6} as the

affected one. Moreover, both lists will be forwarded to all replicated databases to check if any of these

transactions are present in their log file.

The damage assessment algorithm sends the lists of malicious and affected transactions to the

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove

 30

their effects Using the recovery hash table, the algorithm selects all operations done by the malicious

transaction to remove their effects.

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done

by transaction T1 since it’s considered the malicious transaction, and will re-run the affected transactions

(T3, T4, T5, T6) to make sure that the obtained results don’t interfere with the malicious transaction.

Finally, the principle database will be set back online.

3.10.2. Case 2: Malicious transaction T1 is present in the log file of the local

database, but not uploaded to the principle database

First, let us consider the transactions listed below modifying a local database. Given that data items

X, N, Y, Z, M and K are modified by these transactions. We assume that the IDS identifies T1 as the

malicious transaction, and that T1 is only present in the log file of a local database, and not uploaded

yet to the principle database.

• T1: N=K+1

• T2: K=K-5

• T3: X=N+1

• T4: Y=X -4

• T5: M=N+1

• T6: Z= Y + 2

The hash table for the following list of transactions is shown in Figure 8.

 31

Figure 8 - Case 2: Hash Dependency Table

The local database will be set offline. Similarly, the damage assessment algorithm will receive the

hash dependency table corresponding to the local database alongside with list of malicious transactions

identified by the IDS. In this case, the algorithm copies the dependency list corresponding to T1 which

contains transactions T3 and T5 to the affected list. The algorithm repeats this process with all affected

transactions to cover all indirectly affected ones. So, the algorithm copies the dependency list of T3 and

added it to the affected list to become {T3, T4, T5}. Moreover, the algorithm copies the dependency list

of T4 and added it to the affected list to become {T3, T4, T5, T6}. Since T5 and T6 has no dependent

transactions, the algorithm terminates and outputs {T1} as the malicious list and {T3, T4, T5, T6} as the

affected one.

The damage assessment algorithm sends the lists of malicious and affected transactions to the

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove

their effects. Using the recovery hash table, the algorithm selects all operations done by the malicious

transaction to remove their effects.

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done

by transaction T1 since it’s considered the malicious transaction, and will re-run the affected transactions

 32

(T3, T4, T5, T6) to make sure that the obtained results don’t interfere with the malicious transaction.

Finally, the local database will be set back online and will resume its medical operations.

3.10.3 Case3: Malicious transaction T1 is present in the log file of the

principle database, and some local databases read this malicious transaction

and perform actions based on its value.

First, let us consider the transactions listed below modifying the principle database. Given that data

items X, N, Y, Z, M and K are modified by these transactions.

• T1: N=K+1

• T2: K=K-5

• T3: X=N+1

• T4: Y=X -4

• T5: M=N+1

• T6: Z= Y + 2

The hash table for the following list of transactions is shown in Figure 9.

Figure 9 - Case 3: Hash Dependency Table of the Principle Database

 33

 Also consider the below transactions modifying a local replicated database. Also, we assume

that data items X, J, Y, L, Y, N, Z and K are modified by these transactions.

• T1: N=K + 1

• T2: K=K - 5

• T3: X=N + 1

• T7: Y=X - 4

• T8: J=N + 8

• T9: Z= K + 2

• T10: L= Z + 2

The hash table for the following list of transactions is shown in Figure 10.

Figure 10 - Case 3: Hash Dependency Table of a Local Database

The local database alongside with the principle database will be set offline. First, the damage

assessment algorithm will receive the hash dependency table corresponding to the principle database

alongside with list of malicious transactions identified by the IDS. In this case, the algorithm copies the

dependency list corresponding to T1 which contains transactions T3 and T5 to the affected list. The

algorithm repeats this process with all affected transactions to cover all indirectly affected ones. So, the

 34

algorithm copies the dependency list of T3 and added it to the affected list to become {T3, T4, T5}.

