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Abstract: 

Energy consumption of Hybrid Electric Vehicles (HEV) strongly depends on the 

adopted energy management strategy (EMS). Rule-Based (RB) controllers are the most 

commonly used for their ability of integration in real-time applications. Unlike global 

optimization routines, RB controllers do not ensure optimal energy savings. This study 

presents a methodology to design a close-to-optimal RB controller derived from global 

optimization strategies. First, dynamic programming (DP) optimization is used to derive 

the optimal behaviour of the powertrain components on the Worldwide Harmonized 

Light Vehicles Test Cycle (WLTC), and then, the resulting performance of the 

powertrain components is used to design an optimized RB energy management strategy. 

Furthermore, the strategy is developed to cope with the variations in trip length and 

traffic conditions. The plug-in series hybrid electric vehicle is modelled using the 

energetic macroscopic representation (EMR). Results show that the proposed optimal 

RB controller is only consuming 1-2% more fuel compared to DP controllers and is 

resulting in a 13 – 16% less fuel consumption compared to basic RB controllers. 

 
Keywords: 

Plug in series hybrid electric vehicle, Energy management strategies, Adaptive 

controller, Rule-based control, Energetic macroscopic representation. 

1. Introduction 
Environmental concerns have been the leading drive behind the hybrid technologies emerging in the 

automotive industry. A considerable amount of effort is spent on designing fuel efficient vehicles 

that can meet the consumer's demands of functionality and comfort and maintain a low level of 

emissions. Electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid vehicles 

(PHEV) have emerged as viable solutions to these concerns, with focus being directed on HEVs and 

PHEVs as the transition phase between conventional vehicles and fully electric vehicles.  



The energy consumption of these vehicles is highly dependent on their energy management strategy 

(EMS). The EMS in HEVs decides on the instantaneous power request from the different energy 

sources. Different control strategies have been deployed in HEVs. HEVs control strategies can be 

categorized into two main groups, optimization-based control and rule-based control. Optimization 

based controllers aim to minimize a cost function over a predefined trip. The cost function is 

defined in general as the vehicle energy consumption or emissions. In contrast, rule-based 

controllers are fundamental controllers that depend on the vehicle mode of operation where rules are 

established based on heuristics, engineering intuition or even mathematical models [1,2].  

Optimization based EMS is based on defining a cost function which sums all the objective functions 

to be minimized [3]. The cost function may include fuel consumption, emissions, torque, battery 

aging, etc. … depending on the application [1]. Optimization based EMS are split into two main 

sub-categories, global optimization strategies and local optimization strategies. Global optimization 

strategies can introduce a global optimum solution for a defined cost function [4]. These strategies 

require a prior knowledge of the entire trip including the route, driver’s response, driving behaviour 

and the battery SOC [1]. This makes global optimization strategies unimplementable in real time, in 

addition to their computational complexity [2]. Many studies introduce global optimization 

strategies in HEV control such as Linear Programming in [5] , Dynamic Programming (DP) in [6,7] 

and genetic algorithm in [8,9]. On the other hand, local optimization-based strategies split the global 

optimization problem into a series of local optimization problems reducing the computational 

burden [3]. Local optimization-based strategies such as PMP (Pontryagin’s Minimum Principle) and 

ECMS (Equivalent Consumption Minimization Strategy) are widely deployed in HEVs. Many 

studies [10,11] used PMP as an optimal or close to optimal EMS. In addition, Many studies [12,13] 

have used ECMS as an EMS in HEV. Optimization-based EMS cannot be implemented in real time, 

except for ECMS, which still needs prior knowledge of the trip to attain its close-to-optimal control. 

The second major type of EMS in HEV is RB controllers. They consist of a set of rules that are 

initially predefined without any prior knowledge of the trip [14]. These rules are further calibrated 

using vehicle simulations. RB controllers can be easily implemented in real time application [1], 

however, they cannot guarantee optimal behaviour of the powertrain components [3]. There are two 

main types of RB controllers, deterministic RB and fuzzy RB controllers. Deterministic RB 

controllers are subdivided into two types: the thermostat (ON-OFF) control strategy used in [15] 

and the power follower strategy where the engine is the sole power supply and the electric machine 

supplies additional power whenever needed by the vehicle [1–4,14]. On the other hand, Fuzzy RB 

controllers are an extension of the deterministic RB control strategy. However, the rules here are not 

mathematically precise [4]. The core of fuzzy RB control is that it is based on approximation rather 

than precision, making it adaptive to some extent [3]. The simplest type of fuzzy RB controller is 

the conventional/traditional fuzzy control. It is developed to force the engine to operate on its 

optimal efficiency line using load balance by means of the electric machine [3]. In addition, 

adaptive fuzzy RB control is deployed in HEV as well. It can ensure close-to-optimal control if its 

inputs are well tuned. The last type of fuzzy control is predictive fuzzy RB control which is based 

on real-time control and data collected using the global positioning system (GPS). 

