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Abstract 
With the advancement of Internet technology, securing information systems from 

electronic attacks have become a significant concern. With all the preventive methods, 

malicious users still find new methods that overcome the system security, and access 

and modify sensitive information. To make the process of damage assessment and 

recovery fast and effective and in order not to scan the whole log, researchers have 

proposed different methods for segmenting the log, and accordingly presented different 

damage assessment and recovery algorithms. In this work we present an efficient 

damage assessment and recovery algorithm to recover from malicious transactions based 

on the concept of the matrix. We also compare the various approaches and present the 

performance results. 

Keywords: Damage Assessment, Recovery, Malicious Transaction, Transaction 

Dependency, Data Dependency. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Prevention, detection and recovery are three important phases in any “live” 

system. The prevention phase consists of the following: authentication, authorization, 

access control, firewalls, and data encryption. Still, malicious users and hackers‟ manage 

to overcome these security measures and attack the system.  

In case preventive methods fail, we use the intrusion detection systems, which are 

used for monitoring malicious transactions. When intrusion detection systems were built 

they were meant to work in harmony with the preventive methods. Mainly, detection 

methods can be split into two categories: anomaly detection (statistical) and misuse 

detection (Ning and Jajodia, 2004). Anomaly detection works by analyzing the behavior 

of the user (i.e., whether it is usual or unusual). On the other hand, misuse detection 

works by comparing actions to a set of rules or vulnerabilities that are already saved in 

the system. None of these detection systems ensure that an attack will be immediately 

detected. Hence, damage could spread affecting other new coming “clean” transactions 

as well. 

During the past two decades, internet usage has been increasing rapidly. This 

increase has always been accompanied by information sharing, which is a key element 

for success and productivity of an organization. Millions of computers worldwide are 
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connected to each other and are sharing information. The importance of this process is to 

preserve the reliability of information. Securing information is made on three levels: 

prevention, detection and recovery. Prevention might fail and detection might be late, in 

this case some data might be corrupted. Our aim, after this corruption and after detecting 

that something malicious has occurred, is to remove and clean the corruption with its 

effects. In such a case a recovery algorithm must be used. 

When dealing with electronic data and electronic transactions it is harder to 

identify which user is malicious and which is authenticated. The system treats all the 

users the same and accept their transactions. Some intrusion detection systems, such as 

SQMR (Hua, Xiaolin, Guineng, and Ziyue, 2011), are classifying users according to 

their behavior. Yet, in some cases these methods fail to classify allowing malicious users 

and suspecting and preventing normal users from doing their job. For example in (Hua, 

Xiaolin,  Guineng, and Ziyue, 2011), every user is considered a malicious user and his 

transactions will not take actual action in the database until a certain period of time 

elapses or some action occurs after. After this, we would be able to classify the previous 

behavior or user as either malicious or non-malicious. Accordingly, we can either 

commit the transactions or abort them. For this reason, whenever a malicious transaction 

is identified we need to go back and trace it to be able to remove all of its effects. 

1.2 The Problem 

As soon as an attack is detected by an intrusion detection system, it should be 

directly recovered. Unfortunately, the detection of an attack is not done immediately, 

and this can affect other coming transactions. Hence, all transactions from the point of 
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the attack and onwards should be assessed whether they are affected or not. Two 

approaches exist for assessing the malicious transaction effects: transactional 

dependency (Panda and Zhou, 2003) and data dependency (Panda and  Haque, 2002). 

For example, consider a malicious transaction Ti that committed, and then a transaction 

Tj read a data item written by Ti. The result would be having Tj as an affected 

transaction. Therefore, upon recovery we do not only need to delete Ti, but also to 

recover Tj. 

The complexity and efficiency of the recovery process is our main interest in this 

work. In some cases the adversary‟s intentions are not only to insert malicious 

transactions but also to cause a denial of service. Sometimes the size of the log file 

might increase tremendously before discovering that an attack has occurred. 

Consequently, this will require more time to assess and recover from the malicious 

transaction and its effects. This increase in recovery time would lead to denial of service. 

Thus, we are interested in finding an algorithm that prevents such drawbacks or at least 

one that reduces them. One of the important issues that should also be tackled is what 

information should be saved in the log file as we prevent excess I/O. For this purpose, 

some researchers (Ammann, Jajodia, and Liu , 2002), (Haraty and Zeitunlian, 2007); 

(Chakraborty et al., 2010) and (Panda and Zhou, 2003), have proposed using auxiliary 

structures for keeping track of dependencies while others proposed using matrices. 

1.3 Information Warfare 

Information Warfare the term that is affecting everybody‟s life is one of the hot 

topics nowadays. This term have moved us to a new period of time where the whole 
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world is changing. Information warfare did not start as a computing term only, but it was 

also referred to on the psychological level as well. In the 1980‟s information warfare 

was a military term that developed and became a way of living in 1991, especially with 

the Gulf war (Hutchinsn, 2006). Information warfare refers to one of the most affective 

weapons that have been and are being used in today‟s wars. Warfare started with the 

Agrarian revolution and then passed by the industrial revolution to reach to what we call 

now the information warfare (Haeni, 1997). 

 “What is Information Warfare?” a question with no exact answer due to the 

different and many dimensions of this term. Libicki and Fellow, (1995) compared 

defining information warfare to discovering the nature of an elephant by a blind person. 

If one touches the tail he will think it is a rope, while if he touches the leg he will think it 

is a tree. That is to say that information warfare is a huge thing and has different 

dimensions. It would be defined according to which dimension the person will tackle. 

In this work we will only consider one of the many aspects of information warfare. 

For our purpose, information warfare is the set of techniques taken to gain access to the 

information of an adversary while defending your own information. Some of the 

weapons that can be used in such a war are: logic bombs, computer viruses, information 

collection, information manipulation, information degradation and denial of service: 

 Logic bombs: These can be Trojan horses that are either present with in a normal 

code or are independent programs. Such a weapon can be used by a country that 

wants to gain access over another country‟s computers by implementing a Trojan 

horse inside software that they are planning to sell it to them. 
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 Computer viruses: These are code fragments that insert themselves into a 

program to modify it. For example, such weapons could be used in phones and 

might cause phone system failure at certain stages. 

 Information collection: The more the information we have about our adversary 

the better. This information will aware us of what are the plans of the other party 

(Megan, 1999). 

 Information manipulation: The change in the information to give a wrong picture 

to the adversary (Megan, 1999). 

 Information degradation and denial: This is used to prevent the adversary from 

getting complete or correct information. This technique is done either by 

disturbance or overloading the system so it becomes busy (Megan, 1999). 

In order to have the upper hand on the information two different aspects should be 

understood: the information-in-warfare and the information based process (Ryan, 1998). 

To be able to defend your data and to be able to exploit the data of others, one should 

have a full understanding of how things work. One should not only know how to attack 

or defend himself, but also how to gain and exploit. If we attack a system and do not 

gain access to it or do not exploit it, then the attack is useless. 

1.4 Scope of the Work 

         In this thesis, we present a recovery model that works with matrices. Our approach 

suggests that we keep a matrix along with the logging process. This matrix saves the 

dependency between transactions and data items. During the recovery process all the 

needed information will retrieved from the matrix. The aim of this work is for fast and 
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efficient recovery. It requires only scanning part of the matrix to be able to discover the 

dependency rather than scanning the entire log file.  

The main contribution in our model is the use of a matrix that requires less time to 

be scanned than when scanning graphs, like the traditional cluster algorithms. In 

addition, the use of bits in our algorithm requires less time to be dealt with than any 

other normal numbers. Moreover, we use only one matrix rather than using two matrices 

for each of the read and write operations; hence this saves time and space as well. 

Dependency of transactions is saved in only one matrix which requires less 

computational time and space. No logical operations and no graphs are used in this 

model. All of this contributes to make our model faster than previously proposed 

algorithm. 

1.5 Definitions 

The following definitions will be used throughout the thesis: 

Definition 1: A write operation wi[x] of a transaction Ti is dependent on a read ri[y] 

operation of Ti, if wi[x] is computed using the value obtained from ri[y] (Panda and 

Tripathy, 2000). 

Definition 2: A blind write is when a transaction Ti writes data item x without reading 

the previous values of x (Zheng, Qin and Sun, 2007). 

Definition 3: A write operation wi[x] of a transaction is dependent on a set of data items 

I, if x = f(I); i.e, the values of data items in I are used in calculating the new value of x. If 

x ≠ I, the operation is called a blind write. In this case if the previous value of x (before 
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this write operation) is damaged and none of the data items in I are damaged, then the 

value of x will be refreshed after this write operation (Panda and Tripathy, 2000). 

Definition 4: If X is totally ordered under ≤, then the following statements hold for all a, 

b and c in X: 

If a ≤ b and b ≤ a then a = b (antisymmetry) 

If a ≤ b and b ≤ c then a ≤ c (transitivity)  

a ≤ b or b ≤ a (totality) 

Definition 5: If a read(x)/write(x) is to be executed in a strict execution, it will be 

delayed until all write(x) operations are either committed or aborted (Gray and Reuter, 

1993). 

