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A Hash-Based Assessment and Recovery Algorithm for Distributed 
Healthcare Systems Using Blockchain Technology 

Mohammad Walid Jaber 

ABSTRACT 
 

 

The improvement of information technology in the past few years has been encouraging the 

healthcare sector to share medical data online without any barriers and between different 

parties. Many research works have been done to achieve this goal, and blockchain-based 

approaches have proved to be decent solutions. However, security challenges can put such 

distributed databases storing sensitive healthcare data under threat. For example, attackers can 

access highly sensitive data, altering or deleting some records, or violating the integrity of the 

database. Many preventive measures have been applied to protect the databases from attacks. 

However, no one can be confident that the system is safe and secure. Here rises the need for an 

algorithm that can assess the damage that occurred before recovering the database back to its 

consistent state. Numerous damage assessment and recovery algorithms have been proposed 

in the literature. In this work, we present a distributed algorithm that uses blockchain 

technology and hash tables to solve the information warfare problem in healthcare systems. 

The proposed algorithm is compared with different previous works and experimental results 

are recorded.  

 

Keywords: Information Warfare, Distributed Databases, Blockchain Technology, Damage 
Assessment, Database Recovery, Transactional Dependency.  
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Chapter One 

Introduction 

1.1 Overview 

Nowadays, we live in the era of data. Data are facts and statistics collected for analysis and decision 

making. It has become increasingly computerized from paper to electronic form due to the huge 

improvement in technology in the past few years. One of the common types of data that have been 

stored in electronics forms are medical data. This information summarizes the history of the patient 

including medical surgeries, laboratory tests, x-ray images, and much more. If data is corrupted or 

attacked, the entire medical system will inevitably be damaged or at least harmed. There rises the need 

for securing these data against unauthorized access, and unwanted modifications or changes. The three 

key parts of information security are: prevention, detection and correction. Where each part consists of 

several techniques. Techniques used in prevention methods include authentication, authorization and 

access control while different techniques such as checksums, message digests and intrusion detection 

systems are used in detection methods. Finally, backup and logging techniques are mainly applied in 

correction methods. The main role of this layered system is to prevent hackers’ attacks or at least 

minimize their effects, yet one cannot be confident that the system is safe as hackers can harm the 

system after subduing the implemented techniques. Therefore, one must first think about securing their 

system by applying as many preventive techniques as possible to gain a step ahead of the attacker. After 

an attack happens, detective and recovery techniques must be applied to identify these malicious 

transactions and remove their impact on the system. Confidentiality, integrity and availability are the 

main attributes of data that must be attained: 

1- Confidentiality is the state of securing the data and keeping it private against unauthorized 

access.  

2- Integrity is protecting the data from being modified or tampered by unauthorized users.  
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3- Availability means that only authorized users can at any time access requested information.   

Due to the advancement of attacking tools nowadays, it’s hard to prevent malicious attacks.. 

Therefore, instead of just trying to secure systems from these attacks, many research works have been 

focusing on recovering databases after the actual attacks.  

 

1.2 Motivation 

Sharing medical information online (such as laboratory tests, surgery details, etc.) can help in the 

improvement of medical treatment. The interoperability between patients and medical institutions 

(hospitals, doctors, etc.) can be effective in many ways, namely: 

1- Improve patient’s safety: for example, limiting the number of times the patient can be exposed 

to radiation. 

2- Decrease medical costs: reducing duplicate medical tests. For example, if a patient undergoes 

a heartbeat test in hospital A, he/she is not forced to undergo the same test if he/she entered 

hospital B. 

3- Minimizing administrative tasks: decrease time and effort spent on administrative tasks. 

However, security challenges expose the entire medical system to danger, which seems to be a 

major barrier in medical sharing (Azaria et al., 2016). Moreover, the increasing competition in 

information warfare, raises the need to secure our data and information against malicious attacks, and 

more precisely to recover our system after an attack occurs. 

Between 2008 and 2015, the usage of (EHR) increased by around 966% due to the adoption of 

Electronic Health Providers (EHR) by the US healthcare providers (Gordon and Catalini,  2018).  

A major target for patients, is the ability to share and use all their medical data and test between 

multiple hospitals; thus, saving the cost of being forced to repeat the same tests at different hospitals. 

Moreover, it can be very beneficial for the patients to access their medical information in any country 

or at any hospital; for example, during the current coronavirus pandemic, the patients can avoid 
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repeating the COVID-19 test in every country they visit. To find a solution for this problem, many 

researches have been done, and blockchain-based approaches proved to be decent solutions.  

Due to its decentralized nature, blockchain was key in improving the interoperability between 

patients and health data systems (Gordon and Catalini, 2018; Jiang et al., 2018; Ali et al., 2016). Due 

to increasing success of blockchain solutions, we believe that blockchain-based approaches will prove 

to be a success when adopted in the healthcare sector. 

 

1.3 Blockchain Technology 

In Satoshi, 2008, blockchain was introduced as a framework for Bitcoin. In other words, 

blockchain is literally a series of blocks forming a chain. Each block consists of digital pieces of 

information. Every block consists of three parts:  

1- Information about the transaction: for example, date, time, price, etc. 

2- Information about the participants in the transaction: for example, if John buys an item from 

the Apple store, this block will record both John and Apple store website. 

3- Information to distinguish blocks: a unique code called “hash” that makes blocks 

distinguished. 

In the blockchain system, a new block is added when the following conditions are satisfied: 

1- A Transaction must exist: back to John’s example, a transaction occurs after John proceeds 

with the checkout process. 

2- A Transaction must be verified: after John completes his purchase from the Apple store, the 

Apple network verifies that the transaction is legal. That is, it confirms the details of the 

transaction including its price, the date of purchase, etc. 

3- A Transaction must be stored in a block: after being verified, John’s transaction will be 

packaged with other transactions in a block. 

4  A hash must be assigned to the block: after verifying and storing the transaction to a block, a 

unique hash will be assigned to this block.  
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When a block is added to the blockchain, it becomes publicly available for anyone to view. The use of 

smart contracts is another important feature of blockchain. Smart contracts can be defined as self-

verifying, temper resistant and self-executing objects that eliminate the use of trusted third parties 

(Zhang et al., 2018; Panda and Haque, 2002; Panda and Ragothaman, 2003). Blockchain has been 

proving its success in multiple fields and different applications. Using blockchain technology, users are 

now able to preserve a decentralized reliable database (Dai et al., 2017). Many research projects have 

been working on deploying blockchain in other systems such as education, cybersecurity, and IoT 

(Turkanovi et al., 2018; Chen et al., 2018; Huh et al., 2017). Blockchain has multiple characteristics 

that it an attractive solution for medical sharing problem. In addition to its decentralized nature, 

blockchain is immutable and trustless (verifiable). 

 

1.4 Information Warfare 

The field of Information warfare has been growing rapidly and getting a lot of interest in the past 

years from defense planners and policymakers. (Molander et al., 1996). The concept of Information 

warfare has become a hot topic in the computational field. The main objectives of information warfare 

are: 

1- Taking advantage of an exploit or a bug in the system to cause harmful actions to the whole 

system such as denial of service. 

2- Protecting the system against different types of attacks. 

Taking use of the system vulnerabilities and backdoors, the attacker could gain access to the target 

system and perform their intended harmful actions that would cause damage to the entire system. Some 

of the techniques used are: 

1- Denial of Service (DOS): Preventing authorized users to access the system by applying 

different types of DOS attacks; thus, will affect the availability of the data. 

2- Monitor and Control: Gaining unauthorized access to the system; for example, the attacker 

would gain an administrative access to the system; thus, affecting both the confidentiality and 

integrity of the data. 
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3- Physical Disruption: This happens by physically destroying the data stored on a specific 

medium; thus, affecting the availability of the data. 

4- Data Modification: modification, insertion, and deletion of data; thus, affecting the integrity 

and availability of the data. 

