
 

                                    

   Lebanese American University Repository (LAUR) 

Post‐print version/Author Accepted Manuscript 

Publication metadata  

Title: A Novel Ad‐Hoc Mobile Edge Cloud Offering Security Services Through Intelligent 

Resource‐Aware Offloading 

Author(s): Toufic Dbouk, Azzam Mourad, Hadi Otrok, Hanine Tout and Chamseddine Talhi 

Journal:    IEEE Transactions on Network and Service Management 

DOI/Link: https://doi.org/10.1109/TNSM.2019.2939221 

How to cite this post‐print from LAUR: 

Dbouk, T., Mourad, A., Otrok, H., Tout, H., & Talhi, C. (2019). A novel ad‐hoc mobile edge cloud 

offering security services through intelligent resource‐aware offloading. IEEE Transactions on 

Network and Service Management, DOI, 10.1109/TNSM.2019.2939221, 

http://hdl.handle.net/10725/12695 

 Year 2019 

“© 2019 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.” 

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives 

(CC‐BY‐NC‐ND 4.0) 

 

This paper is posted at LAU Repository 
 
For more information, please contact: archives@lau.edu.lb 



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

1

A Novel Ad-Hoc Mobile Edge Cloud Offering
Security Services through Intelligent

Resource-Aware Offloading
Toufic Dbouk, Azzam Mourad, Hadi Otrok, Hanine Tout and Chamseddine Talhi

Abstract—While the usage of smart devices is increasing,
security attacks and malware affecting such terminals are briskly
evolving as well. Mobile security suites exist to defend devices
against malware and other intrusions. However, they require
extensive resources not continuously available on mobile ter-
minals, hence affecting their relevance, efficiency and sustain-
ability. In this paper, we address the aforementioned problem
while taking into account the devices limited resources such
as energy and CPU usage as well as the mobile connectivity
and latency. In this context, we propose an ad-hoc mobile edge
cloud that takes advantage of Wi-Fi Direct as means of achieving
connectivity, sharing resources, and integrating security services
among nearby mobile devices. The proposed scheme embeds a
multi-objective resource-aware optimization model and genetic-
based solution that provide smart offloading decision based
on dynamic profiling of contextual and statistical data from
the ad-hoc mobile edge cloud devices. The carried experiments
illustrate the relevance and efficiency of exchanging security
services while maintaining their sustainability with or without the
availability of Internet connection. Moreover, the results provide
optimal offloading decision and distribution of security services
while significantly reducing energy consumption, execution time,
and number of selected computational nodes without sacrificing
security.

Index Terms—Smart Offloading, Resource-Aware Service Of-
floading, Ad-Hoc Mobile Edge Cloud, Edge Computing, Cloud
Computing, Mobile Computing, Sustainable Security Services,
Security-as-a-Service, Intrusion Detection.

I. INTRODUCTION

SMART devices are being heavily used in today’s life
especially with the world’s convergence to E-commerce

and cloud-based computing. They are also being used as
major and primary elements in mobile phone sensing net-
works to provide a wider coverage area, easier deployment,
strengthened features and a social aspect [1], [2]. Since smart-
devices are based on architectures that are quite similar to
other computational devices such as desktops and laptops,
they are subject to similar threats. The authors of [3] and
[4] classify smart-phone malware into various classes such
as Virus, Worm, Scareware, Spyware, Torjan, Backdoor, Ran-
somware, Botnetand, Rootkit. They also state the infection
vectors by which smart-phone malware is capable of delivering
its content such as SMS/MMS, Bluetooth, Internet, and, File
duplication via USB. In addition, the work in [3] categorizes
the malicious activities of smart-phone malware into System
Damage, privacy Steal, Fee Consume, Denial of Service, and,
Remote Control. Further, the authors of [5] manage to state
some of the ways by which malware can trivially disguise
and bypass its detection such as Repackaging, Disassembling

T. Dbouk and A. Mourad are with the Department of Computer Science
and Mathematics, Lebanese American University (LAU), Beirut, LB.
E-mail: toufic.dbouk@lau.edu.lb, azzam.mourad@lau.edu.lb

H. Otrok is with the Department of Electrical and Computer Engineering,
Khalifa University, Abu Dhabi, UAE.
E-mail: hadi.otrok@kustar.ac.ae

H. Tout and C. Talhi are with the Department of Software Engineering and
IT, École de Technologie Superieure, Montreal, CA.
E-mail: hanine.tout.1@ens.etsmtl.ca, chamseddine.talhi@etsmtl.ca

and Reassembling, Identifier Renaming, Data Encoding, and
Junk Code Insertion. Therefore, as stated by [6], smart-devices
require special high level protection such as intrusion detection
systems against such malwares, while taking into consideration
the device’s limited resources such as battery and memory.

However, running security services on mobile devices im-
pose several problems such as high consumption of memory,
CPU, and energy. Moreover, their performance and sustain-
ability are hindered by the low specifications of the device’s
hardware. It is worth to mention that the ideas proposed
in this article target security-as-a-service in general yet the
focus of this study is intrusion detection systems (IDS) due
to the complexity that can impose on resource constrained
mobile devices. In some cases the IDS mobile agent can result
in exhaustiveness and unresponsiveness of the device which
negatively impacts its usability. Several approaches have been
proposed to ameliorate the performance of IDS on smart-
devices by offloading the analysis and scanning to off-device
infrastructures such as clouds and remote servers [7], [8].
They take advantage of powerful cloud-based infrastructure to
perform the detection while keeping a mobile agent to provide
minimal security and communication with servers. Similarly,
other approaches [9]–[11] have addressed the problem of
intrusion detection in ad-hoc networks by preventing and de-
tecting routing attacks in addition to identifying misbehaving
or intruding nodes.

In this context, cloud computing consists of using dis-
tributed remote servers over the Internet to store, search,
acquire, and process data instead of using local servers [12].
Such computing allows access to shared and easily provisioned
computing resources in an on-demand fashion. Offloading, a
technique used to migrate or offload intensive computations
from a device to an external platform such as clouds, has
received much attention to address resource limitation on smart
devices [13]–[18]. Server-based cloud [8] consists of Internet
based remote servers that provide services for smart-devices
to take advantage of or to perform a specific tasks. Such
clouds benefit from high computational power and resources of
remote servers to augment the performance of smart devices.
In other words, services on the remote servers perform most,
if not all, of the high intensive tasks on behalf of the mobile
device to reduce the computational load on the device itself.
Therefore, server-based cloud computing serves as a solution
to overcome the high computational demand of running se-
curity services on smart-devices. However, these approaches
suffer from various limitations and drawbacks summarized as
follows:

1) Additional cost charges due to extra quota usage, espe-
cially for mobile data, and server’s subscriptions.

2) Overloading the current mobile data infrastructure by ad-
ditional usage of existing communication technologies.
This problem will expand further with the tremendous
increase reaching around 50 Billion of connected devices
by 2020 [19].



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

2

3) Sketchy Internet connection and being bound by its
availability.

More recently, mobile edge computing has been an area
of interest for many researchers who proposed offloading
computations to close mobile edge computing server MEC
[20]–[24]. However these approaches suffer from the following
drawbacks:

1) Require an Internet connection and a pre-set infrastruc-
ture to offload similar to cloud-based techniques.

2) Although these works reduce the energy and execution
time on the devices, they impose an additional burden
on the wireless networks and can lead to channel inter-
ference with other devices in the vicinity.

This article aims to address all aforementioned limitations
by introducing a solution based on ad-hoc mobile edge model
[25], which can be created by the efforts of nearby volunteer-
ing devices to form a cloud environment, allowing resources
and computation sharing. An ad-hoc edge cloud is composed
of a cluster of mobile devices known as nodes. Data and com-
putation are offloaded from one node (device) to another for
execution. This ad-hoc mobile edge cloud benefits from an in-
trinsic characteristic that enable it to be created anywhere and
anytime due to the availability of volunteering devices, thus
allowing data and computational offloading without requiring
additional infrastructure. Therefore, it positively contributes in
reducing the cost needed for the setup due to its spontaneous
creation. Processing tasks collaboratively in mobile ad-hoc
cloud has proved to be efficient in many scenarios. One
of these is crowd computing, where video recordings from
multiple mobile devices can be gathered to create a video
that covers an entire event from different perspectives. Similar
processing applies on many other situations where group of
mobile devices are involved in particular activity. Moreover,
Wi-Fi Direct, a technology that allows devices to connect
directly to each other without an internet connection, is being
used in several areas such as gaming, social media, and
medical fields [26]–[28]. In similar contexts, security services
can benefit from such settings, yet other aspects should be
taken into consideration. Performance degradation is one of
these aspects which is likely to arise when running security
services on such resource constrained hardware. For instance,
a security service like intrusion detection could be switched
off when a phone call is ongoing not to affect the call quality.

To address the aforementioned issues, we elaborate in this
paper a novel ad-hoc mobile edge based cloud that provides
sustainable security-as-a-service through intelligent and effi-
cient multi-layer computation offloading. To the best of our
knowledge, this is the first work that propose ad-hoc mobile
edge cloud and Wi-Fi Direct to provide security-as-a-service
for mobile devices. In this work security-as-a-service is a
security system, offered to a mobile device, with the ability
to run it partially/totally outside the end terminal. The client
is the mobile device in this case requesting the intrusion
detection service and the provider is the mobile ad-hoc cloud
(i.e., participating devices in the mobile ad-hoc cloud). The
security service runs on a mobile device, yet in case of lack
of resources on the latter, the service is offered by nearby
devices participating in an ad-hoc mobile cloud, through an
intelligent mechanism based on offloading techniques. The
proposed method takes into consideration all of the requester
status and the mobile ad-hoc cloud resources to distribute the
chunks for intrusion detection over participating devices and
provide the results back to the requester. A smart offloading
decision supported with dynamic profiler for data collection
is generated. The decision guarantees offering the needed
security service (e.g., intrusion detection) by considering both
the resources of the offloading node and the available nodes in

the cluster. In other words, the proposed solution guarantees
finishing the execution of the security service whether running
on the device or in collaboration between devices within the
formed mobile ad-hoc cloud while taking into consideration
the resources of the requester device and those of the formed
cloud. The proposed approach takes advantage of Wi-Fi Direct
protocols to establish an ad-hoc mobile edge cloud that serves
as a cluster of nodes to monitor and provide the security
service needed on devices. For intrusion detection, each node
runs an IDS that is used to detect malicious executions.