Definition 6: A transaction management mechanism guarantees rigorousness if the 

following two conditions hold (Kim et al., 2010): 

1. it guarantees strictness, and 

2. No data item may be written until the transaction which previously read either 

commits or abort  

1.6 Organization of the Report 

The rest of this report is organized as follows: in chapter 2 we will present related 

work and give an overview about what previous research has lead to in this area. Then a 

new algorithm will be presented in chapter 3. While in chapter 4 we present the 
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experimental results; this will be followed by a conclusion and the future work in 

chapter 5. 
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CHAPTER TWO 

LITERATURE REVIEW 

Malicious transaction detection and recovery have taken a lot of effort from 

researchers. Many models were proposed for this purpose, some of which cluster the log 

files while others use sub-clusters, graphs or even matrices. Damage recovery from 

malicious attacks is divided into two main categories, transactional dependency and data 

dependency. In each area, several models have been suggested. In this section we 

provide an overview on these models. 

2.1  Coldstar Model 

Panda and Tripathy (2000), unlike previous traditional approaches, this approach 

is known as a transaction dependency approach. They assume that an attack is partial 

and never complete. The recovery is split into two problems: the damage assessment and 

the damage repair process. The authors suggest the use of „Coldstar‟ semantics in one of 

their algorithms where the database becomes unavailable for new transactions, and they 

also suggest another algorithm using the „Warmstart‟ semantics where the database use 

continues with some services but stops with others. In this approach, only affected and 

malicious transactions are dealt with. There is no need for any change in non-malicious 

or non-affected transactions. Malicious transactions are undone; affected transactions are 

re-done; non-malicious and non-affected transactions are neither undone nor redone. To 
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assess the recovery performance, the average repair time and the average response time 

are taken into consideration. 

Since some transactions are not affected by any malicious or affected transaction, 

they can be ignored and not worked with. For this purpose, Ammann, Jajodia, and Liu 

(2002) suggested, segmenting the log files so the work would only be done on the part of 

the log that is affected. This will ensure accelerating the recovery process. Operations 

are clustered according to their dependency where each cluster contains dependent 

operations. This clustering is done in a periodic way for the active transactions. Every 

operation will be stored in only one cluster, but a transaction can belong to more than 

one cluster. The algorithm presented in this paper accelerates the recovery process since 

not all of the massive log file will be scanned to reach the operations wanted. However, 

deleted transactions cannot be retrieved, so maliciously deleted transaction might be 

skipped. The advantage of this approach is that we can previously determine which 

items are affected, and accordingly we will be skipping a large part of the log.  

2.2 Traditional Methods 

Traditional methods suggest scanning the log file from the point of the attack until 

the end of the file to undo and redo the affected transactions. Panda in his paper (Panda  

and Yalamanchili, 2001)suggested a new method which is fusing the malicious 

transactions to reduce the I/O time. The aim of this model is to minimize the time to get 

the best results without getting any other consequences. The assumptions in this model 

are the following: 

1. Strictly serializable scheduler, 
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2. No blind writes, and 

3. No purging of log files. 

Undoing the affected transactions occurs in the reverse order of how they 

happened, while the redoing of these transactions occur in the same order. 

Compensated-for transactions are transactions that need to be undone, while 

compensating-for transactions are transactions that are redone. For the sake of saving 

time, instead of accessing the logs and searching for the transaction, the fused 

transaction method is used to re-execute the fused transactions. This method has two 

advantages: first, only one commit is needed, which helps in case a data item has been 

read or updated, and the second one is that dependent transactions will be fused. From 

the point of attack and onwards, we start by detecting the malicious transactions and 

their fused dependents, and any transaction that is unaffected will be ignored. 

The recovery procedure for fused transactions requires data structures such as 

M_ID, F_ID, M_flag and F_flag. Fuse a function used to combine operations from two 

transactions into a fused transaction. In this function to confirm that an operation should 

be skipped, a check is done on the data item, otherwise the operation will be added to the 

fused transaction. The schedule is scanned from the attacking point till the end to group 

the malicious transactions using the fuse function followed by generating IDs. The 

method also keeps track of which transaction is the first among the fused transactions. 

2.3 Using Graphs for Recovery 

The spread of the Internet and its applications made the presence of assessment 

and recovery very crucial. Two different approaches exist for damage assessment: 
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transaction dependency and data dependency. Data dependency is more efficient and 

less time consuming than transaction dependency. Panda and Haque (2002) used the 

data dependency approach where operations of transactions are undone and redone. This 

approach has some inefficacy because unexecuted segments are not present in the 

history. The four conditions that must be present to ensure successful recovery are: 

1. Use of a strictly serializable scheduler, 

2. Use of the same order of the transactions in the history and the log,  

3. Use of a rigorous 2PL, and  

4. No modification of the log file by the user.  

Each read/write operation in the transaction has a block number; this number 

shows dependency between operations. Panda suggested the use of a Directed Damage 

Demonstration Graph (DDDG), which only presents the affected data items. Two 

different shapes represent the nodes: either a circle or a square (continuous or dotted 

line). A clean item is represented by a circle, while a corrupted one is represented by a 

square depending on either an actual-write or overlooked-write. Arrows in this graph 

show dependency. Arrows of two forms (single and double line arrows) are used 

depending on whether the read is actual or predicate. Three data structures are created in 

this algorithm: damageDataList, readDataList_T_bNum and totalDataList_T. The 

readDataLists are checked whenever a write operation is present. In this algorithm, the 

detection of a malicious transaction requires a check on all the transactions that are in 

the schedule, followed by a check on all committed transactions. Any committed 

transaction that is detected to be affected will be added to the damageDataList. After 

identifying and creating the three lists, the undo_redo procedure is called upon, which 
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takes the totalDataList and the damageDataList. Panda used the logical operation in 

addition to the before and after images for recovery. 

Panda and Gordano (1998) proposed two data dependency algorithms are 

presented; the difference between them is that in the first the damage assessment and 

recovery algorithms are performed simultaneously whereas in the second each one is 

performed separately. This difference implies different behaviors on the algorithm level 

as well. For example, when both the damage assessment and recovery are done 

simultaneously the system will have to go through denial of service for a longer period 

of time in order to recover completely. This is unlike when the damage assessment is 

done independently, where the results are provided to the recovery algorithm in which 

we have the advantage of shorter periods of time; and hence, less denial of service. In 

the second algorithm, the system will be going through denial of service only during the 

damage assessment, but when the recovery algorithm starts to take action, the unaffected 

transactions will be unlocked for the user, and he will be able to work normally unless 

he wants to access affected data. 

In both approaches the damage assessment works using directed graphs, where the 

nodes would represent a data item. When the intrusion detection system reports the 

occurrence of a malicious transaction, a node for each data item will be created. This 

node will be represented as a square. This graph helps in mapping how the damage has 

spread. 
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2.4 Clusters and Sub clusters 

Haraty and Zeitunlian (2007) proposed a model that uses data dependency that 

depends on clustering. Each cluster is sub-clustered using one of the two approaches: 

number of transactions or space occupied. Before going any further with the model, the 

assumptions are as follows: 

 The detection of malicious transactions by external detection techniques, 

 The use of rigorous serializable scheduler, 

 No purging of Log files, and  

 The use sequential transaction ID. 

Two structures of different functionalities are used in the hybrid sub-clustering 

algorithm: Transaction Sub Cluster (TSC) list and the Sub Cluster Data (SCD) List. The 

first one is used to identify the affected sub clusters; it stores the transactions ID. After 

identifying the sub cluster from the first structure, the latter is used to identify the 

affected data items. 

The hybrid sub-Clustering algorithm based on fixed number of transactions limits 

every sub cluster so that it can only contain a specific number of transactions. Data items 

could belong to the predicate, or the operation could belong to the statement. In case of 

the predicate, the data item could either belong to a cluster‟s sub cluster (SCD) or not. If 

it does not belong, then a new cluster and sub cluster ID should be given, followed by an 

update on the TSC and SCD. In case it belongs to the cluster‟s sub cluster (SCD), then a 

check on the number of transaction should be done to either get the cluster and sub 
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cluster ID or to initiate a new sub cluster since every sub cluster could contain only a 

fixed number of transactions. Otherwise, the data item can either belong or not to the 

cluster‟s sub-cluster. If the data item does not belong to the cluster‟s sub-cluster, then a 

new cluster and sub cluster IDs should be initialized; otherwise, the sub-cluster‟s size 

should be taken into consideration to either initiate a new sub-cluster or to take the 

cluster‟s and sub-cluster‟s IDs. After checking the cluster and sub-cluster, the operation 

should be checked to confim if it is an actual read or an overlook read before it is 

recorded into the log. 

The hybrid clustering algorithm is based on fixed size and has a limited size for 

the sub-cluster. The limitation of this algorithm is the size of the sub-cluster; i.e., all 

dependent operations are put in the same sub-cluster, until a point is reached where 

adding another operation will let the sub-cluster go over the required space, so it is 

inserted in a new sub-cluster.  