 

1.5 Scope of Work 

In this paper, we present a distributed algorithm that uses blockchain technology and hash tables 

to solve the problem of information warfare in healthcare systems. Mainly we present: 

1- An efficient algorithm to solve the problem of information warfare in healthcare systems. 

2- A distributed architecture for our model. 

3- Using state of art techniques such as hash tables and blockchain technology in our 

algorithms. 

Our model is implemented, and the results are recorded. We aim is to reach the fastest recovery 

time to achieve the lowest database offline time. 

 

1.6 Thesis Organization 

The remainder of the thesis is organized as follows: Chapter II presents a review of the previous 

work in literature. In chapter III, we describe our proposed algorithm with some examples to 

illustrate our approach. Chapter IV presents the computational results with comparisons to similar 

previous works In chapter V, we provide concluding remarks and introduce potential future work.  
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Chapter Two 

Literature Review 

2.1 Overview 

The topic of database recovery from malicious attacks has been studied extensively in the literature 

an Some research projects focus on improving existing algorithms in terms of runtime and 

memory usage, while others focus on proposing new data structures that would produce better 

results than using the traditional ones. Almost all the work done in the literature relies on two 

main algorithms: data dependency (Panda and Haque, 2002) and transactional dependency 

(Panda and Ragothaman, 2003). Transactional dependency tracks dependency between 

transactions without taking into consideration the exact data item, unlike data dependency 

which focuses on the data item itself. In each type, many models were proposed using different 

data structures such as matrices, clusters, and graphs. In this section, we will review prior 

artwork found in the literature about these models. 

 

2.2 Traditional Models 

In traditional models, the main log file is usually scanned starting from the beginning of the attack, 

where all affected transactions are re-executed after removing all effects caused by the malicious 

transactions. In the assessment and recovery phases, traditional approaches adopt full rollback 

operations on the database. Liu and Jajodia presents a traditional recovery model known as branching, 

which relies on the tree structure of the database versions (Liu and Jajodia, 2002). In case an attack 

occurs at any branch, an alternative branch will be used until the attacked branch is returned back to its 

consistent state.  

In Kumar and Son, 1998, three traditional models were presented by Kumar and Son. The first 

model is known as transactions rollback. In this model, after the detection of a malicious attack, the 
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transactions are rolled back in reverse to their previous logical state before the attack happened. The 

second model is called redo recovery that works by scanning the log file to redo all transactions in their 

same order. This model will ensure that the database is returned to its initial state preceding the 

malicious attack. The third model is known as rollforward recovery. In this model, At every time T, the 

method takes a copy of the database as a backup to ensure that the consistent state of the database can 

be restored after any potential logical or physical errors.   

  

2.3  Graphs in Recovery 

Panda and Zuo (2004) introduce graph-based models for the damage assessment phase and 

postponed implementing the recovery phase for future work. These models rely on two main 

assumptions: the log file cannot be damaged, and no blind writes are allowed. These models focus on 

returning the affected transactions to the recovery algorithm to perform the necessary operations for the 

aim of returning the database to a reliable state. In these models, A multi-sites distributed database that 

consists is employed, where every site is managed locally and coordinates with the central coordinator 

or with the remaining sites. In this work, two main models are presented for the damage assessment 

phase: peer-to-peer and centralized models. 

In the peer-to-peer model, the detection process doesn’t work as follows: each local site manager 

scans the log file to detect affected transactions, and if found, it will notify other site managers that have 

executed any sub-transactions in their log files. After that, the log files at every notified site will be 

scanned by the local managers to detect new transactions that may have been affected before sending 

them to other sites.  

On the other hand, a central coordinator is required for the centralized model. Choosing the 

coordinator site is done through a voting process, where the coordinator to be elected must meet the 

highest number of the following features: 

1- The most convenient place with respect to other sites.  

2- The site must be equipped with the best performance capabilities to play its coordination role. 

3- Fast network links must exist between the site and other sites. 
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4-  Support backups on the site in case the machine fails. 

The centralized model consists of three submodels: 

1- Forward and receive models: the coordinator receives global affected transactions and forwards 

them to other sites with dependent executed sub-transactions. 

2- Graph model for local dependency: before building the affected transactions, the coordinator 

must receive the local graph of each site. 

3- Central graph repository model: the coordinator saves the local graphs that is sent by every site 

performs the needed updates when the ` ones.  

Another agent-based model that uses graphs was presented by Saba et al. (2018). A single agent is 

used to receive and forward messages to other controlled agents. The dependent graph is obtained by 

adding a node for each dependent transaction below its parent; for example, a node for transaction T2 is 

added below T1’s node if transaction T2 reads data item written by T1. 

Each agent scans their managed graphs to detect any malicious transaction or activity. If found, the 

agent sends back a pointer to the recovery manager. This pointer corresponds to the malicious or 

affected transactions. During recovery phase, the scan picks the smallest ID value, and stops when it 

reaches a malicious or affected node, then the rollback phase is carried out till it reaches a non-malicious 

node. The advantage of this approach is that it only isolates the affected portion of the graph; thus, it 

can be expanded easily with affecting the performance of the database. 

 

2.4  Clusters and Sub-clusters 

Clustering approach relies on one main concept which is log file segmentation. A clustered log file 

is further segmented by the sub-clustering approach to reduce its size.    

Haraty and Zeitunlian (2007) presented a new data dependency based log clustering algorithm In 

this algorithm, two main factors influence the sub-clustering of clusters: the number of committed 

transactions and the cluster size. To make the process faster, only the sub-clusters are scanned. The 

proposed algorithm assumes the following for proper operation: 
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1- Presence of intrusion detection system to detect malicious transactions. 

2- Production of customized reads and writes operations by the database scheduler 

3- Production of rigorous serializable history  

4- Existence of only committed transactions in the clustered log. 

5- Sequential incrementation of transaction ID’s. 

For enhancement purposes, Haraty and Zeitunlian (2007) proposes two data structures: transaction 

sub-cluster list and sub-cluster data list. A sub-cluster list keeps track of the transaction IDs alongside 

with the sub-cluster that stores the related data for each transaction. The second data structure stores 

both IDs too and adds to them the corresponding read, write, overlooked, predicate or statement data 

item. When some malicious transactions are detected by the intrusion detection system, both lists are 

checked to identify the affected transactions. During the recovery phase, the scan is done only on sub-

clusters containing affected data items. Two additional data structures are used in the detection phase: 

Damaged_DI and Damaged_PB where all data items damaged by the malicious transactions are tracked 

by the Damaged_DI, and predicate blocks of all affected transactions are stored in the Damaged_PB 

data structure.  Initially, both data structures are null. To detect affected transactions, the transaction 

sub-cluster is checked throughout the malicious attack. In addition to the previous steps, recovery phase 

consists of the following: 

1- After assessment, every record in Damaged_PB is scanned. 

2- The Obtain the sub-cluster of each transaction is obtained from the transaction sub-cluster list. 

3- Every block is evaluated through a new evaluation process.  

4- Restored data items are returned to the database. 

5- The two data structures, Damaged_DI and Damaged_PB, are set back to null and released. 

Panda and Ragothaman (2003) proposes a new cluster-based algorithm where some limitations are 

set on the number of committed transactions, and size and window time of the cluster. This model 

proposes three ways for log file segmentation:  

1- Segment the log file after checking the number of committed transactions. 

2- Segment the log file after a time period T. 



 10 

3- Segment the log file after a specified memory size is occupied. 

The presented model assumes the following: 

• Using a rigorous two-phase scheduler. 

• Identifying the attacker’s identity through an intrusion detection system.  

• Purging of the log file is not permitted. 

• No blind writes are allowed. 

In the detection phase, the affected transactions are determined from both the affected items and 

the read items collected before. The log file segmentation proves its efficiency while comparing the 

experimental results with that of an unsegmented one. 

Tripathy and Panda (2000) proposes a new cluster-based algorithm that relies on a new logging 

protocol. This protocol maintains all useful information that is used during the recovery of the database. 