Building on the findings, the review of these studies underlines the following two gaps: 

• There is no comprehensive methodology to design, in few steps, an RB EMS for HEV with 

close to optimal powertrain components behaviour.  

• Current RB EMS for HEV cannot capture variations in trip distance lengths and traffic 

intensities without implementing complicated driving pattern recognitions. 



 Therefore, based on the above synthesis of the insights and gaps in the literature, this study 

proposes a comprehensive methodology to help powertrain-modelling practitioners to design in few 

steps an EMS for HEV that provides close to optimal consumption results. 

2. Vehicle modelling setup 

2.1. Powertrain architecture: series plug-in hybrid electric vehicle 

A plug-in series HEV is considered in this study. Vehicle parameters are obtained from the second-

generation series-parallel TOYOTA PRIUS and modified accordingly to fit the purpose of this 

study. The powertrain includes a 50-kW electric machine to drive the vehicle and recover braking 

energy, and a 1.5 L, 57 kW Atkinson engine mechanically connected to a 50-kW electric generator 

(EG) to act as the auxiliary power unit (APU). The previous 1.3 kWh TOYOTA Prius Nickel-Metal 

(NiMH) battery is upgraded to 5.1 kWh and operates in the range of 80% to 30% state of charge 

(SOC). The vehicle parameters are summarized in Table 1. The powertrain is shown in Figure 1. 

2.2. Modelling technique: energetic macroscopic representation 

Energetic Macroscopic Representation (EMR) is a graphical tool that describes electromechanical 

systems based on their components interactions [16]. This technique proved very useful in 

simulating the power flows in HEV powertrains. Powertrain elements are represented graphically by 

blocks and are divided into four types: Source/Sink elements, Conversion elements, Accumulation 

elements, and Coupling elements. Each element has input and output vectors representing its 

action/reaction relations with the adjacent elements. The product of each pair of vectors between 

adjacent elements represents the instantaneous power exchange between them. This is defined as the 

interaction principle [17]. This way of representation allows the deduction of a control strategy by 

applying the inversion principle. This method is called inversion-based control (IBC) and dictates 

the inversion of each element. The control structure of a system is considered an inversion model of 

the system because the control must define the appropriate inputs to achieve a desired output. In this 

method, relationships without time-dependence are directly inverted. However, following the 

integral causality principle, a direct inversion of time-dependent relationships is not possible. An 

indirect inversion is thus considered using proportional – integral (PI) controller [17]. 

Table 1: Vehicle Parameters 

Parameter Description Value 

mveh Vehicle mass 1420 kg 
𝐟𝟎 Friction coefficient 0 195 
𝐟𝟏 Friction coefficient 1 0.3389 
𝐟𝟐 Friction coefficient 2 0.0296 

𝐫𝐰𝐡𝐞𝐞𝐥 Wheel radius 0.301 m 
𝐫𝐝𝐢𝐟𝐟 Differential ratio 4.113 
𝐫𝐞𝐠 Engine/EG ratio 1 

𝛈𝐝𝐢𝐟𝐟 Differential efficiency 0.98 
𝛈𝐠𝐛 Gear efficiency 0.95 

𝐐𝐋𝐇𝐕 Lower heating value 
of gasoline 

42.3 
MJ/kg 

𝐏𝐚𝐮𝐱 Auxiliaries power 300 W 
𝐐𝐛 Battery capacity 5.1 kWh 

 

 

 

Electric Connection 
Mechanical Connection 

Figure 1: Series powertrain architecture 



2.3. EMR and IBC of the studied powertrain 

The EMR model of the studied series PHEV is demonstrated in Figure 2. The fuel tank and battery 

form the energy storage unit of the vehicle. The flow of electric energy from the EG, battery and 

EM are coupled in an inverter. The EM, differential and wheels form the traction unit. The 

transmission includes only the differential.   