Particularly, a Master Node accepts an offloading request
from a Requester Node and assigns tasks to each available
Serving Node in an intelligent manner, which is able to reduce
energy and execution time on the Requester Node without
sacrificing security. In addition, multiple detection engines can
be used to achieve a better detection rate. Each node can run
a different intrusion algorithm by which data is analyzed. The
framework embeds a set of interconnected modules: Ad hoc
Mobile Cloud Manager, Profiler, Offloading Manager, Commu-
nication Manager, Intrusion Detection Engine, Offloading and
Distribution Controller, and Intelligent Offloading Distributor.
These modules seamlessly work together in order to analyze a
given intrusion by establishing a cluster of devices that decides
whether performing the detection should be locally on the
device or offloaded to surrogate devices. In case the framework
decides to offload, it additionally outputs the best possible
node assignments to attain an optimal distribution in order to
augment the device’s performance. The proposed Intelligent
Offloading Distribution approach is able to reduce the energy
consumption on the device by 92%, execution time by 80%
and number of selected nodes by 70% on average. The main
contributions of this paper are four folds:
• Proposing a novel ad-hoc mobile edge cloud offering

security-as-a-service, which uses Wi-Fi Direct as means
of communication. To the best of our knowledge, none of
the current approaches provide security-as-a-service over
ad-hoc mobile edge cloud.

• Elaborating a multi-objective resource-aware optimiza-
tion model and genetic-based solution for efficient of-
floading decision and distribution. The proposed Intel-
ligent Offloading module, with the support of dynamic
profiling of contextual and statistical data from the edge
mobile devices, generate optimal offloading decision and
distribution in order to reduce CPU and power con-
sumption on devices, hence augmenting the sustainability
and performance of the security services by reducing its
resource consumption and execution time.

• Providing real-time sustainable security services in the
absence of an Internet connection without levying any
additional charges related to data consumption and/or
subscribing to servers.

• Unburdening the mobile network infrastructure due to
offloading to mobile ad-hoc edge using Wi-Fi Direct
instead of mobile data.

The rest of the paper is organized as follows. Related work
is summarized in section II. Section III shows the problem
illustration. Section IV introduces the proposed framework.
Our optimization model and heuristic algorithm are described
in section V, VI, and VII respectively. The implementation and
experiments are presented in section VIII. Finally, we conclude
the paper in section IX and point out some future research
directions.

II. RELATED WORK

In this section we review existing literature related to our
work. Several approaches have been addressed and presented



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

3

in this context to improve the performance of IDS on mo-
bile devices which are divided into two categories: cloud-
based IDS and intrusion detection in ad-hoc networks. We
also present works that leverage mobile edge computing for
computations offloading. Further we present the literature view
showing the scope of current Wi-Fi Direct applications which
is a core component in our framework.

A. Cloud-Based Intrusion Detection
The authors in [29] surveyed cloud-based intrusion detection

systems and highlighted various issues to its implementation.
While cloud-based intrusion detection mechanisms are able
to reduce the bandwidth usage, processing power needs and
power consumption on mobile devices, the process of transfer-
ring data from smartphones to the cloud goes through network
communication devices which as the authors emphasized, form
potential security breaches where attackers can capture critical
information.

[7] proposed a mechanism by which a device is replicated
in the cloud and examined for malicious behaviors. Their
mechanism allows multiple detection engines to run in parallel
in order to gain a better detection rate by running multiple
emulators of the same virtualized device. In case of failures,
the mobile agent is responsible for putting the smart-device in
a recovery mode synchronized with the cloud. The cloud ser-
vice is responsible for the analysis and detection of suspicious
behaviors.

[30] proposed an architecture for moving the IDS computa-
tion to remote servers that contain exact copies of the devices.
Their technique allows for multiple detection algorithms to
run simultaneously on replicated devices in the virtual envi-
ronment. A minimal set of traces allowing solid replication of
the device are sent by the mobile agent to the remote server
via recording and replaying framework.

[8] proposed a framework that caters a real-time and
strong off-device protection by continuously synchronizing
the device with an emulated device on the cloud using two
main components. The first component is a client agent
continuously passes device’s inputs and communications data
to be examined on the cloud and takes actions against threats.
The second component is the cloud itself that hosts emulated
devices, receives events from different interfaces of the device,
and ensures a periodic backup of the emulate device.

[31] introduced a hybrid IDS for smart-devices that au-
tomatically decides whether the detection should take place
locally on the device or be offloaded to the cloud for analysis.
However continuous communication between the mobile agent
and the cloud is required. Diverse detection engines are
integrated in the cloud to gain protection against a larger set of
malwares. The proposed framework consists of several com-
ponents most of which run on the device itself. In addition, it
decides on the level, security and type of detection algorithms
to be enforced on the device.

However, the above approaches impose extra power con-
sumption when used with mobile data instead of Wi-Fi to
send traces, input events, and data. In addition, mirroring the
traffic and data to the cloud via mobile data overloads the
mobile infrastructure and levies extra charges on the user
as it consumes his mobile data quota. It also requires the
usage of remote servers, that are not provided for free, which
inflicts additional costs. Moreover, such approaches suffer
from the intrinsic latency drawback present in current Wi-Fi
technologies especially in long distance communications [32].
To the best of our knowledge, none of the proposed approaches
consider using ad-hoc cloud for security services.

An alternative hybrid approach has been introduced in [25]
by which a new elastic computing platform for smart-device

is used. It is based on combining both ad-hoc virtual cloud
and infrastructure based cloud to achieve higher scalability.
An ad-hoc virtual cloud, composed of smart-devices in close
proximity connected via wireless radio such as Bluetooth,
work cooperatively to accomplish offloading tasks. An in-
frastructure cloud composed of phones performs computing
intensive tasks. Nonetheless, their paper focuses more on the
server-based cloud aspect and just introduce the virtual ad-hoc
cloud, without illustrating or providing information pertaining
to the offloading and cooperation aspects. The authors plainly
state that an ad-hoc virtual cloud can be used for offloading
without portraying further technical details. The paper also
doesn’t exhibit any experiments investigating the performance
and impact of cooperative execution using the cluster of smart-
devices.

B. Intrusion Detection in Ad-hoc Networks
In another context, the literature review also shows a dif-

ferent approach to guarantee a sort of protection in ad-hoc
networks.

The author in [33] compared different IDS approaches for
mobile ad-hoc network; one of which implements an IDS
agent on every node, while the others implement one on every
clusterhead significantly reducing the energy consumption.
Although such approach might overload the clusterheads, but
this could be addressed with the correct load distribution which
will be capable of extending the node’s lifetime.

The authors of [9] proposed a zone based IDS to prevent
routing attacks such impersonating and black/gray attacks.
Every node in each different zone has its own local IDS. Nodes
communicate together to exchange intelligence about intrusion
nodes. This corporation allows nodes to have a better detection
rate and raise more specific alarms in case of any intrusion.

The authors [10] of proposed an approach for dynamic
intrusion detection in MANETs by which they were able to
increase the detection rate and reduce the amount of false
positive. Their approach is based on Genetic algorithm and
artificial immune system and is capable of adapting to changes
in the network topology.

In [34], the authors introduce a new statistical approach for
intrusion detection in ad-hoc network by tracking node’s route
selection rate. Their anomaly-based intrusion detection system
is implemented in the cluster head, is capable of detecting and
isolating malicious nodes, and eliminating nodes with high
load.

The authors of [35] present a mechanism for intrusion
detection in mobile ad-hoc networks via relying on a master
cluster head. A cluster head is elected in each cluster that
monitors the nodes behaviour within its cluster. A master
cluster head is elected from the cluster heads in order to
handle intra cluster detection and elimination of malicious
nodes based on the data collected from the cluster heads.

[11] propose a Dempster-Shafer based model to detect
misbehaving vehicles in two phases. Nodes are motivated to
cooperatively behave during the formation of the cluster based
on their reputation. Misbehaving nodes are detected after clus-
ter formation based on a cooperative watchdog model. Their
approach is capable of achieving an increase in the detection
rate, a decrease in false negatives rate, and a reduction in the
number of selfish nodes, while at the same time, maintaining
Quality of Service.

However, such approaches differ from our work as they
tackle intrusion detection systems focused on routing protocols
and detection of misbehaving nodes. They allow the detection
of malicious nodes by analyzing their behaviors and actions. In
our work, we focus on intrusion detection systems monitoring
the system activities within a node.



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

4

C. Computation Offloading in Mobile Edge Cloud Computing
In different context, offloading computations to an edge

server in a mobile edge cloud computing infrastructure, is
being adopted. In [20] the authors propose an opportunistic
computation offloading system in which data mining tasks are
efficiently executed locally or in a MEC to reduce execution
time and energy consumption offering an effective load bal-
ancing mechanism between mobile devices and servers. The
proposed system relies on the amount on unprocessed data,
local resources, and contextual information to determine the
optimal execution mode and the number of connected edge
servers to be used for collaborative analytics of data mining
algorithm. Furthermore, in case collaborative offloading is
not possible due to the unavailability of mobile devices and
edge servers, the offloading system falls back to server-based
execution.

The authors of [22] propose an offloading priority function
for resource allocation in a multi-user TDMA MECO system
by which the Base Station decides whether an edge node
should perform complete or minimum offloading taking into
consideration the energy consumption under computational la-
tency constraints. A convex optimization problem minimizing
the weighted sum of mobile energy consumption is formulated
to provide the offloading decision in Infinite and Finite MEC
by setting priorities for users depending on channel gains and
energy consumption in the form of a threshold policy structure.
The paper assumes that the Base Station has a knowledge of
channel gain and local energy consumption for input for all
users.