This model defines a predicate-based statement block A predicate is a set of preconditions that must 

evaluate to true to continue execution. The predicate could be either conditional or unconditional.  

The proposed model assumes the following for its assessment and recovery process: 

• Usage of log sequence number. 

• Usage of write-ahead-logging protocol. 

• Application of the steal/no force protocol to the database. 

• Usage of check pointing mechanism that is consistent and stable. 

• Production of rigorous serializable history  

• No modification of the log is allowed. nor purged.  

• No nested transactions are permitted. 

• Writing a data item is only allowed to a stable database. 

 

2.5  Before Images 

Zhu et al. (2008) present a new approach to track damage based on “before images” tables. These 

tables check the read operations executed on affected transactions. In this model, no log file is needed 
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for database recovery with the usage of before images, one can keep track of the history of the 

transactions so that the database can be returned to its last consistent state before the attack happened. 

After a defined time period T, all the records in the before image table will be deleted; hence, preserving 

the size of the table and preventing it from increasing exponentially.  

The suggested approach is presented by an inter-transaction dependency graph. In this approach, 

the last transactions that wrote and deleted data item x are tracked by two new data items: x.ins_tran 

and x.del_tran respectively. These two data items are added by the model. This model also includes 

TranDepTab: a table to store inter-transactions. This table consists of three columns where it stores the 

transactions dependent on each other, their commit order and the transactions dependent by them. 

The algorithm runs after a malicious activity is detected. Moving to the recovery process, it consists 

of two main phases: 

1- Detect and undo affected transactions  

2- Delete effects of such transactions on the database. 

The “before images” approach’s main highlights is that it allows fast identification of affected 

transactions due due to the presence of the inter-transaction dependency graph that keeps track of 

dependency between transactions. 

 

2.6  Matrices in Recovery 

Matrices are one of the popular data structures that were used in the damage assessment and 

recovery phases. Panda and Lala (2001) a matrix-based algorithm to minimize the time spent during 

the damage assessment phase. In this model, the following assumptions are made:  

• Malicious transactions are identified directly after an attack  

• The history produced by the scheduler is strictly serializable. 

• The occurrence order of transactions is preserved when tracked by the log file.  

• The log file cannot be purged, and it’s restricted to specific users. 
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Another matrix-based approach for database recovery is presented by Haraty and Zbib (2014) and  

Haraty et al. (2015). In this approach, an external intrusion detection system is necessary to detect 

malicious transactions and forward them to the proposed model. Also, the history produced is assumed 

to be rigorously serializable. Moreover, the model uses a checkpoint mechanism on the log file version 

preventing its size from increasing vastly and thus affecting the overall performance of the proposed 

model.   

In this approach, a two-dimensional array represents the matrix used with columns representing 

data items and rows representing the committed transactions up to time T. The matrix is filled by values 

00, 01 or -Ti to represent the interaction between the transaction and the data item. Interactions taking 

place between a transaction T and a data item x is one of the following: 

1- T blindly writes x. 

2- Committed transaction T modifies x. 

3- T reads x, or in other words T do not modify x. 

Two more data structures are used in this model: a two-dimensional array to keep track of the 

committed transactions that affect a data item x. While transactions that will be recovered in the 

recovery phase are tracked by another one-dimensional array. Following a malicious attack i.e. in the 

detection phase, the algorithm traverses the matrix and checks all the transactions that proceed the 

attack. If 01 is found, then the algorithm checks if the transaction is malicious or affected. If a negative 

value is found, the algorithm similarly traverses the second matrix to check for any further malicious 

or affected transactions.  

After obtaining the list of both affected and malicious transactions, the recovery phase starts with 

the recovery algorithm undoing the malicious transactions and re-executing the affected ones. Similar 

to any algorithm, the proposed algorithm has strengths and weaknesses. By using a simple matrix, the 

detection and recovery algorithms of this model are fast, however, the memory is significantly 

consumed due to the usage of multiple data structures  
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2.7  Column Dependency 

Chakraborty et al., (2010) presents a column dependency-based technique. The aim of this model 

is to detect the affected transactions and to apply recovery measures to return the database back to its 

consistent state. The algorithm presented has two versions: a static version and an online version. In the 

static version, the database is set offline and becomes unavailable to users during the recovery process. 

The algorithm takes as inputs: 

1- List of committed transactions. 

2- Execution schedule of these transactions. 

3- Set of detected malicious transactions  

In the online recovery version, users can access the database thus allowing transactions to continue 

running. The three phases that comprise the online recovery version are: assessment, recovery and 

confinement phases.  

In the online version, transactions remain executing, thus allowing the possibility of having new 

malicious transactions contrary to the static recovery where the database is set offline, and transactions 

are aborted.  

 

2.8  Distributed Recovery 

Panda and Zou (2006) presents a distributed approach for database recovery. The authors propose 

two approaches: peer to peer and centralized. 

 In the first approach, affected transactions are shared by every site manager with every site that 

executed related sub-transactions. The main highlights of this approach:  

• Avoid single point of failure. 

• Process distribution where each site will run the same algorithm with balanced data. 

• Load distribution where the load is distributed among all sites offering a faster assessment. 

However, this model has two challenges that needs to overcome:  

1- Huge network traffic due to information sharing. 
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2- Synchronization between all sites. 

On the other hand, the centralized model applies a voting process to select a coordinator. Each site 

manager will forward the affected transactions to the coordinator which in turns, will forwards them to 

The main highlights of this approach: 

1- Low network traffic 

2- Assessment is only done by the coordinator 

However, this model has some major drawbacks:  

1- The coordinator will be placed under huge load. 

2- The recovery process will be delayed until the coordinator receives the list of all affected 

transactions. 

A new damage assessment and recovery model is presented by Liu and Yu (2011) The work done 

contributes to the following: 

1- Avoiding single point of failure by distributing the whole process.  

2- Incoming transactions are continuously handled. 

3- Simultaneous execution of damage assessment and recovery. 

4- Easy integration within DBMS.  

5- The proposed models are completely transparent.  

Each site contains two processes: a local damage assessment and repair (DAR) and a DAR executor. 

that scans the log file to identify affected sub-transactions. The local DAR manager handles the 

coordination between the processes at each site.  

During the recovery process, the DAR manager and executor produce cleaning transactions and 

sub-transactions respectively to recover all malicious transactions and sub-transactions.  
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2.9  Fuzzy Dependency 

Fuzzy dependency describes a new type of logical dependency that cannot be expressed by 

functional dependencies. “It reflects a kind of semantic knowledge about the real world” (Chen, 1995).  

The three main scenarios for using fuzzy dependency: 

1- Fuzzy integrity checking where constraints are applied on a list of relations’ instances. This can 

be beneficial in case these roles were violated, the modifications can be aborted. 

2- Playing the role of an intrusion detection system. 

3- Producing fuzzy values for affected data items after a denial of service attack. 

Yanjun Zou and Panda (2004) introduce a fuzzy dependency approach for detecting affected 

transactions and repairing the database. The proposed model is faster than the traditional approaches as 

it does not require a detailed scanning of the log file.  
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Chapter Three 

The Model 

3.1 Overview 

In this section we present a hash-based technique for damage assessment and recovery that uses 

blockchain technology. We optimize our model to increase both accuracy and efficiency and to decrease 

memory utilization during assessment and recovery phases.  

The algorithm starts with the assessment phase. The malicious transactions, identified by intrusion 

detection system, are assessed in order to detect their effects. Then, all transactions are marked as either 

clean or affected that need to be recovered. After that, the algorithm redoes the affected transaction and 

undo the malicious ones in order to recover the database to its consistent state.  

 

3.2 Definitions 

Definition 1: If a write operation writei[x] is done based on the read value of operation readj[y], then 

writei[x] is dependent on readj[y]. Where writei[x] denotes write operation of a transaction Ti, and  

readj[y] denotes read operation of another transaction Tj  (Panda and Tripathy, 2000).  