The IBC is also shown in Figure 2. The tuning path, which is the set of variables that form the 

control loop, has two tuning inputs: the reference braking force 𝐹𝑏𝑟𝑎𝑘e_𝑟𝑒𝑓, and the reference torque 

of the EM. These tuning inputs will control the vehicle speed. Thus, the elements to be inverted are 

the chassis, mechanical coupling, wheels, and driveline. The APU and energy storage unit are not 

included in the tuning path, since they are controlled and tuned by the EMS, which is detailed 

further in section 3. 

2.3.1. Multi-physical conversion elements 

The multi-physical conversion elements convert energy from one form to another.  

The ICE, EG, and EM are all multi-physical conversion elements. 

ICE model: The engine is utilized to convert the chemical energy of the fuel into mechanical work 

that drives the EG. The fuel consumption is calculated as follows: 

 
�̇�𝑓𝑢𝑒𝑙(𝑡) =  

𝜔𝐼𝐶𝐸(𝑡) × 𝑇𝐼𝐶𝐸(𝑡)

𝑄𝐿𝐻𝑉 × 𝜂𝐼𝐶𝐸(𝑡)
 (1) 

where 𝑇𝐼𝐶𝐸 is the engine torque, 𝜔𝐼𝐶𝐸 is the engine speed, and 𝜂𝐼𝐶𝐸 is the engine efficiency 

computed from the engine performance map. 

 

Figure 2: Energetic Macroscopic Representation and Inversion-Based Control of the investigated 

series hybrid powertrain 

Electric Generator model: The 50-kW EG is connected directly to the ICE and is used to charge the 

battery. Generator torque (𝑇𝐸𝐺) speed (𝜔𝐸𝐺) electric power (𝑃𝐸𝐺) and current (𝐼𝐸𝐺) are calculated as 

follows: 

 
𝑇𝐸𝐺(𝑡) =

1

𝐾𝐸𝐺
𝑇𝐼𝐶𝐸(𝑡) 

(2) 

 𝜔𝐸𝐺(𝑡) = 𝐾𝐸𝐺𝜔𝐼𝐶𝐸(𝑡) (3) 



 𝑃𝐸𝐺(𝑡) = 𝜔𝐸𝐺(𝑡)𝑇𝐸𝐺(𝑡)𝜂𝐸𝐺(𝑡) (4) 

 
𝐼𝐸𝐺(𝑡) =

𝑃𝐸𝐺(𝑡)

𝑢𝐸𝐺(𝑡)
 

(5) 

where 𝐾𝐸𝐺  is the gear ratio between the engine and the EG, 𝜂𝐸𝐺  is the EG efficiency, and 𝑢𝐸𝐺  is the 

EG voltage. 

Electric machine model: In the Series architecture, the wheels are mechanically coupled to the 

electric machine. Thus, the EM needs to meet the total requested load power Pl. It operates in two 

modes, traction mode and brake energy recovery (BER) mode, depending on whether Pl is positive 

or negative. During braking, the EM recovers kinetic energy and consequently charges the battery. 

The braking torque recovery is limited by the maximum torque of the EM and the battery SOC. The 

torque 𝑇𝐸𝑀 is determined from the IBC as a tuning parameter, 𝑇𝐸𝑀−𝑟𝑒𝑓 . The current, 𝐼𝐸𝑀, is 

calculated depending on the operating mode: 

 
𝐼𝐸𝑀(𝑡) =

𝑇𝐸𝑀(𝑡)𝜔𝐸𝑀(𝑡)

𝑢𝐸𝑀(𝑡)𝜂𝐸𝑀
𝑘 (𝑡)

 
(6) 

where 𝑢𝐸𝑀 is the EM voltage, 𝜂𝐸𝑀
𝑘  is the efficiency of the EM and k take the values of 1 or -1, 

depending on the operating mode of the EM. 

2.3.2. Mono-physical conversion elements:  

The mono-physical conversion elements transmit energy without changing its form such as the 

driveline and the wheels. 

Driveline Model: Since the series architecture does not include a gearbox, the differential is 

modeled as the only transmission element in the powertrain. The driveline torque (𝑇𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒) and 

speed (𝜔𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒) are calculated as follows:  

 
𝑇𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒(𝑡) =

1

𝐾𝐷
𝑇𝐸𝑀(𝑡)𝜂𝑡𝑟𝑎𝑛𝑠 

(7) 

 𝜔𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒(𝑡) = 𝐾𝐷𝜔𝐸𝑀(𝑡) (8) 

where 𝐾𝐷 is the final drive ratio and 𝜂𝑡𝑟𝑎𝑛𝑠 is the driveline efficiency. 