Moreover, the algorithm copies the dependency list of T4 and added it to the affected list to become {T3,

T4, T5, T6}. Since T5 and T6 has no dependent transactions, the algorithm terminates and outputs {T1}

as the malicious list and {T3, T4, T5, T6} as the affected one.

The damage assessment algorithm sends the lists of malicious and affected transactions to the

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove

their effects Using the recovery hash table, the algorithm selects all operations done by the malicious

transaction to remove their effects.

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done

by the malicious transaction T1, and will re-run the affected transactions (T3, T4, T5, T6).

Moving to the local replicated database, the damage assessment algorithm will receive both the

hash dependency table corresponding to the local database and the list of malicious transactions

identified by IDS. In this case, the algorithm copies the dependency list corresponding to T1 which

contains transactions T3 and T8 to the affected list. The algorithm repeats this process with all affected

transactions to cover all indirectly affected ones. So, the algorithm copies the dependency list of T3 and

added it to the affected list. The affected list becomes now {T3, T7, T8}. Since T7 and T8 has no dependent

transactions, the algorithm terminates and outputs malicious list that contains only T1 and an affected

list that consists of T3, T7, and T8.

The recovery process starts with the recovery algorithm the recovery process redoing the malicious

transactions to remove their effects. Using the recovery hash table, the algorithm selects all operations

done by the malicious transaction to remove their effects.

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done

by the malicious transaction T1, and will re-run the affected transactions (T3, T7, T8). Finally, the

principle database and the replicated one will be set back online and will resume their medical

operations.

 35

Chapter Four

Performance Analysis

4.1 Overview

In order to analyze the performance of our algorithm, we run our algorithm a virtual environment

identical to the actual environment where the algorithm is implementable.

As previously mentioned, an IDS is assumed to exist on each database, in order to detect and

forward any malicious transactions. The model receives the these forwarded transactions and then is

directly initiated. In our model, we depend mainly on one type of data structures: hash tables. During

assessment phase, a hash table is used to track dependencies between transactions. In this stage, since

some replicated databases may have run some operations after the last checkpoint T, each replicated

database must check for affected transactions based on its hash table. Also, during recovery process, a

hash table is used to store the log file.

As mentioned earlier, one assumption is the rigorous serializability of history, thus, no transaction

can be dependent on any other transaction that occurs after it. In other words, a transaction Ti must

happen before a transaction Tj whenever i < j. Based on this assumption, all transactions that occur

before the malicious transaction are discarded by our algorithm.

The damage assessment phase initiates upon receiving a list of malicious transactions from the IDS.

The algorithm starts with the transaction with the smallest ID in case several transactions were identified

as malicious. At the end of this phase, the assessment algorithm generates two lists; one containing the

malicious transactions and another one containing the affected ones. These lists initiates the recovery

process, where the recovery algorithm redoes malicious transactions and re-execute damaged ones.

In our experiments, we use multiple values for the smallest malicious ID to test the performance of

our algorithm. Moreover, the analysis done shows how our algorithm performs in terms of memory

consumption that we aim to optimize.

 36

During the experimental phase, we used the ‘NorthWind Database’ with slight modifications to

achieve our goal. We build our distributed model to cover the four cases mentioned in section 3.10.

NorthWind database is provided as a template in Microsoft Access or Microsoft SQL Server. We

manage our database using a SQL Server (Microsoft, 17). We use Java as our programming language.

The simulated environment is developed on a system with 2.2 GHz CPU, quad-core, and a 4 GB RAM.

4.2 Performance Results and Analysis of the Damage Assessment

Algorithm

As mentioned earlier, the recovery process of the database consists of the damage assessment

recovery phases. The main role of the first phase is to detect damaged transactions, while the main roles

of the second phase is to redo these transactions and undo malicious ones.