Definition 2: If a data item x is modified by a write operation writei[x] of a transaction Ti before 

reading its latest value, then writei[x] is considered a blind write.  

Definition 3: If a schedule’s effects on a consistent database are similar to that of a a serial 

one, then it this schedule is serializable (Sumathi and Esakkirajan, 2010).  

Definition 4:  If uncommitted or unaborted transactions alter a data item, this data item becomes un-

accessible  (Bernstein et al., 1986). This is because a schedule follows strict property i.e. a strict 

schedule (Breitbart et al., 1991). 

Definition 5:  A rigorous schedule is a strict schedule that assert the following: A transaction cannot 

write a data item, if this data item is already being read by another transaction, unless the latter is either 

committed or aborted.  
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3.3 Assumptions 

The first assumption in our model is the presence of an intrusion detection system that continuously 

checks if an attack exists. This intrusion detection system sends a list of malicious transactions during 

the assessment phase. We also assume the rigorous serializability of history produced where no 

transaction T2, that proceed and depends on T1, can exist  

The transactions are assigned unique and sequential IDs. The ID = 1 is given for the first 

transaction, ID = 2 for the second one and so on. Therefore, no two transactions can have the same ID. 

Our damage assessment algorithm follows the transaction dependency paradigm (Panda and 

Ragothaman, 2003) for building the dependencies, which means that a transaction T2 is dependent on 

transaction T1, if a data item read by T2 is already being written by T1. if a transaction T2 reads a data 

item being written by another transaction T1, regardless of the exact data item being read, T2 is 

dependent on T1 since the read operation is based on the previously written value by T1.  

Another assumption in our model is the safety of the log file of every database and its inaccessibility 

by the users. Moreover, we assume the existence of certification before the committed transactions are 

uploaded to the principle database.  

The proposed hash-based technique is suggested by Haraty and Bokhari (2019). This technique 

uses a hash table to enhance assessment and recovery phases by allowing swift access and search time. 

In addition to that, we aim to reduce the recovery time. Also, reducing the recovery time is one of our 

main objectives. Due to the high demands of accessing the medical databases, one must reduce the 

database’s offline time  

 

 

 

3.4  Model Structure 

In figure 1, our distributed database structure is sketched. In our model, we assume that the Ministry 

of Health owns the Principle Database. The doctors/hospitals will upload their patients’ data to the 
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replicated database, and at some time (checkpoint T) the changes will be uploaded to the principle 

database. 

Based on blockchain technology, the transactions need to be certified by the government before 

their commitment. Since some transactions are still upfront, and they are not uploaded to the principle 

database, so we need to recover locally, and others must be recovered on the principle database. 

In figure 2 our model is sketched. Our solution is formed of three main components: an Intrusion 

Detection System (IDS), to detect malicious transactions, damage  assessment algorithm to detect and 

assess the damaged transactions, and a recovery algorithm that removes the effects of malicious 

transactions, redoes the damaged transactions and returns the database back to its previous consistent 

state. After detecting malicious transactions, the IDS will send a list of these transactions which will be 

received in the damage  

assessment phase. In this phase, the first malicious transaction to be handled is the one with minimum 

ID. Then, based on the list received by the IDS, the algorithm outputs the respective damaged 

transactions. 

Figure 1 - Distributed Database Structure 
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3.5  Blockchain Methodology 

As mentioned before, our model presents an assessment and recovery algorithm for distributed 

healthcare systems using blockchain technology. So, based on blockchain methodology, and due to its 

decentralized nature, we are motivated to achieve much success in the healthcare sector on all levels. 

In order to guarantee authentication and privacy of information, the results of the committed 

transactions are certified, encrypted and then saved in the secure database at a particular address. 

Then, instead of saving actual results in the blockchain, only the addresses are encrypted and then 

saved for the following reasons:  

1- Saving more space, since saving the actual results requires much more space than saving the 

encrypted addresses. 

2- Improving security, since an attacker who gains access to this record will have an encrypted 

address which will be incomprehensible. However, if the actual results are saved and the 

attacker accesses to our database, it will be easy for him/her to see the actual results and maybe 

alter or modify them. 

Thus, each database in our model will contain encrypted pointers to the medical results in the 

secure database. 

 

3.6  Hash Table 

In our model, a hash table is used for both damage assessment and recovery algorithms. The hash 

table is built during transactions’ execution to store transactions’ dependencies. For memory purposes, 

only dependent transactions are stored in the hash table.  

Our algorithm follows the transaction dependency paradigm, so we only care about which 

transactions are dependent on each other. For example, if some data items, already modified by a 

previous committed transaction T2, were read by a transaction T1, the hash table will keep track of this 
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dependency (T1 dependent on T2). The details of this dependency are not required since we are focusing 

on transaction dependency and not on data dependency, which means if T2 is malicious. 

The hash table stores a number of transactions where every stored transaction can be accessed by 

referring to its ID’s hash value (Haraty and Bokhari, 2019), and has a corresponding list that contains 

the transactions dependent it. Figure 3 presents an example of the hash dependency. 

 

 

Figure 3 - Hash Dependency 

 

Moreover, the log file is stored in a hash table to improve execution time and to minimize the 

resources used. Therefore, both damage assessment and recovery phases use only hash tables as data 

structures. Also, previous logs are deleted using checkpoint mechanism in order to maintain the size of 

the log file. 

 

3.7  Damage Assessment Algorithm 

In assessment phase, the IDS send a list of malicious transactions If multiple transactions were 

identified as malicious, the algorithm starts with the one with the smallest ID. As we mentioned earlier, 

we assume that the schedule’s history is rigorously serializable, so Tj cannot depend on Ti with j < i. 

Also, the transactions committed after the commitment of malicious transaction are considered by the 

algorithm. So, the assessment phase will spend less time to finish as the affected transactions are 
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considered. For instance, a malicious transaction with ID = 10 requires the damage assessment 

algorithm to consider the transactions with ID greater than 10.  

The affected transactions are clean transactions that can be classified into two categories: 

1- Directly affected: after reading some data item(s) previously inserted by a malicious 

transaction. 

2- Indirectly affected; after reading some data item(s) previously written by an affected 

transaction.  

To collect both directly and indirectly affected transactions, the hash table is scanned.  

To get the index of a malicious transaction from the hash table, the assessment algorithm receives 

its ID from the IDS. Then, the algorithm creates copies of the malicious transaction’s dependency and 

affected lists. The algorithm loops over all transactions in the affected list and copies their dependency 

list to cover all affected transactions (directly and indirectly). Figure 4 presents Algorithm 1, that 

summarizes the damage assessment algorithm. For example, based on Figure 2 if malicious transaction 

T1 is detected by the IDS,  then its index is pinpointed by the assessment algorithm and then T3 is copied 

to the affected list. This process is repeated and T9, T10, and T12 are copied to the affected list. Since T9, 

T10, and T12 has no dependent transactions, the algorithm terminates and outputs T1 as the malicious 

transaction and T3, T9, T10, and T12 as the affected list. 

 
  

Figure 4: Damage Assessment Algorithm 
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3.8  Example of the damage assessment algorithm 

Suppose we have a database for health sharing management system that stores the following tables: 

1- Doctors 

• DID: doctor’s identification number. This number is distinctive for every doctor.  

• DName: doctor’s name. 

• DMajor: doctor’s major. 

• DExperience: doctor’s experience years  

2- Patients 

• PID: distinctive identification number of a patient. 

• PName: name of a patient 

• PDOB: date of birth of a patient  

• PAddress: address of a patient 

3- Types 

• TID: distinctive identification number of a medication type. 

• TName: name of the medication type.  

4- Medication 

• MID:  distinctive identification number of  a medication. 

• MName: name of medication 

• MType: type of medication 

5- Prescriptions 

• PrID: distinctive identification number of each a prescription. 

• PID: Id of patients holding this prescription. 

• DID: Id of doctor who described this prescription. 