The damage assessment algorithm has two structures: Damaged_DI and 

Damaged_PB. A check on whether the predicate is read is performed to assess whether 

it belongs to the Damaged_DI. Consequently, the block in which this item is present is 

damaged as well; hence, the block should be added to the Damaged_PB. Then, a check 

on whether there is an actual or overlooked read is executed: if the data item is damaged 

but operation does not belong to a malicious transaction, the block should be checked. In 

case it is listed as damaged, it should be added to the damaged_PB. In case of a write 

operation, if there is a malicious transaction where the data item is not in the 

damaged_DI, then it should be added; however, if the transaction is not malicious and 
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the block is not affected, the data item is affected then the data item should be removed 

from the damaged_DI list. 

Fu et al. (2008) started by explaining the concept of “Extended Read Operations” 

and moved on to propose the concept of Fine Grained Transaction Log (FGTL). Log 

files should be able to help find the dependencies among operations and transactions to 

be able to recover easily. So, not only the main sub-clause of an SQL-statement should 

be recorded in the log file, but also every sub-clause is of similar importance since these 

sub-clauses can help in spreading the damage. According to the author, the FGTL should 

record all writes in addition to every extended read. All committed transactions should 

be logged. This log is represented as a database table that cannot be modified by any 

user. Some read operations are just a sub query of a main SQL statement so logging 

these read operations requires more effort. To solve this problem the “Divide and 

Combination Algorithm” is suggested to be used to log these read operations. This 

algorithm works by dividing the “Select” statements into several statements to be able to 

log the read information. The result of this algorithm is exactly the same as what the 

original statement would result. In case an Update Insert Delete statement is present, the 

same would be done for the “Select” statement, and then the last step would be updating 

the information. 

After the “Divide and Combination Algorithm”, the Fine Grained Transaction Log 

is proposed. The FGTL saves each write and read operation executed by the user. The 

generated log is used for damage assessment; therefore, it should be protected from any 

unwanted modification. This is done using the DB Monitor, which is responsible for 

capturing and checking each operation. 
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The problem with this technique is that when the association degree of the 

transaction increases, the throughput of the FGTL decreases sharply. As the degree is 

increasing, more reads are required; hence, the throughput is decreasing. This technique 

may cause degradation in services but still it preserves integrity of the log. 

2.5 Before Images 

Xie et al. (2008) suggested a new way for damage assessment and recovery. Xie 

suggested the use of a before image table to keep track of all deleted transactions and to 

help in analyzing potential reads. The before image is a data object created in the 

database. In this approach the inter-transaction dependency is taken into consideration, 

which relates even deleted transactions. Xie classified affected transactions into two 

types: transactions affected by maliciously inserted data and transactions affected by 

maliciously deleting data. The problem with the second type of affected transactions is 

that they usually cannot be tracked through log histories, which can cause many 

inconsistencies, so Xie tried to overcome this problem in his approach. Xie dealt with 

two types of operations: insert and delete. He considered an update operation as two 

operations: delete operation followed by an insert. The database is represented as D(V, 

B) where V represents the set of data items, and B is the set of deleted data items. Any 

two transactions are considered dependent if there is an actual or potential read. 

Before Image (BI) tables are tables that are not accessible by users and have the 

same structure as the original tables, except that they do not have any constraints. To 

avoid the problem of data redundancy,  Xie suggested to use a time widow to delete data 

items and restrict the size of the BI tables. In addition to the BI table, two other 
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structures are maintained the x.ins_tran and x.del_tran that represent the transactions that 

insert or delete a data item. After the execution of a read transaction, the ID of the 

depending transaction is added to the DS. Then, this is stored in a TanDepTab. 

Executing a subquery on a table is accompanied by executing the same subquery on the 

BI table. 

Two steps should be executed to completely repair the database: first identify and 

then erase the effects of malicious transactions. Identifying the affected transactions is 

made easier because of the interdependency graph, which is represented as the 

TranDepTab. The repair algorithm is an on-the-fly algorithm, which saves the problem 

of stopping server responses. Repairing requires deleting inserted data items and 

restoring deleted data items by the transaction. 

This algorithm requires more performance overhead due to the BI table and the 

queries done on them. The results proved that this algorithm can function well with a 

reasonable degradation in performance. 

2.6 Column Dependency 

Chakraborty et al. (2010), presented column-dependency approach. The method is 

decomposed into two phases the compensation phase and the re-execution phase. The 

compensation phase is responsible for compensating the malicious transactions, where 

as the re-execution phase is responsible for re-executing the other committed 

transactions for consistency purposes. Two approaches are applied: one for static 

recover and the other for online recovery. The recovery time of this approach is 

tp=ta+tc+te where: 
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 ta: the damage assessment time 

 tc: compensation time 

 te: re-execution time 

The advantage of this approach is that it takes less time than the traditional 

approach to recover from an attack. This approach has showed that the percentage of 

inconsistencies after re-execution increases with the increase of malicious transactions. 

This is similar to the percentage of inconsistencies after compensation, but still the 

percentage after re-execution is more than that after compensation. As for the on-line 

recovery performance, it is linked to the arrival rate of transactions (i.e., as the arrival 

rate increases the recovery processes gets slower). In general, this approach removes all 

the effects of malicious transactions. 

The use of a Local DAR Manager and a Local Dar Executer on each site was 

suggested by Liu and Yu (2011). The Local DAR Executer starts by identifying all 

affected sub transactions and continues to clean these sub transactions. The algorithm 

requires global coordination between different sites. The algorithm starts by identifying 

the bad transactions and then sending them to the Local DAR Manager. 

According to this algorithm, each site has its own log file. Log files have five 

attributes for each record: 

 Type of the record: read, write, abort, commit, prepare and end 

 Application id 

 Transaction id 

 Coordinator id 
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 Subordinates id 

The throughput on each site is approximately the same as that of centralized 

database systems. The advantages of this approach are that no deadlocks are caused and 

there is no waiting time for this algorithm to start. Transaction dependencies and 

attacking rate are one of the most important factors that affect the communication costs 

in this algorithm. It is an on-the-fly algorithm, which implies transaction processing will 

not be stopped during the repair process. The damage assessment and recovery process 

are done in parallel so less time will be required by the algorithm, and the damage 

assessment and repair are transparent to the user. 

2.7 Matrices in Recovery 

Panda and Zhou (2003) proposed two damage assessment approaches one with 

transaction dependency and the other with data dependency. The aim of these 

approaches is to find a fast and accurate model. In his model, Panda uses two bit-

matrices. The assumptions that Panda made for his model are: 

1. Rigorous history, 

2. Logs cannot be changed by users, and 

3. Transaction dependency are not changed during recovery. 

Four data structures are used in his model: Read_Matrix, Write_Matrix, 

Damaged_Data_Vector and Damaged_Transaction_List. Transactions are ordered in the 

matrix in the same sequence as in the log. Directed acyclic graph is maintained to track 

the dependencies. In each of the Read_Matrix and Write_Matix, the rows are for 
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transactions and the columns are for items. Zero means that this data item is not in this 

transaction, otherwise we have a one. 

Once a malicious transaction is detected it will be added to the 

Damaged_Transaction_List. The Damaged_Data_Vector should be OR-ed with the 

Write_Matrix. Any resulting 1 indicates that the data item is affected by the malicious 

transaction. As for the read, the Read_matrix is OR-ed with Damaged_Data_Vector. If 

there is any „1‟ in the vector, then the read operation was affected by the malicious 

transaction. Affected transactions should be refreshed; the process should be repeated 

until no more ones. With these steps all the affected transactions are located. So this 

should be followed by a recovery model. 

Using Panda‟s algorithm for damage assessment the database logs will not be 

accessed, which will help in reducing the time and reducing the risk of denial-of-service. 

Two other structures the Compact_Read_list and the Compact_Write_List are used in 

this algorithm. This list contains sublists of the data items that have been read/written by 

this transaction, where the transaction ID is saved. 

As for the data dependency model, it is unlike the transaction dependency model 

where the reading of one affected data item makes all written data items by that 

transaction affected. In this model, we have two structures - the 

Data_Dependency_Write_Matrix and the Data_Dependency_Read_Matrix. The first 

column of these matrices contains the transaction ID and the second one contains the 

operation number. By scanning the log file, these two structures will be constructed. 

After detecting the first malicious transaction, it will be added to the 
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Damages_Transaction_List and then it will be followed by OR-ing with the transactions 

to see what the affected transactions are. 

Ragothaman and Panda (2002) has suggested segmenting log files into clusters, 

but still this will not solve the problem. We cannot control the size of the dependent 

transactions and hence the clusters may grow in size. To solve this problem, Haraty and 

Zeitunlian (2007) proposed the use of clusters and sub clusters. Data inside a cluster are 

records that have some data dependency, where as data in the same sub cluster could be 

for one of the following two reasons: number of data items or space occupied. This 

approach groups data according to exact dependency and it helps to recover faster. 