An Energy-efficient computation offloading (EECO) scheme
for 5G Heterogeneous MEC by which the energy consump-
tion of the offloading system is improved while meeting
tasks imposed latencies is illustrated in [23]. The authors
formulate an optimization problem that minimizes the energy
consumption of the compute-intensive task as well as that of
the communication process. Their algorithm aims to decide
whether the device should execute the task locally or offload to
the edge cloud while optimizing the radio resource allocation
in the network. The EECO scheme starts by classifying mobile
devices based on their task execution cost. Then, it determines
device priorities to be used for allocating radio resources.
Finally, each offloading device is allocated channels from the
base stations based on the above criteria.

The authors of [24] describe a game theoretic approach
that allows a mobile device to determine, in a distributed
fashion, an efficient MEC offloading decision and select the
best communication channel to reduce interference that could
cause an overhead in execution time. The authors also propose
a distributed computation offloading algorithm that achieves
highly effective performance and overhead metrics compared
to a centralized approach by solving the game using a Nash
equilibrium.

However, offloading computations to a MEC server require
an Internet connection and a pre-set infrastructure to offload.
Additionally, even though these approaches are able to reduce
energy and execution time on the device/system, they impose
an extra burden on the wireless networks and increase the
chance of channel interference with other nearby devices.

D. Wi-Fi Direct
In this section, we illustrate the usability of Wi-Fi Direct as

a mean of communication between mobile devices in different
fields. SuperBeam is an application that uses Wi-Fi Direct
to enable fast, easy, and reliable file transfer between two
devices [28]. BombSquad is another application that uses Wi-
Fi Direct to allow users to create multiplayer games anywhere

and anytime [36]. Spaceteam, an action multiplayer game,
allows up to 8 players to join at the same time using Wi-
Fi Direct [37]. FireChat, a social media application aimed
mainly towards sending messages and photos, is built on Wi-
Fi Direct and Bluetooth to provide its features. Furthermore,
the authors of [26] suggest using Wi-Fi Direct as means of
real-time communication and data exchange between medical
applications in order to mitigate conflicts that rise from wire-
less interference of access points with Wi-Fi systems. They
also perform experiments in the medical field using a test bed
and concludes that Wi-Fi Direct results in a higher data rate
by almost 65% on average. The authors of [27] propose a
new framework using Wi-Fi Direct for data exchange between
users of close proximity in social networks. Their approach
circumvents the growing traffic of mobile data and avoids
overloading the network infrastructure and ISP’s.

Indeed such approaches take advantage of Wi-Fi Direct’s
high data rate due to less wireless interference, fast and easy
setup, and availability on new devices, but none proposes or
suggests using Wi-Fi Direct as a mean of communication
in an ad-hoc edge cloud for intrusion detection systems.
Their scope is limited to multi-player games, file sharing
applications, advertising, social networks, and real time data
transfer applications.

III. PROBLEM ILLUSTRATION

Although smart-devices are getting more and more power-
ful, they are still impeded by their limited resources. Battery,
memory, and computing power are such resources that hold
back the mobile device from achieving a higher computing ef-
ficiency. In order to overcome these limitations, we present an
intelligent ad-hoc offloading framework that takes advantage
of nearby smart devices to augment the performance of the
devices in running intensive computing tasks.

In this paper, we focus on intrusion detection as a case study
for our proposed framework since it is a computational task
hindered by the aforementioned constraints. We elucidate the
problem of resource demanding intrusion detection by varying
the data size to be scanned and the status of each device (idle,
moderate, critical). All of which affect both the performance
of the detection and the device itself. We focus on reducing the
execution time and energy consumption on the device while
taking the mobile ad-hoc cloud’s structure into consideration.
Table I describes the different scenarios used to achieve a real-
life description of the problem.

TABLE I: Scenarios
Scenario Description
Idle

Device is not running any user specific appli-
cations.

Moderate
Device is running user specific applications
(downloading files, gps, Bluetooth transfer...)
increasing the CPU usage to 45 − 50%

Critical
Device is in a Moderate scenario and running
additional high computational tasks overload-
ing the CPU usage to ≈ 98%

TABLE II: Variation of Execution Time and Energy Consump-
tion as a factor of Input Size and Node’s Status.

Input Size / Metric Execution Time
(S)

Energy Consumption
(J)

100KB 3.9 3
1MB − Idle 28 25
1MB −Moderate 49.3 25
1MB −Critical 127 25
10MB 459 212

We conducted some experiments based on system calls.
The input files consist of a collection of system traces that



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

5

are generated for several input sizes. Larger files indicate a
greater collection of real-life system calls. The execution time
and energy consumption are captured on the device for the
3 different file sizes (100KB, 1MB and 10MB). In addition,
for the 1MB file, the experiments are done while the device is
under 3 different conditions (Idle, Moderate and Critical). The
results are presented in Table II. The latter shows the drastic
increase in execution time of the intrusion detection process
accompanied with the increase in input size. Operating on a
100KB file, the detection process took 3.9 seconds to complete
while it took 28 seconds for a 1MB file and 459 seconds for
10MB. A more significant observation is the radical increase
in execution time associated with the device’s status at the
moment of detection. Table II illustrates this observation as
well. For a 1MB file, it took 28 seconds to finish execution
when the device is idle, however, it took 49 and 127 seconds
when the device is in a medium and critical states respectively.
Moreover, we show the intensive increase in energy as the data
input size grows. For a 100KB, the IDS consumed 3.9J. This
consumption tends to increase to 212J when the input size
increases to 10MB. These results divulge the inefficiency of
mobile devices to handle resource hungry tasks. On account
of this issue, it is crucial to embody new methods in order to
reduce the execution time and other resources within a smart-
device.

In our previous work [38], we showed that Equal offloading
in a mobile ad-hoc cloud reduces the load on the device
performing the IDS task and decreases the execution time.
However, this architecture still embodies a disadvantage of
wasting extra resources by using all nodes in the cloud
without taking into consideration that some nodes might be
low on battery or have a high CPU usage which could hinder
the offloading task. Offloading equally to all devices is not
necessarily the best distribution since a better execution time
might be achieved by skipping nodes with heavy CPU usage.

IV. APPROACH OVERVIEW AND ARCHITECTURE

In this section, we present an overview of our approach and
discuss the architecture of the framework illustrated in Figure
1. Our approach consists of a mobile agent that is accountable
for discovering nearby devices through Wi-Fi Direct and
establishing a connection between them. Hence forming a
mobile ad-hoc edge cloud that allows secure communication
between its devices and sharing resources to reduce the com-
putational load on devices. Communication within the cloud
is limited to data needed for decision making and executing
the security service (IDS). All communication is handled and
routed through the Master Node. Each device in the mobile ad-
hoc edge cloud is considered as a node. Three different types
of nodes exist: Requester Node, Master Node, and Serving
Node constituting its main elements. Different components run
on each node depending on its type. They allow a seamless
offloading mechanism, a managed communication system, and
an intelligent distributed intrusion detection process within the
mobile ad-hoc edge cloud. Below we discuss the three main
components.
• Requesting Node is an element of the mobile ad-hoc

edge cloud that requests the execution of a task. It re-
quests from the Master Node to decide whether offloading
is needed to augment its performance or not. In the latter,
Requesting Node executes the task locally. It runs the
following sub-components: Ad-Hoc Cloud Manager, Pro-
filer, Communication Manager, and Intrusion Detection
Engine.

• Master Node is a node that is assigned to be the Group
Owner in a specific Wi-Fi Direct Group and therefore is
responsible for managing the mobile ad-hoc edge cloud

 

Fig. 1: Framework Architecture

and requests by nodes. It manages all connected nodes
in the cluster and decides on the nodes that are most
suitable to handle the offload request. Also, it is respon-
sible for communicating data in the mobile ad-hoc edge
cloud between the nodes. It runs all the sub-components
consisting a normal node in addition to the following
sub-component: Intelligent Offloading Distributor and
Offloading & Distribution Controller. In this work the
master node is chosen in a fixed manner representing the
group owner and if the cluster already exist, the master
node will be the group owner of that cluster which the
requester node has joined. As previously done in several
works [39], the selection of the master node can be done
based on several criteria (e.g., Trust, QoS, energy level)
yet it is out of the scope of this article.

• Serving Node is a node that the Master Node offloads
work to. In other words, it is a surrogate node that
performs services, in accordance with the Master Node,
on behalf of a Requesting Node. It performs the required
task and returns the result back to the Master Node. It runs
the following sub-components: Ad-Hoc Cloud Manager,
Profiler, Communication Manager, and Intrusion Detec-
tion Engine.

Following, we list the different subcomponents and describe
their interactions.

A. Ad-Hoc Mobile Cloud Manager

The Cloud Manager acts in two different perspectives
depending on the type of the node it is running on. On a
Master Node, it is responsible for creating and monitoring the
mobile ad-hoc edge cloud within a certain range. It accepts
joining requests and dynamically keeps track of the number
of connected nodes and their status. Furthermore, it accepts
a profile of each device once it connects. The profile is
updated and stored to be used later in offloading decisions.
It also differentiates between the different types of nodes and
assigns specific roles to each. In case of a Requester Node or
Serving Node, the Cloud Manager searches for a Group Owner
(GO) and requests to join its cluster. After this discovery
phase, it maintains the connection with the joined cluster in
order to send and receive data from the Master Node. Once
the connection is established, the Cloud Manager sends the
devices’ profile (created by the Profiler module) to the Master
Node. Finally, it is liable for reconnecting or disconnecting in
failure scenarios.



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

6

B. Profiler

The profiler is developed as a service that runs in its own
process and uses native code to access the "virtual file system"
and captures run-time system information on the device.
It is responsible for collecting resources consumption and
availability from the Kernel’s information center. It collects
information related to the device’s resources such as CPU
usage per process, memory used by each process, and battery
level. It also determines the amount of free memory on the
device, the name of the device, and differentiates between
system and user processes. The data collected by the profiler
is updated at a regular basis (periodically) in the mobile ad-
hoc edge cloud and can be directly requested anytime by
other modules in the framework (on-demand). The output of
this profiler is a well structured file for easy and fast access
containing all gathered information. Therefore, the Profiler is
able to categorize the nodes in the cluster into Idle, Moderate,
and Critical based on the collected information.