• PrDate:  prescription’s date. 

 

6- PrescriptionDetails 

• PDID: distinctive identification number of a prescription’s detail. 
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• PrID:  id of the prescription containing this detail  

• MID: Id of medication containing this detail  

• PDFrequency: number of times this prescription must be taken per day. 

• PDDays: treatment duration in days. 

The below transactions modify the above stated database: 

• T1 = Doctors (‘11’, ‘Peter’, ‘Heart,’8’);  

• T2 = Types (‘2’, ‘Heart Medication’) 

• T3 = Medication (‘5, ‘Aspirin’, ‘2’) 

• T4 = Types (‘18’, ‘Pain Killers’) 

• T5 = Medication (‘12’, ‘Paracetamol’, ‘18’) 

• T6 = Doctors (‘17’, ‘John’, ‘Dermatology’, ‘10’) 

• T7 = Patients (‘3’, ‘Merry’, ‘1-1-1995’, ’California’) 

• T8 = Patients (‘4’, ‘Frank’, ‘9-9-1985’, ‘Madrid’) 

• T9 = Prescription (‘21’, ‘4’, ‘17’, ‘1-2-2017’) 

• T10 = Prescription (‘22’, ‘3’, ‘11’, ’23-12-2015’) 

• T11 = Prescription (‘23’, ‘4’, ‘11’, ’15-2-2017’) 

• T12 = Prescription_details (‘31’, ‘21’, ‘12’, ‘2’, ‘7’) 

• T13 = Prescription_details (‘32’, ‘22’, ‘12’, ‘2’, ‘21’) 

• T14 = Prescription_details (‘33’, ‘23’, ‘5’, ‘3’, ‘14’) 

While the above transactions are executed, the hash table H is formed. Before inserting T3  into 

the database, it reads the type with ID = 2, previously inserted by T2. T3 is dependent on T2, so H saves 

both transactions where T2.’s dependency list adds T3. Moreover, category with ID = 18, previously 

inserted by T4, is read before T5 is inserted into the database, so H inserts a new row for T4 and T5 is 

added to T4’s dependency list.  
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T6 inserts new records into Doctors while T7, and T8 insert records into Patients, but none of 

these transactions are added to H as they depend on no other transactions. It is also clear that T9, T10 and 

T11 depends on T6 and T8, T1 and T7, T1 and T8 respectively. Therefore, T9 is added to T6 and T8 

dependency lists, T10  is added to T1 and T7 dependency lists and T11 is added to T1 and T8 dependency 

lists.  

Considering the last three transactions, T12 reads from T5 and T9, so it is added to their 

dependency lists. T13 reads from T5 and T10 and is added to their dependency lists. Similarly,  T14 is 

added to T3 and T11 dependency lists as it reads from them. Figure 5 presents the hash table H 

 

Figure 5 - Hash Dependency Table H. 
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The list of malicious transactions alongside H are sent to the assessment algorithm. The results 

obtained from the assessment algorithm are forwarded to the recovery algorithm, to recover the database 

to its previous consistent state.. One of our assumptions is the rigorous serializability of history so, as 

an example, the IDS ignores transactions with ID ≤ 6 whenever T6 is detected by the IDS as a malicious 

transaction. The algorithm copies the dependency list of T6 which contains only transaction T9 to the 

affected list. The algorithm repeats this process with all affected transactions in order for all indirect 

damaged transactions to be covered. So, the algorithm copies the dependency list of T9 and adds it to 

the affected list that contains now T12 and  T9. Since T12 has no dependent transactions, the algorithm 

terminates and outputs a malicious list that contains only T6 and an affected list that consists of T9 and 

T12.  

 

3.9  Recovery Algorithm 

The end of the assessment process marks the start of the recovery phase where results of the 

assessment phase are taken as inputs by the recovery algorithm. At the end of the recovery phase, the 

database will be recovered back to its consistent state.  

As mentioned earlier, the log file is stored in a hash table to enhance the recovery time. In this 

phase, the malicious transaction with smallest ID is picked by the recovery algorithm. The transactions 

that occurred before the malicious transaction are ignored since they have smaller IDs, as we assume 

the rigorous serializability of history. 

First, any effects of malicious transactions are removed by the recovery algorithm. Using the 

recovery hash table, the algorithm selects all operations done by the malicious transaction to remove 

their effects. As an example, the recovery algorithm deletes any record in the database that is entered 

by a malicious transaction; thus, undoing this operation. 

Next, the recovery algorithm redoes the affected transactions. Similarly, the recovery algorithm 

selects all operations done by the affected transactions from the hash table to redo them. An example 

of these operations is updating a record, where the algorithm re-executes this operation that was 
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executed by an affected transaction. Figure 6 presents Algorithm 2 that summarizes the recovery 

algorithm. 

 

Figure 6: Recovery Algorithm 

The recovery algorithm stops when the last affected transaction is re-executed. At this stage, the 

database is recovered back to its consistent state. 

 

3.10 Example of the Recovery Algorithm 

Based on the example presented in section 3.7, a malicious list that contains only T6 and an affected 

list that consists of T9 and T12   were output by the damage assessment algorithm. The first member in 

the malicious list, transaction T6, (in our case it is the first and the only transaction in the malicious list) 

is picked by the recovery algorithm. 

The recovery algorithm retrieves all the operations done by T6 from the hash table. The selected 

operation is as follows:  

Insert a new record into Doctors table with the corresponding values (‘17’, ‘John’, ‘Dermatology’, ‘10’) 

So to remove any effects of T6, the algorithm removes from doctors table the inserted doctor with 

ID = 17. Then, all the damaged transactions are redone by the algorithm that retrieves all the operations 

done by each affected transaction from the hash table.  

The stored operation for the first affected transaction T9 is as follows: 

Insert a new record into Prescriptions table with the corresponding values (‘21’, ‘4’, ‘17’, ‘1-2-2017’) 
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In order to re-execute this operation, a new record should be added for patient with ID = 4 in 

Prescription table. However, there is no doctor with ID = 17 since this record was deleted in the previous 

step. Therefore, the prescription with ID = 21 is deleted from the Prescriptions table.   

The stored operation for the last affected transaction T12 is as follows: 

Insert a new record into PrescriptionDetails table with the corresponding values (‘31’, ‘21’, ‘12’, ‘2’, 

‘7’) 

In order to re-execute this operation, a new record should be added for prescription with ID = 21 in 

PrescriptionDetails table. However, the prescription with ID = 17 was deleted. Therefore, the 

prescriptiondetail with ID = 31 is also deleted from the PrescriptionDetails table.   

By this point, the algorithm re-executed any affected transaction and redid any malicious ones thus 

returning the database to its previous consistent state. Hence, the database can be set back online. 

 

3.11 Model Cases 

In our model, there are three cases for the attack to happen, below we list them and how our 

algorithm will tackle them. As mentioned previously, we are dealing with a distributed database, so we 

need to check for possible attacks on each level. 

 

3.10.1 Case 1: Malicious transaction T1 is present in the log file of the 

principle database 

First, we consider the transactions listed below modifying the principle database. Given that data 

items X, N, Y, Z, M and K are modified by these transactions. We assume that the IDS identifies T1 as 

the malicious transaction, and that T1 is only present in the log file of the principle database. In other 

words, none of the replicated database has T1 in its log file. 

• T1: N=K+1 

• T2: K=K-5 

• T3: X=N+1 
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• T4: Y=X -4 

• T5: M=N+1 

• T6: Z= Y + 2 

 

The hash table for the following list of transactions is shown in Figure 7. 

 

Figure 7 - Case 1: Hash Dependency Table 

  

The principle database will be set offline. The damage assessment algorithm will receive the hash 

dependency table alongside with list of malicious transactions identified by the IDS. In this case, the 

algorithm copies the dependency list corresponding to T1 which contains transactions T3 and T5 to the 

affected list. The algorithm repeats this process with all affected transactions to cover all indirectly 

affected ones. So, the algorithm copies the dependency list of T3 and added it to the affected list. 