Wheels model: The wheels model is simplified and considered as a single wheel receiving all the 

torque from the driveline. The traction force (𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) and the resulting vehicle velocity (𝑉𝑣𝑒ℎ) are 

calculated as follows: 

 
𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) =

𝑇𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒(𝑡)

𝑟𝑤ℎ𝑒𝑒𝑙
 

(9) 

 
𝑉𝑣𝑒ℎ(𝑡) =

𝜔𝑑𝑟𝑖𝑣𝑒𝑙𝑖𝑛𝑒(𝑡)

𝑟𝑤ℎ𝑒𝑒𝑙
  

(10) 

where 𝑟𝑤ℎ𝑒𝑒𝑙 is the wheel radius. 

2.3.3. Coupling elements 

The coupling elements couples 2 or more energy inputs of similar form such as the electric and 

mechanical coupling. 

Electric Coupling: This element receives currents from the EG and the EM, and outputs the 

resulting battery current, 𝐼𝑏𝑎𝑡. 𝐼𝑏𝑎𝑡 is negative during discharge mode and positive during charging 



mode. The battery, EG, and EM are electrically connected in parallel and hence obey the following 

equations: 

  𝑢𝑏𝑎𝑡(𝑡) =  𝑢𝐸𝐺(𝑡)  =  𝑢𝐸𝑀(𝑡) (11) 

 𝐼𝑏𝑎𝑡(𝑡) =  𝐼𝐸𝐺(𝑡)  + 𝐼𝐸𝑀(𝑡) + 𝐼𝑎𝑢𝑥(𝑡) (12) 

where 𝐼𝐸𝐺  is the EG current and 𝐼𝑎𝑢𝑥 is the current demanded by the auxiliaries of the vehicle. IEG is 

positive since the EG only charges the battery, and Iaux is obviously negative. 

Mechanical Coupling: The mechanical coupling receives the forces 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 and 𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔 acting on 

the wheels and outputs the total force, 𝐹𝑡𝑜𝑡𝑎𝑙, driving the vehicle chassis as follows: 

 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) + 𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔(𝑡) (13) 

Where naturally Ftraction(t) is a positive quantity and Fbraking(t) is a negative one. Note that the vehicle 

controller avoids actuating these two forces simultaneously. 

2.3.4. Accumulation elements 

The accumulation elements are time dependent elements that accumulate energy and cannot be 

inverted directly. In this model, only the vehicle chassis is treated as an accumulation element. The 

inertias of the different driveline components are neglected. 

Chassis: The energy is accumulated in the chassis in the form of kinetic energy where the velocity 

is computed as follows: 

 
𝑉𝑣𝑒ℎ(𝑡) = ∫

(𝐹𝑡𝑜𝑡𝑎𝑙(𝑡) − 𝐹𝑟𝑜𝑎𝑑(𝑡))

𝑀

𝑛+1

𝑛

𝑑𝑡 
(14) 

with 𝑀 is the mass of the vehicle and 𝐹𝑟𝑜𝑎𝑑 is the sum of the resistive forces acting on the vehicle, 

calculated as follows: 

 𝐹𝑟𝑜𝑎𝑑(𝑡) = 𝑓0 + 𝑓1(𝑉𝑣𝑒ℎ(𝑡)) + 𝑓2(𝑉𝑣𝑒ℎ(𝑡))2 (15) 

Where F0 represents rolling resistance, F1 represents rolling resistance dependence on velocity in 

addition to driveline losses and finally F2 represents aerodynamic drag. 

2.4. Energy consumption calculation 

The engine fuel consumption is computed using equation (1). To monitor the battery SOC and thus 

help choose the appropriate driving mode, electric energy consumption is calculated at each instant. 