C. Communication Manager

The Communication Manager is a data socket layer de-
veloped as a service to allow and facilitate the exchange of
data between nodes. This layer specifies a set of protocols
used to define and abstract the communication according
to each node’s requirement. It arbitrates two communication
mechanisms, P2P and client-server, based on the type of the
node and the operation to be performed by several modules of
our framework. It is also responsible for sending the collected
traces from the Offloading Manager module of the Requester
node to the Offloading and Distribution Controller of the
Master node, and then back to the Requester node.

D. Intrusion Detection Engine

The Detection Engine is the core component for detecting
any intrusion. It is in control of identifying signatures that
are matched with a predefined malicious data-set. Several
algorithms can be used for developing such engines such
as, Aho-Corasick Algorithm, Low Memory Keyword Trie, Wu-
Manber offered by Snort [40]. Genetic Algorithms and Data
mining techniques are used in building such engines as well
[41]. In our work, we implemented a JAVA detection engine
built on top of the Aho-Corasick Algorithm to allow matching
of real time gathered system calls against a data set. It
constructs a string pattern finite state machine (trie) from a
malicious signature database. It adds all required transitions
and failure links between internal nodes of the Finite State
Machine (FSM) to allow fast and efficient traversals and
searching of elements. Since we are using a known database
(predefined data set), the complexity of the algorithm tends to
be linear in terms of input length and number of harmonized
patterns. Each node, uses the constructed FSM to scan patterns
in a background thread. The Detection Engine works with
two types of data depending on the Intelligent Offloading
Distributor decision. In case of a local execution, the engine
scans data of the same device and acts accordingly (raise alerts,
block execution etc...). However, in case of an offloading
decision, the Intrusion Detection Engine scans data of a
Requester Node that is provided by the Master Node. The
Engine then communicates the result of the detection back to
the Master Node through the Communication Manager. The
detection engine can either be the same on all nodes or nodes
can run altered versions in order to enhance the detection rate.
Each engine performs a scan on the same data resulting in
further and more powerful detection of malevolent data.

E. Intelligent Offloading Distributor
The Intelligent Offloading Distributor (IOD) module is

developed in Java and runs on top of a Heuristic Algorithm.
The module runs on the Master Node and allows it to decide
whether offloading the execution of a chunk augments the
performance of the Requester Node or not. The offloading
decision could either be scanning the task locally on the
Requester Node or offloading it to a remote node for execution.
In case it decides on a local execution, the Master Node
instructs the Requester Node to execute the service locally
and no further communication is required. On the other hand,
if an offloading decision is taken, it requests the data from
the Requester Node and reaches out to the Communication
Manager for further handling. In order to take an intelligent
offloading decision, the IOD first requires gathering all neces-
sary information about the mobile ad-hoc edge cloud such as
the size of the data to be offloaded, number of nodes, status
of each node (idle, moderate critical), battery level, and CPU
and Energy consumption on each node from the Profiler and
other modules of the framework. If an offloading decision is
taken, it then requires the Requester Node to send the data in
order to distribute it according to the taken decision.

Moreover, our IOD is a multi-layered module in the sense
that it outputs decisions taking into consideration both the
resources of the Requester Node and the available resources
(nodes) in the mobile ad-hoc edge cloud. To further emphasize
this idea, assume a mobile ad-hoc edge cloud composed of
three nodes with very high CPU usage. One node decides,
based on its resources only, that offloading augments its per-
formance. However, taking into consideration the mobile ad-
hoc edge cloud resources, it is better for the node to execute its
task locally rather than remotely. Such scenarios are avoided
by our multi-layer IOD module since it initially takes into
account the available nodes in the mobile ad-hoc edge cloud.
The offloading decision is composed of a mapping between
the set of Serving Nodes and the chunks to be handled by
each Serving Node. For this mapping to be determined (where
and what to offload), the module uses the NSGAII genetic
algorithm to solve a multi-objective optimization problem that
minimizes execution time and energy consumption on the
Requester Node. Section V construes the optimization model
in details.

F. Offloading Distribution Controller
The Distribution Controller is a vital sub-component run-

ning on the Master Node only. It is developed as a service and
pledged for handling the data to be distributed on other nodes
and gathering the results. It receives its input from Intelligent
Offloading Distributor and prepares it for distribution. The
service runs in the background and spans one thread for
each Serving Node. It divides the data into equal segments
upon available nodes in the cluster. In some cases, where
equal segmentation of the data is impossible, the last segment
tends to be relatively larger than the rest. Each thread is
responsible for transmitting the data, in accordance with the
Communication Manager and in a guaranteed and reliable way
to the node. The threads are also accountable for gathering the
result from their associated nodes. The distribution process is
executed in a parallel manner achieving efficient computation.
In addition, the Distribution Service accepts data from spanned
threads composed of the duration of the scanning process,
number of malicious items, and each individual malicious
item. After accepting results from all threads, the service
communicates the final result back to the requester node
(the node that requested the offloading process) through the
Communication Manager. In case of a failure in any thread



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

7

or node, the Master Node notifies the Requester Node to
cover up. A Master Node, Group Owner, is assigned to
this cluster and responsible for exchanging data between the
different slaves. Moreover, the Master Node is in charge of the
offloading decision, distribution mechanism, data transferring,
and receiving the end result. In order to perform these tasks in
a seamless and effective way, a service running on the Master
Node manages the process. In addition, a service running on
all nodes in the cluster coordinates with the Master Node’s
service using a set of predefined protocols. The Master Node
receives an offloading request along with the data needed to
obtain a decision. Using our Intelligent Offloading Distributor,
the Master Node decides whether offloading will augment the
Requester Node’s performance or not. If an offloading decision
is taken, our intelligent module selects the best distribution
that will reduce energy and execution time based on a Genetic
Algorithm. The framework then starts the distribution process
in which the data is scattered and distributed among the
Serving Nodes in a parallel manner. The Master Node waits
for results from all Serving Nodes and informs the Requester
Node of the final outcome. The Requester Node is now alarmed
about any malicious data and can act upon it by removing the
detected threats.

In order to generate data required by the detection engine,
strace diagnosis utility can be used to intercept and record
the system calls resulting from the interactions of applications
with the Linux kernel. The execution traces are generated
and saved in a log to be used by the detection engine. Due
to the scope of this paper we assume that the election and
movement of the Master Node is already established granting
a well managed ad-hoc edge cloud. In addition, we assume a
trust relation between the nodes allowing exchange of sensitive
data.

V. MULTI-OBJECTIVE OPTIMIZATION FOR INTELLIGENT
INTRUSION DETECTION OFFLOADING

Though the advancements in mobile technologies, smart
mobile devices are still limited in terms of CPU power,
memory capacity and battery lifetime. While computation of-
floading in a mobile ad-hoc edge cloud releases mobile devices
from extensive processing, it is indispensable to determine for
each node the amount of data to be processed with respect
to the latter resources and performance as well as the local
node needs. We consider in this work a smart mobile device
D(C,N), where C represents the size of data to be scanned,
and N represents a set of connected nearby nodes forming
the ad-hoc edge cloud, such that N = N1,N2,N3, ...Nm, where
Nj/ j = 1, ...m and C = C1,C2,C3, ...Cn, where Ci/i = 1, ...n
forms a chunk of computations to be processed. The aim is
to scan these chunks on connected nodes in order to release
resources on device D. Each Ci has its own demands with re-
spect to execution time and energy consumption. The demands
are divided into two aspects: local and remote. Local demands
correspond to the execution time and energy consumption
of the device D itself. Remote demands correspond to the
execution time and energy consumption on a remote device
Nj , D in addition to the transmission costs in terms of
energy and execution time. Moreover, each of Ci demands
is dependent on the executing node Nj . The remote demands
affect both Equations F1 and F1 corresponding to the total
energy consumption and execution time respectively, which we
aim to minimize. The total energy consumption is calculated
based on the energy spent on processing computations locally,
on transmitting data between local and remote device and by
the Wi-Fi being on. As for the total execution time, beside
the time needed to process data locally, the time to transmit
data to remote device, receive the response back and any

latency in the network are all considered in the formula. So
this is how implicitly remote demands affect these equations.
Moreover, each of Ci demands is dependent on the executing
node Nj . Determining the finest distribution of chunks on the
different nodes leading to the best outcome is a challenging
problem. Using the data collected from the Profiler module,
nodes with low battery level (below threshold t) are excluded
as performing detection tasks will put their survivability on
the line. As a result, we guarantee that all surrogate nodes are
capable of completing their assigned tasks. In this work, the
threshold is chosen based on extensive empirical experiments,
while more advanced mechanism to choose this value, is left
for future work.

Definition 1: Given a set of chunks that need to be scanned
for intrusions detection on a device D which has limited
resources, yet it is part of an ad-hoc network of N nodes
of connected mobile device, how to distribute these chunks to
be scanned by participating nodes in a way to minimize the
scanning time for intrusion detection, and energy consumption
on device D? Knowing that each chunk Ci has independently:
local energy consumption Ec

L
i , and local execution time

Tc
L
i , and requires different remote energy consumption Ec

N j

i

and remote execution time Tc
N j

i when offloaded on nearby
node Nj , the network is characterized by bandwidth B and
Latency L, find the best distribution of these chunks such
that the execution time and energy consumed on device D
are minimized.

The complexity of this problem is heavily impacted by the
number of possibilities a file can be divided into several chunks
where each chunk is assigned to a nearby node to be scanned.
This can be related to the number of ways n different objects
can be be distributed into m different bins with c1 object in
first bin, c2 in the second bin, etc. such that c1+c2...cm = n. In
our case, the number of bins m is the number of nodes in the
ad-hoc mobile edge cloud since each chunk can be executed
on any node.

In order to highlight more on the problem complexity,
consider an ad-hoc mobile edge cloud that consists of 10
nodes where each node including the local (Requesting Node),
is accommodating a chunk of the input data. As a result,
each chunk can be executed either locally or on any of the
9 remaining nodes. Therefore, we will end up with 1010

(10,000,000,000) different possible distributions. This number
can significantly and radically increase as the number of nodes
and chunks increases.