Therefore, the affected list becomes {T3, T4, T5}. Moreover, the algorithm copies the dependency list of 

T4 and added it to the affected list to become {T3, T4, T5, T6}.  Since T5 and T6 has no dependent 

transactions, the algorithm terminates and outputs {T1} as the malicious list and {T3, T4, T5, T6} as the 

affected one. Moreover, both lists will be forwarded to all replicated databases to check if any of these 

transactions are present in their log file. 

The damage assessment algorithm sends the lists of malicious and affected transactions to the 

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove 
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their effects Using the recovery hash table, the algorithm selects all operations done by the malicious 

transaction to remove their effects.  

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected 

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done 

by transaction T1 since it’s considered the malicious transaction, and will re-run the affected transactions 

(T3, T4, T5, T6) to make sure that the obtained results don’t interfere with the malicious transaction. 

Finally, the principle database will be set back online. 

 

3.10.2. Case 2: Malicious transaction T1 is present in the log file of the local 

database, but not uploaded to the principle database 

First, let us consider the transactions listed below modifying a local database. Given that data items 

X, N, Y, Z, M and K are modified by these transactions. We assume that the IDS identifies T1 as the 

malicious transaction, and that T1 is only present in the log file of a local database, and not uploaded 

yet to the principle database. 

 

• T1: N=K+1 

• T2: K=K-5 

• T3: X=N+1 

• T4: Y=X -4 

• T5: M=N+1 

• T6: Z= Y + 2 

The hash table for the following list of transactions is shown in Figure 8. 
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Figure 8 - Case 2: Hash Dependency Table 

  

The local database will be set offline. Similarly, the damage assessment algorithm will receive the 

hash dependency table corresponding to the local database alongside with list of malicious transactions 

identified by the IDS. In this case, the algorithm copies the dependency list corresponding to T1 which 

contains transactions T3 and T5 to the affected list. The algorithm repeats this process with all affected 

transactions to cover all indirectly affected ones. So, the algorithm copies the dependency list of T3 and 

added it to the affected list to become {T3, T4, T5}. Moreover, the algorithm copies the dependency list 

of T4 and added it to the affected list to become {T3, T4, T5, T6}.  Since T5 and T6 has no dependent 

transactions, the algorithm terminates and outputs {T1} as the malicious list and {T3, T4, T5, T6} as the 

affected one. 

The damage assessment algorithm sends the lists of malicious and affected transactions to the 

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove 

their effects. Using the recovery hash table, the algorithm selects all operations done by the malicious 

transaction to remove their effects.  

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected 

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done 

by transaction T1 since it’s considered the malicious transaction, and will re-run the affected transactions 
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(T3, T4, T5, T6) to make sure that the obtained results don’t interfere with the malicious transaction. 

Finally, the local database will be set back online and will resume its medical operations. 

 

3.10.3 Case3: Malicious transaction T1 is present in the log file of the 

principle database, and some local databases read this malicious transaction 

and perform actions based on its value. 

First, let us consider the transactions listed below modifying the principle database. Given that data 

items X, N, Y, Z, M and K are modified by these transactions.  

 

• T1: N=K+1 

• T2: K=K-5 

• T3: X=N+1 

• T4: Y=X -4 

• T5: M=N+1 

• T6: Z= Y + 2 

The hash table for the following list of transactions is shown in Figure 9. 

 

Figure 9 - Case 3: Hash Dependency Table of the Principle Database 
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 Also consider the below transactions modifying a local replicated database. Also, we assume 

that data items X, J, Y, L, Y, N, Z and K are modified by these transactions.  

• T1: N=K + 1  

• T2: K=K - 5  

• T3: X=N + 1  

• T7: Y=X - 4 

• T8: J=N + 8  

• T9: Z= K + 2 

• T10: L= Z + 2 

The hash table for the following list of transactions is shown in Figure 10. 

 

Figure 10 - Case 3: Hash Dependency Table of a Local Database 

 

The local database alongside with the principle database will be set offline. First, the damage 

assessment algorithm will receive the hash dependency table corresponding to the principle database 

alongside with list of malicious transactions identified by the IDS. In this case, the algorithm copies the 

dependency list corresponding to T1 which contains transactions T3 and T5 to the affected list. The 

algorithm repeats this process with all affected transactions to cover all indirectly affected ones. So, the 
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algorithm copies the dependency list of T3 and added it to the affected list to become {T3, T4, T5}. 

Moreover, the algorithm copies the dependency list of T4 and added it to the affected list to become {T3, 

T4, T5, T6}.  Since T5 and T6 has no dependent transactions, the algorithm terminates and outputs {T1} 

as the malicious list and {T3, T4, T5, T6} as the affected one. 

The damage assessment algorithm sends the lists of malicious and affected transactions to the 

recovery algorithm that starts the recovery process by redoing the malicious transactions to remove 

their effects Using the recovery hash table, the algorithm selects all operations done by the malicious 

transaction to remove their effects.  

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected 

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done 

by the malicious transaction T1, and will re-run the affected transactions (T3, T4, T5, T6).  

Moving to the local replicated database, the damage assessment algorithm will receive both the 

hash dependency table corresponding to the local database and the list of malicious transactions 

identified by IDS. In this case, the algorithm copies the dependency list corresponding to T1 which 

contains transactions T3 and T8 to the affected list. The algorithm repeats this process with all affected 

transactions to cover all indirectly affected ones. So, the algorithm copies the dependency list of T3 and 

added it to the affected list. The affected list becomes now {T3, T7, T8}.  Since T7 and T8 has no dependent 

transactions, the algorithm terminates and outputs malicious list that contains only T1 and an affected 

list that consists of T3, T7, and T8. 

The recovery process starts with the recovery algorithm the recovery process redoing the malicious 

transactions to remove their effects. Using the recovery hash table, the algorithm selects all operations 

done by the malicious transaction to remove their effects.  

 Next, the algorithm redoes the affected transactions by selecting all operations done by the affected 

transactions from the hash table to redo them. In this case, the algorithm will undo the operation done 

by the malicious transaction T1, and will re-run the affected transactions (T3, T7, T8). Finally, the 

principle database and the replicated one will be set back online and will resume their medical 

operations.  
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Chapter Four 

Performance Analysis 

4.1 Overview 

In order to analyze the performance of our algorithm, we run our algorithm a virtual environment 

identical to the actual environment where the algorithm is implementable. 

As previously mentioned, an IDS is assumed to exist on each database, in order to detect and 

forward any malicious transactions. The model receives the these forwarded transactions and then is 

directly initiated. In our model, we depend mainly on one type of data structures:  hash tables. During 

assessment phase, a hash table is used to track dependencies between transactions. In this stage, since 

some replicated databases may have run some operations after the last checkpoint T, each replicated 

database must check for affected transactions based on its hash table. Also, during recovery process, a 

hash table is used to store the log file. 

As mentioned earlier, one assumption is the rigorous serializability of history, thus, no transaction 

can be dependent on any other transaction that occurs after it. In other words, a transaction Ti must 

happen before a transaction Tj whenever i < j. Based on this assumption, all transactions that occur 

before the malicious transaction are discarded by our algorithm. 

The damage assessment phase initiates upon receiving a list of malicious transactions from the IDS. 

The algorithm starts with the transaction with the smallest ID in case several transactions were identified 

as malicious. At the end of this phase, the assessment algorithm generates two lists; one containing the 

malicious transactions and another one containing the affected ones. These lists initiates the recovery 

process, where the recovery algorithm redoes malicious transactions and re-execute damaged ones. 

In our experiments, we use multiple values for the smallest malicious ID to test the performance of 

our algorithm. Moreover, the analysis done shows how our algorithm performs in terms of memory 

consumption that we aim to optimize.  
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During the experimental phase, we used the ‘NorthWind Database’ with slight modifications to 

achieve our goal. We build our distributed model to cover the four cases mentioned in section 3.10.  