The battery is modelled as a voltage source with an internal resistance. The battery power (𝑃𝑏𝑎𝑡𝑡), 

current (𝐼𝑏𝑎𝑡𝑡), and SOC, are computed as follows: 

𝑃𝑏𝑎𝑡𝑡(𝑡) =  𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑡) + 𝑃𝑚𝑜𝑡𝑜𝑟(𝑡) + 𝑃𝑎𝑢𝑥  (16) 

𝐼𝑏𝑎𝑡𝑡(𝑡) =  
𝑉𝑂𝐶(𝑆𝑂𝐶(𝑡)) − √𝑉𝑂𝐶

2 (𝑆𝑂𝐶(𝑡)) − 4𝑃𝑏𝑎𝑡𝑡(𝑡)𝑅𝑖𝑛𝑡(𝑆𝑂𝐶(𝑡))

2𝑅𝑖𝑛𝑡(𝑆𝑂𝐶(𝑡))
 (17) 

𝑃𝑏𝑎𝑡𝑡(𝑡) = 𝐼𝑏𝑎𝑡𝑡(𝑡)𝑉𝑏𝑎𝑡𝑡(𝑡)(𝑆𝑂𝐶(𝑡)) (18) 

𝑆𝑂𝐶(𝑡) = SOC (𝑡 − 1) −
𝑃𝑏𝑎𝑡𝑡(𝑡)

𝐶𝑏𝑎𝑡𝑡
 

(19) 



The generator power Pgenerator is a positive quantity as it charges the battery, the auxiliary power is a 

negative quantity as it discharges the battery and the electric motor power Pmotor is negative during 

the traction mode and positive during the BER mode. The open-circuit voltage 𝑉𝑂𝐶 and the internal 

resistance 𝑅𝑖𝑛𝑡 of the battery are considered from [13], where the nominal voltage is 201.6 V and 

the average internal resistance is 0.36 Ohms. 

3. Energy management strategy 

In this section, the different energy management strategies, controlling the vehicle model, will be 

investigated. The Optimal RB (Opt. RB) and optimized adaptive RB (Opt. A-RB) controllers are 

compared against a basic RB controller and the global optimal strategy of DP. The four EMS are 

detailed in the following section. 

3.1. Basic RB control 

The controller of the current vehicle is of RB type. it follows a charge depleting (CD) then a charge 

sustaining (CS) strategy [18]. The battery is depleted in the first part of the trip with the APU turned 

off, thus, completely utilizing the all-electric range of the PHEV. Once the battery SOC reaches its 

lower limit, namely 30%, the basic RB controller turns on the APU. The battery SOC is then 

maintained around 30% using a thermostat strategy for the entire remainder of the trip. A detailed 

explanation of how thermostat strategies function can be found in [19]. The engine runs at its 

optimal efficiency line in this case. 

3.2. DP Control 

Dynamic Programming is used as the global optimization routine.  The WLTC drive cycle is used to 

emulate home-work commutes representing a recurrent trip and the results obtained will be 

analyzed in an approach like that used in [20] by the current co-author. Specific rules will be 

deduced from the DP control results and translated into an RB controller.  

Since DP cannot be used with the graphical EMR model done on Simulink, an equivalent model 

was elaborated on MATLAB. The battery SOC was chosen to be the only state variable x(t), while 

the APU status (on/off) and the ICE speed were chosen as the two control variables, U1(t) and 

U2(t), respectively. Note that the engine is considered to operate on its optimal efficiency line so the 

engine torque is deduced from the engine speed. A value of 1 for U1(t) corresponds to APU On and 

a value of 0 corresponds to APU Off. The DP model use same equations as those introduced in the 

EMR model section 2.3. To make sure that the physical limits of the different components are 

respected in terms of speed, torque, power, and current, certain constraints were forced on the DP 

model.  

Let U1 = {uo, ..., un-1} & U2 = {uo, ..., un-1} (where n is the time length of the route) be a certain APU 

status and speed strategy obtained from the DP model over the scheduled route, with initial and final 

SOCs being 80% and 30%, respectively. Then the goal is to find the optimal strategy Uopt that 

minimizes fuel consumption (the cost function C) over the scheduled route, formulated as  

 
𝐶 = ∫ �̇�𝑓𝑢𝑒𝑙(𝑥(𝑡), 𝑢1(𝑡), 𝑢2(𝑡))

𝑛

0

 
(20) 

The APU status u1 (t) and engine speed u2 (t) at any instant t are chosen with the future trip energy 

consumption taken into consideration. As a result, the optimal APU status and speed strategy is 

obtained with an optimal SOC trajectory x(t) for a scheduled route. 

Since the optimal control strategy Uopt from DP cannot be implemented in real time, the Opt. RB 

controller will be constructed to replicate the optimal behavior as close as possible. The power 



behavior of the drivetrain components is introduced in Figure 3 and plotted against the vehicle load 

power.  