Theorem 1: Multi-objective Optimization Problem is NP-
Hard.
Proof: We reduce the Multiobjective Multidimensional knap-
sack (MOMKP) [42] problem to our problem. The MOMKP
is defined as follows: given n items (b1, b2...bi) where each
one has m weights (wi

1,w
i
2...w

i
m) and p values (ci1, c

i
2...c

i
p),

distribute the items into different sacks such that the total p
values is maximized without exceeding the m knapsack capac-
ities. Accordingly, we construct an instance of our problem as
follows:
• Represent each chunk to be scanned as an item in the

MOMKP and setup N nodes in the mobile ad-hoc edge
cloud to form the sacks.

• For each chunk (item) Ci , set its weights to be the
demands in terms of execution time and energy when
executed either locally or remotely on node Nj .

• For each chunk (item) Ci , set its values to be the objective
functions and Fci

1 and Fci
2 representing the cost of the

chunk in terms of energy and execution time respectively.
• Set the total weights of each node as Ttime representing

threshold value for execution time, which the node should



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

8

not exceed in order to maintain good performance upon
scanning assigned chunks.

In our problem, we choose to minimize the total cost rather
than maximizing it, which is the case of MOMKP, however the
problem remains essentially the same. Hence, the objective
of our problem becomes to minimize the costs of chunks
distributed on different nodes. A solution to it yields a solution
to the multi-objective multi-dimensional Knapsack problem.
Following the above reduction, an algorithm for solving our
problem can be can be used to solve the MOMKP and hence
our problem is NP-Hard.

VI. PROBLEM FORMULATION

Based on the definitions given above, we formulate our
problem even further by building a model that aims to mini-
mize the energy consumption on a local device D and speed up
the scanning process simultaneously by reducing its execution
time. Table III defines all notations used within the below
model.

1) Minimizing Energy Consumption
The overall energy consumption of scanning a chunk is
composed of both the energy consumed locally by the
scanning task and energy consumed due to offloading.
The local energy is spent on CPU processing while
the offloading cost is due to the energy spent on data
transmission including having the Wi-Fi radio turned on.

F1 = min
n∑

N j=1

xN j (E
processing
N j

+E transmission
N j

+E idle
N j
)×

WE

2) Minimizing Execution Time
The total execution time of a task is composed of
its local execution time (processing) and transmission
round-trip time. The time spent on transmission includes
the time to send the input and receive the output, in
addition to any latency in the network.

F2 = min
n∑

N j=1

xN j (T
processing
N j

+ T transmition
N j

) ×WT

After having declared the minimization functions, the
multi-objective optimization problem becomes:

F = min{F1,F2}
S.t

n ∈ N
0 <= xN j <= 100
F2 ≤ Ttime
WE +WT = 1

The first constraint ensures that the number of nodes within
a cluster belongs to the set of natural numbers. The second
constraint ensures that a node can be assigned any data
size between 0% and 100% of the data. If xN j is 0 then
node Nj will not be participating in the cooperation of the
intrusion detection process. On the other hand, if xN j is
greater than 0 (say 15), then N j will be assigned 15% of
the data. The third constraint ensures that the time spent on a
task’s execution doesn’t exceed a certain threshold. The fourth
constraint ensures that the assigned weights of the objective
functions sums to 1. In order to make the decision adaptable
with the device state and needs, each objective function can
be assigned a value that represents its weight compared to the
other functions. For instance, in some cases, minimizing the
execution time could be of higher importance than reducing

the energy consumption on the device. Therefore, a higher
weight is assigned for the execution time objective function
in the model indicating that minimizing the execution time
is more critical and hence the distribution of chucks to be
generated should answer such needs.

TABLE III: Notations

Variable Description

n Number of nodes

xNj
Decision variable indicating the percentage of data to be executed by the node j .

E
processing
Nj

Energy consumed locally when the task is executed by the node.

Etr ansmission
Nj

Energy consumed when the task is offloaded to the node.

Eidle
Nj

Energy consumed due to Wi-Fi being on and Wi-Fi scanning.

T
processing
Nj

Execution time of task when executed locally.

T tr ansmission
Nj

Time needed for task to be offloaded.

WE Weight of the objective function minimizing energy.

WT Weight of the objective function minimizing the execution time.

VII. HEURISTIC ALGORITHM FOR INTELLIGENT
OFFLOADING DISTRIBUTION

Genetic Algorithms are used to solve many search-problems
in different areas by imitating the process of natural selection.
Natural evolution techniques are used to generate more fitted
solutions from an initial set of individuals. At first, a set of
individuals forming a population are randomly selected and
evaluated according to their fitness. The fitness is calculated
according to a criteria that evaluates the adequacy of potential
solutions. Individuals (chromosomes) with the best fitness
are selected, mutated, and mated in order to generate a
new population. The better fitness a solution has, the better
candidate it is to reproduce offspring. Selected individuals are
placed in a mating pool. Offspring is generated by performing
a cross over between two parents from the mating pool. Parents
could possibly undergo a mutation before the crossover in
order to keep a diversity from one population to another. More
fitted solutions are generated, hence providing better solutions
to the problem at hand. The evolution process is terminated
via several ways such as reaching a maximum number of
iterations or even reaching a desired trade-off. The output of
the evolution process will be a set of solutions having the best
fitness, therefore being more favorable to the problem. Genetic
Algorithms are being used in a wide range of applications to
solve complex optimization, scheduling, and search problems
by benefiting from the biological evolution process [43]–[45].

In our work, we exploit this heuristic to establish an intelli-
gent distribution module used to solve our problem. Below, we
show how we linked and related the main natural techniques
of evolution to our problem. Several genetics algorithms
have been proposed for solving multi-objective optimization
problems. We conducted in previous work [46] experiments
comparing the overhead of NSGAII, SPEA2, IBEA, MOCell,
and SMSEMOA multi-objective optimization algorithms on
mobile devices. The results showed that NSGAII leads to best
performance, less energy and CPU consumption. In our work,
we adapted NSGAII [47] that classifies solutions based on
their Pareto ranking and defines proximity between classified
solutions using crowding distance. The algorithm attempts to
find a good trade-off between several conflicting objective
functions that results in solutions that best fit the problem.

1) Individual’s Representation We represent an Individual
as an array of size L where none of its cells are
empty, L is equal to 100/y, and y is the offloading
unit. For instance, L is 10 when the offloading unit
is chosen to be 10% of the input data file and it is
20 when the offloading unit is chosen to be 5%. Each



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

9

Algorithm 1 Intelligent Offloading Decision and
Distribution(N , L, µc , µm)

1: Input: Population Size N , Individual Length L, Crossover
Rate µc , Mutation Rate µm

2: Output: Set of Fittest Individuals S
3:
4: Set Initial Population Index k := 0
5: Generate Random Population Pk of Size N
6: for i ← 0 to N do
7: Individual I ← Pk[i]
8: Evaluate Objective Functions F1(I),F2(I)
9: end for

10: while !Termination Criteria do
11: Select x Best Solutions from Pk and add them to Pk+1
12: Select n Fittest Solutions of Pk using Binary Tourna-

ment such that n = N − x
13: Crossover µc n using SBX Crossover
14: Mutate µm n using Polynomial Mutation
15: for i ← 0 to N do
16: Individual I ← Pk+1[i]
17: Evaluate Objective Functions F1(I),F2(I)
18: end for
19: K ← K + 1
20: end while
21: return S Fittest Solution From Pk

cell contains an identifier i of type integer such that
0 <= i <= n which identifies the node executing
the chunk. Hence, each cell in the array represents a
node’s execution of the corresponding chunk. Finally,
we find the data percentage executed by node i via
counting the number of occurrences of the integer i in
the array and multiplying it by the offloading unit y.
For example, assuming that we have 6 nodes, which
is equivalent to L = 6 with the following distribution:
1 2 3 4 5 1 1 5 5 6, the individual in this case will
be represented as 30 10 10 10 30 10 which implies
that 30% of the file will be executed by node 1, nodes
2,3,4,and 6 will each execute 10% and node 5 will
execute 30% of the file. Following this representation
we guarantee the distribution of the whole file and we
are able to decode the distribution of remote and local
execution of the nodes.

2) Fitness Evaluation In order to evaluate individuals, a
fitness function is used in the Genetic Algorithm. This
fitness is assigned to each individual, evaluated, and used
as a metric to select individuals that are more fitted (have
a better solution to the problem) in the population. We
use in this work the previously described functions F1,F2
in order to calculate the fitness. Individual with lower
fitness are better candidates to the solution since the aim
is to minimize these metrics.

3) Operators
• Selection: Individuals are selected from the pop-

ulation based on a selection operator. We use a
binary tournament selection algorithm that involves
selecting k (tournament size) individuals randomly
and then choosing the best individuals from the
tournament based on their probabilities.

• Crossover: Selected individuals reproduce to gener-
ate new populations. We use SBX Crossover that
allows to take part of parent 1 and part from
parent 2 and create a new child c. For example,
p1 = 10 20 30 15 5 20 and p2 = 40 10 10 10 15 15
can result in c = 10 20 30 10 15 15.

• Mutation: Selected Individuals have a chance to get
mutated (based on a probability) in order to keep
a diversity in the generations. We use a mutation
in which some cells’ values are randomly changed
indicating a change in the individual. For instance,
individual A represented as 10 20 30 15 5 20 can
be mutated to be 15 20 30 15 5 15.

Algorithm 1 describes the flow of our Intelligent Offloading
Distributor in terms of the above described definitions. It
first creates and initializes a random population composed
of a list of individuals. Each individual represents a possible
solution of the problem. The algorithm then performs an initial
evaluation to determine the fitness of the each individual in
the population by assessing the different objective functions.
In the following steps, the algorithm starts to improve the
overall population’s fitness by adopting a survival of the fittest
methodology. Individuals that survive are then added to a
new population with the possibility of undergoing crossover
and mutation according to defined rates (µc and µm). This
aims to increase the fitness of the whole population since
it disregards individuals with low fitness values in favor of
keeping individuals with higher fitness. The new generation
of individuals is evaluated in order to determine their fitness
value. This process repeats until the termination condition is
met, which could be based on number of iterations, time,
CPU cycles, or any relevant condition. Finally, the intelligent
Offloading Distributor returns the individuals offering the best
tradeoff to solve our problem.