In this section, the analysis of the damage assessment algorithm during simulation and the

performance results are presented. The Northwind database used in this experiment is slightly tailored

to meet the needs of our algorithm

During simulation, we consider the below two assumptions:

1- A transaction can access an utmost number of data items equal to the number of data items in

the table that this transaction is operating on.

2- To maintain the unique identity of transactions, a new column is added which to represent a

global ID. The previous primary key is only unique in the scope of the table that the transaction

is operating on. So, using the global ID is very important in our case. So a transaction with ID

= 1 means the existence of single transaction with global ID = 1

The number of transactions scanned by the damage assessment algorithm is the main influencer of

the algorithm’s performance. So, we vary the ID of malicious transaction while analyzing the running

time of the algorithm. It is easy to note that slowest running time required by the algorithm is when the

ID of the malicious transaction is the smallest because the algorithm must cover more transactions.

 37

Figure 11 presents the performance of the assessment algorithm respective to the attacker ID in the

three cases covered in section 3.10. The attacker ID is the ID of the malicious transaction identified by

the IDS. Based on figure 11, while the attacker ID increase, the running time of our algorithm decrease.

This proves our assumption above and verifies that our model is perfectly operating.

During this experiment, the database snapshot used consists of 1080 records. The maximum number

of data items that can be accessed at a time by any transaction is 18 (the maximum number of columns

is 18 and it’s the Employees table).

Since we assume the rigorous serializability of our history, the assessment algorithm ignores any

transaction that precedes the malicious one. This is shown in Figure 13. For example, when the ID of

the attacker is 100, the algorithm needs to scan 980 transactions (1080 – 100) to check for affected ones.

Also, the running time of the algorithm decreases when the ID of the attacker increases. We can

conclude that our assessment algorithm proves to be efficient since it scans only transactions that can

be affected, without wasting time scanning transactions preceding the malicious one.

Figure 11 - Damage Assessment Algorithm Execution Period w.r.t. the ID of the Attacking Entity

 38

To measure the whole performance of our damage assessment algorithm, The results of our

assessment algorithm are compared with those of models presented in Haraty and Zeitunlian (2007).

The three other models are the traditional, traditional clustered and the hybrid sub-clustered models.

The traditional model is presented in Bai and Liu (2009). These experiments are performed on a

database with 200 records. So, to properly compare the proposed model with the other models, we use

an additional database snapshot. The results are summarized in Figure 14.

From the results presented in figure 14, the superiority of our algorithm ‘s performance compared

to the other models is clear. When our algorithm is compared with the traditional hybrid sub-cluster

model, we can see that the case of an attacker’s ID = 50, the proposed algorithm spends only 0.00035

ms which indicates that our algorithm is 571428 times faster. Another example is the case of an attacker

with ID = 150, where the proposed algorithm spends time that is 368421 faster than the model under

comparison. By comparing the run time of our model with that of the traditional model, which is also

the slowest model, we can see that the proposed algorithm is 4857142 times faster (case of attacker’s

ID = 50) and 3157894 (case of attacker ID = 150) times faster.

 39

The main reason for the superior results of our algorithms is selecting a hash table to store

dependencies between transactions. This data structure allows quick retrieval of the transactions ID’s

hash value. In addition to that, only the required information needed to find affected transactions are

stored by the hash dependency table. The enhanced performance of our assessment algorithm is mainly

due to the right selection of the data structure used to store dependencies between transactions. The

hash table used provides fast access on the hash value of the transaction ID. Also, the hash dependency

table only stores the needed information which is used to find the affected transactions.

Moreover to compare the results our damage assessment algorithms with other algorithms, a new

experiment the is conducted to test algorithm’s performance In this experiment we use a database

snapshot containing 1080 records and compare our results with other models that uses hash tables

(Haraty and Bokhari, 2019), linked lists (Haraty and Sai, 2016), and two-dimensional array (Saba,

2018). The results are summarized in figure 13.