 

 

Figure 3: Power behavior of the drivetrain components under DP control for three repeated WLTPs 

Five control modes are observed: break energy recovery (BER) mode, the electric vehicle mode, 

and three different APU modes. 

1. In BER mode (Pload < 0), the APU is switched off and the EM is recovering kinetic energy and 

storing it in the battery. 

2. In EV mode (0 < Pload < Pev), the APU remains switched off while the EM withdraws all its 

power from the battery. As the load power exceeds the Pev threshold, DP switches to APU 

mode. In Figure 3, the distance travelled is 70 km (three repeated WLTP drive cycles), and Pev is 

10.9 kW. This value was observed to change with the distance: the longer the route, the smaller 

Pev is. Figure 4 shows the variation of Pev as function of the distance (one to five repeated 

WLTPs). This decrease in the threshold suggests that for larger distances, the APU turns on 

more frequently, thereby preserving the battery energy until the end of the trip.  

3. In APU mode (Pload > Pev), three sub-modes are identified with a difference in engine operating 

speed. The first two sub-modes are separated by the threshold Papu-1 and the last two by Papu-2. In 

APU mode 1, the APU delivers around 23 kW of electric power which is used to drive the 

motor, while the surplus power is stored in the battery. Once the load power surpasses Papu-1, 

control switches to APU mode 2, where the APU power increases in a linear fashion as a 

function of the load power. In the last sub-mode (when Pload > Papu-2), the APU delivers around 

30 kW to drive the motor and the surplus is also stored in the battery. The thresholds Papu-1 and 

Papu-2 follow the same trend as Pev and decrease with increasing trip distance battery.  

3.3. Optimized RB Control 

The optimized RB controller, according to the discussed modes above, can be written in a way to 

mimic the DP optimal behavior on the WLTP cycles. Based on Figure 4, the controller needs to 

obtain a new engine power-on threshold (Pev) for each varying trip distance, in addition to the two 

APU thresholds Papu-1 and Papu-2. DP can compute these parameters as soon as the drivers inputs 

their destination into the controller. The architecture of the Opt. RB controller is shown in Figure 5. 

It is like the one introduced in [20] by the present co-author, however, modified to fit this study’s 

series PHEV. 



The offline computation starts as soon as the driver inputs the desired destination. Using GPS and 

traffic management systems, the trip load simulator calculates the required Pload. DP receives the 

computed Pload and uses it to determine the optimal power thresholds for the selected route. The 

online computation aspect of the controller happens in real-time while the car is being driven. The 

driver power interpreter outputs the appropriate power demand to meet the vehicle load and satisfy 

driver commands. This demand is received by the power management controller which in turn 

outputs the correct APU command (whether to turn the engine on or off and at which speed) 

according to the thresholds resulted from DP. For the considered WLTP cycle, the driving 

conditions and commands of the Opt. RB control are summarized in Table 2. 

The controller rules are derived from DP simulations based on the WLTP drive cycle, it is then 

important to mention that these rules are specific to the WLTP cycle and any difference in the 

scheduled route would lead to a diversion from the optimal DP results. Such differences in the 

scheduled route would translate into a lower or higher Pload on average and thus an early depletion 

or overcharge of the battery, respectively. Hence, DP would need to rerun the calculations and 

obtain updated thresholds and engine power levels for optimality. 

 
Figure 4: Thresholds variation function of the 

distance under optimal DP control 

Table 2: Power management rules for the 

optimized rule-based controller 

Drivin

g Mode 

Driving 

Condition 

Driving Command 

Engine 

Electric Pl < Pev SEng = OFF 

PEng = 0 

APU 

mode 1 

Pev < Pl < Papu-1 SEng = ON 

PEng = 23 kW 

APU 

mode 2 

P apu-1< Pl < P apu-2 SEng = ON 

PEng = 1.3*Pl + 7340 kW 

APU 

mode 3 

Pl > Papu-2 SEng = ON 

PEng = 33 kW 

Regen- 

erative 

braking 

Pl < 0 SEng = OFF 

PEng = 0 

Where SEng is engine state (ON/OFF) and PEng 

is engine power.