NorthWind database is provided as a template in Microsoft Access or Microsoft SQL Server. We 

manage our database using a SQL Server (Microsoft, 17). We use Java as our programming language. 

The simulated environment is developed on a system with 2.2  GHz CPU, quad-core, and a 4 GB RAM. 

 

4.2  Performance Results and Analysis of the Damage Assessment 

Algorithm 

As mentioned earlier, the recovery process of the database consists of the damage assessment 

recovery phases. The main role of the first phase is to detect damaged transactions, while the main roles 

of the second phase is to redo these transactions and undo malicious ones.  

In this section, the analysis of the damage assessment algorithm during simulation and the 

performance results are presented. The Northwind database used in this experiment is slightly tailored 

to meet the needs of our algorithm  

During simulation, we consider the below two assumptions: 

1- A transaction can access an utmost number of data items equal to the number of data items in 

the table that this transaction is operating on.  

2- To maintain the unique identity of transactions, a new column is added which to represent a 

global ID. The previous primary key is only unique in the scope of the table that the transaction 

is operating on. So, using the global ID is very important in our case. So a transaction with ID 

= 1 means the existence of single transaction with global ID = 1  

The number of transactions scanned by the damage assessment algorithm is the main influencer of 

the algorithm’s performance. So, we vary the ID of malicious transaction while analyzing the running 

time of the algorithm. It is easy to note that slowest running time required by the algorithm is when the 

ID of the malicious transaction is the smallest because the algorithm must cover more transactions.  
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Figure 11 presents the performance of the assessment algorithm respective to the attacker ID in the 

three cases covered in section 3.10. The attacker ID is the ID of the malicious transaction identified by 

the IDS. Based on figure 11, while the attacker ID increase, the running time of our algorithm decrease. 

This proves our assumption above and verifies that our model is perfectly operating. 

 

During this experiment, the database snapshot used consists of 1080 records. The maximum number 

of data items that can be accessed at a time by any transaction is 18 (the maximum number of columns 

is 18 and it’s the Employees table). 

Since we assume the rigorous serializability of our history, the assessment algorithm ignores any 

transaction that precedes the malicious one. This is shown in Figure 13. For example, when the ID of 

the attacker is 100, the algorithm needs to scan 980 transactions (1080 – 100) to check for affected ones. 

Also, the running time of the algorithm decreases when the ID of the attacker increases. We can 

conclude that our assessment algorithm proves to be efficient since it scans only transactions that can 

be affected, without wasting time scanning transactions preceding the malicious one.  

Figure 11 - Damage Assessment Algorithm Execution Period w.r.t. the ID of the Attacking Entity 
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To measure the whole performance of our damage assessment algorithm, The results of our 

assessment algorithm are compared with those of models presented in Haraty and Zeitunlian (2007). 

The three other models are the traditional, traditional clustered and the hybrid sub-clustered models. 

The traditional model is presented in Bai and Liu (2009). These experiments are performed on a 

database with 200 records. So, to properly compare the proposed model with the other models, we use 

an additional database snapshot. The results are summarized in Figure 14. 

From the results presented in figure 14, the superiority of our algorithm ‘s performance compared 

to the other models is clear. When our algorithm is compared with the traditional hybrid sub-cluster 

model, we can see that the case of an attacker’s ID = 50, the proposed algorithm spends only 0.00035 

ms which indicates that our algorithm is 571428 times faster. Another example is the case of an attacker 

with ID = 150, where the proposed algorithm spends time that is 368421 faster than the model under 

comparison. By comparing the run time of our model with that of the traditional model, which is also 

the slowest model, we  can see that the proposed algorithm is 4857142 times faster (case of attacker’s 

ID = 50) and 3157894 (case of attacker ID = 150) times faster. 



 39 

 

The main reason for the superior results of our algorithms is selecting a hash table to store 

dependencies between transactions. This data structure allows quick retrieval of the transactions ID’s 

hash value. In addition to that, only the required information needed to find affected transactions are 

stored by the hash dependency table. The enhanced performance of our assessment algorithm is mainly 

due to the right selection of the data structure used to store dependencies between transactions. The 

hash table used provides fast access on the hash value of the transaction ID. Also, the hash dependency 

table only stores the needed information which is used to find the affected transactions.  

Moreover to compare the results our damage assessment algorithms with other algorithms,  a new 

experiment the is conducted to test algorithm’s performance In this experiment we use  a database 

snapshot containing 1080 records and compare our results with other models that uses hash tables 

(Haraty and Bokhari, 2019), linked lists (Haraty and Sai, 2016), and two-dimensional array (Saba, 

2018). The results are summarized in figure 13.  

Figure 12 - Damage Assessment Algorithm Execution Period w.r.t Traditional Models 
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Looking at the results in figure 13, we can conclude that our assessment algorithm outperforms the 

two models based on linked lists and two-dimensional array. However, our model has the same 

performance as the model presented by Haraty et al. (2019) which also uses the hash table for storing 

transaction dependencies.  

 

Our algorithm’s running time scores a lowest running time equal to 0.01 μs and highest running 

time equal to 0.35μs. Using hash tables for storing transactional dependencies is a plus due to the fast 

retrieval of the transactions.  

On the other hand, Haraty and Sai (2016) uses a matrix of linked lists to store the transaction 

dependencies. where all these transactions are checked by the algorithm in case of an attack. To detect 

affected transactions, the related row of every malicious transaction is checked by the algorithm. 

malicious transaction; thus, affecting the running time of the assessment algorithm. The running time 

of the assessment phase shows a slower performance than our algorithm especially when the attacking 

Id increases. An example is the case of an attacker with ID = 1000, where the proposed algorithm spends 

time that is 10 times less than that spent by Haraty and Sai’s algorithm (Haraty and Sai, 2016).  

Figure 13 - Damage Assessment Algorithm Execution Period w.r.t Recent Algorithms 



 41 

Moreover, the algorithm presented by Haraty and Saba (2018) has the slowest running time 

compared to other presented models. In their work, the authors use graphs to store dependencies 

between transactions. Although using graphs has some advantages in terms of scalability and damage 

isolation, it still has some major disadvantages in terms of graph construction and coverage. Thus, our 

algorithm clearly outperforms this model with a ratio factor of 78 in their best-case scenario with the 

smallest attacker ID.  

As a conclusion, we compare the running time of the proposed assessment algorithm with several 

models including recent and traditional model where Northwind database is adopted. The results (the 

results obtained during assessment phase for one database) prove that our algorithm outperforms almost 

all other models. 

 

4.3  Performance Results and Analysis of the Recovery Algorithm 

We display in this section the results and analysis of the recovery algorithms’ performance during 

simulation. We can expect that the increase of recovery time is directly related to the increase of the 

number of transactions that needs recovery. The experiment was done using a snapshot of Northwind 

database consisting of 200 records where a maximum of 18 data items can be accessed by any 

transaction at a time. Figure 14 summarizes the results.  
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Malicious and damaged transactions are both included in the transaction that requires recovery. Based 

on Figure 14, the increase in the number of transactions the need recovery is directly related to the 

increase in the time spent by the recovery algorithm.  However, this additional time required by our 

recovery algorithm is well reasonable. For instance, the increase in the number of transactions by five 

folds leads to an acceptable increase in the time required by the algorithm:  it increases from 0.0001 to 

Figure 14 - Recovery Algorithm Execution Period w.r.t. Recovered Transaction Numbers 
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0.001 μs in the best-case scenario (case1) and from 0.0002 μs to 0.002 μs in the worst-case scenario 

(case 3).  

  

Another experiment is conducted to compare our recovery algorithm with different algorithms 

based on the running time. The models selected for comparison are those introduced by Haraty and 

Zeitunlian (2007). Figure 15 summarizes the results obtained during this experiment.  