Instead of scanning the whole log, and even instead of scanning the whole cluster we 

will only be scanning a small sub cluster to recover. Two additional lists are used in this 

algorithm the Transaction Sub Cluster List and the Sub Cluster Data List. The first is 

used to store the Transaction ID along with the corresponding Sub Cluster, where as the 

latter is used to store the sub cluster ID along with the transaction ID and the data item. 

Zhou et al. (2004) proposed a similar model for distributed databases. The model 

proposed works on transaction dependency in order to recover from malicious attacks. 

This work extends the work of Zhou and Panda (2005) and requires additional structures 

to recover when working on distributed databases. The model in this paper requires the 

use of pre-developed structures, read, and write matrices. Transactions are represented 

as rows in these matrices and they are updated whenever a transaction is committed. The 

advantage of this method is that it does not require the use of the log file which will 

decrease the access time. The author also assumes that there is a timestamp for each 
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transaction. This timestamp will be compared against timestamps of different 

transactions from different sites and hence recovery would be followed. 

Lala and Panda (2001) also presented a work that depends on matrices in which he 

also suggested another algorithm. The new algorithm suggested by Panda was for the 

damage assessment. In this algorithm, Panda suggested to cluster the transactions so he 

does not have to search transactions that have no effect. In this model, an additional 

column was added to each of the matrices that Panda proposed. The additional column 

will contain that cluster ID to which this transaction belongs. In addition to this, two 

other lists will be used: Dependent_Cluster_List (DCL) and Ancestor_Cluster_List 

(ACL). The dependency between the clusters will be saved in these two lists. If a 

transaction belongs to more than one cluster, then that set of clusters will be merged 

together. The merging of these clusters might lead to a worst case scenario that is having 

the whole transactions in one log. The main goal of the use of clusters was to reduce the 

time of damage assessment and recovery and to be able to perform them in parallel, but 

in the worst case scenario this might be unreachable. To overcome this Panda proposed 

that he will restrict the number of transactions per cluster. 

2.8 Analysis 

Ray et al. (2004) performed analysis on existing algorithms along with a 

suggestion of new techniques was proposed. The complexity analysis was done to check 

the complexity of Ammann, Jajodia, and Liu (2002) as well as the algorithm suggested 

in (Lala and Panda, 2001). The aim of this paper was reducing the damage assessment 

latency so damage spreading will not occur. The disadvantage found in Amman‟s 
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algorithm was that the log file of this algorithm is huge and therefore it will take time 

scanning the part of the log after the malicious transaction. As for Lala and Panda‟s 

algorithm, it showed a worst-case running time of O (vlogv +s), such that v represents 

the number of affected transactions and s represents the sum of sizes of the transaction 

records. The model that this paper suggested uses dependency graph, which will be 

represented by a list structure and then continues by eliminating the queues and using 

depth-first search. The repair schedule produced by this algorithm will be proportional to 

the sum of lengths of affected transactions. 

2.9 Fuzzy dependency 

Zuo and Panda (2004) started by explaining the fuzzy dependency between 

transactions. “For two sets of attributes X and Y of a relation R, Y is fuzzily dependent on 

X if and only if for every value ai in the domain of X, ai belongs to D(X), there is an 

uniquely determined subset Si‟ in the domain of Y, Si‟ subset in D(Y), such that a tuple Ti 

in a relation instance of R with value ai for X should have a value bi belong Si‟ for Y”. 

The authors proposed that there are three uses of the fuzzy dependency: 

1- Used to specify constraints, 

2- Used in intrusion detection, and 

3- Used to reduce the denial of service. 

The suggested recovery algorithm consists mainly of the “Fuzzy Value 

Generator” that interacts with the database and the “Fuzzy dependency storage”.  The 

advantage provided by this algorithm is that the log file will not be traversed as a whole 
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bulk, but rather this model uses the fuzzy relations that are saved. Still the disadvantage 

of this method is the lack of accuracy. 
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CHAPTER THREE 

THE MODEL 

3.1 Overview  

In this chapter, we present a new detection and recovery model that is guaranteed 

to give reliable and trusted results. The model presented in this work will be triggered 

once it receives a malicious or a set of malicious transactions. Then, it will run to assess 

and find all the good but affected transactions. Finally, the model will end by deleting 

the malicious transactions and recovering from the affected ones. 

3.2 Assumptions 

In our algorithm, we assume that an external intrusion detection system will 

provide our model with the malicious transaction or the set of malicious transactions. 

From that point on, it will be the responsibility of our model to find and clean every 

affected transaction. 

Serial execution occurs when for every i < j, every operation in Ti occurs before 

the operations of Tj. Serial execution ensure a serializable history. In such a history, 

every transaction is assumed to be correct as it would be depending on the committed 

transactions only. Hence, serializability provides correctness (Gray and Reuter, 1993). 

An update to any transaction in the system will be represented in our model as if it is a 

new insert transaction (i.e. a new row in the matrix will be added). For our model, we 



27 
 

assume we have a rigorous serializable history. A sequential log file is also maintained 

in which only committed transactions are saved. This log file cannot be accessed by the 

users at all times and it will be used during recovery. Our algorithm requires the use of 

check points. After a certain period of time, data would become obsolete and then we 

can assume that no malicious transaction exists in that set of transactions. Hence, instead 

of making the log file grow in size tremendously with clean data, we will use check 

points. Check points will diminish the size of the log file and consequently reduce the 

space and the reading time. Check points should be chosen carefully so that they will not 

be too long to cause the log file to grow tremendously and require a lot of time for 

recovering, but yet long enough so that we will not have to go to previous check points 

in case a malicious transaction was detected. But if we faced a case were the intrusion 

detection system was too late to detect the malicious transaction in which a check point 

was already established, we will take advantages of the sequential log file. Using the log 

file we would be able to rebuild the matrix and execute our model as would be done if 

the check point did not exist. 

Another significant characteristic of our model is the use of the dependency 

matrix. The dependency matrix will be treated as the log file, i.e. it will be flushed at 

every check point because we would have guaranteed that the data became obsolete and 

clean. Hence, the matrix and the log file will use the same check point. If we take the 

worst case scenario and consider that a malicious transaction has occurred before the 

check point that we have created, then we will use the log file to rebuild the matrix after 

which the process will continue as any malicious transaction detection. The dependency 

matrix that we have will be a sequential matrix, such that for every i < j, Ti < Tj and Ti 
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can never depend on Tj. The matrix will only save the committed transactions. The 

importance of this matrix is in the detection process. It will be used to discover the 

dependency among transactions and hence see which ones where affected and which 

ones were clean. Panda and Zhou (2003) used dependency matrices as well. But in their 

model they had two different matrices one for the write operations and another for the 

read operations. In addition, they used logical operations between the matrices to 

discover dependencies. However, in our model only one matrix will be used and it will 

show the dependency without any logical operations. 

The attacker may have many intentions; one of these intentions is to cause denial 

of service whether it is direct or indirect, denial of service can be reached directly by 

sending many malicious transactions at the same time, whereas the indirect method 

occurs when the effect takes place at a later stage such as during the detection and 

recovery time. In detection, as the log file increases in size the time required for 

recovery would increase as well. In During detection and recovery time, the system will 

be down and the users will not be able to access it. Hence, this could be one indirect way 

of causing denial of service. So the attacker might be aware that injecting only one 

malicious transaction can require a lot of effort and shut the system for a long period of 

time and may lead to severe damage.  

3.3 The Matrix 

We have discussed the usage of the log file and the matrix so far; in this section 

we will discuss the structure of this matrix. We assume that this matrix is built 

dynamically along with the execution of every transaction. Only committed transactions 
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are inserted into our matrix. The matrix will be a two-dimensional array, such that the 

columns represent all the data items present in our database and the rows represent all 

the transactions that occurred. Each data item will either be blindly written by the 

transaction, left unmodified by the transaction, modified according to one previously 

committed transaction, or modified according to a set of previously committed 

transaction. Each case will be uniquely represented in our matrix. For every transaction, 

each data item will have a value depending on the operations that the transaction has 

gone through, this is represented as follows: 

 00: if the data item is unmodified by that transaction 

 01: if the data item is blindly written by that transaction, data from previous 

transactions is not needed. 

 A positive transaction Id: if dataitem1 of transaction x with transaction Id Tx is 

identified in the matrix with entry Ty such that y < x, this would mean that for 

dataitem1 in Tx we have modified its value according to dataitem1 that was last 

modified by transaction Ty. 

 A negative transaction Id: this means that this data item has been modified 

according to previous data items from different transactions; this will be shown 

in more details in the following section. 

Consider a transaction Tx such that to modify dataitem1 of this transaction we need 

to read dataitem4 of transaction Ty, dataitem3 of transaction Tw, and dataitem1 for from 

transaction Tv, where y, w and v < x. In such a case, the entry in the matrix for that data 

item will be -Tx. Still, –Tx alone will not help us in the recovery process as it does not 

show which transactions have affected it. To solve this problem, we added an additional 
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three-dimensional array that will only be manipulated in such cases. That is, in our 

example the entry of the main matrix for dataitem1 in transaction Tx will have -Tx. Then, 

in the second array the index will be the transaction Id that has been affected by other 

transactions, Tx. The index Tx will be pointing at Ty, Tw and Tv, similar to what is 

presented in tables 1 and 2. 