The time complexity of this algorithm is mainly affected by
the evaluation of the objective functions, population size, and
termination criteria. Line number 5 has O(1) complexity. Lines
6 to 9 have a complexity of O(N L) where L is the Individual
length. Lines 10 to 18 have a complexity of O(IN L) where I
is the number of iterations in the termination condition. The
return statement, line number 21, has O(1) time complexity.
Therefore, the total complexity sums up to O(IN L).

VIII. IMPLEMENTATION AND EXPERIMENTS

In this section, we investigate the performance of our
proposed model pertaining to execution time, energy consump-
tion, and number of selected nodes. In addition, we provide a
comparison of our scheme with an equal offloading approach
proposed and discussed in our previous work [38].

A. Testbed Setup
We use different types of devices running Android Operat-

ing System in our experiments; namely Samsung Galaxy S5
with the following specifications: Quad Core 2.5 GHz CPU,
2 GB RAM, 16 GB storage, and running Android OS v5.0
and LG Nexus 5 with the following specifications: Qualcomm
Snapdragon 800 2.27 Ghz, 2 GB RAM, Adreno(TM) 330
@ 450 MHz, 32 GB storage, and running Android OS v5.0.
We establish an ad-hoc edge cloud composed of 10 devices,
using Wi-Fi P2P on Android that uses 802.11 networking
standard. In our experiments, we focus on 3 aspects: perfor-
mance, energy, and number of selected nodes. Performance
is measured in terms of the response time of the IDS i.e.
time needed for execution of the task. Energy is measured
as the total energy consumed by CPU, Wi-Fi, and 3G. The
number of selected nodes represents the number of nodes that
are used as surrogates in the mobile ad-hoc edge cloud. We
use PowerTutor [48], an android application that monitors the
power consumed by the CPU, screen, and network in order to
compute the energy consumed by the task at hand. In addition,
we use the power profile [49] on android devices in order
to get the power consumption of Wi-Fi transmission, power



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

10

consumed by the CPU when it is idle, power consumed by
active Wi-Fi transmission, and power consumed on screen
brightness. Regarding the CPU, memory usage, and battery
level on the device, we use the Profiler component discussed
previously in section IV.

TABLE IV: Data Distribution based on the Offloading Dis-
tributor Module

Case Decision
C1 0 10 10 0 40 10 10 10 10 0
C2 10 10 10 0 30 10 10 10 10 0
C3 0 10 20 0 10 20 20 20 0 0
C4 20 10 10 0 10 20 10 10 10 0
C5 10 10 10 10 10 10 10 10 10 10
C6 40 10 10 0 0 10 0 10 0 20
C7 30 0 0 0 0 10 30 0 30 0

Table IV shows the distribution of the file, with the best
tradeoff, in a mobile ad-hoc edge cloud of 10 nodes via
our solver that implements Algorithm 1. Yet, the proposed
approach is not limited to any offloading unit and still based
on dynamic selection, based on the resources in the cloud. In
other words, it can find any distribution of chunks that best fit
the multi-objective optimization problem defined in Section
VI. However, in the experiments we limit the offloading
unit to be multiple of 10% to provide clear comparison
for different device settings (e.g., idle, critical). However, in
different experiments this value can change dynamically from
one execution to another. The main objective of Table IV is
to show an example of the output of the algorithm while we
study the correctness of the decision in Section VIII-B. We
choose the offloading unit in the experiments to be multiple
of 10%. More dynamic way to choose the offloading unit
will be part of future work. Since the problem at hand is
a multi-objective optimization problem, our solver results in
more than one solution per case. However, since every solution
is not dominated by any other one, all solutions are considered
equally good. Hence, we can either randomly pick a solution
for each case or based on a constraint. For example, if time
is a critical factor then we can pick the solution with the
lowest execution time. On the other hand, assuming energy
has more weight over time, we can pick a solution with
the lowest energy. This trade-off is a very important feature
of this algorithm, however in table IV we randomly picked
the solutions. Different cases represents different scenarios
of the mobile ad-hoc cloud pertaining to the status of node,
battery level, and type of node. In the sequel, we highlight
the main ones. Case C1 represents a setup of 10 nodes
where the requester node #1 and surrogate node #3 & #10
are in critical state, node #4 is in idle state and the rest
of nodes are a mix of idle and moderate nodes. Case C1
shows that the Requesting Node (#1 highlighted in red) is
offloading all its work. The work is being offloaded to nodes
number 1, 2, 4, 5, 6, 7, 8 where each node is working
on 10%,10%,40%,10%,10%,10%,10% respectively. Case C7
represents a cloud composed of 10 nodes where the requester
node #1 and nodes #7, #9 are in an idle state, nodes #2, #3, #4,
#5, #8, #10 are in a critical state, and node #6 is in moderate
state. In case C7, the Requester Node is handling 30% of the
file while the other 70% are being distributed on 3 different
nodes (5,6,8), where nodes 6 and 8 are handling 30% each
and node 5 is handling the remaining 10%. Case C5 represents
an ad hoc cloud setup composed of 10 nodes where all nodes
are capable of handling a chunk to speed up the requester’s
node execution time. The nodes here are all in an idle state
and offloading is performed equally on all nodes in parallel.

To make our experiments as realistic as possible, we allow
each node to be in three different states: Idle, Moderate,
Critical. An Idle node represents a node that is in stand-

by, not performing any task other than the default running
services. The CPU usage of such node is between 0 and
10%. A Moderate node represents a node performing some
services such as GPS, networking, Bluetooth etc.. where the
CPU usage doesn’t exceed 55%. A Critical node indicates
a node with a very high CPU usage, above 90%, due to
running several computation-intensive applications. Therefore,
we create our mobile ad-hoc edge cloud using combinations
of the aforementioned scenarios. We divide the combinations
into 4 different cases: All Idle, All Moderate, All Critical,
Mix. The All Idle case entitles a situation where all nodes
in the Mobile ad-hoc edge cloud have an Idle status. The
All Moderate depicts a situation where all nodes in the edge
cloud have a Moderate status. The All Critical indicates a
situation where all nodes in the mobile ad-hoc edge cloud
have a Critical status. Finally, the Mix scenario includes nodes
of different statuses. We further divide the Mix scenario into
multiple assignments shown in table V. In each scenario, we
study 3 main situations: Local Execution (L), Equal Offloading
(E) and Intelligent Offloading Distributor (IOD). Local Exe-
cution depicts executing the task locally on the device. Equal
Offloading represents offloading an equal percentage of data
to all nodes. Hence, each node is involved in the offloading
process with an equal input. Furthermore, we study 2 other
scenarios as described in table VI in order to take into account
extreme cases. Finally, we show the distribution generated
by our Smart Solver component and compare it to the other
situations. In each of these various situations we focus on
3 significant factors that affect the Requester Node and the
mobile ad-hoc edge cloud itself. Particularly, we monitor the
total execution time of the task, the energy consumed by the
Requester Node, and the total number of selected nodes and
their status. Moreover, to provide definite results regarding
our approach, we perform the same set of experiments on
1MB,10MB, and 50MB sizes of input data.

TABLE V: Mix Scenario Assignments
Assignment Description
7 Critical 3

Idle
The mobile ad hoc cloud consists of 7 Critical
nodes and 3 Idle nodes.

9 Critical 1
Idle

The mobile ad hoc cloud consists of 9 Critical
nodes and 1 Idle node.

5 Critical 5
Idle

The mobile ad hoc cloud consists of 5 Critical
nodes and 5 Idle nodes.

TABLE VI: Execution Scenarios
Scenario Description

L Local execution on Idle Requesting Node.
L Critical Local execution on Critical Requesting Node.

E Equal distribution on the mobile ad hoc cloud
nodes.

IOD
Execution using our Intelligent Offloading Dis-
tributor Component when Requester Node is in
an Idle state.

IOD - Critical
Execution using our Intelligent Offloading Dis-
tributor Component when Requester Node is in
a Critical state.

B. Results and Analysis
The following results are the average results of several runs.

It is worth to mention that when the input is similar, for
example for IOD and IOD2, the variation in results come
from the fact that our intelligent offloading distributer outputs
several results that are equally good but, with each result
prioritizing different constraint energy, execution time, and/or
the number of used nodes. Figure 2 shows our approach’s
evaluation in a scenario where all nodes of the mobile ad-hoc
edge cloud are idle. We compare our Intelligent Offloading



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

11

 

Fig. 2: Approach Evaluation Using Idle Nodes

 

Fig. 3: Approach Evaluation Using Moderate Nodes

 

Fig. 4: Approach Evaluation Using Critical Nodes

Distributor module to local execution and equal offloading.
We vary the input size between 1MB, 10MB, and 50MB in
order to test our IOD module under different situations. In
each scenario, we monitor the execution time of the task and
the energy consumption of the Requester Node. In addition,
we keep track of the number of nodes used in the cloud with
each of the above mentioned cases. Offloading equally to all
nodes in the cluster shows a drastic improvement over local
execution. For example, taking the 10MB input size, we notice
a 91.3% decrease in energy consumption and 78.5% decrease
in execution time. Our Intelligent Offloading Distributor, com-
pared to the Equal offloading, enhances this result even more
by reducing the energy consumption by 80.7%, decreasing
the execution time by 4%, and cutting down the number of
selected nodes by 40%. Hence it significantly improves the
performance with respect to local execution decreasing energy
consumption by 99% and time by 79.4%. Similar results are
also shown with the 1MB and 50MB of input data. Therefore,
using our IOD module leads to better result in which energy,
time, and number of nodes are reduced.

Similarly, Figure 3 shows our approach’s evaluation in a
scenario where all nodes of the edge cloud are in a Moderate
state. Offloading equally to all nodes in the cluster shows a
drastic improvement over local execution. For example, taking
the 1MB input size, we notice a 91% decrease in the energy
consumption and 83.7% decrease in execution time. When
comparing our IOD module with equal offloading, we notice
2 interesting outputs. The first one is represented by the IOD
case and the second one by the IOD2 case. We notice that both
results are actually good, however each one has its own usage.
For example, assuming that energy is prioritized over time,
result IOD can be adopted since it gives the minimum energy
consumption, but at the cost of increasing execution time by
18.3%. Energy is reduced by 92% here due to offloading
to less nodes since the number of selected nodes is lowered
from 10 to 6 nodes compared to equal offloading. If we also
compare this result (IOD) with local execution we notice a
major improvement summarized by 99.3% and 80% decrease
in energy and time respectively. Therefore, we come up with
another motivation behind adopting this decision. In some
situations the number of used nodes is a critical issue in a
mobile ad-hoc edge cloud due to several reasons related to
security such as malicious nodes, communication, trust etc.
On the other hand, case IOD2 can be adopted when execution
time is prioritized over energy since it results in more energy
consumption but less execution time. It is worth to note here
that IOD2 has the same results as that of equal offloading
with regard to energy, time, and selected nodes. Very close
results are also observed when the input size is changed to
1MB and 50MB. From this observation, we can perceive that
equal offloading provides the best decision when it comes to
execution time.