Figure 12 - Damage Assessment Algorithm Execution Period w.r.t Traditional Models

 40

Looking at the results in figure 13, we can conclude that our assessment algorithm outperforms the

two models based on linked lists and two-dimensional array. However, our model has the same

performance as the model presented by Haraty et al. (2019) which also uses the hash table for storing

transaction dependencies.

Our algorithm’s running time scores a lowest running time equal to 0.01 μs and highest running

time equal to 0.35μs. Using hash tables for storing transactional dependencies is a plus due to the fast

retrieval of the transactions.

On the other hand, Haraty and Sai (2016) uses a matrix of linked lists to store the transaction

dependencies. where all these transactions are checked by the algorithm in case of an attack. To detect

affected transactions, the related row of every malicious transaction is checked by the algorithm.

malicious transaction; thus, affecting the running time of the assessment algorithm. The running time

of the assessment phase shows a slower performance than our algorithm especially when the attacking

Id increases. An example is the case of an attacker with ID = 1000, where the proposed algorithm spends

time that is 10 times less than that spent by Haraty and Sai’s algorithm (Haraty and Sai, 2016).

Figure 13 - Damage Assessment Algorithm Execution Period w.r.t Recent Algorithms

 41

Moreover, the algorithm presented by Haraty and Saba (2018) has the slowest running time

compared to other presented models. In their work, the authors use graphs to store dependencies

between transactions. Although using graphs has some advantages in terms of scalability and damage

isolation, it still has some major disadvantages in terms of graph construction and coverage. Thus, our

algorithm clearly outperforms this model with a ratio factor of 78 in their best-case scenario with the

smallest attacker ID.

As a conclusion, we compare the running time of the proposed assessment algorithm with several

models including recent and traditional model where Northwind database is adopted. The results (the

results obtained during assessment phase for one database) prove that our algorithm outperforms almost

all other models.

4.3 Performance Results and Analysis of the Recovery Algorithm

We display in this section the results and analysis of the recovery algorithms’ performance during

simulation. We can expect that the increase of recovery time is directly related to the increase of the

number of transactions that needs recovery. The experiment was done using a snapshot of Northwind

database consisting of 200 records where a maximum of 18 data items can be accessed by any

transaction at a time. Figure 14 summarizes the results.

 42

Malicious and damaged transactions are both included in the transaction that requires recovery. Based

on Figure 14, the increase in the number of transactions the need recovery is directly related to the

increase in the time spent by the recovery algorithm. However, this additional time required by our

recovery algorithm is well reasonable. For instance, the increase in the number of transactions by five

folds leads to an acceptable increase in the time required by the algorithm: it increases from 0.0001 to

Figure 14 - Recovery Algorithm Execution Period w.r.t. Recovered Transaction Numbers

 43

0.001 μs in the best-case scenario (case1) and from 0.0002 μs to 0.002 μs in the worst-case scenario

(case 3).

Another experiment is conducted to compare our recovery algorithm with different algorithms

based on the running time. The models selected for comparison are those introduced by Haraty and

Zeitunlian (2007). Figure 15 summarizes the results obtained during this experiment.

 Based on the results shown in figure 14, it is clear that our model outperforms all other

traditional models proposed by Haraty and Zeitunlian (2007). For example, in the case of an attacker

with ID = 50, the proposed recovery algorithm in our model takes 12 x 10-8 ms which is at least

14,166,666,666 times faster than the slowest traditional model. However, when comparison depends

on sub-clusters and fixed size, comparing our algorithm with the top traditional model increases this

factor to 4,666,666,666.

 When only the required part of the log file is stored in a hash table, the recovery time improves.

Also, we store only the operations done by affected transaction that happened after the attack occurs.

Figure 15 - Recovery Algorithm Execution Period w.r.t. Traditional Models

 44

As we already assume the rigorous serializability of history, then any preceding transaction to the

malicious one is not affected.