Table 3. 1 Dependency Matrix    Table 3. 2 Second Complementary Array 

 

 

 

 

 

3.4 Detection Algorithm 

Our proposed detection algorithm will use an additional data structure. This data 

structure is a one-dimensional array that will save all the affected transactions that our 

algorithm will detect. It works with the two matrices that are being built as the 

transactions are being executed and the set of malicious transactions that will be 

provided by an external intrusion detection system. The set of malicious transactions 

provided from the external intrusion detection system might contain many transactions 

that are not ordered. Since our log file is sequential and due to the characteristics of our 

algorithm, the minimum transaction Id between the set of malicious transactions is 

required to start working from that point. Since we are sure that we will never find a 
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transaction Tj such that j< i and Tj depends on Ti. To reduce the access time and 

consequently reduce the detection time we will traverse the matrix starting from the 

malicious transaction with the least transaction Id and hence skip any transaction that we 

know it will not be affected.  

The matrix will be traversed row by row starting from the transaction that directly 

follows the malicious transaction with the least transaction Id. Then, for each data item 

in that transaction a check will be done to see how the data have been reached. If the 

entry is a „00‟ or „01‟, then our algorithm will skip that column and check the following 

columns. If the entry contains a positive transaction id, a check will be done to see if this 

Id is the same as one of those ids in the malicious set. If it belongs to the malicious set, 

then the transaction Id will be added to the affected transactions structure and we will 

directly move to the transaction after it without looking at the rest of its columns. If one 

of the data items of a certain transaction is affected it would be enough for us to classify 

that transaction as affected transaction and try to update it again during the recovery 

algorithm. If that transaction Id does not belong to the malicious set, this shows that that 

transaction have not been directly affected by the malicious transaction. Still, this is not 

enough to classify the transaction as a clean transaction. It might be affected indirectly 

and thus the effect would be an affected transaction. For this reason, we should also 

search among the affected transactions and see if this transaction belongs to the affected 

transaction, then it should also be updated.  

After presenting what happens in the three above listed cases now we are still left 

with the fourth case which is having a negative transaction Id. A negative transaction Id 

shows that the transaction we are currently looking at has been affected by at least one 
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previously committed transaction. After detecting a negative transaction Id, we will go 

to the second array and retrieve content of the entry that has the same key as the row that 

we were searching. The retrieved content will then be tested to check if any of this 

content has the same Id as any of the transaction Ids that we already have in the 

malicious transaction set. Once we detect that any of these Ids are similar to a malicious 

Id, we will then add that transaction to the affected set and move to the following row. If 

nothing matched, we will apply the test against the affected transactions. Similarly, if the 

transaction was found to depend on an affected transaction; this means the data is dirty 

and should be added to the affected transactions set. For example, if the set of malicious 

transactions is { Tr, Ts, Tt} and the detection algorithm is running and it reached 

transaction Tx, such that data item a for this transaction has the value -Tx, then we will 

refer to the second matrix M2 and try to retrieve the content of M2[Tx]. If M2[Tx]={ Tu, 

Tr, Tz}, the algorithm reaches Tr and inserts Tx into the set of affected transactions. In the 

other case, if the set of malicious transactions are { T v, Ts} and the set of affected 

transactions are { Tt, Tu}, while M2[Tx]={ Tu, Tr, Tz}, the algorithm starts searching to 

check if the transaction Tx is affected or not. It will start by checking the malicious 

transactions against the transactions in M2[Tx]. In this example, it will not be found. 

Hence, the algorithm will move on and check the affected transactions. Tu would be 

matched with the set of transactions in M2[Tx] and the set of affected transactions. 

Consequently, the set of affected transactions would become { Tt, Tu,Tx}. 
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The above algorithm represents the logic of the detection algorithm presented for 

our model. Step 1 represents the information that the algorithm needs in order to 

function, i.e. the set of malicious transactions that an external Intrusion Detection 

System has provided. This information is the trigger for our algorithm; it will enable us 

of evaluating all the other data that we have.  Step 2 is implemented for evaluating the 

ID, from which we will start our algorithm, in order to start assessing the damage that 

the set of malicious transactions have caused. At the same time, the algorithm is trying 

1. Receive the set of malicious transactions 
2. Select the minimum transaction ID among the malicious transactions 
3. Receive the set of malicious transactions 
4. Select the minimum transaction ID among the malicious transactions 
5. For every transaction in the matrix starting from the minimum malicious ID to the end of 

the matrix 
5.1. For each data item 

5.1.1. If (entry == 00) then 
5.1.1.1. Move to the next row 

5.1.2. Else if (entry == 01) then 
5.1.2.1. Move to the next row 

5.1.3. Else if (entry>0 && entry belong Malicious transactions) 
5.1.3.1. Add the Current transaction to the set of affected transactions 
5.1.3.2. Move to the next row 

5.1.4. Else if (entry>0 && entry does not belong Malicious transactions) 
5.1.4.1. For every transaction in the affected transactions set 

5.1.4.1.1. If (entry==Taffected) 
5.1.4.1.1.1. Add entry to affected transactions set 
5.1.4.1.1.2. Move to the next row 

5.1.4.1.2. Else if (entry<0) 
5.1.4.1.2.1. Search secondArray for key==entry 
5.1.4.1.2.2. For each element in secondArray[entry] 

5.1.4.1.2.2.1. If(element belong Malicious transactions) 
5.1.4.1.2.2.1.1. Add the current transaction to the set of 

affected transactions 
5.1.4.1.2.2.1.2. Move to the next row 

5.1.4.1.2.2.2. Else if(element belong to the set of affected 
transactions) 

5.1.4.1.2.2.2.1. Add the current transaction to the set of 
affected transactions 

5.1.4.1.2.2.2.2. Move to the next row 

 

 

Table 3.3 Detection Algorithm Based on Matrices 
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to minimize the effort that the algorithm needs, but through maximizing the effect. Due 

to the fact that our matrix and log file are sequential, we select the minimum transaction 

ID to start the assessment from that point. By selecting the minimum transaction ID, we 

guarantee to cover all the malicious transactions by moving sequentially among them. In 

addition, the fact that the matrices are sequential makes us certain that we will never find 

a transaction before this transaction that depends on it. From step 3 onwards, the actual 

detection of the affected transaction begins. Step 3.1.1 checks if the data item of that 

transaction has been modified, while step 3.1.2 checks if the data item is a blind write. 

Steps 3.1.3 and 3.1.4 checks whether the value in the matrix is positive or negative. 

Accordingly, steps 3.1.3.1, 3.1.3.2 and 3.1.4.1 checks if it belongs to the malicious or 

affected transactions. If the value is negative, then the second array should be search 

which is represented in step 3.1.4.1.2.1.  Similarly, this matrix should be compared with 

the malicious and affected set in order to evaluate if the transaction is clean or not. 

3.5 Example on the Detection Process 

For example, consider a database for a company that contains information about 

the following: 

 Employees: a unique identification number for each employee (EID), first name 

(FName), last name (LName), date of birth (EDOB), job (EJ) and salary 

(ESalary). 

 Customers: a unique identification number for each customer (CID), customer or 

company name (CName) and the customer address (Caddress). 
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 Categories:  a unique identification number for each category (CatID) and 

category name (CatName). 

 Products: a unique identification number for each product (PID), product name 

(PName), price (PP) and category which classifies each product in a category 

(CatID). 

 Order: a unique identification number for each order (OID), the customer to 

whom this order belongs (CID), employee that took this order (EID), the product 

that the customer bought (PID), the quantity (QO), total (TO) and date (date). 