 

 Based on the results shown in figure 14, it is clear that our model outperforms all other 

traditional models proposed by Haraty and Zeitunlian (2007). For example, in the case of an attacker 

with ID = 50, the proposed recovery algorithm in our model takes 12 x 10-8 ms which is at least 

14,166,666,666 times faster than the slowest traditional model. However, when comparison depends 

on sub-clusters and fixed size, comparing our algorithm with the top traditional model increases this 

factor to 4,666,666,666.  

 When only the required part of the log file is stored in a hash table, the recovery time improves. 

Also, we store only the operations done by affected transaction that happened after the attack occurs. 

Figure 15 - Recovery Algorithm Execution Period w.r.t. Traditional Models 
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As we already assume the rigorous serializability of history, then any preceding transaction to the 

malicious one is not affected.  

 A new experiment is conducted to compare the proposed recovery algorithm with the recent 

hash-based model presented by Haraty and Bokhari (2019) in terms of  performance. Moreover, we 

compared our results to the recent matrix-based lists (Haraty and Sai, 2016) and graph-based (Saba, 

2018) models. Figure 16 summarizes the results obtained during this experiment.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the results shown in figure 15, it is clear that our algorithm perform faster than the 

algorithms under comparison. except for the algorithm by Haraty and Bokhari (2019) that has very 

close results to our algorithm because both models depend on hash tables. Our recovery algorithm has 

better recovery time compared to Haraty and Sai (2016) algorithm in at least 1.5 times. Moreover, the 

Figure 16 - Recovery Algorithm Execution Period w.r.t. Recent Algorithms 
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recovery time of Haraty and Saba (2018) algorithm has the slowest running time since their work is 

based on traversing the received subgraph twice until it reaches back the first node which is not 

malicious. 

Therefore, by comparing the running time with some recent models, it is clear that our model 

improves the recovery and damage assessment algorithms; thus, it enhances the availability of our 

healthcare databases. It can also be regarded as a unique answer to the problem of recovering and 

assessing a distributed database.  

 

 

4.4  Performance Analysis of the Memory Consumption 

In this section, we prove that the proposed recovery algorithm performs also efficiently with respect 

to memory consumption. Due to the high scalability of the proposed algorithm, our model can be 

regarded as an efficient solution for large medical databases due its efficient memory consumption. The 

performance of our model based on memory consumption, in both best and worst cases scenarios, is 

compared to the performance of models presented by Haraty and Bokhari (2019), Haraty and Sai 

(2016), and Haraty and Saba (2018). One assumption is that the number of occupied content entries in 

all data structures represents the memory consumed by an algorithm. As an example, a transaction hat 

is dependent on four different transactions leads the algorithm to represent this dependency relation 

using four memory slots.  

In this experiment, we assume the presence of a database operating on 100 data items and consisting 

of 1000 transactions. Firstly, memory consumption results of the proposed model in the best case 

scenario, are compared with those of Haraty and Bokhari (2019), Haraty and Saba (2018), and of Haraty 

and Sai (2016). Figure 17 summarizes the obtained results. 

In the best-case scenario, each transaction depends only on one single transaction. Based on the 

results shown in figure 17, we can prove that our model has the least memory consumption. Similarly, 

the algorithms presented by Haraty and Bokhari (2019) and Haraty and Sai (2016) has the same memory 
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consumption as our algorithm since all previous models insert to the data structures dependent 

transactions only. It is also significant to mention that the number of dependent transactions is double 

the number of occupied slots in memory by two.  

 

For example, in case of 50 dependent transactions, our hash table, similarly to hash table for Haraty 

and Bokhari (2019),  contains 25 rows that is the same number of memory slots occupied. This is due 

to the dependence of every transaction on one other transaction only. The same applies for Haraty and 

Sai (2016) that utilizes a matrix of linked lists. 

On the other hand, our algorithm outperforms that proposed by Haraty and Saba (2018) in terms of 

the number of utilized memory slots. The algorithm presented by Haraty and Saba (2018) uses graphs 

to store transactional dependencies; thus, each transaction has one memory slot for each connection in 

Figure 1  - Occupied Memory Analysis in Best Case Scenario Figure 17 - Occupied Memory Analysis in Best Case Scenario 
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the graph. So, the algorithm uses 50 memory slots when the number of dependent transactions is 50. 

Hence, the number of dependent transactions is equal to the number of slots occupied in memory.  

 

A new experiment is conducted to compare the worst-case results of the proposed model with 

Haraty and Saba (2018), Haraty and Sai (2016), Haraty and Bokhari (2019) in terms of memory 

consumption. Figure 20 summarizes the obtained results. 

Every transaction depends on all other transactions in the worst-case situation; thus, the memory 

consumption is the highest. For example, if our database has 100 transactions, each transaction will 

have 99 other transactions dependent on it.  

Based on the results shown in figure 18, we can prove that in the worst-case, the proposed model 

consumes the least memory. Similarly, the algorithms presented by Haraty and Bokhari (2019) and 

Haraty and Sai (2016) has the same memory consumption as our algorithm since all of these models 

Figure 18 - Occupied Memory Analysis in the Worst Case 
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inserts to the used data structure dependent transactions only. For example, a number of dependent 

transactions equal to 100, leads our algorithms to occupy 99 memory slots as each transaction depends 

on 99 others. 

In Haraty and Saba (2018), the best-case memory consumption is maintained because a every node 

is connected to all other nodes. So, the slots occupied in memory and dependent transactions have equal 

numbers.  

The proposed model in this paper is proved to be very efficient when memory consumptions is 

considered. This fits our needs especially when dealing with distributed databases. Also, this allows our 

model to improve in terms better in terms of running time as less memory is consumed.  

 

4.5  Conclusion 

The distributed hash-based model present in this thesis proves its efficiency in all the stages of the 

recovery process. In the assessment process, the algorithm omits all transactions the happened before 

the malicious one; thus, it enhances the running time. Also, we tested our algorithm in all possible cases 

that could happen in a distributed database. And for proper comparison, we compared the results applied 

on a single database and compared it to recent algorithms. Similarly, our recovery algorithm 

outperforms all recent and traditional algorithms.  

In the last part, we provide a comparative analysis of  our algorithm with other algorithms where 

the performance in terms of memory consumption is considered. The results prove that our algorithm 

uses less memory slots compared to other algorithms by using a hash table to store the required portion 

only of the log file. The significance of using a hash table is allowing fast retrieval and access of 

operations.  
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Chapter Five 

Conclusion 

The capability of sharing medical records between multiple hospitals has been a main concern 

for patients; thus, saving the cost of being forced to repeat the same test at multiple hospitals. Moreover, 

during this global panic around coronavirus, it can be much beneficial for the patient to access their 

medical information in any country or at any hospital in order to avoid repeating the COVID-19 test in 

each country he/she visits. Many studies have been proposed to find a solution for this problem, and 

blockchain has been found to be a good solution.  

In most of the information system protection, a layered system is a used. This system starts by 

applying prevention methods to reduce the possibility of an attack. No one can prevent all attacks; 

hackers always try to find a way to breach the system. The second layer is the detection layer. In this 

phase, we should detect any attack before damaging or corrupting the data. Also, detection tools 

sometimes fail to detect the attack. Here emerges the need for of a recovery layer. During recovery, the 

algorithm is responsible to restore the database to its consistent sate by removing the effects of malicious 

attacks.  

In this thesis, we present a hash-based technique for damage assessment and recovery that uses 

blockchain technology. Our algorithm is implemented, and the results were compared with the latest 

damage assessment and recovery algorithms. The results prove the superiority of the proposed 

algorithm over all different algorithms considered with respect to assessment, recovery and memory 

consumption. 

For future work, we will be focusing on a new efficient scheduler mechanism for the assessment phase. 

A scheduler with high level of accuracy that will allow the database to continue execution during the 

assessment phase. Moreover, the model presented in this thesis provides numerous opportunities for 

further research efforts in an edge computing environment; thus, enhancing the services provided while 

reducing the bandwidth consumed.  
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