 A new experiment is conducted to compare the proposed recovery algorithm with the recent

hash-based model presented by Haraty and Bokhari (2019) in terms of performance. Moreover, we

compared our results to the recent matrix-based lists (Haraty and Sai, 2016) and graph-based (Saba,

2018) models. Figure 16 summarizes the results obtained during this experiment.

Based on the results shown in figure 15, it is clear that our algorithm perform faster than the

algorithms under comparison. except for the algorithm by Haraty and Bokhari (2019) that has very

close results to our algorithm because both models depend on hash tables. Our recovery algorithm has

better recovery time compared to Haraty and Sai (2016) algorithm in at least 1.5 times. Moreover, the

Figure 16 - Recovery Algorithm Execution Period w.r.t. Recent Algorithms

 45

recovery time of Haraty and Saba (2018) algorithm has the slowest running time since their work is

based on traversing the received subgraph twice until it reaches back the first node which is not

malicious.

Therefore, by comparing the running time with some recent models, it is clear that our model

improves the recovery and damage assessment algorithms; thus, it enhances the availability of our

healthcare databases. It can also be regarded as a unique answer to the problem of recovering and

assessing a distributed database.

4.4 Performance Analysis of the Memory Consumption

In this section, we prove that the proposed recovery algorithm performs also efficiently with respect

to memory consumption. Due to the high scalability of the proposed algorithm, our model can be

regarded as an efficient solution for large medical databases due its efficient memory consumption. The

performance of our model based on memory consumption, in both best and worst cases scenarios, is

compared to the performance of models presented by Haraty and Bokhari (2019), Haraty and Sai

(2016), and Haraty and Saba (2018). One assumption is that the number of occupied content entries in

all data structures represents the memory consumed by an algorithm. As an example, a transaction hat

is dependent on four different transactions leads the algorithm to represent this dependency relation

using four memory slots.

In this experiment, we assume the presence of a database operating on 100 data items and consisting

of 1000 transactions. Firstly, memory consumption results of the proposed model in the best case

scenario, are compared with those of Haraty and Bokhari (2019), Haraty and Saba (2018), and of Haraty

and Sai (2016). Figure 17 summarizes the obtained results.

In the best-case scenario, each transaction depends only on one single transaction. Based on the

results shown in figure 17, we can prove that our model has the least memory consumption. Similarly,

the algorithms presented by Haraty and Bokhari (2019) and Haraty and Sai (2016) has the same memory

 46

consumption as our algorithm since all previous models insert to the data structures dependent

transactions only. It is also significant to mention that the number of dependent transactions is double

the number of occupied slots in memory by two.

For example, in case of 50 dependent transactions, our hash table, similarly to hash table for Haraty

and Bokhari (2019), contains 25 rows that is the same number of memory slots occupied. This is due

to the dependence of every transaction on one other transaction only. The same applies for Haraty and

Sai (2016) that utilizes a matrix of linked lists.

On the other hand, our algorithm outperforms that proposed by Haraty and Saba (2018) in terms of

the number of utilized memory slots. The algorithm presented by Haraty and Saba (2018) uses graphs

to store transactional dependencies; thus, each transaction has one memory slot for each connection in

Figure 1 - Occupied Memory Analysis in Best Case Scenario Figure 17 - Occupied Memory Analysis in Best Case Scenario

 47

the graph. So, the algorithm uses 50 memory slots when the number of dependent transactions is 50.

Hence, the number of dependent transactions is equal to the number of slots occupied in memory.

A new experiment is conducted to compare the worst-case results of the proposed model with

Haraty and Saba (2018), Haraty and Sai (2016), Haraty and Bokhari (2019) in terms of memory

consumption. Figure 20 summarizes the obtained results.

Every transaction depends on all other transactions in the worst-case situation; thus, the memory

consumption is the highest. For example, if our database has 100 transactions, each transaction will

have 99 other transactions dependent on it.