Consider the following transactions in the database stated above: 

T1 = Employee („1‟, „Kim‟, „Stewart‟, „1980-11-02‟,‟Sales‟, „$2000‟); 

T2 = Categories („1‟, „Beverages‟); 

T3 = Products („1‟, „Pepsi‟, „$1‟, „1‟); 

T4 = Categories („2‟, „Dairy Products);  

T5 = Products („2‟, „Cheese, „$4‟, „2‟); 

T6 = Employee („2‟, „John‟, „Adam‟, „1987-21-03‟, „Sales‟, „$1500‟); 

T7 = Customer („1‟, „X‟, „Beirut‟); 

T8 = Customer („2‟, „Y‟, „Beirut‟); 

T9 = Order („1‟, „1‟, „1‟, „1‟, „300‟, „$300‟, „2012-12-01‟); 

T10 = Order („2‟, „2‟, „1‟, „1‟, „250‟, „$250‟, „2012-27-02‟); 
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T11 = Order („3‟, „1‟, „2‟, „2‟, „50‟, „$200‟, „2012-12-04‟); 

T12 = Order („4‟, „1‟, „2‟, „1‟, „150‟, „$150‟, „2012-12-04‟); 

T13 = Order („5‟, „2‟, „2‟, „1‟, „300‟, „$300‟, „2012-01-05‟); 

T14 = Order („6‟, „2‟, „2‟, „1‟, „70‟, „$70‟, „2012-12-05‟); 

Let the dependency matrix that corresponds to this database be called M. This 

matrix will be made up of 21 columns (i.e. EID, FName, LName, EDOB, EJ, ESalary, 

CID, CName, CAddress, CatID, CatName, PID, PName, PP, CatID, OID, CID, EID, 

PID, QO, TO and date). As transaction T1 is committed, a new entry in M will be created 

with the following attributes M[1][ ] = {01, 01, 01, 01, 01, 01, 00, 00, 00, 00, 00, 00, 00, 

00, 00, 00, 00, 00, 00, 00, 00, 00}. The first six columns will be manipulated by „01‟ 

because they will be blindly written by transaction T1. There is no need to look at any 

previously committed transaction to be able to write the values for T1. As for the rest of 

the columns, they will be manipulated by „00‟ because transaction T1 wrote into the 

columns that belong to the Employee table where as the other data items are left 

unmodified. Similarly, after the commitment of transaction T2 a new row will be added 

to the matrix after T1. This is to preserve the property that transactions are sequential in 

the matrix and that there is no i < j such that Tj < Ti. Transaction T2 will write in the 

categories table thus adding values to CatID and CatName. The row belonging to 

transaction T2 will look like: M[2][] = { 00, 00, 00, 00, 00, 00, 00, 00, 00, 01, 01, 00, 

00, 00, 00, 00, 00, 00, 00, 00, 00, „00‟}. Transaction T2 does not need to read values 

from previous transactions be able to write its values. Unlike transaction T3 which 

depends on preciously committed transactions. Each product belongs to a category and 
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in this case product one belongs to the category that was previously committed in 

transaction T2. T3 writes the first three attributes without looking at anything that was 

written before, but the fourth attribute needs to look at the previous transaction. M[3][] 

= { 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00,01,01,01, -T3, 00, 00, 00, 00, 00, 00, 00}. 

Similarly, transactions T4, T5, T6, T7 and T8 will write their values. Transaction T9 is one 

of the transactions that depend on other transactions to write its values. For example, 

transaction T9 is depends on transactions T1, T3 and T7. If any of T1, T3 or T7 is malicious 

then T9 is affected. The row corresponding to -T9 is represented as follows: M[9][] = 

{00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 01,-T9, -T9, -T9, 01, -T9, 01}. Three 

data items are independent and blindly written by transaction T9 which are OID, QO and 

date. These three data items did not need information from previous transactions unlike 

CID, EID, PID, and TO. To save the information related to these four data items an 

additional complementary array, denoted by Comp, is needed. In case of T9, Comp[T9] 

will save every transaction that T9 depends on. Hence, Comp[T9] = { T7, T1, T3}. The 

building of Comp[T9] was executed as follows: to manipulate M[9][16] we needed the 

complementary structure to save the transaction that helped in getting the value of this 

field. Since T9 was for customer „X‟ then this shows that there is dependency between 

transactions T9 and T7. Due to this dependency, T7 was added to the complementary 

array. In case the intrusion detection system detects later on that T7 is malicious then we 

can figure out that T9 was affected. M[9][17] refers to the employee that was responsible 

of this order. Consequently, if this employee was maliciously entered, then transaction 

T9 is affected and we need to recover it. Thus, we need to save this dependency which 

will be reflected in Comp[T9]. Up to this stage Comp[T9] = { T7, T1}. As for M[9][18] it 

refers to the product that was order by customer „X‟ in this transaction. If the product in 
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T3 was malicious, then T9 is affected. Hence, this dependency is essential to be saved 

which will lead to Comp[T9] = { T7, T1, T3}. To calculate the total cost of this transaction 

we need information about the cost of the product that is present in transaction T3 and 

the quantity that the customer will buy which is in transaction T9 itself. Thus, transaction 

T9 depends on transaction T3 which is already reflected in the complementary matrix, so 

no need to add T3 again. The quantity and date of the order are the characteristics of 

transaction T9 and they do not need any previous information to be able to write the 

values. Hence, M[9][19] and M[9][21] are manipulated by „01‟. The commitment of 

transaction T9 and the manipulation of its corresponding row in the matrix can never 

happen before the commitment of transactions T7, T1 and T3. Moreover, the row 

corresponding to transaction T9 can never be created before the creation of each of the 

rows corresponding to each of T7, T1 and T3. The same procedure should be followed for 

each of the transactions after T9. 

The corresponding matrix and complementary array are represented in the tables 

below: 
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Table 3.4 Dependency matrix for the presented example 
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Table 3.5 Complementary matrix for the presented example 

T3 T5 T9 T10 T11 T12 T13 T14 

 

T2 

   

  

It might be thought that rather than using the additional array we can write in the 

matrix itself the ID of the transaction that the column depends on, but this doesn‟t work 

all of the times. To present the effectiveness of the complementary, consider the same 

database as the one presented above but with a slight addition. A new table, sales, will 

be added. The purpose of this table is to save the total amount of the sales for each 

month. The sales table will have the following structure: salesID, month and the 

totalsales. To calculate the total sales we need to look at the orders table and find all 

every order that have a date within a certain boundary. For example, if we need to find 

the sales for April then we need to find every order that has a date < „2012-01-06‟ and 

date > „2012-30-04‟. The result of this query will be transaction T13 and T14. Thus, the 

total that will be inserted into the sales table is $370. While building the matrix, when 

we reach the totalsales column for this transaction we cannot refer to these two 

depending on transactions in one column. Hence, for this reason we decided to use the 

complementary array that will be dynamic and we will be able to add to it as much 

T4 

-T7 -T1 -T3 -T8 -T1 -T3 

-T7 -T6 -T3 

-T8 -T6 -T3 

-T7 -T6 -T5 -T8 -T6 -T3 
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depending on transactions as we want. In this case, complementary array will look like 

the table 3.6: 

Table 3.6 Complementary matrix for example 2 

T3 --- T14 --- Tx 

   

T2 

 

Consider the case were the intrusion detection system will provide our model with 

the ID T2. Our detection algorithm will start by retrieving the malicious transaction with 

the least transaction ID, but in this case we have only one transaction. Hence, the 

algorithm will start searching the matrix starting from T3 rather than starting from T1 like 

other models. This shows that when working on a larger scale we might be skipping 

100‟s of rows. Consequently, this will reduce the assessment time. We will also skip the 

row corresponding to transaction T2 since we already know that this transaction is 

malicious. Our algorithm will use two structures: malicious_trans and affected_trans. 

The malicious_trans will start by having transaction T2 (i.e. the malicious transaction 

that the intrusion detection system provided). 

The damage assessment algorithm will start by traversing row T3. Whenever the 

algorithm sees a „00‟ it stop the search in the column and starts with the second column. 

„00‟ means that this column or data item have not been modified in this transaction. 

Similarly, if our algorithm sees a „01‟, it will skip to the next column as this would mean 

that this data item has been blindly written (i.e. without having the need to check values 

-T8 -T6 -T3 

-T13 -T14 
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from previously committed transactions). When our algorithm reaches M[T3][CatID] it 

will be faced with a new case. M[T3][CatID] contains a negative value. Thus, our 

algorithm will have to refer to the complementary array to check on which transactions 

does this transaction depended to write its values. Comp[T3] points to T2, T2 will be 

checked against the set of malicious transactions (malicious_trans). Since T2 is 

malicious, T3 will be added to the affected_trans. Since, T2 is added to the set of affected 

transactions then there is no need to continue assessing the other columns of this row. 

The algorithm will skip the other columns and start assessing T4. While assessing T4, the 

algorithm will not find any case other than „00‟ and „01‟. Thus, there will be no need for 

comparing against the malicious_trans and affected_trans. At the row related to 

transaction T5, all the columns before the CatID will be skipped as they are either „00‟ or 

„01‟. For M[T5][CatID], the algorithm will have to consider the case of a negative 

transaction ID. Thus, the algorithm will get the set of transactions that T5 depends on 

from the complementary array. There is only one transaction that T5 depends on which is 

T5. T5 will be compared against the malicious_trans that contains only T2 in this case. 

Since no similarities exist between the Comp[T5] and malicious_trans that means there 

is no direct effect on the malicious transaction. Hence, no we need to check if T5 is 

indirectly affected by T2. The check of indirect effect is done by checking the set in 

affected_trans. Again there is no similarities between the affected_trans and Comp[T5]. 

Hence, the algorithm should continue by checking every column of T5. The same 

process will be followed for each row until we reach the row corresponding to 

transaction T14. The result of this algorithm will be as follows: malicious_trans = {T2} 

and affected_trans = {T3, T9, T10, T12, T13, T14}. At this step the damage assessment 
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algorithm will be done. These results will be sent to the recovery algorithm that will do 

the actual recovery. 