3.4. Optimized Adaptive RB Control 

To increase the functionality of the optimized RB controller, traffic intensity was taken into 

consideration. Since, as discussed in the introduction, this RB controller is being developed for 

repetitive home-work commutes, where the trip distance does not change, the traffic model 

considered was assumed to affect total trip time only and not the total distance. In this case, it is 

assumed that travelers will take no alternative routes to avoid traffic as the main concern is to study 

the impact of the vehicle average speed on the controller response and the corresponding energy 

consumption variation. Hence, the average velocity of the WLTP cycle would increase or decrease, 

respectively, with a decrease or increase in traffic intensity.  

Four cases of increasing traffic were considered, compared to only one for decreasing traffic, since 

delays due to heavy traffic are more likely to happen in real life. 

Table 3 summarizes the cases considered for the modified WLTP drive cycles with their respective 

total durations and average velocity ratios.  
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Figure 5: Optimized rule-based EMS architecture of Series PHEV 

To simplify nomenclature, the original WLTP cycle is referenced as WLTPbaseline, while the 

modified WLTP cycles are referenced using the average velocity ratio, 𝑅𝑉, as follows: 

 
𝑅𝑉 =  

𝑉𝑎𝑣𝑔−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝑉𝑎𝑣𝑔−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

(21) 

A similar procedure to that of section 3.2 is followed for the modified cycles to determine the new 

optimal power thresholds using DP. These updated thresholds were compared to the ones obtained 

for the WLTPbaseline cycle, to establish a relationship between the two. For the case of the considered 

three and five repeated WLTP drive cycles, two general trends are observed:

 

1. For the case of 𝑅𝑉 > 1 (decrease in traffic), the optimal power thresholds were higher than 

those of the WLTPbaseline.  

2. For the case of 𝑅𝑉 < 1 (increase in traffic), the optimal power thresholds were lower than 

those of the WLTPbaseline.    

These results are in line with the following analysis: when the velocity of the drive cycle increases, 

the Pload requested also increases. Consequently, the new optimal power thresholds will be higher in 

order to avoid overcharging the battery as Pload is expected to surpass the baseline Pev more 

frequently. Similarly, an increase in traffic intensity leading to a lower Pload results in lower optimal 

power thresholds.  

It can then be concluded that the WLTPbaseline power thresholds will need to be corrected by a 

certain factor, call it  𝑇𝐶𝐹𝑛 (𝑇raffic Correction Factor for Power Threshold 𝑛), to remain optimal, 

using the following equation: 
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 𝑃𝑛−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =  𝑇𝐶𝐹𝑛 ∗  𝑃𝑛−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (22) 

With n = ev, apu-1, or apu-2 depending on which threshold is being updated. Equation (28) can be 

reformulated and a traffic correction factor, 𝑇𝐶𝐹𝑛, is deduced: 

 
𝑇𝐶𝐹𝑛 =  

𝑃𝑛−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝑃𝑛−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

(23) 

Figure 6 introduces the TCF for the thresholds 𝑇𝐶𝐹𝑒𝑣, 𝑇𝐶𝐹𝑎𝑝𝑢−1, and 𝑇𝐶𝐹𝑎𝑝𝑢−2, as function of the 

varying average velocity ratio. The trends discussed above are highlighted in this figure where an 

𝑅𝑉 > 1 would output a TCF > 1, and thus, leading to higher thresholds. Similar logic is applied 

when 𝑅𝑉 < 1. It is interesting to note that for an 𝑅𝑉 = 1 (signifying WLTPbaseline) the TCFs all 

intersect at the value 1, meaning no correction is done to the baseline thresholds. 

Table 3: The different WLTP velocity 

modifications 

Rv Duration 

[s] 

Vavg 

[km/h] 

case 

1.1 4912 50.8 Traffic 

Decrease 

1 5403 46.2 Baseline 

0.9 6004 41.6 Traffic 

Increase 

0.8 6754 37 Traffic 

Increase 

0.7 7719 32.4 Traffic 

Increase 

0.6 9006 27.7 Traffic 

Increase 
 

Figure 6: Traffic correction factor as function 

of average velocity ratio Rv 

From the above analysis, the Opt. RB EMS architecture is modified to include a Traffic Monitoring 

Module that receives the updated average velocity from the Traffic Management System and the 

thresholds 𝑃𝑒𝑣, 𝑃𝑎𝑝𝑢−1, and 𝑃𝑎𝑝𝑢−2 from DP. Using equation (29) and the correlations shown in 

Figure 6, the Traffic Monitoring Module outputs the updated optimal thresholds to the Power 

Management Controller.  