Based on the results shown in figure 18, we can prove that in the worst-case, the proposed model

consumes the least memory. Similarly, the algorithms presented by Haraty and Bokhari (2019) and

Haraty and Sai (2016) has the same memory consumption as our algorithm since all of these models

Figure 18 - Occupied Memory Analysis in the Worst Case

 48

inserts to the used data structure dependent transactions only. For example, a number of dependent

transactions equal to 100, leads our algorithms to occupy 99 memory slots as each transaction depends

on 99 others.

In Haraty and Saba (2018), the best-case memory consumption is maintained because a every node

is connected to all other nodes. So, the slots occupied in memory and dependent transactions have equal

numbers.

The proposed model in this paper is proved to be very efficient when memory consumptions is

considered. This fits our needs especially when dealing with distributed databases. Also, this allows our

model to improve in terms better in terms of running time as less memory is consumed.

4.5 Conclusion

The distributed hash-based model present in this thesis proves its efficiency in all the stages of the

recovery process. In the assessment process, the algorithm omits all transactions the happened before

the malicious one; thus, it enhances the running time. Also, we tested our algorithm in all possible cases

that could happen in a distributed database. And for proper comparison, we compared the results applied

on a single database and compared it to recent algorithms. Similarly, our recovery algorithm

outperforms all recent and traditional algorithms.

In the last part, we provide a comparative analysis of our algorithm with other algorithms where

the performance in terms of memory consumption is considered. The results prove that our algorithm

uses less memory slots compared to other algorithms by using a hash table to store the required portion

only of the log file. The significance of using a hash table is allowing fast retrieval and access of

operations.

 49

Chapter Five

Conclusion

The capability of sharing medical records between multiple hospitals has been a main concern

for patients; thus, saving the cost of being forced to repeat the same test at multiple hospitals. Moreover,

during this global panic around coronavirus, it can be much beneficial for the patient to access their

medical information in any country or at any hospital in order to avoid repeating the COVID-19 test in

each country he/she visits. Many studies have been proposed to find a solution for this problem, and

blockchain has been found to be a good solution.

In most of the information system protection, a layered system is a used. This system starts by

applying prevention methods to reduce the possibility of an attack. No one can prevent all attacks;

hackers always try to find a way to breach the system. The second layer is the detection layer. In this

phase, we should detect any attack before damaging or corrupting the data. Also, detection tools

sometimes fail to detect the attack. Here emerges the need for of a recovery layer. During recovery, the

algorithm is responsible to restore the database to its consistent sate by removing the effects of malicious

attacks.

In this thesis, we present a hash-based technique for damage assessment and recovery that uses

blockchain technology. Our algorithm is implemented, and the results were compared with the latest

damage assessment and recovery algorithms. The results prove the superiority of the proposed

algorithm over all different algorithms considered with respect to assessment, recovery and memory

consumption.

For future work, we will be focusing on a new efficient scheduler mechanism for the assessment phase.

A scheduler with high level of accuracy that will allow the database to continue execution during the

assessment phase. Moreover, the model presented in this thesis provides numerous opportunities for

further research efforts in an edge computing environment; thus, enhancing the services provided while

reducing the bandwidth consumed.

 50

References

Azaria, A. Ekblaw, T. Vieira, and A. Lippman,” MedRec: Using Blockchain for Medical Data Access
and Permission Man- agement,” in International Conference on Open and Big Data, 2016, pp.
25-30.

Abdulwahab Alazeb and Brajendra Panda, “Ensuring Data Integrity in Fog Computing Based Health-
Care Systems”, Spring Nature Switzerland, 2019.

Bai, K. and Liu, P. (2009). A data damage tracking quarantine and recovery (dtqr) scheme for mission-
critical database systems. In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT ’09, pages 720–731, New
York, NY, USA. ACM.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1986). Concur- rency Control and Recovery in
Database Systems. Addison- Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bitshares - your share in the decentralized exchange. [Online]. Available: https://bitshares.org/

Bosu, Amiangshu & Iqbal, Anindya & Shahriyar, Rifat & Chakraborty, Partha. (2018). Understanding
the Motivations, Challenges and Needs of Blockchain Software Developers: A Survey.

Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., and Silberschatz, A. (1991). On rigorous
transaction scheduling. IEEE Transactions on Software Engineering, 17(9):954–960.

Buterin V, et al. Ethereum white paper; 2013

Chakraborty, A., Majumdar, A. K., and Sural, S. (2010). A column dependency-based approach for
static and dynamic recovery of databases from malicious transactions. International Journal of
Information Security, 9(1):51–67.

Chen G. (1995) Fuzzy Functional Dependency and a Series of Design Issues of Fuzzy Relational
Databases. In: Bosc P., Kacprzyk J. (eds) Fuzziness in Database Management Systems.
Studies in Fuzziness, vol 5. Physica, Heidelberg.

Chen, Jieying Ma, Xiaofeng Du, Mingxiao Wang, Zhuping. (2018). A Blockchain Application for
Medical Information Sharing. 1-7. 10.1109/TEMS-ISIE.2018.8478645.

D. Johnston, S. O. Yilmaz, J. Kandah, N. Bentenitis, F. Hashemi, R. Gross, S. Wilkinson, and S. Mason,
The general theory of decentralized applications, dapps, GitHub, June, vol. 9, 2014.

 51

F. Dai, Y. Shi, N. Meng, L. Wei and Z. Ye,” From Bitcoin to cybersecurity: A comparative study of
blockchain application and security issues,” 2017 4th International Conference on Systems and
Informatics (ICSAI), Hangzhou, 2017, pp. 975-979. doi: 10.1109/ICSAI.2017.8248427.

Francesco Galati, “Blockchain as a Process: Ideologies and Motivations behind the Technology”, Mar
2018.

Haraty R, Zbib M (2014) A matrix-based damage assessment and recovery algorithm. In: Innovations
for community services (I4CS), pp 22–27.

Haraty R, Zbib M, Masud M (2015) Data damage assessment and recovery algorithm from malicious
attacks in healthcare data sharing systems. J Peer-to-Peer Netw Appl. doi:10.1007/s12083-015-
0361-z.

Haraty, R. and Zeitunlian, A. (2007). Damage assessment and recov- ery from malicious transactions
using data dependency for defensive information warfare. ISESCO Science and Technology
Vision, 3(4):43–50.

Hyperledger project, 2015. [Online]. Available: https://www. hyper-ledger.org/

Kim, T., Wang, X., Zeldovich, N., Kaashoek, M. F., et al. (2010). Intrusion recovery using selective re-
execution. In OSDI, pages 89– 104.

Kumar, V. and Son, S. H. (1998). Database recovery. Springer.

Lala, C. and Panda, B. (2001). Evaluating damage from cyber attacks: a model and analysis. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31(4):300–
310.

Liu, P. and Jajodia, S. (2002). Trusted Recovery Models, pages 27–38. Springer US, Boston, MA.

Liu, P. and Yu, M. (2011). Damage assessment and repair in attack re-silient distributed database
systems. Computer Standards Interfaces, 33(1):96 – 107. Special Issue: Secure Semantic Web.

M. Ali, J. Nelson, R. Shea, M. Freedman, Blockstack: Design and Implementation of a Global Naming
System with Blockchains, Last visited on, 2016, 25(2).

M. Turkanovi, M. Hlbl, K. Koi, M. Heriko and A. Kamiali,” EduCTX: A Blockchain-Based Higher
Education Credit Platform,” inIEEE Access, vol. 6, pp. 5112-5127, 2018.

N. Satoshi, Bitcoin: A peer-to-peer electronic cash system, Consulted, 2008, pp:1-9.

 52

Panda B, Haque K (2002) Extended data dependency approach: a robust way of rebuilding database.
In: Proceedings of the 2002 ACM symposium on applied computing, pp 445–452.