3.6 Recovery Model 

          The recovery algorithm requires one additional structure that will be responsible 

for reading the log file.  After the detection algorithm is done, it will trigger the recovery 

algorithm by sending to it the set of malicious transactions and the set of affected 

transactions. The malicious transactions will be deleted, while the affected transactions 

would be recovered to act as if no malicious transactions have occurred. The algorithm 

will run until we reach a stable state in the database. A state were all of the data is 

consistent (i.e. no malicious transaction exits and any affected transaction is recovered). 

In our case, a stable database refers to a database that has recovered every malicious and 

affected transaction where its data is the same as if no malicious transaction has 

occurred. In this algorithm, the log file will be read and put into an array so we can 

index any record we want. We refer to it as if we are indexing an array rather than 

reading all the records in the log file until we reach the value or record that we want. 

This way will decrease the access time that will be needed to read the log file whenever 

we want to delete or recover a dirty transaction. The sets of malicious and affected 

transactions will be traversed and for each transaction we will go back and check what 

information the log file has about it in order to do the proper update. The algorithm is 

illustrated in table 4.1. 

 



44 
 

Steps 1 and 2 show how the algorithm is preparing the environment to start the recovery 

process. Step 3 and its sub-steps 3.1 and 3.2 represent the recovery process for the 

affected transactions. We start by the affected transaction to be able to trace back and 

update the values of the transactions accordingly as if no malicious transaction have 

occurred and modified our data. For example, if transaction Tx was affected by the 

malicious transaction Ty,where y < x, after Tx reading dataitem2 from Ty, we would go 

back and check how Ty got dataitem2.  Then, modify the record of transaction Tx. After 

this, we will be able to update any transaction that depends on transaction Tx by reading 

its new values. After modifying the data of all of the affected transactions now, as shown 

in step 4, we will retrieve the malicious transactions with their information and delete 

these unwanted data. 

3.7 Example on the Recovery Process 

         In this section, we will explain the recovery algorithm based on the example 

presented in section 3.5. After working with the damage assessment in section 3.5, we 

were able to detect all the affected transactions that depends on the malicious transaction 

T2. The set of malicious transactions is {T2} while the set of affected transactions is {T3, 

T9, T10, T12, T13, T14}. 

1. Receive the sets of malicious and affected transactions 
2. Read the file into an array 
3. For each transaction in the affected transaction set  

3.1. Retrieve the log file information for that transaction 
3.2. Update the transaction accordingly 

4. For each transaction in the malicious transaction set 
4.1. Retrieve the log file information for that transaction 
4.2. Delete the transaction 

Table 3.7 Recover algorithm 
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The recovery algorithm will start by recovering from the affected transactions. T3 

is the first affected transactions. Since T2 has maliciously entered a new category into the 

database that was not meant to be inserted, any product that belongs to that category 

should be deleted. These products cannot be classified under any other category. Hence, 

the only way to recover this is by deleting this transaction. If the product does not exist, 

then similarly the orders cannot exist. Thus, each of T9, T10, T12, T13 and T14 should also 

be deleted. After recovering all of the affected transactions, we now need to delete the 

malicious transaction T2. Any malicious transaction cannot be recovered it should only 

be deleted. Unlike affected transactions that can be recovered depending on each 

situation solely. After the recovery process, we reach a stable and consistent database 

(i.e. a database that does not contain any affected or malicious transaction). The database 

that we will reach is represented below: 

T1 = Employee („1‟, „Kim‟, „Stewart‟, „1980-11-02‟,‟Sales‟, „$2000‟); 

T4 = Categories („2‟, „Dairy Products);  

T5 = Products („2‟, „Cheese, „$4‟, „2‟); 

T6 = Employee („2‟, „John‟, „Adam‟, „1987-21-03‟, „Sales‟, „$1500‟); 

T7 = Customer („1‟, „X‟, „Beirut‟); 

T8 = Customer („2‟, „Y‟, „Beirut‟); 

T11 = Order („3‟, „1‟, „2‟, „2‟, „50‟, „$200‟, „2012-12-04‟); 

 



46 
 

Our proposed model uses a sequential log file and sequential dependency matrix. 

Both of which will contain only committed transactions and will be flushed at certain 

checkpoints. The matrix is the basis for the detection algorithm. It will help in assessing 

the transactions and categorizing them into affected and clean transactions. Then the 

result will be sent to the recovery algorithm to recover each malicious and affected 

transaction accordingly. We chose to use matrices in our algorithm due to the fact that 

matrices reduce the access time that is required to read the log file. In addition, the 

matrices enable us of skipping unwanted transactions without taking time to read them 

due to the indexing characteristic. On the other hand, when using a log file we should 

traverse all the transactions that occurred in order to reach the start point. 
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CHAPTER FOUR 

PERFORMANCE ANALYSIS 

4.1 Overview  

We tested the performance of our model by means of a simulated environment. 

Our model requires the presence of a log file along with a dependency matrix to be able 

to perform each of the detection and recovery processes. Since our algorithm requires 

the presence of these two prerequisites, the simulated environment will be responsible of 

generating them before starting the execution of the model. In normal cases, when not 

working in a simulated environment, the log file and dependency matrix are supposed to 

be built as the transactions are being executed. Transactions in our database are 

generated randomly. The average transaction time is 2. The average transaction time 

reflects the number of products that the customer will buy in our database (i.e. how 

many transaction will be associated with a single order). 

All assumptions are taken into consideration in our proposed simulated 

environment. The history is assumed to be serializable. Only committed transactions will 

be added into the log file, such that every added transaction will have a unique and 

sequential ID, i.e. there will be no i < j such that Tj < Ti. This will ensure for us that 

there will never be a transaction that depends on a transaction that happened after it; this 

is an assumption that was taken as we built our model.  
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Moreover, the dependency matrix will also be created using the simulated 

program. Both the matrix and the log file have similar characteristics, such as only 

committed transactions will be added to the dependency matrix and they will take 

sequential IDs, such that there will be no  i < j and Tj < Ti. This work is usually 

performed directly after the commitment of any transaction, hence building the matrix 

up with every transaction commitment. 

As soon as an external intrusion detection system detects a malicious transaction, 

the ID will be sent to our model and the detection and recovery processes will start. For 

testing our model and for the sake of our simulated environment, we have done testing 

on more than one ID. The testing is done at different stages to see how would the 

behavior of our model change as it will have to traverse more rows in the matrix or even 

when it have to recover a larger amount transactions. 

We used the “Northwind Database” in our testing. This database is provided as a 

template in the Microsoft Access office. The data was then converted to .sql format and 

added to MySQL. The server that was used in our stimulation is WampServer 2.0 with 

the following configuration: Apache Version 2.2.11, PHP Version 5.3.0 and MySQL 

Version 5.1.36. The simulated environment was developed on a system with an Intel® 

Core™ 2 Duo CPU P8600 at 2.40 GHz and running under approximately 2.39 GHz, 

with a 2 GB RAM.  

4.2 Performance Analysis of Damage Assessment 

Our model is split into two different parts, damage assessment and recovery, each 

of which has its own characteristics and importance. These two parts are the building 
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blocks of our model, and hence the performance of each part is important. Hence, we 

will start by evaluating the performance of the first part of this model which is the 

detection process. 

Figure 4.1 represents the performance of our detection algorithm. The database 

that we have used to test our model contains 1080 transactions (rows) and 5000 data 

items (columns), with at most 45 columns being access by a transaction. As we can 

analyze from the graph that the sooner the attack is detected, the faster the detection 

process will be. This is due to the fact that our algorithm starts from the malicious row 

and goes on without looking at any transaction that happened before since as we have 

mentioned previously our matrix is sequential. If a transaction Tj was detected as a 

malicious transaction, then we know that we will never find Ti such that i < j and Ti 

depends on Tj. Hence, now we can point out the advantage of the matrices usage, which 

is the indexing characteristic that enables us to skip all the transactions that occurred 

before the malicious transaction and without taking the time to read and skip the clean 

transactions. 

As we can see from figure 4.1, the time needed for damage assessment decrease as 

the attacker ID increase. The attacker ID represents the transaction ID that has been 

affected. When the attacker ID is 100, the damage assessment algorithm has to traverse 

981 rows to find every affected transaction. Unlike when the attacker ID is 1000 where 

the damage assessment algorithm have to traverse and check only 81 rows. The time 

decrease from around 18.13µ second to 5.8µ seconds. As the algorithm has to traverse 

less number of rows, the time and effort needed for damage assessment will also 

decrease. This shows that the sooner the attack is detected the better and the faster the 
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damage assessment will be. This shows that our algorithm is capable of decreasing the 

time needed for damage assessment and hence less denial of service. 