4. Results 

4.1. Optimized RB Controller 

Figure 7 shows a comparison of the engine fuel consumption under the basic RB controller, the Opt. 

RB controller and the DP controller. Opt. RB control shows 1% to 2% increase in fuel consumption 

relative to the DP controller over distances covering up to 118 km (one to five repeated WLTP 

cycles) and 13% to 16% decrease in FC relative to the basic RB controller. This signifies that a 

remarkable reduction in computational requirements from DP optimal control to Opt. RB control 

does not necessarily lead to deteriorated fuel economy. 

Figure 8 and Figure 9 are from simulations run on three repeated WLTP cycles and used as an 

example of the obtained results. From the battery SOC in Figure 8, we can notice that the Opt. RB 

controller charges the battery slightly higher than DP and this is due to the minor approximations 

considered upon deriving the power thresholds, mainly data filtering and fittings. The basic RB 
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controller follows the charge depleting then charge sustaining strategy previously mentioned, which 

explains why the fuel consumption is way higher than the optimal consumption. Obviously, DP 

cannot be perfectly emulated by a set of rules and these slight differences can be noticed in Figure 9 

where the engine speed of the Opt. RB controller diverges from the optimal strategy at some points. 

These load power points lie near the thresholds (Pev, Papu-1, Papu-2) used in the driving commands, 

and as some approximations and data filtering are considered upon deriving the power thresholds, it 

will result in a different driving mode than that chosen by DP. 

 

Figure 7: Fuel consumption comparison 

between DP, basic RB, and Opt. RB control 

 

Figure 8: Battery SOC comparison between 

DP, basic RB, and ORB control over three 

repeated WLTPs. 

 

 

Figure 9: Engine speed comparison between DP, basic RB, and ORB control over part of three 

repeated WLTPs 

4.2. Optimized Adaptive RB Controller 

The engine fuel consumption comparison results under the DP, Opt. RB and Opt. A-RB controllers, 

over three and five repeated WLTP cycles are presented in Figure 10.  

Figure 10 shows that if the thresholds of the WLTPbaseline cycle (Opt. RB) are used for the modified 

cycles, deviations in optimal FC results range from 6% for an 𝑅𝑉of 0.9 to 22% for an 𝑅𝑉of 0.6. 

However, using the Opt. A-RB controller, deviations from optimal FC results range from 2% for an 

𝑅𝑉of 0.9 to a maximum of 5% for an 𝑅𝑉of 0.6. These results highlight the need for an Opt. A-RB 

controller in case of traffic changes in the scheduled route to keep FC results close to optimal. Such 

an optimization would prove extremely useful for everyday commutes where a small improvement 

in fuel economy would lead to large long-term fuel savings. 
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These results were confirmed by repeating the same procedure for five repeated WLTPs, which 

yielded equivalent results. The battery SOC variation, for three repeated WLTPs, at an Rv of 0.9 is 

shown in Figure 11, which highlights how the Opt. RB controller leads to an early depletion of the 

battery energy and then switches to the basic RB control for the rest of the trip. This in turn explains 

the higher FC results compared to the Opt. A-RB shown in Figure 10. 

 

 

Figure 10: Fuel consumption comparison 

between DP, Opt. RB, and Opt. A-RB control 

over three repeated WLTP cycles. 

 

Figure 11: Battery SOC comparison between 

DP, Opt. RB, and Opt. A-RB over three 

repeated WLTPs with Rv =0.9 

 
5. Conclusion 

This paper presents a systematic methodology to powertrain modeling practitioners to develop an 

optimized RB controller based on the global optimization technique DP. The study incorporates a 

series PHEV and the main application of this study is recurrent trips that may represent home – 

work commutes. The optimal control strategy chosen by DP over repeated WLTP drive cycles is 

analyzed and emulated by a set of rules used by the RB controller. blended CS/CD mode of the 

battery energy was observed to be optimal in terms of fuel savings conserving the electric energy 

until the end of the trip. The proposed controller is further adapted to consider variation in trip 

distance and traffic intensity along the road. The proposed Opt. A-RB controller shows a promising 

powertrain components behavior and fuel consumption compared to DP. It is important to note that 

optimization was done based on repeated WLTP drive cycles and as such the results are only 

applicable to that specific repeating route profile. However, same methodology can be used to 

optimize the energy management strategy for any drive cycle.  
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