Panda B, Ragothaman P (2003) Analyzing transaction logs for effective damage assessment. In: Gudes
E, Shenoi S (eds) Research directions in data and applications security, vol 128. Springer,
Cambridge, pp 121-134.

Panda B, Zuo Y (2004) Fuzzy dependency and its applications in damage assessment and recovery. In:
Proceedings of the 2004 IEEE Workshop on Information Assurance, pp 350–357.

PandaB, TripathyS (2000) Data dependency-based logging for defensive information warfare. In:
Proceedings of the 2000 ACM symposium on applied computing, pp 361–365.

R.A.Haraty and Bahia Boukhari, “Hashing Based Assessment and Recovery Algoeithm for Information
Warfare”, thesis, Lebanese American University, 2019.

R.A.Haraty and M.El Sai, “Information Warfare: a lightweight matrix-based approach for database
recovery”, Springer-Verlag London 2016.

R.A.Haraty, M.Jaber, M.Dahini, A.Fakhereldine, “A Novel Privacy-preserving Healthcare Information
Sharing Platform Using Blockchain”, Lebanese American University, 2019.

R.A.Haraty, S.Kaddoura, A.S.Zekri, “Recovery of business intelligence systems: Towards guaranteed
continuity of patient centric health systems through a matrix-based recovery approach”,
Telematics and Informatics, pp. 801-804, 2018.

Ragothaman, P. and Panda, B. (2003). Analyzing Transaction Logs for Effective Damage Assessment,
pages 89–101. Springer US, Boston, MA.

Roger C. Molander, Andrew Riddile, Peter A. Wilson: Strategic Information Warfare, A New Face of
War, 1996.

S. Huh, S. Cho and S. Kim,” Managing IoT devices using blockchain platform,”2017 19th International
Conference on Advanced Communication Technology (ICACT), Bongpyeong, 2017, pp. 464-
467.

S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma and J. He,” BlocHIE: A BLOCkchain-Based Platform for
Healthcare Information Exchange,”2018 IEEE International Conference on Smart Computing
(SMARTCOMP), Taormina, 2018, pp. 49-56.

S. King and S. Nadal, Ppcoin: Peer-to-peer crypto-currency with proof-of-stake, Self-Published Paper,
August, vol. 19, 2012.

 53

Saba, R. (2018). Information reconciliation through agent controlled graph model. (c2018). PhD thesis,
Lebanese American University.

Sumathi, S. and Esakkirajan, S. (2010). Fundamentals of Relational Database Management Systems.
Springer Publishing Company, Incorporated, 1st edition.

Weikum, G. and Vossen, G. (2001). Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Con- trol and Recovery. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

William J. Gordon, Christian Catalini, Blockchain Technology for Healthcare: Facilitating the
Transition to Patient-Driven Interoperability, Com-putational and Structural Biotechnology
Journal, Volume 16, 2018.

Xie, M., Zhu, H., Feng, Y., and Hu, G. (2008). Tracking and repairing damaged databases using before
image table. In 2008 Japan-China Joint Workshop on Frontier of Computer Science and
Technology, pages 36–41.

Yanjun Zuo and Panda, B. (2004). Fuzzy dependency and its applica- tions in damage assessment and
recovery. In Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop,
2004., pages 350–357.

Zhang, P., White, J., Schmidt, D. C., Lenz, G., Rosenbloom, S. T. (2018). FHIRChain: Applying
Blockchain to Securely and Scalably Share Clinical Data. Computational and Structural
Biotechnology Journal, 16, 267-278. doi: 10.1016/j.csbj.2018.07.004.

Zheng, J., Qin, X., and Sun, J. (2007). Data dependency based recov- ery approaches in survival
database systems. In Shi, Y., van Albada, G. D., Dongarra, J., and Sloot, P. M. A., editors,
Computational Science – ICCS 2007, pages 1131– 1138, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Zuo, Y. and Panda, B. (2006). Distributed database damage assessment paradigm. Inf. Manag. Comput.
Security, 14:116–139.