 

 

Figure 4.1 Performance of the Detection Algorithm based on different attacker ID 

Figure 4.2 portrays a time comparison between our algorithm (matrices) and three 

other algorithms (traditional, traditional clustered and hybrid cluster algorithms (Haraty 

& Zeitunlian, 2007)). The four algorithms were tested in the same environment, where 

we have database of 200 transactions with 5000 data items, in which only 45 data items 

are accessed as a maximum in a transaction. Therefore, the graph in figure 4.2 shows 

that our model is faster than the hybrid cluster by at least 167224 times (Kim et al., 

2010). This decrease in the damage assessment algorithm is due to the characteristics of 

our algorithm. The fact that we are using matrices makes our algorithm works faster, 

especially that matrices are easily indexed. When working with matrices we can easily 

skip any row and start from the point we want. The fact that our algorithm uses a 
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sequential matrix and that it starts from the point of the attack skipping anything before 

it makes it work faster. Unlike other algorithm, we only use one matrix that does not 

require any logical operations in the damage assessment phase. Moreover, our algorithm 

does not need to read the entire log file to cluster transactions according to dependency. 

The effort needed by other algorithms to read the log file is not needed in our algorithm. 

Hence, these characteristics improve our algorithm over previous algorithms. The matrix 

we are using contains all of the necessary information that is needed to assess the 

dependent transactions. Moreover, we are working with bits when numbers are not 

necessary which also reduces the effort. 

 

Figure 4.2 Damage assessment time comparison 

4.3 Performance Analysis for Recovery Algorithm 

After the detection phase and after we have saved all of the malicious and affected 

transactions, we can move to the second phase, the recovery. In this phase, we recover 
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every transaction that has been affected by malicious transactions and delete every 

malicious transaction. Figure 4.3 shows the time taken by our algorithm to recover the 

set of malicious and affected transactions. As we can see when the number of 

transactions that needs recovery increases, the time required for this recovery increase as 

well. Figure 4.3 shows the result for a database that constitute of 200 transactions, 5000 

columns. A transaction may access at most 45 columns. 

 

Figure 4.3 Performance of Recovery algorithm based on different number of affected 

transactions 

Figure 4.4 shows the time taken by the recovery algorithm as the number of 

recovered transactions increases. The database that gave the following results is 

composed of 1081 rows and 5000 columns. The maximum number of columns that can 

be accessed by a transaction is 45. Figure 4.3 and 4.4 present the same outcome (i.e. as 

the number of recovered transactions increases the time taken to recover will increase). 

The time graphed below is the time needed to recover from both malicious and affected 
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transactions. Figure 4.4 presents the advantage of our algorithm. Even when we worked 

on a larger scale database our algorithm was still faster than other algorithms. While 

other algorithms needed milliseconds to recover, our algorithm needed only less than 1 µ 

second. 

 

Figure 4.4 Performance of recovery on a larger scale database 

Figure 4.5 shows a comparison between our model and 4 other models (traditional, 

traditional clustered, hybrid clustered with data dependency, and the hybrid cluster with 

fixed size (Haraty and Zeitunlian, 2007)). The results show that in all the cases our 

model is much faster than any other model. In addition, in the worst case our model was 

faster in about 114,000,000 times than the other models. The reason of this improvement 

between our algorithm and other algorithms is the use of matrices. Moreover, the log file 

during recovery in our algorithm is converted to look like an array which makes the 

indexing easier and faster. Rather than reading the entire log file whenever we want to 

find a transaction we want to recover we just index its position in the array. The time 
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that was taken by other algorithms to read the log file is not needed in our algorithm; this 

will decrease in the timing. Our algorithm requires the effort to convert the log file to an 

array and this is done only once at the beginning of the recovery algorithm. 

 

Figure 4.5 Performance of the recovery algorithm in different models 

Figure 4.6 portrays the time taken by our model to build the matrix, detect and 

recover from an attack. To obtain the results below we used a database composed of 

5000 columns and 1081 transactions. It can be inferred from the figure below that the 

total time taken by our algorithm to detect and recovery from a malicious attack is less 

than the time taken to recover or detect using other models. In worst case scenarios we 

might have to see such numbers. In our model, the worst case scenario is when the 

malicious transaction is recovered after we have reached a check point. In such a case 

we would need to rebuild the matrix and then start our assessment. Since figure 4.5 

shows the time needed to build the matrix, detect and recover from malicious 

transactions, it also presents the worst case scenarios. This proves that even in the worst 
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case our algorithm is faster than when the other algorithms are recovering from normal 

cases. 

 

Figure 4.6 Time taken for different attacker IDs to go through our recovery model 

In conclusion, our model showed better performance in both detection and 

recovery processes. The time required by our algorithm to do the full process is much 

faster than the time required by a single process of other algorithms. Even if we shut 

down the system at certain times to recover, the time will not have a great negative 

effect on us. Using matrices saved time and reduced the possibility of having a denial of 

service or at least a long denial of service. 
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CHAPTER FIVE 

CONCLUSION 

The security of a system is composed of three phases: prevention, detection and 

recovery. Prevention methods do not always work; hackers and attackers always find 

ways to breach the system. When prevention fails detection systems are supposed to 

detect the malicious transaction and report it to be stopped as soon as possible. Again 

detection systems fail to detect the malicious transaction as soon as they happen. For this 

reason malicious transactions affect other clean data. Hence, recovery methods are 

supposed to be effective, efficient and fast so that they recover from the malicious 

transaction and its effects. This model presented a new approach for recovery which 

depends on matrices. The dependency between transactions is all saved in a matrix that 

will be formed as the transactions are being committed. We tested our model and 

compared it with different previous approaches and the results showed that our model is 

faster by at least 100,000 times. The given results confirm that our approach is faster and 

more efficient than previously proposed models (traditional, traditional clustering, 

hybrid clustering according to data dependency and according to fixed size). Our model 

has proved to have an advantage on both levels: detection of affected transactions and 

recovery. 
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As a future work, we will work on the space issue. Our algorithm requires the 

presence of a matrix along with another structure to save the transactions it depend on, 

this requires space that could be diminished. 
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Appendix I  

Detection algorithm 

function Detect($M,$i, $j, $Malicious, $k,$secondArray) { 

$startTime=microtime (true); 

$firstAffected=min($Malicious); 

$startID=$firstAffected+1; 

$Affcol=0; 

for($row=$startID; $row<$j; $row++) { 

$flag=0; 

for ($column=1; $column<$i; $column++) { 

for($Mcol=0; $Mcol<$k;$Mcol++) { 

if($M[$row][$column]==$Malicious[$Mcol]) { 

$Taffected[$Affcol]=$M[$row][0]; 

$Affcol++; 

$flag=1; 

break; 

}  

if(abs($M[$row][$column])==$Malicious[$Mcol]) { 

$Taffected[$Affcol]=$M[$row][0]; 

$Affcol++; 

$flag=1; 

break; 

} 

if($M[$row][$column]<0) { 

$transID=abs($M[$row][$column]); 

if(array_key_exists($transID,$secondArray)) { 
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$countArray=count($secondArray[$transID]); 

for($traverse=0;$traverse<$countArray;$traverse++) { 

if($secondArray[$transID][$traverse]==$M[$row][0]) { 

$Taffected[$Affcol]=$M[$row][0]; 

$Affcol++; 

$flag=1; 

break; 

} 

} 

} 

} 

  //if not found in the malicous array then it should be in the affected part 

if($flag==0) { 

for( $m=0; $m< $Affcol;$m++) { 

 if($M[$row][$column]==$Taffected[$m]) { 

 $Taffected[$Affcol]=$M[$row][0]; 

$Affcol++; 

$flag=1; 

break; 

} 

 if(abs($M[$row][$column])==$Taffected[$m]) { 

$Taffected[$Affcol]=$M[$row][0];     

$Affcol++; 

$flag=1; 

break; 

} 

if($M[$row][$column]<0) { 
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$transID=abs($M[$row][$column]); 

if(array_key_exists($transID,$secondArray))   { 

$countArray=count($secondArray[$transID]); 

for($traverse=0;$traverse<$countArray;$traverse++)  { 

if($secondArray[$transID][$traverse]==$Taffected[$m])  { 

$Taffected[$Affcol]=$M[$row][0];     

$Affcol++; 

$flag=1; 

break; 

} 

} 

}  

} 

 } 

} 

}//end Malicious array 

}//end $columns loop 

}//end $rows loop 

$endTime=microtime (true); 

$detecttime=$endTime-$startTime; 

Recover($Taffected, $Malicious); 

}//end function 
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Appendix II  

Recovery algorithm 

function Recover( $affected, $Malicious) { 

 $startTime=microtime (true); 

 $lines = file ("transactionsLog.txt"); 

 For ($i=0;$i<count($affected);$i++)  { 

$words=split ("[ ]", $lines[($affected[$i]-1)]); 

  $info=$words [12]; 

  $sepInfo=split (",", $info); 

  if($sepInfo[0] && $sepInfo[1])  { 

   $sql="Delete from ".$sepInfo[0]." where ".$sepInfo[1]; 

  } 

 } 

 for ($j=0;$j<count($Malicious);$j++) { 

  $words=split ("[ ]", $lines[($Malicious[$j]-1)]); 

  $info=$words [12]; 

  $sepInfo=split (",", $info); 

  if($sepInfo[0] && $sepInfo[1]) { 

   $sql="Delete from ".$sepInfo[0]." where ".$sepInfo[1]; 

  } 

 } 

 $endTime=microtime (true); 

 $total=$endTime-$startTime; 

} 