Again, Figure 4 illustrates our approach’s evaluation in a
scenario where all nodes of the mobile ad-hoc edge cloud
are in a Critical state. Offloading equally to all nodes in the
cluster shows a drastic improvement over local execution. For
example, taking the 1MB input size, we notice a 91% decrease
in energy consumption and 79.5% decrease in execution
time while using the 10 nodes of the cloud. However, our
IOD module proves again to be a better option than equal
offloading. Compared to equal offloading, our IOD further
reduces energy consumption by 92%, decreases execution time
by 25.7%, and lowers the number of selected nodes in the
cluster by 30% (from 10 to 7 nodes). Analogous outcomes
are also observed when changing the input data to 1MB and
50MB. Consequently, the IOD unit decides to offload the entire
file to 7 nodes only in a way that optimally reduces both energy
and time.

Furthermore, assuming that nodes in an ad-hoc mobile edge
cloud would always have the same computation state in real
life environments is not realistic. For instance, some nodes
might have a Critical state where several heavy applications
are running, while others might be Idle. As such, we further
extend our experiments to include such Mix situations where
the edge cloud is composed of nodes with different states. We
choose a few Mix assignments illustrated in table V. Figure
5 shows the variation of execution time, energy, and number
of selected nodes using our Intelligent Offloading Distributor
compared to Equal Offloading under Mix assignments and
using a 1MB input size. In the first 3 cases (E, IOD, and
IOD1), the Requesting Node is in an Idle state whereas it
suffers from Critical situation in the last case (IOD2).

Figure 5a represents a scenario where the ad-hoc mobile
edge cloud consists of 7 Critical nodes and 3 Idle nodes. In the
first 3 cases (E, IOD, and IOD1), the Requesting Node is in an
Idle state whereas it is Critical in the last case (IOD2). Equal
offloading takes 26 seconds to finish the execution, consumes



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

12

 (a) 7 Critical and 3 Idle Nodes

 (b) 9 Critical and 1 Idle Node

 (c) 5 Critical and 5 Idle Nodes

Fig. 5: shows the evaluation of our Intelligent Offloading
Distributor using 1MB input under a mix assignment scenario.

2,16J of energy, and uses 10 nodes. In case the Requester
Node is Idle, IOD decides to use 4 nodes in the cluster instead
of 10 in order to reduce the execution time by 63% at the
cost of consuming 3.98J more energy (65% increase). This
decision can be used when time is prioritized over energy. On
the other hand, if energy is considered critical, then a different
decision can be reached using our IOD module. Case IOD2,
shows that using the same amount of energy, our Intelligent
Offloading Distributor can still decrease the execution time
by 55.7% and use 40% less nodes than an equal distribution.
Moreover, In case the Requester Node is in a Critical state,
our IOD module chooses to offload the entire input data on 4
nodes instead of 10 while decreasing both the energy by 91%,
execution time by 65%, and selected nodes by 60%.

Figure 5b demonstrates a scenario where the ad-hoc mobile
edge cloud consists of 9 Critical nodes and 1 Idle node. Equal
offloading takes 26 seconds to finish the execution, consumes
2,16J of energy, and uses 10 nodes. In case the Requester
Node is Idle, IOD decides to use 7 nodes instead of 10 in order
to reduce the execution time by 51% at the cost of consuming
65% additional energy. This decision can be used when time
is prioritized over energy. On the other hand, if energy is the
more demanding factor, then a different decision can be used
using our IOD module. Case IOD2, exhibits that 49% less
energy can be consumed while increasing the execution time
by34% and maintaining the same number of selected nodes
(7) compared to the previous IOD result. Moreover, In case
the Requester Node is in a Critical state, our IOD module
chooses to offload the entire input data on 7 nodes instead
of 10 decreasing both the energy by 91%, execution time by
51%, and selected nodes by 30%.

Figure 5c illustrates a scenario where the ad-hoc mobile

 (a) 7 Critical and 3 Idle Nodes

 (b) 9 Critical and 1 Idle Node

 (c) 5 Critical and 5 Idle Nodes

Fig. 6: shows the evaluation of our Intelligent Offloading
Distributor using 10MB input under mix assignment scenarios.

edge cloud consists of 5 Critical nodes and 5 Idle nodes. Equal
offloading takes 26 seconds to finish executing, consumes
2,16J of energy, and uses 10 nodes. In case the Requester
Node is Idle, IOD decides to use 5 nodes instead of 10 in
order to reduce the execution time by 66.8% at the expense
of consuming 48% additional energy. However, if energy is
the more demanding factor, then a different decision can be
outputted using our IOD module. For example, Case IOD2,
shows that offloading the entire file decreases the energy
consumption by 92% and lowering the execution time by 62%.
Both decisions cut down on the number of selected nodes by
50% (from 10 to 5 nodes). Comparing both IOD decisions
shows that execution time is slightly prolonged by 1 seconds
in IOD2 while decreasing energy by 95% compared to IOD.
In the last case where the Requester Node is in a Critical
state, our IOD module chooses to offload the entire input
data using 4 nodes only instead of 10 decreasing both the
energy by 91%, execution time by 66%, and selected nodes
by 70%. To conclude, we show that our Intelligent Offloading
Distributor significantly outperforms Equal offloading and it
even performs better when the Requester Node is in a Critical
state.

Figures 6 and 7 also show the variation of energy, time, and
number of selected nodes in Mix assignments using 10MB
and 50MB receptively where the mobile ad-hoc edge cloud
consists of 9 Critical and 1 Idle node in the first figure
and 5 Critical and 5 Idle nodes in the second figure. Both
experiments illustrate that even with different input sizes, our
Intelligent Offloading Distributor produces better results than
Local execution and Equal Offloading. Analogous outcomes
to that of the 1MB input size are observed in both figures.



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

13

 

(a) 7 Critical and 3 Idle Nodes

 

(b) 9 Critical and 1 Idle Node

 (c) 5 Critical and 5 Idle Nodes

Fig. 7: shows the evaluation of our Intelligent Offloading
Distributor using 50MB input under mix assignment scenarios.

Figure 8 portrays the efficiency and effectiveness of our
Intelligent Offloading Distributor pertaining to the status of
skipped nodes. In other words, in this experiment we monitor
the number of skipped nodes and their status. We took a
random sample from our previous experiments indicating 10
different outcomes of our IOD module. The experiment shows
compelling results. 70% of the cases indicate that nodes
with Critical status are the ones being skipped by the IOD
module, while at the same time, as explained above, gaining
powerful improvements over both Local execution and Equal
Offloading. In the remaining 30%, the number of Critical
skipped nodes is less than the number of skipped nodes by 1 or
2 nodes. This indicates that in some scenarios, our IOD module
decides to skip some non-Critical nodes. This is reasonable
and justified by having some situations in which the Requester
Node is in an Idle state and skipped due to offloading the entire
file in order to achieve a better result. In other cases, this is
justified by skipping all Critical Nodes and some additional
non-Critical nodes. Particularly the IOD determines to skip
all Critical nodes to boost the effectiveness of the result, yet
this effectiveness can still be enhanced by skipping other non-
Critical nodes.

IX. CONCLUSION AND FUTURE WORK

This paper addressed problems related to the performance
of running security services locally on smart devices. We
introduced an ad-hoc mobile edge based cloud that provides
security-as-a-service through efficient multi-layer cooperative
offloading. Nodes forming an ad-hoc mobile edge cloud intel-
ligently share their resources to reduce the load on the device
executing the intrusion detection task. Our proposed approach

 

Fig. 8: Number of Skipped Critical Nodes

is capable of reducing energy consumption and execution time
via a set of components that rely on profiling, multi-objective
optimization models and heuristics. The Profiler module is
used for querying the status and current resource consumption
of the nodes in the mobile ad-hoc edge cloud. The Intelligent
Offloading Distributor module is used to allow a seamless
smart offloading mechanism in the edge cloud that outputs the
best offloading distribution based on optimization functions.
In this context, the paper showed promising results. We were
able to reduce energy consumption by 92%, execution time
by 80% and number of selected nodes by 70% on average.
Moreover, we illustrated the effectiveness of our IOD module
with respect to the status of the skipped nodes. In more details,
we showed that 90% of the skipped nodes by our IOD module
are actually Critical Nodes.

For future work, the framework can be boosted to improve
its performance and feasibility. Profiling can be enhanced
especially with respect to the number of performed polling.
In this work, participating nodes are assumed to be trusted,
yet to target more real life scenarios, dynamic creation of
the edge cloud and trust relations can be added for better
management and selection of trusted nodes. Also, the number
of selected nodes can be reduced in order to decrease the cost
of offloading.

REFERENCES

[1] R. Mizouni and M. El Barachi, “Mobile phone sensing as a service:
Business model and use cases,” in 2013 Seventh International Con-
ference on Next Generation Mobile Apps, Services and Technologies.
IEEE, 2013, pp. 116–121.

[2] R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli, “Merging partial system
behaviours: composition of use-case automata,” IET software, vol. 1,
no. 4, pp. 143–160, 2007.

[3] S. Peng, S. Yu, and A. Yang, “Smartphone malware and its propaga-
tion modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 925–941, 2014.

[4] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and M. Rajarajan, “Android security: A survey of issues, malware
penetration, and defenses,” Communications Surveys & Tutorials, IEEE,
vol. 17, pp. 998 – 1022, May 2015.

[5] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluat-
ing android anti-malware against transformation attacks,” Information
Forensics and Security, IEEE Transactions on, vol. 9, pp. 99 – 108,
December 2013.

[6] M. Jakobsson, “Why mobile security is not like traditional security,”
2011.

[7] R. S. Khune and J. Thangakumar, “A cloud-based intrusion detection
system for android smartphones,” in 2012 International Conference on
Radar, Communication and Computing (ICRCC). IEEE, December
2012, pp. 180–184.

[8] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. H. Sanders,
“Secloud: A cloud-based comprehensive and lightweight security solu-
tion for smartphones,” Computers and Security, vol. 37, pp. 215–227,
September 2013.

[9] N. Soms, R. Priya, A. Banu, and P.Malathi, “A comprehensive per-
formance analysis of zone based intrusion detection system in mobile
ad hoc networks,” in 2015 3rd International Conference on Signal
Processing, Communication and Networking (ICSCN). IEEE, March
2015, pp. 1–8.



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2939221, IEEE
Transactions on Network and Service Management

14

[10] F. Barani, “A hybrid approach for dynamic intrusion detection in ad
hoc networks using genetic algorithm and artificial immune system,” in
2014 Iranian Conference on Intelligent Systems (ICIS). IEEE, 2014,
pp. 1–6.

[11] O. A. Wahab, H. Otrok, and A. Mourad, “A cooperative watchdog
model based on dempster–shafer for detecting misbehaving vehicles,”
Computer Communications, vol. 41, pp. 43–54, 2014.

[12] Q. Hassan, “Demystifying cloud computing,” The Journal of Defense
Software Engineering,(CrossTalk), pp. 16–21, Jan/Feb 2011.

[13] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings of IEEE INFOCOM.
IEEE, 2012, pp. 945–953.

[14] D. Chae, J. Kim, J. Kim, J. Kim, S. Yang, Y. Cho, Y. Kwon, and
Y. Paek, “Cmcloud: Cloud platform for cost-effective offloading of
mobile applications,” in 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2014, pp.
434–444.

[15] A. E. Eshratifar and M. Pedram, “Energy and performance efficient
computation offloading for deep neural networks in a mobile cloud
computing environment,” 2018.

[16] S. JoÅąilo and G. Dan, “Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks,” IEEE Transactions
on Mobile Computing, pp. 1–1, 2018.

[17] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the green
internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60, 2018.

[18] D. Deyannis, R. Tsirbas, G. Vasiliadis, R. Montella, S. Kosta, and
S. Ioannidis, “Enabling gpu-assisted antivirus protection on android
devices through edge offloading,” in Proceedings of the 1st International
Workshop on Edge Systems, Analytics and Networking. ACM, 2018,
pp. 13–18.

[19] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, pp. 1–11, 2011.

[20] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed
computation offloading for mobile-edge cloud computing,” IEEE Wire-
less Communications Letters, 2017.

[21] M. H. ur Rehman, C. Sun, T. Y. Wah, A. Iqbal, and P. P. Jayaraman,
“Opportunistic computation offloading in mobile edge cloud computing
environments,” in Mobile Data Management (MDM), 2016 17th IEEE
International Conference on, vol. 1. IEEE, 2016, pp. 208–213.

[22] C. You and K. Huang, “Multiuser resource allocation for mobile-
edge computation offloading,” in Global Communications Conference
(GLOBECOM), 2016 IEEE. IEEE, 2016, pp. 1–6.

[23] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5g heterogeneous networks,” IEEE access, vol. 4,
pp. 5896–5907, 2016.

[24] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[25] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a unified elastic computing
platform for smartphones with cloud support,” IEEE Network, vol. 27,
no. 5, pp. 34–40, 2013.

[26] C. Jin, J.-W. Choi, W.-S. Kang, and S. Yun, “Wi-fi direct data trans-
mission for wireless medical devices,” in The 18th IEEE International
Symposium on Consumer Electronics (ISCE 2014). IEEE, 2014, pp.
1–2.

[27] Y. Wang, A. V. Vasilakos, Q. Jin, and J. Ma, “A wi-fi direct based p2p
application prototype for mobile social networking in proximity (msnp),”
in 2014 IEEE 12th International Conference on Dependable, Autonomic
and Secure Computing (DASC). IEEE, 2014, pp. 283–288.

[28] LiveQoS, “Superbeam,” https://play.google.com/store/apps/details?id=
com.majedev.superbeam&hl=en/.

[29] Z. Inayat, A. Gani, N. B. Anuar, S. Anwar, and M. K. Khan, “Cloud-
based intrusion detection and response system: open research issues, and
solutions,” Arabian Journal for Science and Engineering, vol. 42, no. 2,
pp. 399–423, 2017.

[30] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: versatile protection for smartphones,” in ACSAC ’10 Proceed-
ings of the 26th Annual Computer Security Applications Conference.
ACM, NY, USA, December 2010, pp. 347–356.

[31] D. Damopoulos, G. Kambourakis, and G. Portokalidis, “The best of
both worlds: a framework for the synergistic operation of host and cloud
anomaly-based ids for smartphones,” in EuroSec ’14 Proceedings of the
Seventh European Workshop on System Security, no. 6. ACM, NY,
USA, April 2014.

[32] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[33] D. Spanos, “Intrusion detection systems for mobile ad hoc networks,”
2018.

[34] A. A. Korba, M. Nafaa, and Y. Ghamri-Doudane, “Anomaly-based in-
trusion detection system for ad hoc networks,” in 2016 7th International
Conference on the Network of the Future (NOF). IEEE, 2016, pp. 1–3.

[35] P. Ramkumar, V. Vimala, and G. S. Sundari, “Homogeneous and
hetrogeneous intrusion detection system in mobile ad hoc networks,” in
Computing Technologies and Intelligent Data Engineering (ICCTIDE),
International Conference on. IEEE, 2016, pp. 1–5.

[36] E. Froemling, “Bombsquad,” https://play.google.com/store/apps/details?
id=net.froemling.bombsquad&hl=en.

[37] H. Smith, “Spaceteam,” https://play.google.com/store/apps/details?id=
com.sleepingbeastgames.spaceteam&hl=en.

[38] T. Dbouk, A. Mourad, H. Otrok, and C. Talhi, “Towards ad-hoc cloud
based approach for mobile intrusion detection,” in 2016 IEEE 12th In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, 2016, pp. 1–8.

[39] O. A. Wahab, H. Otrok, and A. Mourad, “Vanet qos-olsr: Qos-based
clustering protocol for vehicular ad hoc networks,” Computer Commu-
nications, vol. 36, no. 13, pp. 1422–1435, 2013.

[40] M. Norton and D. Roelker, “Snort 2.0: Hi-performance multi-rule
inspection engine,” Sourcefire Network Security Inc, 2002.

[41] V. K. Kshirsagar, S. M. Tidke, and S. Vishnu, “Intrusion detection system
using genetic algorithm and data mining: An overview,” International
Journal of Computer Science and Informatics ISSN (PRINT), vol. 2231,
p. 5292, 2012.

[42] T. Lust and J. Teghem, “The multiobjective multidimensional knapsack
problem: a survey and a new approach,” International Transactions in
Operational Research, vol. 19, no. 4, pp. 495–520, 2012.

[43] E. Benkhelifa, T. Welsh, L. Tawalbeh, A. Khreishah, Y. Jararweh,
and M. Al-Ayyoub, “Ga-based resource augmentation negotation for
energy-optimised mobile ad-hoc cloud,” in 2016 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud). IEEE, 2016, pp. 110–116.

[44] P. Ghamisi and J. A. Benediktsson, “Feature selection based on hy-
bridization of genetic algorithm and particle swarm optimization,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 309–313,
2015.

[45] X. Zuo, C. Chen, W. Tan, and M. Zhou, “Vehicle scheduling of an
urban bus line via an improved multiobjective genetic algorithm,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.
1030–1041, 2015.

[46] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Selective mobile cloud
offloading to augment multi-persona performance and viability,” IEEE
Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[47] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[48] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
105–114.

[49] Android, “Power Profile for Android,” https://source.android.com/
devices/tech/power/.

Toufic Dbouk received BS and MSc degrees in computer science from the
Lebanese American University. His current research interests include mobile
computing, mobile resource management and intrusion detection systems.

Azzam Mourad received the Ph.D. degree in electrical and computer
engineering from Concordia University, Montreal, Canada. He is an associate
professor of computer science at the Lebanese American University and
Affiliate Associate Professor in Software Engineering and IT department
at the EÂL’cole de technologie superieure (ETS), Montreal, Canada. He
served/serves as Associate Editor for IEEE Communications Letters, General
Co-Chair of WiMob2016, and Track Chair, TPC member and reviewer of
several prestigious conferences and highly ranked journals. He is an IEEE
senior member.

Hadi Otrok holds an associate professor position in the department of ECE
at Khalifa University, an affiliate associate professor in the Concordia Institute
for Information Systems Engineering at Concordia University, Montreal,
Canada, and an affiliate associate professor in the electrical department at
EÂL’cole de technologie superieure (ETS), Montreal, Canada. He received
his Ph.D. in ECE from Concordia University. He is a senior member at IEEE,
and associate editor at: Ad-hoc networks (Elsevier), IEEE communications
letters, wireless communications and mobile computing (Wiley). He co-
chaired several committees at various IEEE conferences. Moreover, he is a
TPC member of several conferences and reviewer of several highly ranked
journals.

Hanine Tout received the PhD degree in software engineering at ETS,
University of Quebec, Montreal, Canada. She is currently doing a Postdoc.
between ETS and Ericsson, Montreal. Her research interests include 5G,
IoT, security, privacy, machine learning, federated learning, mobile cloud
computing, mobile virtualization, optimization, Web services, security and
formal verification. She is serving as TPC member for SSCC-2018, NTMS
2016 and IMCET 2016 and a reviewer in IEEE Communications Letters,
Computers and Security journal, Ad Hoc Networks journal and several
international prestigious conferences.

Chamseddine Talhi received the PhD degree in computer science from
Laval University, Quebec, Canada. He is an associate professor in the
department of software engineering and IT at ETS, University of Quebec,
Montreal, Canada. He is leading a research group that investigates smartphone,
IoT and embedded systems security. His research interests include cloud
security, secure sharing of embedded systems and IoT.


